1
|
Sun Y, Chebolu S, Darmani NA. Ultra-low doses of methamphetamine suppress 5-hydroxytryptophan-induced head-twitch response in mice during aging. Behav Pharmacol 2024; 35:367-377. [PMID: 39206775 DOI: 10.1097/fbp.0000000000000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The head-twitch response (HTR) in mice is considered a behavioral assay for activation of 5-HT 2A receptors in rodents. It can be evoked by direct-acting 5-HT 2A receptor agonists such as (±)-2,5-dimethoxy-4-iodoamphetamine, 5-hydroxytryptamine precursors [e.g. 5-hydroxytryptophan (5-HTP)], and selective 5-hydroxytryptamine releasers (e.g. d -fenfluramine). The nonselective monoamine releaser methamphetamine by itself does not produce the HTR but can suppress both (±)-2,5-dimethoxy-4-iodoamphetamine- and d -fenfluramine-evoked HTRs across ages via concomitant activation of the inhibitory serotonergic 5-HT 1A or adrenergic α 2 receptors. Currently, we investigated: (1) the ontogenic development of 5-HTP-induced HTR in 20-, 30-, and 60-day-old mice; (2) whether pretreatment with ultra-low doses of methamphetamine (0.1, 0.25, and 0.5 mg/kg, intraperitoneally) can suppress the frequency of 5-HTP-induced HTR at different ages; and (3) whether the inhibitory serotonergic 5-HT 1A or adrenergic α 2 receptors may account for the potential inhibitory effect of methamphetamine on 5-HTP-induced HTR. In the presence of a peripheral decarboxylase inhibitor (carbidopa), 5-HTP produced maximal frequency of HTRs in 20-day-old mice which rapidly subsided during aging. Methamphetamine dose-dependently suppressed 5-HTP-evoked HTR in 20- and 30-day-old mice. The selective 5-HT 1A -receptor antagonist WAY 100635 reversed the inhibitory effect of methamphetamine on 5-HTP-induced HTR in 30-day-old mice, whereas the selective adrenergic α 2 -receptor antagonist RS 79948 failed to reverse methamphetamine's inhibition at any tested age. These findings suggest an ontogenic rationale for methamphetamine's inhibitory 5-HT 1A receptor component of action in its suppressive effect on 5-HTP-induced HTR during development which is not maximally active at a very early age.
Collapse
MESH Headings
- Animals
- Methamphetamine/pharmacology
- Mice
- Aging/drug effects
- 5-Hydroxytryptophan/pharmacology
- Male
- Dose-Response Relationship, Drug
- Head Movements/drug effects
- Mice, Inbred C57BL
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Central Nervous System Stimulants/pharmacology
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
Collapse
Affiliation(s)
- Yina Sun
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, USA
| | | | | |
Collapse
|
2
|
Alberto-Silva AS, Hemmer S, Bock HA, da Silva LA, Scott KR, Kastner N, Bhatt M, Niello M, Jäntsch K, Kudlacek O, Bossi E, Stockner T, Meyer MR, McCorvy JD, Brandt SD, Kavanagh P, Sitte HH. Bioisosteric analogs of MDMA: Improving the pharmacological profile? J Neurochem 2024; 168:2022-2042. [PMID: 38898705 PMCID: PMC11449655 DOI: 10.1111/jnc.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') is re-emerging in clinical settings as a candidate for the treatment of specific neuropsychiatric disorders (e.g. post-traumatic stress disorder) in combination with psychotherapy. MDMA is a psychoactive drug, typically regarded as an empathogen or entactogen, which leads to transporter-mediated monoamine release. Despite its therapeutic potential, MDMA can induce dose-, individual-, and context-dependent untoward effects outside safe settings. In this study, we investigated whether three new methylenedioxy bioisosteres of MDMA improve its off-target profile. In vitro methods included radiotracer assays, transporter electrophysiology, bioluminescence resonance energy transfer and fluorescence-based assays, pooled human liver microsome/S9 fraction incubations, metabolic stability studies, isozyme mapping, and liquid chromatography coupled to high-resolution mass spectrometry. In silico methods included molecular docking. Compared with MDMA, all three MDMA bioisosteres (ODMA, TDMA, and SeDMA) showed similar pharmacological activity at human serotonin, dopamine, and norepinephrine transporters (hSERT, hDAT, and hNET, respectively) but decreased agonist activity at 5-HT2A/2B/2C receptors. Regarding their hepatic metabolism, they differed from MDMA, with N-demethylation being the only metabolic route shared, and without forming phase II metabolites. In addition, TDMA showed an enhanced intrinsic clearance in comparison to its congeners. Additional screening for their interaction with human organic cation transporters (hOCTs) and plasma membrane monoamine transporter (hPMAT) revealed a weaker interaction of the MDMA analogs with hOCT1, hOCT2, and hPMAT. Our findings suggest that these new MDMA bioisosteres might constitute appealing therapeutic alternatives to MDMA, sparing the primary pharmacological activity at hSERT, hDAT, and hNET, but displaying a reduced activity at 5-HT2A/2B/2C receptors and alternative hepatic metabolism. Whether these MDMA bioisosteres may pose lower risk alternatives to the clinically re-emerging MDMA warrants further studies.
