1
|
Munene R, Mustafa O, Loftus S, Banfield CC, Rötter RP, Bore EK, Mweu B, Mganga KZ, Otieno DO, Ahmed MA, Dippold MA. Contribution of arbuscular mycorrhiza and exoenzymes to nitrogen acquisition of sorghum under drought. FRONTIERS IN PLANT SCIENCE 2025; 16:1514416. [PMID: 40303862 PMCID: PMC12037375 DOI: 10.3389/fpls.2025.1514416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 03/20/2025] [Indexed: 05/02/2025]
Abstract
Introduction For low-fertile and degraded soils of sub-Saharan Africa, nitrogen (N) is often the most growth-limiting factor restricting crop yields. The often-suggested exploitation of advantageous rhizosphere traits such as enzyme secretion and/or the symbiosis with arbuscular mycorrhizal fungi (AMF) remains to be validated as a potential strategy to overcome N limitation, especially when N deficiency co-occurs with further abiotic stresses such as water scarcity. Methods Three sorghum genotypes were cultivated in soil mesocosms with a root-exclusion compartment, where only AMF could scavenge for nutrients under drought and optimal conditions. Plant carbon (C) investment into the rhizosphere and N uptake were tracked by 15N application coupled with 13CO2 labeling. Results Under drought, uptake of mineral 15N by AMF from the root-exclusion compartment increased 4-12 times compared to well-watered conditions. In addition, water stress enhanced below-ground allocation of recently assimilated C into microbial biomass. Drought reduced the enzymatic potential (Vmax) of chitinase while increasing leucine aminopeptidase (LAP) activity. This suggests that N acquisition via protein mineralization in soil was relatively enhanced compared to that of chitin following moisture limitation. LAP substrate affinity (Km) was reduced by drought compared to that of chitinase with genotype-specific shifts in the rhizosphere enzyme systems observed. Conclusion Our findings suggest that below-ground C allocation activated AMF symbiosis and its associated microbiome. This not only led to a shift in enzyme-driven exploitation of distinct organic N sources but also induced a strong increase in AMF-based mineral N acquisition from the mycosphere. This trait plasticity in response to drought may be harnessed to stabilize food production from low-fertile soil under the increasingly negative impacts of droughts due to climate change.
Collapse
Affiliation(s)
- Rosepiah Munene
- Biogeochemistry of Agroecosystems, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Osman Mustafa
- Biogeochemistry of Agroecosystems, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
- Institute of Bio- and Geosciences IBG-3, Agrosphere, Juelich Research Center, Juelich, Germany
- Department of Botany and Agricultural Biotechnology, University of Khartoum, Khartoum, Sudan
| | - Sara Loftus
- Biogeochemistry of Agroecosystems, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
| | - Callum C. Banfield
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Reimund P. Rötter
- Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Goettingen, Goettingen, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Goettingen, Germany
| | - Ezekiel K. Bore
- Environmnetal Soil Science, Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Benard Mweu
- School of Agriculture, Environment, Water and Natural Resources, South Eastern Kenya University, Kitui, Kenya
| | - Kevin Z. Mganga
- Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands
| | - Dennis O. Otieno
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Tuebingen, Germany
- School of Biological and Physical Sciences, Jaramogi Oginga Odinga University of Science & Technology (JOOUST), Bondo, Kenya
| | - Mutez A. Ahmed
- Root-Soil Interaction, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Michaela A. Dippold
- Biogeochemistry of Agroecosystems, Department of Crop Sciences, University of Goettingen, Goettingen, Germany
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
2
|
Liu K, Liu Y, Wang Q, Nazaré M, Zhang L, Pan X, Hu HY. PaAP-Activatable NIR Probe for Diagnosing, Imaging, and Discovering Small-Molecule Therapeutics against Implant-Associated Biofilm Infections. J Med Chem 2025; 68:7827-7838. [PMID: 40138192 DOI: 10.1021/acs.jmedchem.5c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Biofilm formation on medical implants causes implant-associated infections (IAIs), leading to high morbidity and mortality. Developing molecular tools for precise biofilm detection, along with novel strategies and agents to target biofilm-related IAIs, is crucial for improving treatment options and patient outcomes. Pseudomonas aeruginosa aminopeptidase (PaAP), a key biofilm-associated virulence factor, is a promising target for combating infections. Here, we developed a PaAP-activatable near-infrared (NIR) fluorescent probe, Hcy-NEO-Leu, for real-time, specific, and sensitive detection of PaAP activity. This probe enables noninvasive imaging of the P. aeruginosa biofilm in vitro and in vivo. The probe also identified LY-58, a lycorine derivative that disrupts biofilm formation without affecting bacterial growth or mammalian cell viability, enhancing tobramycin penetration and overcoming antibiotic resistance. This study introduces LY-58 as a promising adjunctive therapy. In conclusion, the PaAP-activatable NIR imaging probe, combined with LY-58, offers innovative tools for the early diagnosis and effective treatment of IAIs.
Collapse
Affiliation(s)
- Kaixuan Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yang Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Leilei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiandao Pan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Jain A, Heremans I, Rademaker G, Detomasi TC, Rohweder P, Anderson D, Zhang J, Hernandez GA, Gupta S, von Linde T, Lange M, Spacci M, Luo J, Citron YR, Olzmann JA, Dawson DW, Craik CS, Bommer G, Perera RM, Zoncu R. Leucine aminopeptidase LyLAP enables lysosomal degradation of membrane proteins. Science 2025; 387:eadq8331. [PMID: 40146846 DOI: 10.1126/science.adq8331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/25/2024] [Accepted: 01/13/2025] [Indexed: 03/29/2025]
Abstract
Breakdown of every transmembrane protein trafficked to lysosomes requires proteolysis of their hydrophobic helical transmembrane domains. Combining lysosomal proteomics with functional genomic datasets, we identified lysosomal leucine aminopeptidase (LyLAP; formerly phospholipase B domain-containing 1) as the hydrolase most tightly associated with elevated endocytosis. Untargeted metabolomics and biochemical reconstitution demonstrated that LyLAP is a processive monoaminopeptidase with preference for amino-terminal leucine. This activity was necessary and sufficient for the breakdown of hydrophobic transmembrane domains. LyLAP was up-regulated in pancreatic ductal adenocarcinoma (PDA), which relies on macropinocytosis for nutrient uptake. In PDA cells, LyLAP ablation led to the buildup of undigested hydrophobic peptides, lysosomal membrane damage, and growth inhibition. Thus, LyLAP enables lysosomal degradation of membrane proteins and protects lysosomal integrity in highly endocytic cancer cells.
Collapse
Affiliation(s)
- Aakriti Jain
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Isaac Heremans
- Metabolic Research Group, de Duve Institute and WELBIO, Universite Catholique de Louvain, Brussels, Belgium
| | - Gilles Rademaker
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Tyler C Detomasi
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Dashiell Anderson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Justin Zhang
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Grace A Hernandez
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Suprit Gupta
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Teresa von Linde
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Mike Lange
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Martina Spacci
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Jiayi Luo
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Y Rose Citron
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| | - James A Olzmann
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - David W Dawson
- Department of Pathology and Laboratory Medicine and Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Guido Bommer
- Metabolic Research Group, de Duve Institute and WELBIO, Universite Catholique de Louvain, Brussels, Belgium
| | - Rushika M Perera
- Department of Anatomy and Helen Diller Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
| |
Collapse
|
4
|
Weixler L, Žaja R, Ikenga NJ, Siefert J, Mohan G, Aydin G, Wijngaarden S, Filippov DV, Lüscher B, Feijs-Žaja KLH. Family-wide analysis of human macrodomains reveals novel activities and identifies PARG as most efficient ADPr-RNA hydrolase. Commun Biol 2025; 8:453. [PMID: 40102620 PMCID: PMC11920425 DOI: 10.1038/s42003-025-07901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 03/07/2025] [Indexed: 03/20/2025] Open
Abstract
ADP-ribosylation is well-known as protein posttranslational modification and was recently also identified as RNA posttranscriptional modification. When macrodomain proteins were identified as protein ADP-ribosylhydrolases, several ADP-ribosylation substrates were not yet identified. Therefore, the majority of macrodomain-containing proteins have not been tested towards these additional substrates and were considered to be inactive. Here, we compare in vitro activities of the human macrodomains on a range of ADP-ribosylated substrates. We confirm recent findings that PARP9macro1 and PARP14macro1 can remove ADP-ribose from acidic residues and provide evidence that also PARP14macro2 and PARP15macro2 can function as ADP-ribosylhydrolases. In addition, we find that both PARP9macro1 and PARP14macro1 are active as ADPr-RNA decapping protein domains. Notwithstanding these in vitro activities, our data furthermore indicate that in HEK293 cells, PARG is the major ADPr-RNA decapping enzyme. Our findings thus expand the spectrum of known catalytic activities of human macrodomains and demonstrate their different efficiencies towards nucleic acid substrates.
Collapse
Affiliation(s)
- Lisa Weixler
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
- Institute for Clinical Chemistry and Clinical Pharmacology, Venusberg-Campus 1, University Hospital Bonn, Bonn, Germany
| | - Roko Žaja
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany.
| | - Nonso J Ikenga
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Jonas Siefert
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Ganga Mohan
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Gülcan Aydin
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Sven Wijngaarden
- Leiden Institute of Chemistry, Leiden University Department of Bioorganic Synthesis, Einsteinweg 55, Leiden, The Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University Department of Bioorganic Synthesis, Einsteinweg 55, Leiden, The Netherlands
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany
| | - Karla L H Feijs-Žaja
- Institute of Biochemistry and Molecular Biology, Pauwelsstraße 30, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
5
|
Yu S, Zhang M, Guo Y, Zhang L. Serum Leucine Aminopeptidase Activity Patterns Across Various Disease States: Potential Implications for Bleeding and Thrombosis Risk. Thromb Haemost 2025; 125:120-129. [PMID: 39009008 DOI: 10.1055/a-2365-8601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
BACKGROUND Disruptions in the pathways for activating and deactivating proteases in the bloodstream can lead to thrombosis and bleeding issues. Leucine aminopeptidases (LAPs), which are exopeptidases essential for regulating protein and peptide activities, are recognized as clinical biomarkers for liver diseases. However, the relationship between serum LAP activity and the risks of bleeding or thrombosis, as well as the identification of the specific tissues or organs that control LAP levels, is not well understood. METHODS We performed a retrospective study to evaluate serum LAP activities in 149,360 patients with 47 different diseases and 9,449 healthy individuals. The analysis was conducted using SPSS V2.6, RStudio V.1.3.1073, and libraries in Python 3.8. RESULTS Our research revealed that 21 of the 47 diseases studied showed increased median serum LAP activities, while 26 diseases were associated with significantly lower activities, especially those related to thrombosis. Furthermore, most diseases were found to have an increased risk of bleeding and thrombosis, indicated by higher Q25 and lower Q75 LAP activities compared to the control group. Receiver operating characteristic curve analysis confirmed the effectiveness of LAP activities as biomarkers for specific conditions like hepatic encephalopathy, liver cancer, pancreatitis, and pancreatic cancer. Diseases were categorized into clusters with similar bleeding or thrombotic tendencies through principal component analysis. CONCLUSION This study highlighted regulatory influence of the liver and pancreas on LAP levels. The established link between serum LAP concentrations and the risk of bleeding or thrombosis paved the way for the development of diagnostic and preventative approaches for various medical conditions.