Collapse
Affiliation(s)
- Ana Sofia Alberto-Silva
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Selina Hemmer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Hailey A. Bock
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Leticia Alves da Silva
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Kenneth R. Scott
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St James Hospital, Dublin, Ireland
| | - Nina Kastner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Manan Bhatt
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Kathrin Jäntsch
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver Kudlacek
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
- Center for Research in Neuroscience, University of Insubria, Varese, Italy
| | - Thomas Stockner
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Simon D. Brandt
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, United Kingdom
| | - Pierce Kavanagh
- Department of Pharmacology and Therapeutics, School of Medicine, Trinity Centre for Health Sciences, St James Hospital, Dublin, Ireland
| | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Center for Addiction Research and Science, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
3
|
Roset-Altadill A, Wat D, Radike M. Cardiovascular and pulmonary complications of recreational drugs: A pictorial review. Eur J Radiol 2024; 178:111648. [PMID: 39089058 DOI: 10.1016/j.ejrad.2024.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Recreational drug abuse constitutes a serious health problem worldwide. Consumption of cocaine, amphetamine-type stimulants, opioids and cannabis can lead to multiple acute and chronic cardiopulmonary complications, resulting in high morbidity and mortality. These complications may be first detected at imaging, since clinical presentation is usually non-specific. Cardiovascular complications include myocardial infarction, endocarditis, aortic dissection, infectious pseudoaneurysm, retained needle fragments, cardiomyopathy and pulmonary arterial hypertension. Pulmonary complications encompass pulmonary oedema, crack lung, pneumonia, septic emboli, barotrauma, airway disease, emphysema and excipient lung disease. Knowledge of the cardiopulmonary imaging manifestations of illicit drug use in conjunction with clinical history and a high grade of suspicion enable an accurate diagnosis and appropriate management plan. In this article we aim to provide a pictorial review of the most frequent cardiopulmonary manifestations of recreational drugs, emphasizing the underlying pathophysiologic mechanisms and the various imaging appearances.
Collapse
Affiliation(s)
- Adria Roset-Altadill
- Institut de Diagnòstic per la Imatge, Hospital Universitari de Girona Doctor Josep Trueta, Avinguda de França S/N, 17007, Girona, Spain.
| | - Dennis Wat
- Respiratory Medicine Department, Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool L14 3PE, United Kingdom.