Collapse
Affiliation(s)
- Sha Yu
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Systems Biology and Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Systems Biology and Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yachong Guo
- Nanjing Drum Tower Hospital, Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Diagnosis, American Institute of Translational Medicine and Therapeutics, Missouri, United States
| |
Collapse
|
6
|
Rodríguez-Mínguez E, Calzada J, Sánchez C, Vázquez M, Ávila M, Garde S, Picon A. Symbiotic sheep milk cheese containing Moringa oleifera extract and Bifidobacterium pseudolongum INIA P2. Int J Food Microbiol 2025; 427:110942. [PMID: 39426083 DOI: 10.1016/j.ijfoodmicro.2024.110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Healthy non-bovine functional dairy products are reaching high interest among consumers. In the present study, an aqueous polyphenol-rich Moringa oleifera extract (MoE) and a Bifidobacterium strain of human origin (B. pseudolongum INIA P2) were added, alone or in combination, for the manufacture of three experimental and one control sheep milk cheeses. In general, addition of 2.05 g of lyophilized MoE per 100 g of curd did not affect cheese dry matter or lactococci starter counts during ripening. B. pseudolongum INIA P2 showed good viability in cheese during ripening, and after simulated major gastrointestinal conditions, reaching levels above 7 log CFU / g of cheese. Cheeses with MoE showed lower pH, higher proteolysis and aminopeptidase activity than control cheese. MoE impoved functional properties, significantly (P < 0.01) increasing total phenolic content (TPC) and, especially, antioxidant capacity, with respect to control cheese. MoE modified cheese colour and volatile profile. Cheeses with MoE were darker in colour with higher red and yellow components than control cheese. Several volatile compounds were only detected in cheeses with MoE, indicating their plant origin. On top of that, increased levels of compounds originating from amino acid catabolism were present in these cheeses, as a result of their higher proteolytic and peptidolytic indexes. The symbiotic cheese with MoE and B. pseudolongum INIA P2 could confer beneficial effects on consumers' health by increasing polyphenol bioavailability and contributing to the host antioxidant capacity.
Collapse
Affiliation(s)
- Eva Rodríguez-Mínguez
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Javier Calzada
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Carmen Sánchez
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - María Vázquez
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Marta Ávila
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Sonia Garde
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain
| | - Antonia Picon
- Departamento de Tecnología de Alimentos, INIA, CSIC, Carretera de La Coruña Km 7, 28040 Madrid, Spain.
| |
Collapse
|
7
|
Jain A, Heremans I, Rademaker G, Detomasi TC, Hernandez GA, Zhang J, Gupta S, von Linde T, Lange M, Spacci M, Rohweder P, Anderson D, Citron YR, Olzmann JA, Dawson DW, Craik CS, Bommer G, Perera RM, Zoncu R. Leucine Aminopeptidase LyLAP enables lysosomal degradation of membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.13.628212. [PMID: 39713462 PMCID: PMC11661280 DOI: 10.1101/2024.12.13.628212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Proteolysis of hydrophobic helices is required for complete breakdown of every transmembrane protein trafficked to the lysosome and sustains high rates of endocytosis. However, the lysosomal mechanisms for degrading hydrophobic domains remain unknown. Combining lysosomal proteomics with functional genomic data mining, we identify Lysosomal Leucine Aminopeptidase (LyLAP; formerly Phospholipase B Domain-Containing 1) as the hydrolase most tightly associated with elevated endocytic activity. Untargeted metabolomics and biochemical reconstitution demonstrate that LyLAP is not a phospholipase, but a processive monoaminopeptidase with strong preference for N-terminal leucine - an activity necessary and sufficient for breakdown of hydrophobic transmembrane domains. LyLAP is upregulated in pancreatic ductal adenocarcinoma (PDA), which relies on macropinocytosis for nutrient uptake, and its ablation led to buildup of undigested hydrophobic peptides, which compromised lysosomal membrane integrity and inhibited PDA cell growth. Thus, LyLAP enables lysosomal degradation of membrane proteins, and may represent a vulnerability in highly endocytic cancer cells. One sentence summary LyLAP degrades transmembrane proteins to sustain high endocytosis and lysosomal membrane stability in pancreatic cancer.
Collapse
|
8
|
Carrillo-Bermejo EA, Brito-Argáez L, Galaz-Ávalos RM, Barredo-Pool F, Loyola-Vargas VM, Aguilar-Hernández V. Protein profile changes during priming explants to embryogenic response in Coffea canephora: identification of the RPN12 proteasome subunit involved in the protein degradation. PeerJ 2024; 12:e18372. [PMID: 39544425 PMCID: PMC11562780 DOI: 10.7717/peerj.18372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
Plant somatic embryogenesis encompasses somatic cells switch into embryogenic cells that can later produce somatic embryos with the ability to produce plantlets. Previously, we defined in vitro culture settings for the somatic embryogenesis process of Coffea canephora that comprise adequate plantlets with auxin plus cytokinin followed by cut-leaf explant cultivation with cytokinin, producing embryos with the ability to regenerate plantlets. Here, we confirmed that cultivating cut-leaf explants with cytokinin is sufficient to promote somatic embryos proliferation and the high yield of somatic embryos in the protocol requires adequate plantlets with auxin plus cytokinin. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels reveal auxin-plus cytokinin-dependent regulated proteins in plantlets with up and down abundance. Chitinase A class III, proteins involved in the metabolism and folding of proteins, photosynthesis, antioxidant activity, and chromatin organization were identified. The RPN12 protein, which is a subunit of the proteasome 26S, has an abundance that is not associated with transcript changes, suggesting post-translational regulation.
Collapse
Affiliation(s)
- Evelyn A. Carrillo-Bermejo
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Ligia Brito-Argáez
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Rosa M. Galaz-Ávalos
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Felipe Barredo-Pool
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán (CICY), Mérida, Yucatán, Mexico
| | - Víctor M. Loyola-Vargas
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| | - Victor Aguilar-Hernández
- Unidad de Biología Integrativa, Centro de Investigacion Cientifica de Yucatan (CICY), Mérida, Yucatán, Mexico
| |
Collapse
|
9
|
Wang T, Ma X, Feng F, Zheng F, Zheng Q, Zhang J, Zhang M, Ma C, Deng J, Guo X, Chu M, La Y, Bao P, Pan H, Liang C, Yan P. Study on Single Nucleotide Polymorphism of LAP3 Gene and Its Correlation with Dairy Quality Traits of Gannan Yak. Foods 2024; 13:2953. [PMID: 39335882 PMCID: PMC11431709 DOI: 10.3390/foods13182953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
This study explored the polymorphism of the leucine aminopeptidase (LAP3) gene and its relationship with milk quality characteristics in Gannan yak. A cohort of 162 Gannan yak was genotyped utilizing the Illumina Yak cGPS 7K BeadChip, and the identified single nucleotide polymorphisms (SNPs) were evaluated for their association with milk protein, casein, lactose, and fat concentrations. The results showed that four SNPs (g.4494G > A, g.5919A > G, g.8033G > C, and g.15,615A > G) in the LAP3 gene exhibited polymorphism with information content values of 0.267, 0.267, 0.293, and 0.114, respectively. All four SNPs were in Hardy-Weinberg equilibrium (p > 0.05). The g.4494G > A and g.5919A > G SNPs were significantly associated with protein content (p < 0.05), with homozygous genotypes showing significantly higher protein content than heterozygous genotypes (p < 0.05). The g.8033G > C SNP was significantly associated with casein content, protein content, non-fat solids, and acidity (p < 0.05), with the CC genotype having significantly higher casein, protein, and non-fat solids content than the GG and GC genotypes (p < 0.05). The g.15,615A > G SNP was significantly associated with average fat globule diameter (p < 0.05). In general, the mutations within the LAP3 gene demonstrated a positive impact on milk quality traits in Gannan yak, with mutated genotypes correlating with enhanced milk quality. These results indicate that the LAP3 gene could be a significant or candidate gene affecting milk quality traits in Gannan yak and offer potential genetic markers for molecular breeding programs in this species.
Collapse
Affiliation(s)
- Tong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Fen Feng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Fei Zheng
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Qingbo Zheng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Juanxiang Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Minghao Zhang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Chaofan Ma
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Jingying Deng
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Yongfu La
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Heping Pan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730124, China
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730000, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 931100, China
| |
Collapse
|
10
|
Rothmann-Meyer W, Naidoo K, de Waal PJ. Spirocerca lupi draft genome, vaccine and anthelmintic targets. Mol Biochem Parasitol 2024; 259:111632. [PMID: 38834134 DOI: 10.1016/j.molbiopara.2024.111632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/06/2024]
Abstract
Spirocerca lupi is a parasitic nematode affecting predominantly domestic dogs. It causes spirocercosis, a disease that is often fatal. The assembled draft genome of S. lupi consists of 13,627 predicted protein-coding genes and is approximately 150 Mb in length. Several known anthelmintic gene targets such as for β-Tubulin, glutamate, and GABA receptors as well as known vaccine gene targets such as cysteine protease inhibitor and cytokines were identified in S. lupi by comparing orthologs of C. elegans anthelmintic gene targets as well as orthologs to known vaccine candidates. New anthelmintic targets were predicted through an inclusion-exclusion strategy and new vaccine targets were predicted through an immunoinformatics approach. New anthelminthic targets include DNA-directed RNA polymerases, chitin synthase, polymerases, and other enzymes. New vaccine targets include cuticle collagens. These gene targets provide a starting platform for new drug identification and vaccine design.
Collapse
Affiliation(s)
- Wiekolize Rothmann-Meyer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Kershney Naidoo
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa; Thermo Fisher Scientific, Hybrid Field Application Scientist & Field Service Engineer, South Africa
| | - Pamela J de Waal
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
11
|
Qadeer A, Wajid A, Rafey HA, Nawaz S, Khan S, Rahman SU, Alzahrani KJ, Khan MZ, Alsabi MNS, Ullah H, Safi SZ, Xia Z, Zahoor M. Exploring extracellular vesicles in zoonotic helminth biology: implications for diagnosis, therapeutic and delivery. Front Cell Infect Microbiol 2024; 14:1424838. [PMID: 39165921 PMCID: PMC11333462 DOI: 10.3389/fcimb.2024.1424838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/03/2024] [Indexed: 08/22/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as key intercellular communication and pathogenesis mediators. Parasitic organisms' helminths, cause widespread infections with significant health impacts worldwide. Recent research has shed light on the role of EVs in the lifecycle, immune evasion, and disease progression of these parasitic organisms. These tiny membrane-bound organelles including microvesicles and exosomes, facilitate the transfer of proteins, lipids, mRNAs, and microRNAs between cells. EVs have been isolated from various bodily fluids, offering a potential diagnostic and therapeutic avenue for combating infectious agents. According to recent research, EVs from helminths hold great promise in the diagnosis of parasitic infections due to their specificity, early detection capabilities, accessibility, and the potential for staging and monitoring infections, promote intercellular communication, and are a viable therapeutic tool for the treatment of infectious agents. Exploring host-parasite interactions has identified promising new targets for diagnostic, therapy, and vaccine development against helminths. This literature review delves into EVS's origin, nature, biogenesis, and composition in these parasitic organisms. It also highlights the proteins and miRNAs involved in EV release, providing a comprehensive summary of the latest findings on the significance of EVs in the biology of helminths, promising targets for therapeutic and diagnostic biomarkers.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan, Pakistan
| | - Hafiz Abdul Rafey
- Shifa College of Pharmaceutical Sciences, Faculty of Pharmaceutical and Allied Health Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Sawar Khan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sajid Ur Rahman
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Muhammad Zahoor Khan
- College of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong, China
| | - Mohammad Nafi Solaiman Alsabi
- Department of Basic Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Hanif Ullah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- West China School of Nursing/West China Hospital, Sichuan University, Chengdu, China
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor, Malaysia
| | - Zanxian Xia
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Shen Y, Li W, Zhou Z, Xu J, Li Y, Li H, Zheng X, Liu S, Zhang XB, Yuan L. Dual-Locked Fluorescent Probes Activated by Aminopeptidase N and the Tumor Redox Environment for High-Precision Imaging of Tumor Boundaries. Angew Chem Int Ed Engl 2024; 63:e202406332. [PMID: 38781113 DOI: 10.1002/anie.202406332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Clear delineation of tumor margins is essential for accurate resection and decreased recurrence rate in the clinic. Fluorescence imaging is emerging as a promising alternative to traditional visual inspection by surgeons for intraoperative imaging. However, traditional probes lack accuracy in tumor diagnosis, making it difficult to depict tumor boundaries accurately. Herein, we proposed an offensive and defensive integration (ODI) strategy based on the "attack systems (invasive peptidase) and defense systems (reductive microenvironment)" of multi-dimensional tumor characteristics to design activatable fluorescent probes for imaging tumor boundaries precisely. Screened out from a series of ODI strategy-based probes, ANQ performed better than traditional probes based on tumor unilateral correlation by distinguishing between tumor cells and normal cells and minimizing false-positive signals from living metabolic organs. To further improve the signal-to-background ratio in vivo, derivatized FANQ, was prepared and successfully applied to distinguish orthotopic hepatocellular carcinoma tissues from adjacent tissues in mice models and clinical samples. This work highlights an innovative strategy to develop activatable probes for rapid diagnosis of tumors and high-precision imaging of tumor boundaries, providing more efficient tools for future clinical applications in intraoperative assisted resection.