| | - Monika Radike
- Radiology Department, Liverpool Heart and Chest Hospital, Thomas Drive, Liverpool L14 3PE, United Kingdom; Cardiovascular Research Center-ICCC, IIB-Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
4
|
Alberto-Silva AS, Hemmer S, Bock HA, Alves da Silva L, Scott KR, Kastner N, Bhatt M, Niello M, Jäntsch K, Kudlacek O, Bossi E, Stockner T, Meyer MR, McCorvy JD, Brandt SD, Kavanagh P, Sitte HH. Bioisosteric analogs of MDMA with improved pharmacological profile. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588083. [PMID: 38645142 PMCID: PMC11030374 DOI: 10.1101/2024.04.08.588083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA, ' ecstasy' ) is re-emerging in clinical settings as a candidate for the treatment of specific psychiatric disorders (e.g. post-traumatic stress disorder) in combination with psychotherapy. MDMA is a psychoactive drug, typically regarded as an empathogen or entactogen, which leads to transporter-mediated monoamine release. Despite its therapeutic potential, MDMA can induce dose-, individual-, and context-dependent untoward effects outside safe settings. In this study, we investigated whether three new methylenedioxy bioisosteres of MDMA improve its off-target profile. In vitro methods included radiotracer assays, transporter electrophysiology, bioluminescence resonance energy transfer and fluorescence-based assays, pooled human liver microsome/S9 fraction incubation with isozyme mapping, and liquid chromatography coupled to high-resolution mass spectrometry. In silico methods included molecular docking. Compared with MDMA, all three MDMA bioisosteres (ODMA, TDMA, and SeDMA) showed similar pharmacological activity at human serotonin and dopamine transporters (hSERT and hDAT, respectively) but decreased activity at 5-HT 2A/2B/2C receptors. Regarding their hepatic metabolism, they differed from MDMA, with N -demethylation being the only metabolic route shared, and without forming phase II metabolites. Additional screening for their interaction with human organic cation transporters (hOCTs) and plasma membrane transporter (hPMAT) revealed a weaker interaction of the MDMA analogs with hOCT1, hOCT2, and hPMAT. Our findings suggest that these new MDMA analogs might constitute appealing therapeutic alternatives to MDMA, sparing the primary pharmacological activity at hSERT and hDAT, but displaying a reduced activity at 5-HT 2A/2B/2C receptors and reduced hepatic metabolism. Whether these MDMA bioisosteres may pose lower risk alternatives to the clinically re-emerging MDMA warrants further studies.
Collapse
|
5
|
Lee KH, Won SJ, Oyinloye P, Shi L. Unlocking the Potential of High-Quality Dopamine Transporter Pharmacological Data: Advancing Robust Machine Learning-Based QSAR Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583803. [PMID: 38558976 PMCID: PMC10979915 DOI: 10.1101/2024.03.06.583803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The dopamine transporter (DAT) plays a critical role in the central nervous system and has been implicated in numerous psychiatric disorders. The ligand-based approaches are instrumental to decipher the structure-activity relationship (SAR) of DAT ligands, especially the quantitative SAR (QSAR) modeling. By gathering and analyzing data from literature and databases, we systematically assemble a diverse range of ligands binding to DAT, aiming to discern the general features of DAT ligands and uncover the chemical space for potential novel DAT ligand scaffolds. The aggregation of DAT pharmacological activity data, particularly from databases like ChEMBL, provides a foundation for constructing robust QSAR models. The compilation and meticulous filtering of these data, establishing high-quality training datasets with specific divisions of pharmacological assays and data types, along with the application of QSAR modeling, prove to be a promising strategy for navigating the pertinent chemical space. Through a systematic comparison of DAT QSAR models using training datasets from various ChEMBL releases, we underscore the positive impact of enhanced data set quality and increased data set size on the predictive power of DAT QSAR models.
Collapse
Affiliation(s)
- Kuo Hao Lee
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sung Joon Won
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Precious Oyinloye
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lei Shi
- Computational Chemistry and Molecular Biophysics Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
6
|
Jones F, Newton PM. Prevalence of the use of prescription stimulants as "study drugs" by UK university students: A brief report. Brain Behav 2024; 14:e3419. [PMID: 38346719 PMCID: PMC10861350 DOI: 10.1002/brb3.3419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 02/15/2024] Open
Abstract
INTRODUCTION There is media concern over students using prescription stimulants as "cognitive enhancers" to try and improve their academic performance. However, there is limited evidence about the prevalence of this behaviour in the United Kingdom, or whether it has increased in recent years. METHODS We review survey studies on students' use of cognitive enhancers. RESULTS Overall reported use is low, with some inconclusive evidence that it is increasing. Use of modafinil appears to be higher than that of methylphenidate or dexamphetamine. CONCLUSION There is a clear need for large-scale research in this area, using representative sampling and survey methods that protect student anonymity.