Collapse
Affiliation(s)
- Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhixuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Junchao Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yuhang Li
- Department of Hepatobiliary Surgery/ Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, P. R. China
| | - Haiyan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xudong Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sulai Liu
- Department of Hepatobiliary Surgery/ Central Laboratory, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
13
|
Aguado M, Carvalho S, Valdés-Tresanco ME, Lin D, Padilla-Mejia N, Corpas-Lopez V, Tesařová M, Lukeš J, Gray D, González-Bacerio J, Wyllie S, Field MC. Identification and Validation of Compounds Targeting Leishmania major Leucyl-Aminopeptidase M17. ACS Infect Dis 2024; 10:2002-2017. [PMID: 38753953 PMCID: PMC11184559 DOI: 10.1021/acsinfecdis.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Leishmaniasis is a neglected tropical disease; there is currently no vaccine and treatment is reliant upon a handful of drugs suffering from multiple issues including toxicity and resistance. There is a critical need for development of new fit-for-purpose therapeutics, with reduced toxicity and targeting new mechanisms to overcome resistance. One enzyme meriting investigation as a potential drug target in Leishmania is M17 leucyl-aminopeptidase (LAP). Here, we aimed to chemically validate LAP as a drug target in L. major through identification of potent and selective inhibitors. Using RapidFire mass spectrometry, the compounds DDD00057570 and DDD00097924 were identified as selective inhibitors of recombinant Leishmania major LAP activity. Both compounds inhibited in vitro growth of L. major and L. donovani intracellular amastigotes, and overexpression of LmLAP in L. major led to reduced susceptibility to DDD00057570 and DDD00097924, suggesting that these compounds specifically target LmLAP. Thermal proteome profiling revealed that these inhibitors thermally stabilized two M17 LAPs, indicating that these compounds selectively bind to enzymes of this class. Additionally, the selectivity of the inhibitors to act on LmLAP and not against the human ortholog was demonstrated, despite the high sequence similarities LAPs of this family share. Collectively, these data confirm LmLAP as a promising therapeutic target for Leishmania spp. that can be selectively inhibited by drug-like small molecules.
Collapse
Affiliation(s)
- Mirtha
E. Aguado
- Center
for Protein Studies, Faculty of Biology, University of Havana, 10400 Havana, Cuba
| | - Sandra Carvalho
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | | | - De Lin
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | - Norma Padilla-Mejia
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | - Victoriano Corpas-Lopez
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | - Martina Tesařová
- Institute
of Parasitology, Biology Centre, Czech Academy
of Sciences, 37005 České Budějovice, Czech Republic
| | - Julius Lukeš
- Institute
of Parasitology, Biology Centre, Czech Academy
of Sciences, 37005 České Budějovice, Czech Republic
- Faculty
of Sciences, University of South Bohemia, 37005 České
Budějovice, Czech Republic
| | - David Gray
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | - Jorge González-Bacerio
- Center
for Protein Studies, Faculty of Biology, University of Havana, 10400 Havana, Cuba
| | - Susan Wyllie
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
| | - Mark C. Field
- Wellcome
Centre for Anti-Infective Research, School of Life Sciences, University of Dundee, DD1 4HN Scotland, U.K.
- Institute
of Parasitology, Biology Centre, Czech Academy
of Sciences, 37005 České Budějovice, Czech Republic
| |
Collapse
|
14
|
Muñoz-Vargas MA, González-Gordo S, Aroca A, Romero LC, Gotor C, Palma JM, Corpas FJ. Persulfidome of Sweet Pepper Fruits during Ripening: The Case Study of Leucine Aminopeptidase That Is Positively Modulated by H 2S. Antioxidants (Basel) 2024; 13:719. [PMID: 38929158 PMCID: PMC11200738 DOI: 10.3390/antiox13060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Protein persulfidation is a thiol-based oxidative posttranslational modification (oxiPTM) that involves the modification of susceptible cysteine thiol groups present in peptides and proteins through hydrogen sulfide (H2S), thus affecting their function. Using sweet pepper (Capsicum annuum L.) fruits as a model material at different stages of ripening (immature green and ripe red), endogenous persulfidated proteins (persulfidome) were labeled using the dimedone switch method and identified using liquid chromatography and mass spectrometry analysis (LC-MS/MS). A total of 891 persulfidated proteins were found in pepper fruits, either immature green or ripe red. Among these, 370 proteins were exclusively present in green pepper, 237 proteins were exclusively present in red pepper, and 284 proteins were shared between both stages of ripening. A comparative analysis of the pepper persulfidome with that described in Arabidopsis leaves allowed the identification of 25% of common proteins. Among these proteins, glutathione reductase (GR) and leucine aminopeptidase (LAP) were selected to evaluate the effect of persulfidation using an in vitro approach. GR activity was unaffected, whereas LAP activity increased by 3-fold after persulfidation. Furthermore, this effect was reverted through treatment with dithiothreitol (DTT). To our knowledge, this is the first persulfidome described in fruits, which opens new avenues to study H2S metabolism. Additionally, the results obtained lead us to hypothesize that LAP could be involved in glutathione (GSH) recycling in pepper fruits.
Collapse
Affiliation(s)
- María A. Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain; (A.A.); (L.C.R.); (C.G.)
| | - Luis C. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain; (A.A.); (L.C.R.); (C.G.)
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain; (A.A.); (L.C.R.); (C.G.)
| | - José M. Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| | - Francisco J. Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda 1, 18008 Granada, Spain; (M.A.M.-V.); (S.G.-G.); (J.M.P.)
| |
Collapse
|
15
|
Rios-Valencia DG, Estrada K, Calderón-Gallegos A, Tirado-Mendoza R, Bobes RJ, Laclette JP, Cabrera-Bravo M. Effect of Hydroxyurea on Morphology, Proliferation, and Protein Expression on Taenia crassiceps WFU Strain. Int J Mol Sci 2024; 25:6061. [PMID: 38892261 PMCID: PMC11172544 DOI: 10.3390/ijms25116061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Flatworms are known for their remarkable regenerative ability, one which depends on totipotent cells known as germinative cells in cestodes. Depletion of germinative cells with hydroxyurea (HU) affects the regeneration of the parasite. Here, we studied the reduction and recovery of germinative cells in T. crassiceps cysticerci after HU treatment (25 mM and 40 mM of HU for 6 days) through in vitro assays. Viability and morphological changes were evaluated. The recovery of cysticerci's mobility and morphology was evaluated at 3 and 6 days, after 6 days of treatment. The number of proliferative cells was evaluated using EdU. Our results show morphological changes in the size, shape, and number of evaginated cysticerci at the 40 mM dose. The mobility of cysticerci was lower after 6 days of HU treatment at both concentrations. On days 3 and 6 of recovery after 25 mM of HU treatment, a partial recovery of the proliferative cells was observed. Proteomic and Gene Ontology analyses identified modifications in protein groups related to DNA binding, DNA damage, glycolytic enzymes, cytoskeleton, skeletal muscle, and RNA binding.
Collapse
Affiliation(s)
- Diana G. Rios-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| | - Karel Estrada
- Unit for Massive Sequencing and Bioinformatics, Biotechnology Institute, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico;
| | - Arturo Calderón-Gallegos
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| | - Raúl J. Bobes
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Juan P. Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Mexico City 04510, Mexico; (A.C.-G.); (R.J.B.)
| | - Margarita Cabrera-Bravo
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City 04510, Mexico; (D.G.R.-V.); (R.T.-M.)
| |
Collapse
|
16
|
Ali EAA, Hussein NA, El-Hakim AE, Amer MA, Shahein YE. Cloning and catalytic profile of Hyalomma dromedarii leucine aminopeptidase. Int J Biol Macromol 2024; 268:131778. [PMID: 38657929 DOI: 10.1016/j.ijbiomac.2024.131778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Ticks have harmful impacts on both human and animal health and cause considerable economic losses. Leucine aminopeptidase enzymes (LAP) play important roles during tick infestation to liberate vital amino acids necessary for growth. The aim of the current study is to identify, express and characterize the LAP from the hard tick Hyalomma dromedarii and elucidate its biochemical characteristics. We cloned an open reading frame of 1560 bp encoding a protein of 519 amino acids. The LAP full-length was expressed in Escherichia coli BL21 (DE3) and purified. The recombinant enzyme (H.d rLAP- 6×His) had a predicted molecular mass of approximately 55 kDa. Purification and the enzymatic characteristics of H.d rLAP- 6×His were studied. The purified enzyme showed maximum activity at 37 °C and pH 8.0-8.5 using Leu-p-nitroanilide as a substrate. The activity of H.d rLAP- 6×His was sensitive to β-mercaptoethanol, dl-dithiothreitol, 1,10- phenanthroline, bestatin HCl, and EDTA and completely abolished by 0.05 % SDS. In parallel, the enzymatic activity was enhanced by Ni2+, Mn2+ and Mg2+, partially inhibited by Na+, Cu2+, Ca2+ and completely inhibited by Zn2+.
Collapse
Affiliation(s)
- Esraa A A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Nahla A Hussein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| | - Amr E El-Hakim
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Mahmoud A Amer
- Zoology Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Yasser E Shahein
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, Dokki, 12622 Cairo, Egypt.
| |
Collapse
|
17
|
Worku D, Verma A. Genetic variation in bovine LAP3 and SIRT1 genes associated with fertility traits in dairy cattle. BMC Genom Data 2024; 25:32. [PMID: 38500063 PMCID: PMC10949778 DOI: 10.1186/s12863-024-01209-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 02/15/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND The genetic progress of fertility and reproduction traits in dairy cattle has been constrained by the low heritability of these traits. Identifying candidate genes and variants associated with fertility and reproduction could enhance the accuracy of genetic selection and expedite breeding process of dairy cattle with low-heritability traits. While the bovine LAP3 and SIRT1 genes exhibit well-documented associations with milk production traits in dairy cattle, their effect on cow fertility have not yet been explored. Eleven single nucleotide polymorphisms (SNPs), comprising five in the promoter (rs717156555: C > G, rs720373055: T > C, rs516876447: A > G, rs461857269: C > T and rs720349928: G > A), two in 5'UTR (rs722359733: C > T and rs462932574: T > G), two in intron 12 (rs110932626: A > G and rs43702363: C > T), and one in 3'UTR of exon 13 (rs41255599: C > T) in LAP3 and one in SIRT1 (rs718329990:T > C) genes, have previously been reported to be associated with various traits of milk production and clinical mastitis in Sahiwal and Karan Fries dairy cattle. In this study, the analysis primarily aimed to assess the impact of SNPs within LAP3 and SIRT1 genes on fertility traits in Sahiwal and Karan Fries cattle. Association studies were conducted using mixed linear models, involving 125 Sahiwal and 138 Karan Fries animals in each breed. The analysis utilized a designated PCR-RFLP panel. RESULTS In the promoter region of the LAP3 gene, all variants demonstrated significant (P < 0.05) associations with AFC, except for rs722359733: C > T. However, specific variants with the LAP3 gene's promoter region, namely rs722359733: C > T, rs110932626: A > G, rs43702363: C > T, and rs41255599: C > T, showed significant associations with CI and DO in Sahiwal and Karan Fries cows, respectively. The SNP rs718329990: T > C in the promoter region of SIRT1 gene exhibited a significant association with CI and DO in Sahiwal cattle. Haplotype-based association analysis revealed significant associations between haplotype combinations and AFC, CI and DO in the studied dairy cattle population. Animals with H2H3 and H2H4 haplotype combination exhibited higher AFC, CI and DO than other combinations. CONCLUSIONS These results affirm the involvement of the LAP3 and SIRT1 genes in female fertility traits, indicating that polymorphisms within these genes are linked to the studied traits. Overall, the significant SNPs and haplotypes identified in this study could have the potential to enhance herd profitability and ensure long-term sustainability on dairy farms by enabling the selection of animals with early age first calving and enhance reproductive performance in the dairy cattle breeding program.