Collapse
Affiliation(s)
- Ffinian Jones
- Swansea University Medical SchoolSwansea UniversitySwanseaUK
| | | |
Collapse
|
7
|
Santamarina R, Caldicott D, Fitzgerald J, Schumann JL. Drug-related deaths at Australian music festivals. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2024; 123:104274. [PMID: 38065009 DOI: 10.1016/j.drugpo.2023.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Illicit drug use is overrepresented in music festival attendees compared with the general population. Drug use often involves a wide range of substances with the potential to cause drug toxicity. Law enforcement-centred strategies intended to deter drug use and supply at these mass gatherings have been implemented throughout Australia. However, many have been criticised for their lack of effectiveness, with evidence suggesting that they can inadvertently increase the risk of drug harm. Drug deaths are often multifactorial, providing added challenges in the development of prevention strategies. This study aimed to determine the frequency of deaths involving alcohol and other drugs at music festivals in Australia and to identify potential risk factors that may inform future harm reduction strategies. METHODS A descriptive case series study was conducted using the National Coronial Information System (NCIS) to investigate drug-related deaths at music festivals throughout Australia between 1 July 2000 (Queensland from 1 January 2001) and 31 December 2019, using a list of keywords comprising music festival names and terms. RESULTS There were 64 deaths, of which most involved males (73.4%) aged in their mid-20s (range 15-50 years). Drug toxicity was the most common primary cause of death (46.9%) followed by external injuries (37.5%). The drug most commonly detected or reported as being used was MDMA (65.6%), followed by alcohol (46.9%) and cannabis (17.2%), with most cases reporting the use of two or more drugs (including alcohol) and 36% reporting a history of drug misuse in the coroner's findings. Most deaths were unintentional, with less than a fifth of cases (17.2%) involving intentional self-harm. Clinical intervention was involved in 64.1% of cases and most festivals occurred in inner city locations (59.4%). CONCLUSIONS The findings suggest that drug-related deaths at music festivals in Australia typically involve young people using multiple illicit substances in combination with alcohol. Most are unintentional and could potentially be prevented through the implementation of a range of harm reduction strategies, including mobile medical care, drug checking services, and increased consumer education and awareness.
Collapse
Affiliation(s)
- R Santamarina
- Department of Forensic Medicine, Monash University, Victoria, Australia
| | - D Caldicott
- Emergency Department, Calvary Public Hospital Bruce, Canberra, Australian Capital Territory, Australia; ANU Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - J Fitzgerald
- Department of Criminology, School of Social and Political Sciences, Faculty of Arts, The University of Melbourne, Melbourne, Victoria, Australia
| | - J L Schumann
- Department of Forensic Medicine, Monash University, Victoria, Australia; Victorian Institute of Forensic Medicine, Victoria, Australia; Monash Addiction Research Centre, Monash University, Victoria, Australia.
| |
Collapse
|
8
|
Bremler R, Katati N, Shergill P, Erritzoe D, Carhart-Harris RL. Case analysis of long-term negative psychological responses to psychedelics. Sci Rep 2023; 13:15998. [PMID: 37749109 PMCID: PMC10519946 DOI: 10.1038/s41598-023-41145-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/22/2023] [Indexed: 09/27/2023] Open
Abstract
Recent controversies have arisen regarding claims of uncritical positive regard and hype surrounding psychedelic drugs and their therapeutic potential. Criticisms have included that study designs and reporting styles bias positive over negative outcomes. The present study was motivated by a desire to address this alleged bias by intentionally focusing exclusively on negative outcomes, defined as self-perceived 'negative' psychological responses lasting for at least 72 h after psychedelic use. A strong justification for this selective focus was that it might improve our ability to capture otherwise missed cases of negative response, enabling us to validate their existence and better examine their nature, as well as possible causes, which could inspire risk-mitigation strategies. Via advertisements posted on social media, individuals were recruited who reported experiencing negative psychological responses to psychedelics (defined as classic psychedelics plus MDMA) lasting for greater than 72 h since using. Volunteers were directed to an online questionnaire requiring quantitative and qualitative input. A key second phase of this study involved reviewing all of the submitted cases, identifying the most severe-e.g., where new psychiatric diagnoses were made or pre-existing symptoms made worse post psychedelic-use-and inviting these individuals to participate in a semi-structured interview with two members of our research team, during which participant experiences and backgrounds were examined in greater depth. Based on the content of these interviews, a brief summary of each case was compiled, and an explorative thematic analysis was used to identify salient and consistent themes and infer common causes. 32 individuals fully completed an onboarding questionnaire (56% male, 53% < age 25); 37.5% of completers had a psychiatric diagnosis that emerged after their psychedelic experience, and anxiety symptoms arose or worsened in 87%. Twenty of the seemingly severer cases were invited to be interviewed; of these, 15 accepted an in-depth interview that lasted on average 60 min. This sample was 40% male, mean age = 31 ± 7. Five of the 15 (i.e., 33%) reported receiving new psychiatric diagnoses after psychedelic-use and all fifteen reported the occurrence or worsening of psychiatric symptoms post use, with a predominance of anxiety symptoms (93%). Distilling the content of the interviews suggested the following potential causal factors: unsafe or complex environments during or surrounding the experience, unpleasant acute experiences (classic psychedelics), prior psychological vulnerabilities, high- or unknown drug quantities and young age. The current exploratory findings corroborate the reality of mental health iatrogenesis via psychedelic-use but due to design limitations and sample size, cannot be used to infer on its prevalence. Based on interview reports, we can infer a common, albeit multifaceted, causal mechanism, namely the combining of a pro-plasticity drug-that was often 'over-dosed'-with adverse contextual conditions and/or special psychological vulnerability-either by young age or significant psychiatric history. Results should be interpreted with caution due to the small sample size and selective sample and study focus.
Collapse
Affiliation(s)
- Rebecka Bremler
- Centre for Psychedelic Research, Imperial College London, London, UK.
| | - Nancy Katati
- Centre for Psychedelic Research, Imperial College London, London, UK
| | | | - David Erritzoe
- Centre for Psychedelic Research, Imperial College London, London, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, University of California San Francisco, San Francisco, USA
| |
Collapse
|
9
|
Hamed MA, Ekundina VO, Akhigbe RE. Psychoactive drugs and male fertility: impacts and mechanisms. Reprod Biol Endocrinol 2023; 21:69. [PMID: 37507788 PMCID: PMC10375764 DOI: 10.1186/s12958-023-01098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/03/2023] [Indexed: 07/30/2023] Open
Abstract
Although psychoactive drugs have their therapeutic values, they have been implicated in the pathogenesis of male infertility. This study highlights psychoactive drugs reported to impair male fertility, their impacts, and associated mechanisms. Published data from scholarly peer-reviewed journals were used for the present study. Papers were assessed through AJOL, DOAJ, Google Scholar, PubMed/PubMed Central, and Scopus using Medical Subjects Heading (MeSH) indexes and relevant keywords. Psychoactive drugs negatively affect male reproductive functions, including sexual urge, androgen synthesis, spermatogenesis, and sperm quality. These drugs directly induce testicular toxicity by promoting ROS-dependent testicular and sperm oxidative damage, inflammation, and apoptosis, and they also suppress the hypothalamic-pituitary-testicular axis. This results in the suppression of circulating androgen, impaired spermatogenesis, and reduced sperm quality. In conclusion, psychoactive drug abuse not only harms male sexual and erectile function as well as testicular functions, viz., testosterone concentration, spermatogenesis, and sperm quality, but it also alters testicular histoarchitecture through a cascade of events via multiple pathways. Therefore, offering adequate and effective measures against psychoactive drug-induced male infertility remains pertinent.