Collapse
Affiliation(s)
- Destaw Worku
- Department of Animal Science, College of Agriculture, Food and Climate Science, Injibara University, Injibara, Ethiopia.
| | - Archana Verma
- Animal Genetics and Breeding Division, ICAR -National Dairy Research Institute, Karnal, India
| |
Collapse
|
18
|
Iqbal H, Ilyas K, Akash MSH, Rehman K, Hussain A, Iqbal J. Real-time fluorescent monitoring of phase I xenobiotic-metabolizing enzymes. RSC Adv 2024; 14:8837-8870. [PMID: 38495994 PMCID: PMC10941266 DOI: 10.1039/d4ra00127c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
This article explores the intricate landscape of advanced fluorescent probes crafted for the detection and real-time monitoring of phase I xenobiotic-metabolizing enzymes. Employing state-of-the-art technologies, such as fluorescence resonance energy transfer, intramolecular charge transfer, and solid-state luminescence enhancement, this article unfolds a multifaceted approach to unraveling the dynamics of enzymatic processes within living systems. This encompassing study involves the development and application of a diverse range of fluorescent probes, each intricately designed with tailored mechanisms to heighten sensitivity, providing dynamic insights into phase I xenobiotic-metabolizing enzymes. Understanding the role of phase I xenobiotic-metabolizing enzymes in these pathophysiological processes, is essential for both medical research and clinical practice. This knowledge can guide the development of approaches to prevent, diagnose, and treat a broad spectrum of diseases and conditions. This adaptability underscores their potential clinical applications in cancer diagnosis and personalized medicine. Noteworthy are the trifunctional fluorogenic probes, uniquely designed not only for fluorescence-based cellular imaging but also for the isolation of cellular glycosidases. This innovative feature opens novel avenues for comprehensive studies in enzyme biology, paving the way for potential therapeutic interventions. The research accentuates the selectivity and specificity of the probes, showcasing their proficiency in distinguishing various enzymes and their isoforms. The sophisticated design and successful deployment of these fluorescent probes mark significant advancements in enzymology, providing powerful tools for both researchers and clinicians. Beyond their immediate applications, these probes offer illuminating insights into disease mechanisms, facilitating early detection, and catalyzing the development of targeted therapeutic interventions. This work represents a substantial leap forward in the field, promising transformative implications for understanding and addressing complex biological processes. In essence, this research heralds a new era in the development of fluorescent probes, presenting a comprehensive and innovative approach that not only expands the understanding of cellular enzyme activities but also holds great promise for practical applications in clinical settings and therapeutic endeavors.
Collapse
Affiliation(s)
- Hajra Iqbal
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | - Kainat Ilyas
- Department of Pharmaceutical Chemistry, Government College University Faisalabad Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, The Women University Multan Pakistan
| | - Amjad Hussain
- Institute of Chemistry, University of Okara Okara Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus Abbottabad 22044 Pakistan
| |
Collapse
|
19
|
Muñoz-Vargas MA, Taboada J, González-Gordo S, Palma JM, Corpas FJ. Characterization of leucine aminopeptidase (LAP) activity in sweet pepper fruits during ripening and its inhibition by nitration and reducing events. PLANT CELL REPORTS 2024; 43:92. [PMID: 38466441 PMCID: PMC10927865 DOI: 10.1007/s00299-024-03179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
KEY MESSAGE Pepper fruits contain two leucine aminopeptidase (LAP) genes which are differentially modulated during ripening and by nitric oxide. The LAP activity increases during ripening but is negatively modulated by nitration. Leucine aminopeptidase (LAP) is an essential metalloenzyme that cleaves N-terminal leucine residues from proteins but also metabolizes dipeptides and tripeptides. LAPs play a fundamental role in cell protein turnover and participate in physiological processes such as defense mechanisms against biotic and abiotic stresses, but little is known about their involvement in fruit physiology. This study aims to identify and characterize genes encoding LAP and evaluate their role during the ripening of pepper (Capsicum annuum L.) fruits and under a nitric oxide (NO)-enriched environment. Using a data-mining approach of the pepper plant genome and fruit transcriptome (RNA-seq), two LAP genes, designated CaLAP1 and CaLAP2, were identified. The time course expression analysis of these genes during different fruit ripening stages showed that whereas CaLAP1 decreased, CaLAP2 was upregulated. However, under an exogenous NO treatment of fruits, both genes were downregulated. On the contrary, it was shown that during fruit ripening LAP activity increased by 81%. An in vitro assay of the LAP activity in the presence of different modulating compounds including peroxynitrite (ONOO-), NO donors (S-nitrosoglutathione and nitrosocyteine), reducing agents such as reduced glutathione (GSH), L-cysteine (L-Cys), and cyanide triggered a differential response. Thus, peroxynitrite and reducing compounds provoked around 50% inhibition of the LAP activity in green immature fruits, whereas cyanide upregulated it 1.5 folds. To our knowledge, this is the first characterization of LAP in pepper fruits as well as of its regulation by diverse modulating compounds. Based on the capacity of LAP to metabolize dipeptides and tripeptides, it could be hypothesized that the LAP might be involved in the GSH recycling during the ripening process.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Jorge Taboada
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Salvador González-Gordo
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - José M Palma
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain
| | - Francisco J Corpas
- Department of Stress, Development and Signaling in Plants, Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Estación Experimental del Zaidín Spanish National Research Council, CSIC, C/Profesor Albareda, 1, 18008, Granada, Spain.
| |
Collapse
|
20
|
Eslami SM, van der Donk WA. Proteases Involved in Leader Peptide Removal during RiPP Biosynthesis. ACS BIO & MED CHEM AU 2024; 4:20-36. [PMID: 38404746 PMCID: PMC10885120 DOI: 10.1021/acsbiomedchemau.3c00059] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/27/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) have received much attention in recent years because of their promising bioactivities and the portability of their biosynthetic pathways. Heterologous expression studies of RiPP biosynthetic enzymes identified by genome mining often leave a leader peptide on the final product to prevent toxicity to the host and to allow the attachment of a genetically encoded affinity purification tag. Removal of the leader peptide to produce the mature natural product is then carried out in vitro with either a commercial protease or a protease that fulfills this task in the producing organism. This review covers the advances in characterizing these latter cognate proteases from bacterial RiPPs and their utility as sequence-dependent proteases. The strategies employed for leader peptide removal have been shown to be remarkably diverse. They include one-step removal by a single protease, two-step removal by two dedicated proteases, and endoproteinase activity followed by aminopeptidase activity by the same protease. Similarly, the localization of the proteolytic step varies from cytoplasmic cleavage to leader peptide removal during secretion to extracellular leader peptide removal. Finally, substrate recognition ranges from highly sequence specific with respect to the leader and/or modified core peptide to nonsequence specific mechanisms.
Collapse
Affiliation(s)
- Sara M. Eslami
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wilfred A. van der Donk
- Department
of Chemistry, University of Illinois at
Urbana−Champaign, Urbana, Illinois 61801, United States
- Howard
Hughes Medical Institute, University of
Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Influence of Salinity on the Extracellular Enzymatic Activities of Marine Pelagic Fungi. J Fungi (Basel) 2024; 10:152. [PMID: 38392824 PMCID: PMC10890631 DOI: 10.3390/jof10020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024] Open
Abstract
Even though fungi are ubiquitous in the biosphere, the ecological knowledge of marine fungi remains rather rudimentary. Also, little is known about their tolerance to salinity and how it influences their activities. Extracellular enzymatic activities (EEAs) are widely used to determine heterotrophic microbes' enzymatic capabilities and substrate preferences. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). Due to their sensitivity and specificity, fluorogenic substrate analogues were used to determine hydrolytic activity on carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase); peptides (leucine aminopeptidase and trypsin); lipids (lipase); organic phosphorus (alkaline phosphatase), and sulfur compounds (sulfatase). Afterwards, kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were calculated. All fungal species investigated cleaved these substrates, but some species were more efficient than others. Moreover, most enzymatic activities were reduced in the saline medium, with some exceptions like sulfatase. In non-saline conditions, the average Vmax ranged between 208.5 to 0.02 μmol/g biomass/h, and in saline conditions, 88.4 to 0.02 μmol/g biomass/h. The average Km ranged between 1553.2 and 0.02 μM with no clear influence of salinity. Taken together, our results highlight a potential tolerance of marine fungi to freshwater conditions and indicate that changes in salinity (due to freshwater input or evaporation) might impact their enzymatic activities spectrum and, therefore, their contribution to the oceanic elemental cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Bioprocess Engineering Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 WG Wageningen, The Netherlands
| | - Gerhard J. Herndl
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, 1790 AB Texel, The Netherlands
| | - Federico Baltar
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
| |
Collapse
|
22
|
Daunoras J, Kačergius A, Gudiukaitė R. Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. BIOLOGY 2024; 13:85. [PMID: 38392304 PMCID: PMC10886310 DOI: 10.3390/biology13020085] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
The extracellular enzymes secreted by soil microorganisms play a pivotal role in the decomposition of organic matter and the global cycles of carbon (C), phosphorus (P), and nitrogen (N), also serving as indicators of soil health and fertility. Current research is extensively analyzing these microbial populations and enzyme activities in diverse soil ecosystems and climatic regions, such as forests, grasslands, tropics, arctic regions and deserts. Climate change, global warming, and intensive agriculture are altering soil enzyme activities. Yet, few reviews have thoroughly explored the key enzymes required for soil fertility and the effects of abiotic factors on their functionality. A comprehensive review is thus essential to better understand the role of soil microbial enzymes in C, P, and N cycles, and their response to climate changes, soil ecosystems, organic farming, and fertilization. Studies indicate that the soil temperature, moisture, water content, pH, substrate availability, and average annual temperature and precipitation significantly impact enzyme activities. Additionally, climate change has shown ambiguous effects on these activities, causing both reductions and enhancements in enzyme catalytic functions.
Collapse
Affiliation(s)
- Jokūbas Daunoras
- Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257 Vilnius, Lithuania
| | - Audrius Kačergius
- Lithuanian Research Centre for Agriculture and Forestry, Kedainiai Distr., LT-58344 Akademija, Lithuania
| | - Renata Gudiukaitė
- Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
23
|
Sun X, Wang X, Shi K, Lyu X, Sun J, Raikhel AS, Zou Z. Leucine aminopeptidase1 controls egg deposition and hatchability in male Aedes aegypti mosquitoes. Nat Commun 2024; 15:106. [PMID: 38168045 PMCID: PMC10762072 DOI: 10.1038/s41467-023-44444-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Aedes aegypti are vectors for several arboviruses infecting hundreds of millions of people annually. Controlling mosquito populations by regulating their reproduction is a potential strategy to minimize viral transmission in the absence of effective antiviral therapies or vaccines. Here, we demonstrate that leucine aminopeptidase1 (LAP1), detected by a SWATH-MS-based proteomic screen of female spermathecae, is a crucial determinant in mosquito population expansion. Mitochondrial defects and aberrant autophagy of sperm in LAP1 mutant males (LAP1-/-), prepared using CRISPR/Cas9 system, result in a reduction of reproduction in wild-type females that mated with them. The fitness of LAP1-/- males is strong enough to efficiently transmit genetic changes to mosquito populations through a low number of hatchable offspring. Thus, LAP1-/- males represent an opportunity to suppress mosquito populations and further studies should be undertaken to characterize LAP1's suitability for gene drive usage.
Collapse
Affiliation(s)
- Xiaomei Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueli Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangyang Lyu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Zheng M, Xu H, Huang Y, Sun J, Zhang H, Lv Z, Liu Z, Tang Z, Chen X. Hypoxia-activated glutamine antagonist prodrug combined with combretastatin A4 nanoparticles for tumor-selective metabolic blockade. J Control Release 2024; 365:480-490. [PMID: 38040341 DOI: 10.1016/j.jconrel.2023.11.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
6-Diazo-5-oxo-L-norleucine (DON) is a potent glutamine antagonist with toxic side effects; in order to reduce these effects, multiple prodrugs have been designed. However, there are currently no reports of a DON prodrug with a defined mechanism to achieve high tumor selectivity. To improve the selective toxicity of DON to tumor cells while reducing systemic toxicity, a hypoxia-activated prodrug, termed HDON, was designed. HDON achieved remarkable tumor suppression of 76.4 ± 5.2% without leading to weight loss in an H22 murine liver cancer model with high hypoxia. Moreover, to augment the therapeutic efficacy of HDON, combretastatin A4 nanoparticles were used to aggravate tumor hypoxia of MC38 murine colon cancer and 4T1 murine breast cancer, activate HDON to DON, and stimulate a robust anti-tumor immune response while selectively killing in tumor cells in vivo, achieving significantly elevated tumor suppression rates of 98.3 ± 3.4% and 98.1 ± 3.1%, with cure rates of 80.0% and 20.0%, respectively.