Collapse
Affiliation(s)
- Moses Agbomhere Hamed
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria.
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| | | | - Roland Eghoghosoa Akhigbe
- Reproductive Biology and Toxicology Research Laboratories, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
10
|
Chen G, Rahman S, Lutfy K. E-cigarettes may serve as a gateway to conventional cigarettes and other addictive drugs. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11345. [PMID: 38389821 PMCID: PMC10880776 DOI: 10.3389/adar.2023.11345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 02/24/2024]
Abstract
Electronic cigarettes (e-cigarettes) are devices that allow the user to inhale nicotine in a vapor, and are primarily marketed as a means of quitting smoking and a less harmful replacement for traditional cigarette smoking. However, further research is needed to determine if vaping nicotine via e-cigarettes can be effective. Conversely, nicotine has been considered a gateway drug to alcohol and other addictive drugs and e-cigarettes containing nicotine may have the same effects. Previous reports have shown that e-cigarette use may open the gate for the use of other drugs including conventional cigarettes, cannabis, opioids, etc. The increasing prevalence of e-cigarettes, particularly among youth and adolescents in the last decade have led to an increase in the dual use of e-cigarettes with alcohol, cannabis, and other illicit drug use like heroin and 3-4-methylenedioxymethamphetamine (MDMA). The advent of e-cigarettes as a device to self-administer addictive agents such as cocaine and synthetic cathinones may bring about additional adverse health effects associated with their concurrent use. This review aims to briefly describe e-cigarettes and their different generations, and their co-use with other addictive drugs as well as the use of the device as a tool to self-administer addictive drugs, such as cocaine, etc.
Collapse
Affiliation(s)
- Grace Chen
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, United States
| | - Kabirullah Lutfy
- College of Pharmacy, Western University of Health Sciences, Pomona, CA, United States
| |
Collapse
|
11
|
Perello R, Losada A, Chen Qin J, Supervia A, Salgado E, Smithson A, Xipell M, Inciarte A, Vallecillo G. Amphetamine-related intoxications in people living with HIV: An observational study in an emergency department in Barcelona (Spain) from 2018 to 2020. HIV Med 2023; 24:260-266. [PMID: 35945158 DOI: 10.1111/hiv.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Stimulant drugs, particularly amphetamines, are more commonly implicated in drug-related deaths in people living with HIV; however, the clinical characteristics of amphetamine-related intoxication in people living with HIV are poorly described. MATERIAL AND METHODS We conducted a retrospective study in people living with HIV who were admitted for amphetamine-related intoxication to an emergency department of a teaching hospital between 2018 and 2021. Severe intoxication (SI) was arbitrarily defined as requiring admission to the emergency medical support unit and receiving medical treatment for ≥6 h. RESULTS In total, 170 male patients with a median age of 36.2 + 7.5 years were included in the study. A total of 77 (45.3%) individuals had mental disorders, and 120 (85.7%) had HIV-1 RNA suppression, with a median CD4 cell count of 696 (interquartile range 490-905). In total, 61 (37.9%) individuals were on ritonavir/cobicistat-based regimens. Presenting clinical syndromes included agitation in 60 (35.3%) subjects, anxiety in 37 (21.7%), psychosis in 27 (15.8%), chest pain in 26 (15.3%) and altered level of consciousness in 20 (11.7%). SI was observed in 48 (28.2%) individuals, 12 (7.1%) required admission to the intensive care unit, and two (1.2%) died. Altered level of consciousness (odds ratio [OR] 6.5; 95% confidence interval [CI] 2.2-18.9; p < 0.01), psychosis (OR 5.8; 95% CI 2.2-15.1; p < 0.01) and suicide attempt (OR 4.6; 95% CI 1.8-11.6; p 0.01) were associated with SI in the adjusted analysis. CONCLUSIONS Amphetamine-related intoxication causes high morbidity in people living with HIV. Healthcare providers serving these patients should consider incorporating harm-reduction measures in the prevention of amphetamine-related intoxication.
Collapse
Affiliation(s)
| | | | | | | | | | - Alex Smithson
- Emergency Department, Fundació Esperit Sant, Barcelona, Spain
| | - Marc Xipell
- Emergency Department, Hospital Clínic, Barcelona, Spain
| | - Alexis Inciarte
- Infectious Diseases Department, Hospital Clínic, Barcelona, Spain
| | - Gabriel Vallecillo
- Drug addiction Unit, Hospital del Mar, Parc de Salut Mar Consortium, Barcelona, Spain
| |
Collapse
|
12
|
Ishii A, Sato K, Kusakabe K, Kato N, Wada T. Identification and Quantitative Analysis of 2-Fluoromethamphetamine and Its Metabolites in Human Urine. J Anal Toxicol 2023; 47:59-65. [PMID: 35562170 DOI: 10.1093/jat/bkac026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/25/2022] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Various synthetic drugs have appeared over the past years across the world, and phenethylamine derivatives are among them; indeed, aromatic fluoro analogs of methamphetamine and amphetamine have been in the illicit drug market since the early 2000s. Although they are currently widely abused across the world, little information is available on their metabolism and toxicology. Recently, we came across an alleged 2-fluoromethamphetamine (2-FMA) drug abuse case. The urine obtained from the alleged abuser was analyzed as part of a criminal investigation. 2-FMA, 2-fluoroamphetamine (2-FAP) and some related compounds were detected by liquid chromatography-tandem mass spectrometry. In forensic science, both an "unchanged" drug and its metabolite(s) need to be detected in urine to verify the illicit drug use. Notably, the detection of 2-FAP, which is a plausible 2-FMA metabolite, is insufficient as evidence of 2-FMA use because 2-FAP is widely available and may be present as such in taken liquids. In this study, we synthesized analytical standards for N-hydroxy 2-FMA (N-OH-2-FMA) and two diastereomers of 2-fluoroephedrine, which are plausible metabolites of 2-FMA. Using these standards, the urine specimen was found to contain N-OH-2FMA and one diastereomer of 2-fluoroephedrine; moreover, the concentrations of these compounds were successfully determined. The results of our study suggest that N-hydroxylation and aliphatic hydroxylation are the characteristic metabolic pathways of 2-FMA compared with that of methamphetamine. This evidence indicates that both N-OH-2-FMA and 2-fluoroephedrine are plausible candidates as analytical targets for drug-use certification in forensic science.
Collapse
Affiliation(s)
- Ayumu Ishii
- Scientific Crime Laboratory, Kanagawa Prefectural Police Headquarters, 155-1 Yamashitacho, Naka-ku, Yokohama-shi, Kanagawa, Japan
| | - Kazuki Sato
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan
| | - Kosuke Kusakabe
- Scientific Crime Laboratory, Kanagawa Prefectural Police Headquarters, 155-1 Yamashitacho, Naka-ku, Yokohama-shi, Kanagawa, Japan
| | - Noriyuki Kato
- Scientific Crime Laboratory, Kanagawa Prefectural Police Headquarters, 155-1 Yamashitacho, Naka-ku, Yokohama-shi, Kanagawa, Japan
| | - Takeshi Wada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba, Japan
| |
Collapse
|
13
|
Abdulghani A, Poghosyan M, Mehren A, Philipsen A, Anderzhanova E. Neuroplasticity to autophagy cross-talk in a therapeutic effect of physical exercises and irisin in ADHD. Front Mol Neurosci 2023; 15:997054. [PMID: 36776770 PMCID: PMC9909442 DOI: 10.3389/fnmol.2022.997054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/30/2022] [Indexed: 01/28/2023] Open
Abstract
Adaptive neuroplasticity is a pivotal mechanism for healthy brain development and maintenance, as well as its restoration in disease- and age-associated decline. Management of mental disorders such as attention deficit hyperactivity disorder (ADHD) needs interventions stimulating adaptive neuroplasticity, beyond conventional psychopharmacological treatments. Physical exercises are proposed for the management of ADHD, and also depression and aging because of evoked brain neuroplasticity. Recent progress in understanding the mechanisms of muscle-brain cross-talk pinpoints the role of the myokine irisin in the mediation of pro-cognitive and antidepressant activity of physical exercises. In this review, we discuss how irisin, which is released in the periphery as well as derived from brain cells, may interact with the mechanisms of cellular autophagy to provide protein recycling and regulation of brain-derived neurotrophic factor (BDNF) signaling via glia-mediated control of BDNF maturation, and, therefore, support neuroplasticity. We propose that the neuroplasticity associated with physical exercises is mediated in part by irisin-triggered autophagy. Since the recent findings give objectives to consider autophagy-stimulating intervention as a prerequisite for successful therapy of psychiatric disorders, irisin appears as a prototypic molecule that can activate autophagy with therapeutic goals.