Collapse
Affiliation(s)
- Mengfei Zheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Hang Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yue Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiali Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Honglei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Zheng Lv
- The First Hospital of Jilin University, Changchun 130021, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
25
|
Simpson M, Harding CJ, Czekster RM, Remmel L, Bode BE, Czekster CM. Unveiling the Catalytic Mechanism of a Processive Metalloaminopeptidase. Biochemistry 2023; 62:3188-3205. [PMID: 37924287 PMCID: PMC10666288 DOI: 10.1021/acs.biochem.3c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/06/2023]
Abstract
Intracellular leucine aminopeptidases (PepA) are metalloproteases from the family M17. These enzymes catalyze peptide bond cleavage, removing N-terminal residues from peptide and protein substrates, with consequences for protein homeostasis and quality control. While general mechanistic studies using model substrates have been conducted on PepA enzymes from various organisms, specific information about their substrate preferences and promiscuity, choice of metal, activation mechanisms, and the steps that limit steady-state turnover remain unexplored. Here, we dissected the catalytic and chemical mechanisms of PaPepA: a leucine aminopeptidase from Pseudomonas aeruginosa. Cleavage assays using peptides and small-molecule substrate mimics allowed us to propose a mechanism for catalysis. Steady-state and pre-steady-state kinetics, pH rate profiles, solvent kinetic isotope effects, and biophysical techniques were used to evaluate metal binding and activation. This revealed that metal binding to a tight affinity site is insufficient for enzyme activity; binding to a weaker affinity site is essential for catalysis. Progress curves for peptide hydrolysis and crystal structures of free and inhibitor-bound PaPepA revealed that PaPepA cleaves peptide substrates in a processive manner. We propose three distinct modes for activity regulation: tight packing of PaPepA in a hexameric assembly controls substrate length and reaction processivity; the product leucine acts as an inhibitor, and the high concentration of metal ions required for activation limits catalytic turnover. Our work uncovers catalysis by a metalloaminopeptidase, revealing the intricacies of metal activation and substrate selection. This will pave the way for a deeper understanding of metalloenzymes and processive peptidases/proteases.
Collapse
Affiliation(s)
- Martha
Clementine Simpson
- School
of Biology, University of St Andrews, North Haugh, Biomolecular Sciences
Building, KY16 9ST, Saint Andrews, United Kingdom
| | - Christopher John Harding
- School
of Biology, University of St Andrews, North Haugh, Biomolecular Sciences
Building, KY16 9ST, Saint Andrews, United Kingdom
| | - Ricardo Melo Czekster
- School
of Computer Science and Digital Technologies, Department of Software
Engineering and Cybersecurity, Aston University, B4 7ET, Birmingham,United Kingdom
| | - Laura Remmel
- School
of Chemistry, University of St Andrews, North Haugh, Purdie Building, KY16 9ST, Saint Andrews , United Kingdom
| | - Bela E. Bode
- School
of Chemistry, University of St Andrews, North Haugh, Purdie Building, KY16 9ST, Saint Andrews , United Kingdom
| | - Clarissa Melo Czekster
- School
of Biology, University of St Andrews, North Haugh, Biomolecular Sciences
Building, KY16 9ST, Saint Andrews, United Kingdom
| |
Collapse
|
26
|
Liu J, Cui T. Expression, Characterisation, Homology Modelling and Molecular Docking of a Novel M17 Family Leucyl-Aminopeptidase from Bacillus cereus CZ. Int J Mol Sci 2023; 24:15939. [PMID: 37958921 PMCID: PMC10649214 DOI: 10.3390/ijms242115939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Leucyl-aminopeptidase (LAP), an important metallopeptidase, hydrolyses amino acid residues from the N-terminus of polypeptides and proteins, acting preferentially on the peptide bond formed by N-terminus leucine. A new leucyl-aminopeptidase was found in Bacillus cereus CZ. Its gene (bclap) contained a 1485 bp ORF encoding 494 amino acids with a molecular weight of 54 kDa. The bcLAP protein was successfully expressed in E. coli BL21(DE3). Optimal activity is obtained at pH 9.0 and 58 °C. The bcLAP displays a moderate thermostability and an alkaline pH adaptation range. Enzymatic activity is dramatically enhanced by Ni2+. EDTA significantly inhibits the enzymatic activity, and bestatin and SDS also show strong inhibition. The three-dimensional model of bcLAP monomer and homohexamer is simulated byPHYRE2 server and SWISS-MODEL server. The docking of bestatin, Leu-Trp, Asp-Trp and Ala-Ala-Gly to bcLAP is performed using AutoDock4.2.5, respectively. Molecular docking results show that the residues Lys260, Asp265, Lys272, Asp283, Asp342, Glu344, Arg346, Gly372 and His437 are involved in the hydrogen bonding with the ligands and zinc ions. There may be two nucleophilic catalytic mechanisms in bcLAP, one involving His 437 or Arg346 and the other involving His437 and Arg346. The bcLAP can hydrolyse the peptide bonds in Leu-Trp, Asp-Trp and Ala-Ala-Gly.
Collapse
Affiliation(s)
| | - Tangbing Cui
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
| |
Collapse
|
27
|
Jiang R, Zeng J, Liu Q, Li S, He L, Cheng D. Engineering a near-infrared LAP fluorescent probe with high sensitivity and selectivity for surgical resection of liver cancer. J Mater Chem B 2023; 11:9459-9466. [PMID: 37728020 DOI: 10.1039/d3tb01627g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Hepatocellular carcinoma (HCC) is a type of cancer associated with a high rate of mortality and morbidity. In order to achieve precise HCC theranostics, it is important to develop excellent fluorescent probes. However, the existing probes are not sensitive or specific enough to accurately identify HCC margins and contours. For diagnosing HCC and identifying tumors during surgery, it is urgent to engineer highly sensitive and selective fluorescent probes. Liver tumor progression is closely associated with leucine aminopeptidase (LAP) overexpression, a biomarker of liver cancer. Herein, we have rationally designed a NIR fluorescent probe, NLAP, which is specially activated by LAP. The probe exhibited high sensitivity (detection limit = 6.8 mU L-1) and superior affinity (Km = 2.98 μM) for LAP. With this probe, we distinguished cancer cells overexpressing LAP from normal cells and applied it intraoperatively to guide liver tumor excisions. Furthermore, NLAP was employed to successfully detect the LAP of intestinal and splenic metastatic tumors in orthotopic liver tumor mice by "in situ spraying" and good performances were demonstrated.
Collapse
Affiliation(s)
- Renfeng Jiang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Jiayu Zeng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Qian Liu
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Songjiao Li
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Longwei He
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| | - Dan Cheng
- Clinical Research Institute, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, China.
| |
Collapse
|
28
|
Checa J, Salazar C, Goyeche A, Rivera M, Silveira F, Maggioli G. A promising new target to control fasciolosis: Fasciola hepatica leucine aminopeptidase 2. Vet Parasitol 2023; 320:109959. [PMID: 37329826 DOI: 10.1016/j.vetpar.2023.109959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/19/2023]
Abstract
Parasite M17 leucine aminopeptidases (LAPs) have been associated with critical roles in different key functions such as the nutrition, migration, and invasion of the natural host. Native or recombinant LAP used as a vaccine antigen has proved effective to elicit protection against Fasciola hepatica infection in sheep, pointing to potential vaccine candidates against fascioliasis in ruminant species. Previously, the FhLAP1, abundantly secreted in vitro by the mature adult parasite was used as a vaccine antigen obtaining promising protection results against F. hepatica challenge in small ruminants. Here, we report the biochemical characterization of a second recombinant LAP (FhLAP2) associated with the juvenile stage of F. hepatica. FhLAP2 showed aminopeptidase activity using different synthetic substrates, including leucine, arginine, and methionine and was increased in the presence of Mn+ 2 and Mg+ 2. The activity was inhibited by bestatin, 1,10-phenanthroline, and EDTA, specific inhibitors of aminopeptidase and/or metalloproteases. Finally, the recombinant FhLAP2 functional form was tested in combination with Freund's incomplete adjuvant in an immunization trial in mice followed by an experimental challenge with F. hepatica metacercariae. The immunization with FhLAP2/FIA resulted in a significant reduction of parasite recovery compared to control groups. The immunized group elicited total specific IgG and subclasses IgG1 and IgG2 antibody responses. This study highlights the potential of a new candidate vaccine formulation with potential applications in natural ruminant hosts, especially those targeting the juvenile stage.
Collapse
Affiliation(s)
- Jackeline Checa
- Unidad de Biología Parasitaria, Instituto de Higiene, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Cecilia Salazar
- Unidad de Biología Parasitaria, Instituto de Higiene, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Antonella Goyeche
- Unidad de Biología Parasitaria, Instituto de Higiene, Facultad de Ciencias, Universidad de la República, Uruguay
| | - Mariana Rivera
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Uruguay
| | - Fernando Silveira
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Uruguay
| | - Gabriela Maggioli
- Unidad de Biología Parasitaria, Instituto de Higiene, Facultad de Ciencias, Universidad de la República, Uruguay.
| |
Collapse
|
29
|
Li ZJ, Wang CY, Xu L, Zhang ZY, Tang YH, Qin TY, Wang YL. Recent Progress of Activity-Based Fluorescent Probes for Imaging Leucine Aminopeptidase. BIOSENSORS 2023; 13:752. [PMID: 37504150 PMCID: PMC10377407 DOI: 10.3390/bios13070752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Leucine aminopeptidase (LAP) is an important protease that can specifically hydrolyze Leucine residues. LAP occurs in microorganisms, plants, animals, and humans and is involved in a variety of physiological processes in the human body. In the physiological system, abnormal levels of LAP are associated with a variety of diseases and pathological processes, such as cancer and drug-induced liver injury; thus, LAP was chosen as the early biochemical marker for many physiological processes, including cancer. Considering the importance of LAP in physiological and pathological processes, it is critical that high-efficiency and dependable technology be developed to monitor LAP levels. Herein, we summarize the organic small molecule fluorescence/chemiluminescence probes used for LAP detection in recent years, which can image LAP in cancer, drug-induced liver injury (DILI), and bacteria. It can also reveal the role of LAP in tumors and differentiate the serum of cirrhotic, drug-induced liver injury and normal models.
Collapse
Affiliation(s)
- Ze-Jun Li
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Cai-Yun Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Liang Xu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Zhen-Yu Zhang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Ying-Hao Tang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Tian-Yi Qin
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- One Health Institute, Hainan University, Haikou 570228, China
| |
Collapse
|
30
|
Itell HL, Humes D, Overbaugh J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4 + T cells. Cell Rep 2023; 42:112556. [PMID: 37227817 PMCID: PMC10592456 DOI: 10.1016/j.celrep.2023.112556] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4+ T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4+ T cells by performing CRISPR-knockout screens with a custom library that specifically targets ISGs expressed in CD4+ T cells. Our investigation identifies previously undescribed HIV-restricting ISGs (HM13, IGFBP2, LAP3) and finds that two factors characterized in other HIV infection models (IFI16 and UBE2L6) mediate IFN restriction in T cells. Inactivation of these five ISGs in combination further diminishes IFN's protective effect against diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs.
Collapse
Affiliation(s)
- Hannah L Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
31
|
Pascual Alonso I, Almeida García F, Valdés Tresanco ME, Arrebola Sánchez Y, Ojeda Del Sol D, Sánchez Ramírez B, Florent I, Schmitt M, Avilés FX. Marine Invertebrates: A Promissory Still Unexplored Source of Inhibitors of Biomedically Relevant Metallo Aminopeptidases Belonging to the M1 and M17 Families. Mar Drugs 2023; 21:md21050279. [PMID: 37233473 DOI: 10.3390/md21050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Proteolytic enzymes, also known as peptidases, are critical in all living organisms. Peptidases control the cleavage, activation, turnover, and synthesis of proteins and regulate many biochemical and physiological processes. They are also involved in several pathophysiological processes. Among peptidases, aminopeptidases catalyze the cleavage of the N-terminal amino acids of proteins or peptide substrates. They are distributed in many phyla and play critical roles in physiology and pathophysiology. Many of them are metallopeptidases belonging to the M1 and M17 families, among others. Some, such as M1 aminopeptidases N and A, thyrotropin-releasing hormone-degrading ectoenzyme, and M17 leucyl aminopeptidase, are targets for the development of therapeutic agents for human diseases, including cancer, hypertension, central nervous system disorders, inflammation, immune system disorders, skin pathologies, and infectious diseases, such as malaria. The relevance of aminopeptidases has driven the search and identification of potent and selective inhibitors as major tools to control proteolysis with an impact in biochemistry, biotechnology, and biomedicine. The present contribution focuses on marine invertebrate biodiversity as an important and promising source of inhibitors of metalloaminopeptidases from M1 and M17 families, with foreseen biomedical applications in human diseases. The results reviewed in the present contribution support and encourage further studies with inhibitors isolated from marine invertebrates in different biomedical models associated with the activity of these families of exopeptidases.
Collapse
Affiliation(s)
- Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Fabiola Almeida García
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Mario Ernesto Valdés Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | | | - Daniel Ojeda Del Sol
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | | | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR7245), Muséum National d'Histoire Naturelle, CNRS, CP52, 57 Rue Cuvier, 75005 Paris, France
| | - Marjorie Schmitt
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA UMR 7042, 68000 Mulhouse, France
| | - Francesc Xavier Avilés
- Institute for Biotechnology and Biomedicine and Department of Biochemistry, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
32
|
Peptidomics as a Tool to Assess the Cleavage of Wine Haze Proteins by Peptidases from Drosophila suzukii Larvae. Biomolecules 2023; 13:biom13030451. [PMID: 36979386 PMCID: PMC10046487 DOI: 10.3390/biom13030451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Thermolabile grape berry proteins such as thaumatin-like proteins (TLPs) and chitinases (CHIs) promote haze formation in bottled wines if not properly fined. As a natural grapevine pest, the spotted-wing fly Drosophila suzukii is a promising source of peptidases that break down grape berry proteins because the larvae develop and feed inside mature berries. Therefore, we produced recombinant TLP and CHI as model thermolabile wine haze proteins and applied a peptidomics strategy to investigate whether D. suzukii larval peptidases were able to digest them under acidic conditions (pH 3.5), which are typically found in winemaking practices. The activity of the novel peptidases was confirmed by mass spectrometry, and cleavage sites within the wine haze proteins were visualized in 3D protein models. The combination of recombinant haze proteins and peptidomics provides a valuable screening tool to identify optimal peptidases suitable for clarification processes in the winemaking industry.
Collapse
|
33
|
Gu H, Wang W, Wu W, Wang M, Liu Y, Jiao Y, Wang F, Wang F, Chen X. Excited-state intramolecular proton transfer (ESIPT)-based fluorescent probes for biomarker detection: design, mechanism, and application. Chem Commun (Camb) 2023; 59:2056-2071. [PMID: 36723346 DOI: 10.1039/d2cc06556h] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biomarkers are essential in biology, physiology, and pharmacology; thus, their detection is of extensive importance. Fluorescent probes provide effective tools for detecting biomarkers exactly. Excited state intramolecular proton transfer (ESIPT), one of the significant photophysical processes that possesses specific photoisomerization between Keto and Enol forms, can effectively avoid annoying interference from the background with a large Stokes shift. Hence, ESIPT is an excellent choice for biomarker monitoring. Based on the ESIPT process, abundant probes were designed and synthesized using three major design methods. In this review, we conclude probes for 14 kinds of biomarkers based on ESIPT explored in the past five years, summarize these general design methods, and highlight their application for biomarker detection in vitro or in vivo.
Collapse
Affiliation(s)
- Hao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Wenjing Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Wenyan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Maolin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Yongrong Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Yanjun Jiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Fang Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
34
|
Using the Culex pipiens sperm proteome to identify elements essential for mosquito reproduction. PLoS One 2023; 18:e0280013. [PMID: 36795667 PMCID: PMC9934393 DOI: 10.1371/journal.pone.0280013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/19/2022] [Indexed: 02/17/2023] Open
Abstract
Mature sperm from Culex pipiens were isolated and analyzed by mass spectrometry to generate a mature sperm proteome dataset. In this study, we highlight subsets of proteins related to flagellar structure and sperm motility and compare the identified protein components to previous studies examining essential functions of sperm. The proteome includes 1700 unique protein IDs, including a number of uncharacterized proteins. Here we discuss those proteins that may contribute to the unusual structure of the Culex sperm flagellum, as well as potential regulators of calcium mobilization and phosphorylation pathways that regulate motility. This database will prove useful for understanding the mechanisms that activate and maintain sperm motility as well as identify potential molecular targets for mosquito population control.
Collapse
|
35
|
Itell HL, Humes D, Overbaugh J. Several cell-intrinsic effectors drive type I interferon-mediated restriction of HIV-1 in primary CD4 + T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527545. [PMID: 36798236 PMCID: PMC9934674 DOI: 10.1101/2023.02.07.527545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Type I interferon (IFN) upregulates proteins that inhibit HIV within infected cells. Prior studies have identified IFN-stimulated genes (ISGs) that impede lab-adapted HIV in cell lines, yet the ISG(s) that mediate IFN restriction in HIV target cells, primary CD4 + T cells, are unknown. Here, we interrogate ISG restriction of primary HIV in CD4 + T cells. We performed CRISPR-knockout screens using a custom library that specifically targets ISGs expressed in CD4 + T cells and validated top hits. Our investigation identified new HIV-restricting ISGs (HM13, IGFBP2, LAP3) and found that two previously studied factors (IFI16, UBE2L6) are IFN effectors in T cells. Inactivation of these five ISGs in combination further diminished IFN’s protective effect against six diverse HIV strains. This work demonstrates that IFN restriction of HIV is multifaceted, resulting from several effectors functioning collectively, and establishes a primary cell ISG screening model to identify both single and combinations of HIV-restricting ISGs.
Collapse
Affiliation(s)
- Hannah L. Itell
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, 98109, USA
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Daryl Humes
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Present address: Tr1X Inc, La Jolla, CA, 92037, USA
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
36
|
Aguado ME, Izquierdo M, González-Matos M, Varela AC, Méndez Y, Del Rivero MA, Rivera DG, González-Bacerio J. Parasite Metalo-aminopeptidases as Targets in Human Infectious Diseases. Curr Drug Targets 2023; 24:416-461. [PMID: 36825701 DOI: 10.2174/1389450124666230224140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/25/2022] [Accepted: 01/02/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Parasitic human infectious diseases are a worldwide health problem due to the increased resistance to conventional drugs. For this reason, the identification of novel molecular targets and the discovery of new chemotherapeutic agents are urgently required. Metalo- aminopeptidases are promising targets in parasitic infections. They participate in crucial processes for parasite growth and pathogenesis. OBJECTIVE In this review, we describe the structural, functional and kinetic properties, and inhibitors, of several parasite metalo-aminopeptidases, for their use as targets in parasitic diseases. CONCLUSION Plasmodium falciparum M1 and M17 aminopeptidases are essential enzymes for parasite development, and M18 aminopeptidase could be involved in hemoglobin digestion and erythrocyte invasion and egression. Trypanosoma cruzi, T. brucei and Leishmania major acidic M17 aminopeptidases can play a nutritional role. T. brucei basic M17 aminopeptidase down-regulation delays the cytokinesis. The inhibition of Leishmania basic M17 aminopeptidase could affect parasite viability. L. donovani methionyl aminopeptidase inhibition prevents apoptosis but not the parasite death. Decrease in Acanthamoeba castellanii M17 aminopeptidase activity produces cell wall structural modifications and encystation inhibition. Inhibition of Babesia bovis growth is probably related to the inhibition of the parasite M17 aminopeptidase, probably involved in host hemoglobin degradation. Schistosoma mansoni M17 aminopeptidases inhibition may affect parasite development, since they could participate in hemoglobin degradation, surface membrane remodeling and eggs hatching. Toxoplasma gondii M17 aminopeptidase inhibition could attenuate parasite virulence, since it is apparently involved in the hydrolysis of cathepsin Cs- or proteasome-produced dipeptides and/or cell attachment/invasion processes. These data are relevant to validate these enzymes as targets.
Collapse
Affiliation(s)
- Mirtha E Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Ana C Varela
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Maday A Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, 10400, Vedado, La Habana, Cuba
- Department of Biochemistry, Faculty of Biology, University of Havana, calle 25 #455 entre I y J, 10400, Vedado, La Habana, Cuba
| |
Collapse
|
37
|
Moloi SJ, Ngara R. The roles of plant proteases and protease inhibitors in drought response: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1165845. [PMID: 37143877 PMCID: PMC10151539 DOI: 10.3389/fpls.2023.1165845] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
Upon exposure to drought, plants undergo complex signal transduction events with concomitant changes in the expression of genes, proteins and metabolites. For example, proteomics studies continue to identify multitudes of drought-responsive proteins with diverse roles in drought adaptation. Among these are protein degradation processes that activate enzymes and signalling peptides, recycle nitrogen sources, and maintain protein turnover and homeostasis under stressful environments. Here, we review the differential expression and functional activities of plant protease and protease inhibitor proteins under drought stress, mainly focusing on comparative studies involving genotypes of contrasting drought phenotypes. We further explore studies of transgenic plants either overexpressing or repressing proteases or their inhibitors under drought conditions and discuss the potential roles of these transgenes in drought response. Overall, the review highlights the integral role of protein degradation during plant survival under water deficits, irrespective of the genotypes' level of drought resilience. However, drought-sensitive genotypes exhibit higher proteolytic activities, while drought-tolerant genotypes tend to protect proteins from degradation by expressing more protease inhibitors. In addition, transgenic plant biology studies implicate proteases and protease inhibitors in various other physiological functions under drought stress. These include the regulation of stomatal closure, maintenance of relative water content, phytohormonal signalling systems including abscisic acid (ABA) signalling, and the induction of ABA-related stress genes, all of which are essential for maintaining cellular homeostasis under water deficits. Therefore, more validation studies are required to explore the various functions of proteases and their inhibitors under water limitation and their contributions towards drought adaptation.
Collapse
|
38
|
Worku D, Gowane G, Verma A. Genetic variation in promoter region of the bovine LAP3 gene associated with estimated breeding values of milk production traits and clinical mastitis in dairy cattle. PLoS One 2023; 18:e0277156. [PMID: 37205663 DOI: 10.1371/journal.pone.0277156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/20/2022] [Indexed: 05/21/2023] Open
Abstract
The purpose of this study was to identify genetic variants in the promoter and 5'UTR regions of bovine leucine amino peptidase three (LAP3) gene and analysed their associations with estimated breeding values (EBVs) of milk production traits and clinical mastitis in Sahiwal and Karan Fries cattle. Eleven SNPs were identified within the region under study of the LAP3 gene, including seven promoter variants (rs717156555: C>G, rs720373055: T>C, rs715189731: A>G, rs516876447: A>G, rs461857269: C>T, rs136548163: C>T, and rs720349928: G>A) and four 5'UTR variants (rs717884982: C>T, rs722359733: C>T, rs481631804: C>T and rs462932574: T>G). Out of them, 10 SNPs variants were found in both Sahiwal and Karan Fries cattle, with one SNP variant (rs481631804: C>T) being unique to Karan Fries cattle. Seven of these identified SNPs were chosen for association analyses. Individual SNP based association analysis revealed that two SNPs (rs720373055: T>C and rs720349928: G>A) were significantly associated with EBVs of lactation milk yield (LMY), 305-day milk yield (305dMY), and one significant association of SNP rs722359733: C>T with lactation length (LL) was observed. Haplotype based association analysis indicated that diplotypes are significantly associated with EBVs of LMY, 305dMY, and LL, individuals with H1H3 (CTACGCT/GCGTACG) being linked to higher lactation performance than other diplotypes. Further logistic regression analysis revealed that, animals with diplotype H1H3 was less susceptible to the incidence of clinical mastitis than other cows, as the odds ratio for the non-incidence of clinical mastitis was found to be low. Altogether, variations in the LAP3 gene promoter could be used as a genetic marker, most notably diplotype H1H3, may greatly benefit the simultaneous improvement of mastitis resistance and milk yield traits in dairy cattle. Moreover, bioinformatics analysis predicted that the SNPs rs720373055: T>C, rs715189731:A>G and rs720349928: G>A is located in the core promoter region and in TFBs, play key role in regulation of studied phenotypes.
Collapse
Affiliation(s)
- Destaw Worku
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Gopal Gowane
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Archana Verma
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
39
|
Qian H, Song L, Wang L, Wang B, Liang W. The secreted FoAPY1 peptidase promotes Fusarium oxysporum invasion. Front Microbiol 2022; 13:1040302. [PMID: 36338032 PMCID: PMC9626516 DOI: 10.3389/fmicb.2022.1040302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
The secretion of peptidases from several pathogens has been reported, but the biological function of these proteins in plant-pathogen interactions is poorly understood. Fusarium oxysporum, a soil-borne plant pathogenic fungus that causes Fusarium wilt in its host, can secrete proteins into host plant cells during the infection process to interfere with the host plant defense response and promote disease occurrence. In this study, we identified a peptidase, FoAPY1, that could be secreted from F. oxysporum depending on the N-terminal signal peptide of the protein. FoAPY1 belongs to the peptidase M28 family and exerts peptidase activity in vitro. Furthermore, the FoAYP1 gene knockout strain (∆FoAYP1) presented reduced virulence to tomato plants, but its mycelial growth and conidiation were unchanged. Moreover, FoAYP1 overexpression tomato seedlings exhibited enhanced susceptibility to F. oxysporum and Botrytis cinerea strains. These data demonstrated that FoAYP1 contributes to the virulence of F. oxysporum may through peptidase activity against host plant proteins.
Collapse
Affiliation(s)
- Hengwei Qian
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Limin Song
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Lulu Wang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Baoshan Wang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Wenxing Liang,
| |
Collapse
|
40
|
Mahanta N, PH K, KS S, Das S, G. D. Recent Advancements in Bottromycin Biosynthesis. Synlett 2022. [DOI: 10.1055/s-0042-1751373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractBottromycin is a structurally complex cyclic peptidic compound isolated from Streptomyces bottropensis and related organisms and belongs to the RiPP family of natural products (ribosomally synthesized and post-translationally modified peptides). It exhibits potent antibacterial properties against gram-positive pathogens (including drug resistant strains such as MRSA, MIC 1 μg/mL and VRE, MIC 0.5 μg/mL) and mycoplasma. Bottromycin blocks the binding of the aminoacyl-tRNA to the A-site on the 50S ribosome and hence inhibits protein synthesis. Bottromycins contain structurally diverse post-translational modifications (PTMs) on a small peptide (GPVVVFDC) including a unique macrocyclic amidine, rare β-methylation, terminal thiazole heterocycle, oxidative decarboxylation, and Asp epimerization, among others. It exhibits a precursor peptide organization with a C-terminal follower peptide and a N-terminal core peptide. There are several new studies reported recently which gave detailed insights into the bottromycin biosynthesis pathway. This Account highlights the current advancements in understanding the biosynthetic pathway of bottromycin focusing mainly on the biochemically and structurally characterized enzymes and intricate details of the peptide–protein biophysical interactions. These studies have provided a strong foundation for conducting combinatorial biosynthesis and synthetic biological studies to create novel bottromycin variants for therapeutic applications.1 Introduction2 Biosynthetic Pathway for Bottromycin3 Enzymology of Bottromycin Biosynthesis3.1 Cleavage of Methionine (BotP)3.2 Radical SAM Methyltransferases (BotRMT1, BotRMT2, BotRMT3)3.3 ATP-Dependent YcaO Enzymes3.3.1 Thiazoline Formation by BotC3.3.2 Macrolactamidine Formation by BotCD3.4 Follower Peptide Hydrolysis (BotAH)3.5 Aspartate Epimerization (BotH)3.6 Oxidative Decarboxylation (BotCYP)3.7 O-Methyltransferase (BotOMT)4 Heterologous Bottromycin Production and Analogue Preparation5 Summary and Outlook
Collapse
|
41
|
Zhou Z, Zhou P, Mu Y, Wang L, Cao Z, Dong S, Bao H, Yang B, Xin M, Li R, Ge RL, Tang F. Therapeutic effect on Alveolar echinococcosis by targeting EM-Leucine aminopeptidase. Front Immunol 2022; 13:1027500. [PMID: 36311709 PMCID: PMC9614657 DOI: 10.3389/fimmu.2022.1027500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Alveolar echinococcosis (AE) is a parasitic disease caused by E. multilocularis metacestodes and it is highly prevalent in the northern hemisphere. We have previously found that vaccination with E. multilocularis Leucine aminopeptidase (EM-LAP) induced specific immune response and had an inhibiting effect on the parasites. In this study, the therapeutic effect of recombinant EM-LAP (rEM-LAP) on AE was evaluated and verified using Ubenimex, a broad-spectrum inhibitor of LAP. The results reveal that rEM-LAP could inhibit cyst growth and invasion and induce specific immunity response in BALB/c mice infected with E. multilocularis protoscoleces. The ultrasonic, MRI, and morphological results show that treatment with rEM-LAP inhibits E. multilocularis infection and reduces cyst weight, number, fibrosis and invasion. The same effect is observed for the treatment with Ubenimex by inhibiting LAP activity. The indirect ELISA shows that rEM-LAP could induce specific immunity response and produce high levels of IgG, IgG1, IgG2a, IgM, and IgA, and the serum levels of IFN-γ and IL-4 are significantly increased compared to the control groups, indicating that treatment with rEM-LAP leads to a Th1 and Th2 mixed-type immune response. This study suggests that EM-LAP could be a potential therapeutic target of E. multilocularis infection.
Collapse
Affiliation(s)
- Zhen Zhou
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
| | - Pei Zhou
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
| | - Yalin Mu
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Lei Wang
- Department of Pathology, The Second Xiangya Hospital DE Central South University, Changsha, China
| | - Zhenjin Cao
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Shizhong Dong
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Haihua Bao
- Department of Medical Imaging Center, Qinghai University Affiliated Hospital, Xining, China
| | - Baoliang Yang
- Department of ENT, Qinghai Red Cross Hospital, Xining, China
| | - Minyuan Xin
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
| | - Runle Li
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
- *Correspondence: Runle Li, ; Ri-Li Ge, ; Feng Tang,
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
- *Correspondence: Runle Li, ; Ri-Li Ge, ; Feng Tang,
| | - Feng Tang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai-Utah Joint Research Key Lab for High Altitude Medicine, Qinghai University, Xining, China
- Qinghai Provincial Key Laboratory of Plateau Medical Application, Key Laboratory of Ministry of Education, Qinghai University, Xining, China
- *Correspondence: Runle Li, ; Ri-Li Ge, ; Feng Tang,
| |
Collapse
|
42
|
Gill SP, Hunter WR, Coulson LE, Banat IM, Schelker J. Synthetic and biological surfactant effects on freshwater biofilm community composition and metabolic activity. Appl Microbiol Biotechnol 2022; 106:6847-6859. [PMID: 36121483 PMCID: PMC9529700 DOI: 10.1007/s00253-022-12179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
Abstract
Surfactants are used to control microbial biofilms in industrial and medical settings. Their known toxicity on aquatic biota, and their longevity in the environment, has encouraged research on biodegradable alternatives such as rhamnolipids. While previous research has investigated the effects of biological surfactants on single species biofilms, there remains a lack of information regarding the effects of synthetic and biological surfactants in freshwater ecosystems. We conducted a mesocosm experiment to test how the surfactant sodium dodecyl sulfate (SDS) and the biological surfactant rhamnolipid altered community composition and metabolic activity of freshwater biofilms. Biofilms were cultured in the flumes using lake water from Lake Lunz in Austria, under high (300 ppm) and low (150 ppm) concentrations of either surfactant over a four-week period. Our results show that both surfactants significantly affected microbial diversity. Up to 36% of microbial operational taxonomic units were lost after surfactant exposure. Rhamnolipid exposure also increased the production of the extracellular enzymes, leucine aminopeptidase, and glucosidase, while SDS exposure reduced leucine aminopeptidase and glucosidase. This study demonstrates that exposure of freshwater biofilms to chemical and biological surfactants caused a reduction of microbial diversity and changes in biofilm metabolism, exemplified by shifts in extracellular enzyme activities. KEY POINTS: • Microbial biofilm diversity decreased significantly after surfactant exposure. • Exposure to either surfactant altered extracellular enzyme activity. • Overall metabolic activity was not altered, suggesting functional redundancy.
Collapse
Affiliation(s)
- Stephanie P Gill
- Department of Geography and Environmental Studies, Ulster University, Coleraine, BT52 1SA, N. Ireland, UK.
| | - William R Hunter
- Fisheries and Aquatic Ecosystems Branch, Agri-Food and Biosciences Institute, Belfast, N. Ireland, UK
| | - Laura E Coulson
- WasserCluster Lunz, Lunz am See, Austria
- Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Jakob Schelker
- WasserCluster Lunz, Lunz am See, Austria
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
43
|
Sallaku G, Rewald B, Sandén H, Balliu A. Scions impact biomass allocation and root enzymatic activity of rootstocks in grafted melon and watermelon plants. FRONTIERS IN PLANT SCIENCE 2022; 13:949086. [PMID: 36247619 PMCID: PMC9558002 DOI: 10.3389/fpls.2022.949086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Vegetable grafting is increasingly recognized as an effective and sustainable plant production alternative. Grafted plants usually show increased uptake of water and minerals compared with self-rooted plants, mostly thought a consequence of the vigorous rootstocks selected. However, while studies frequently addressed the effects of rootstocks on the performance of scions, knowledge on the influences of scions on biomass allocation, morphology, and metabolic activity of roots is rare. In particular, the plasticity of root traits affecting resource acquisition and its efficiency remains poorly understood. Two different rootstock species, Cucurbita maxima × Cucurbita moschata and Lagenaria siceraria, were grafted in combination with melon (Cucumis melo) and watermelon (Citrullus lanatus). Self-grafted rootstocks were used as control. Plant biomass and root traits were determined after destructive harvesting 30 and/or 60 days after grafting. Traits included biomass allocation, leaf and root morphology, potential activities of four extracellular enzymes on root tips and basal root segments, and root respiration. Successfully grafted scions increase the ratio of root to whole plant dry matter (RMF), and increased ratios of root length to whole plant dry matter (RLR) and to plant leaf area (RL : LA). In contrast, morphological root traits such as diameter, tissue density, and specific root length remain surprisingly stable, and thus scion-induced changes of those traits may only play a minor role for the beneficial effects of grafting in Cucurbitaceae. Incompatibility in melon/L. siceraria grafts, however, was likely responsible for the reduced root growth in combination with clear changes in root morphological traits. Reduced root respiration rates seem to be the effects of a non-compatible rootstock-scion combination rather than an active, C-efficiency increasing acclimation. In contrast, heterografts with melon and watermelon frequently resulted in root-stock-specific, often enhanced potential enzymatic activities of acid phosphatase, β-glucosidase, leucine-amino-peptidase, and N-acetyl-glucosaminidase both at root tips and basal parts of lateral roots-presenting a potential and complementary mechanism of grafted plants to enhance nutrient foraging. The studied melon and watermelon scions may thus increase the nutrient foraging capacity of grafted plants by fostering the relative allocation of C to the root system, and enhancing the extracellular enzymatic activities governed by roots or their rhizobiome.
Collapse
Affiliation(s)
- Glenda Sallaku
- Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Hans Sandén
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Astrit Balliu
- Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| |
Collapse
|
44
|
Zeng J, Zhang R, Ning Ma K, Han LL, Yan SW, Liu RD, Zhang X, Wang ZQ, Cui J. Characterization of a novel aminopeptidase P from Trichinella spiralis and its participation in the intrusion of intestinal epithelial cells. Exp Parasitol 2022; 242:108376. [PMID: 36089006 DOI: 10.1016/j.exppara.2022.108376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022]
Abstract
Aminopeptidases P are metalloproteases belonging to the M24 peptidase family. It specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids, and plays an important role in the nutrition, metabolism and growth of parasites. The aim of this study was to characterize a novel Trichinella spiralis aminopeptidase P (TsAPP) and to investigate its functions in the invasion of T. spiralis. TsAPP contained two domains of creatinase (a creatinase N and creatinase N2) and a domain of peptidase M24C and APP. The complete TsAPP sequence was cloned and expressed in Escherichia coli BL21 cells. The recombinantly produced TsAPP was used to raise polyclonal antibodies that were subsequently used to detect the expression of the protein in the different life stages of T. spiralis. TsAPP was expressed in various T. spiralis stages. TsAPP was primarily localized in the cuticle, stichosome and intrauterine embryos of this nematode. rTsAPP has an enzymatic activity of a natural aminopeptidase P to hydrolyze the substrate H-Ala-Pro-OH. rTsAPP promoted the larval intrusion of intestinal epithelium cells (IECs). The results showed that TsAPP is involved in the T. spiralis intrusion of IECs and it might be a potential candidate vaccine target against Trichinella infection.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ru Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Kai Ning Ma
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Lu Lu Han
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China.
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
45
|
Worku D, Gowane GR, Mukherjee A, Alex R, Joshi P, Verma A. Associations between polymorphisms of LAP3 and SIRT1 genes with clinical mastitis and milk production traits in Sahiwal and Karan Fries dairy cattle. Vet Med Sci 2022; 8:2593-2604. [DOI: 10.1002/vms3.924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Destaw Worku
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
- Department of Animal Science Salale University Fitche Ethiopia
| | - G. R. Gowane
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
| | - Anupama Mukherjee
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
| | - Rani Alex
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
| | - Pooja Joshi
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
| | - Archana Verma
- Molecular Genetics Lab, Animal Genetics and Breeding Division ICAR‐National Dairy Research Institute Karnal Haryana India
| |
Collapse
|
46
|
Ge L, Su P, Wang S, Gu Y, Cao X, Lv X, Wang S, Getachew T, Mwacharo JM, Haile A, Yuan Z, Sun W. New Insight into the Role of the Leucine Aminopeptidase 3 ( LAP3) in Cell Proliferation and Myogenic Differentiation in Sheep Embryonic Myoblasts. Genes (Basel) 2022; 13:genes13081438. [PMID: 36011349 PMCID: PMC9408374 DOI: 10.3390/genes13081438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Previous genome-wide association studies (GWAS) have found that LAP3 may have the potential function to impact sheep muscle development. In order to further explore whether LAP3 expression has an important role in the development of sheep embryonic myoblasts, we conducted the spatiotemporal expression profile analysis of LAP3 at the tissue and cellular level. Then we used small interfering RNA and eukaryotic recombinant vectors to perform gain/loss-of-function analysis of LAP3. CCK-8 detection, EdU staining, and flow cytometry were used to investigate the impact of LAP3 knockdown or overexpression on the proliferation of embryonic myoblasts. In addition, cell phenotype observation, MyHC indirect immunofluorescence, and quantitative detection of the expression changes of myogenic regulatory factors (MRFs) were used to explore the effect of LAP3 on myogenic differentiation. The results showed that the LAP3 expression level in muscle tissue of fetuses was significantly higher than that in newborn lambs and adult sheep, and its expression level on day 3 of differentiation was also significantly higher than that in the proliferation phase and other differentiation time points. LAP3 silencing could significantly increase cell viability and EdU-positive cells, as well as prolonging the length of S phase of myoblasts to promote proliferation, while the results were reversed when LAP3 was overexpressed. Moreover, LAP3 silencing significantly hindered myotube formation and down-regulated the expression levels of MRFs from day 5 to day 7 of terminal differentiation, while the results were reversed when LAP3 was highly expressed. Overall, our results suggested that the expression of LAP3 impacts on the development of sheep embryonic myoblasts which provides an important theoretical basis for molecular breeding of meat production in sheep.
Collapse
Affiliation(s)
- Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Pengwei Su
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Shan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Yifei Gu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Xiukai Cao
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
| | - Xiaoyang Lv
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
| | - Shanhe Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia
| | - Zehu Yuan
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Z.Y.); (W.S.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education, Yangzhou University, Yangzhou 225000, China
- Correspondence: (Z.Y.); (W.S.)
| |
Collapse
|
47
|
Li L, Li F, Hu X, Wu Z, Ren W, Wang T, Ji Z, Li N, Gu J, Sun C, Feng X, Han W, Huang J, Lei L. LAP3 contributes to IFN-γ-induced arginine depletion and malignant transformation of bovine mammary epithelial cells. BMC Cancer 2022; 22:864. [PMID: 35941558 PMCID: PMC9358085 DOI: 10.1186/s12885-022-09963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND IFN-γ has been traditionally recognized as an inflammatory cytokine that involves in inflammation and autoimmune diseases. Previously we have shown that sustained IFN-γ induced malignant transformation of bovine mammary epithelial cells (BMECs) via arginine depletion. However, the molecular mechanism underlying this is still unknown. METHODS In this study, the amino acids contents in BMECs were quantified by a targeted metabolomics method. The acquisition of differentially expressed genes was mined from RNA-seq dataset and analyzed bioinformatically. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry (IHC) assay were performed to detect gene mRNA and protein expression levels. CCK-8 and would healing assays were used to detect cell proliferation and migration abilities, respectively. Cell cycle phase alternations were analyzed by flow cytometry. RESULTS The targeted metabolomics analysis specifically discovered IFN-γ induced arginine depletion through accelerating arginine catabolism and inhibiting arginine anabolism in BMECs. Transcriptome analysis identified leucine aminopeptidase 3 (LAP3), which was regulated by p38 and ERK MAPKs, to downregulate arginine level through interfering with argininosuccinate synthetase (ASS1) as IFN-γ stimulated. Moreover, LAP3 also contributed to IFN-γ-induced malignant transformation of BMECs by upregulation of HDAC2 (histone deacetylase 2) expression and promotion of cell cycle proteins cyclin A1 and D1 expressions. Arginine supplementation did not affect LAP3 and HDAC2 expressions, but slowed down cell cycle process of malignant BMECs. In clinical samples of patients with breast cancer, LAP3 was confirmed to be upregulated, while ASS1 was downregulated compared with healthy control. CONCLUSIONS These results demonstrated that LAP3 mediated IFN-γ-induced arginine depletion to malignant transformation of BMECs. Our findings provide a potential therapeutic target for breast cancer both in humans and dairy cows.
Collapse
Affiliation(s)
- Li Li
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Fengyang Li
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China
| | - Xiuhong Hu
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
- Shannan Hospital, Shannan, China
| | - Zengshuai Wu
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China
| | - Wenbo Ren
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Tingting Wang
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Zhengchao Ji
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China
| | - Na Li
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China
| | - Jingmin Gu
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China
| | - Changjiang Sun
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China
| | - Xin Feng
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China
| | - Wenyu Han
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China
| | - Jing Huang
- Department of First Hospital, Jilin University, Xinmin Street 1, Changchun, China.
| | - Liancheng Lei
- State Key Laboratory for Zoonotic Diseases, College of Veterinary Medicine, Jilin University, Xi'an Road 5333, Changchun, China.
| |
Collapse
|
48
|
Marco-Dufort B, Janczy JR, Hu T, Lütolf M, Gatti F, Wolf M, Woods A, Tetter S, Sridhar BV, Tibbitt MW. Thermal stabilization of diverse biologics using reversible hydrogels. SCIENCE ADVANCES 2022; 8:eabo0502. [PMID: 35930644 PMCID: PMC9355364 DOI: 10.1126/sciadv.abo0502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Improving the thermal stability of biologics, including vaccines, is critical to reduce the economic costs and health risks associated with the cold chain. Here, we designed a versatile, safe, and easy-to-use reversible PEG-based hydrogel platform formed via dynamic covalent boronic ester cross-linking for the encapsulation, stabilization, and on-demand release of biologics. Using these reversible hydrogels, we thermally stabilized a wide range of biologics up to 65°C, including model enzymes, heat-sensitive clinical diagnostic enzymes (DNA gyrase and topoisomerase I), protein-based vaccines (H5N1 hemagglutinin), and whole viruses (adenovirus type 5). Our data support a generalized protection mechanism for the thermal stabilization of diverse biologics using direct encapsulation in reversible hydrogels. Furthermore, preliminary toxicology data suggest that the components of our hydrogel are safe for in vivo use. Our reversible hydrogel platform offers a simple material solution to mitigate the costs and risks associated with reliance on a continuous cold chain for biologic transport and storage.
Collapse
Affiliation(s)
- Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Tianjing Hu
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Marco Lütolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Francesco Gatti
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Morris Wolf
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Alex Woods
- Nanoly Bioscience Inc., Denver, CO 80231, USA
| | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
49
|
Morimoto K, Krahn D, Kaschani F, Hopkinson‐Woolley D, Gee A, Buscaill P, Mohammed S, Sieber SA, Cravatt BF, Schofield CJ, van der Hoorn RAL. Broad-range metalloprotease profiling in plants uncovers immunity provided by defence-related metalloenzyme. THE NEW PHYTOLOGIST 2022; 235:1287-1301. [PMID: 35510806 PMCID: PMC9322406 DOI: 10.1111/nph.18200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Plants encode > 100 metalloproteases representing > 19 different protein families. Tools to study this large and diverse class of proteases have not yet been introduced into plant research. We describe the use of hydroxamate-based photoaffinity probes to explore plant proteomes for metalloproteases. We detected labelling of 23 metalloproteases in leaf extracts of the model plant Arabidopsis thaliana that belong to nine different metalloprotease families and localize to different subcellular compartments. The probes identified several chloroplastic FtsH proteases, vacuolar aspartyl aminopeptidase DAP1, peroxisomal metalloprotease PMX16, extracellular matrix metalloproteases and many cytosolic metalloproteases. We also identified nonproteolytic metallohydrolases involved in the release of auxin and in the urea cycle. Studies on tobacco plants (Nicotiana benthamiana) infected with the bacterial plant pathogen Pseudomonas syringae uncovered the induced labelling of PRp27, a secreted protein with implicated metalloprotease activity. PRp27 overexpression increases resistance, and PRp27 mutants lacking metal binding site are no longer labelled, but still show increased immunity. Collectively, these studies reveal the power of broad-range metalloprotease profiling in plants using hydroxamate-based probes.
Collapse
Affiliation(s)
- Kyoko Morimoto
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Daniel Krahn
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
- Department of Chemistry and the Ineos Oxford Institute for Antimcrobial ResearchUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Farnusch Kaschani
- The Plant Chemetics LaboratoryMax Planck Institute for Plant Breeding ResearchCologne50829Germany
| | - Digby Hopkinson‐Woolley
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Anna Gee
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Pierre Buscaill
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
| | - Shabaz Mohammed
- Department of BiochemistryUniversity of OxfordOxfordOX1 3QUUK
| | - Stephan A. Sieber
- Department of ChemistryThe Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCA92037USA
| | - Benjamin F. Cravatt
- Department of ChemistryThe Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCA92037USA
| | - Christopher J. Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimcrobial ResearchUniversity of OxfordMansfield RoadOxfordOX1 3TAUK
| | - Renier A. L. van der Hoorn
- The Plant Chemetics LaboratoryDepartment of Plant SciencesUniversity of OxfordSouth Parks RoadOxfordOX1 3RBUK
- The Plant Chemetics LaboratoryMax Planck Institute for Plant Breeding ResearchCologne50829Germany
| |
Collapse
|
50
|
Yuan D, Xu Z, Zhang B, Yin X, Ye J, Zhou X, Wang L. A ratiometric fluorescence probe for selective and sensitive detection of leucine aminopeptidase in lysosome. Chem Commun (Camb) 2022; 58:8364-8367. [PMID: 35792051 DOI: 10.1039/d2cc02214a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We designed a novel ratiometric fluorescent probe P1-Leu with a donor-acceptor-donor fluorophore for the detection of leucine aminopeptidase in lysosomes. P1-Leu exhibits a lower detection limit than the ratiometric donor-π-acceptor probe, due to the low ratiometric background. Besides, P1-Leu has good lysosome-targeting ability and realizes the distinction of LAP levels in different cells.
Collapse
Affiliation(s)
- Di Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ziwei Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Bingling Zhang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Xiong Yin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jiqing Ye
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xiaole Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|