Collapse
Affiliation(s)
- Alhasan Abdulghani
- C. and O. Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Henrich Heine University, Düsseldorf, Düsseldorf, Germany,*Correspondence: Alhasan Abdulghani,
| | - Mikayel Poghosyan
- Institute for Biology-Neurobiology, Freie University of Berlin, Berlin, Germany
| | - Aylin Mehren
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Elmira Anderzhanova
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
14
|
Machado da Silva MC, Iglesias LP, Candelario-Jalil E, Khoshbouei H, Moreira FA, de Oliveira ACP. Role of Microglia in Psychostimulant Addiction. Curr Neuropharmacol 2023; 21:235-259. [PMID: 36503452 PMCID: PMC10190137 DOI: 10.2174/1570159x21666221208142151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022] Open
Abstract
The use of psychostimulant drugs can modify brain function by inducing changes in the reward system, mainly due to alterations in dopaminergic and glutamatergic transmissions in the mesocorticolimbic pathway. However, the etiopathogenesis of addiction is a much more complex process. Previous data have suggested that microglia and other immune cells are involved in events associated with neuroplasticity and memory, which are phenomena that also occur in addiction. Nevertheless, how dependent is the development of addiction on the activity of these cells? Although the mechanisms are not known, some pathways may be involved. Recent data have shown psychoactive substances may act directly on immune cells, alter their functions and induce various inflammatory mediators that modulate synaptic activity. These could, in turn, be involved in the pathological alterations that occur in substance use disorder. Here, we extensively review the studies demonstrating how cocaine and amphetamines modulate microglial number, morphology, and function. We also describe the effect of these substances in the production of inflammatory mediators and a possible involvement of some molecular signaling pathways, such as the toll-like receptor 4. Although the literature in this field is scarce, this review compiles the knowledge on the neuroimmune axis that is involved in the pathogenesis of addiction, and suggests some pharmacological targets for the development of pharmacotherapy.
Collapse
Affiliation(s)
- Maria Carolina Machado da Silva
- Department of Pharmacology, Neuropharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil;
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lia Parada Iglesias
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Fabrício Araujo Moreira
- Department of Pharmacology, Neuropsychopharmacology Laboratory, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
15
|
Ottonelli I, Sharma A, Ruozi B, Tosi G, Duskey JT, Vandelli MA, Lafuente JV, Nozari A, Muresanu DF, Buzoianu AD, Tian ZR, Zhang Z, Li C, Feng L, Wiklund L, Sharma HS. Nanowired Delivery of Curcumin Attenuates Methamphetamine Neurotoxicity and Elevates Levels of Dopamine and Brain-Derived Neurotrophic Factor. ADVANCES IN NEUROBIOLOGY 2023; 32:385-416. [PMID: 37480467 DOI: 10.1007/978-3-031-32997-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Curcumin is a well-known antioxidant used as traditional medicine in China and India since ages to treat variety of inflammatory ailments as a food supplement. Curcumin has antitumor properties with neuroprotective effects in Alzheimer's disease. Curcumin elevates brain-derived neurotrophic factor (BDNF) and dopamine (DA) levels in the brain indicating its role in substance abuse. Methamphetamine (METH) is one of the most abused substances in the world that induces profound neurotoxicity by inducing breakdown of the blood-brain barrier (BBB), vasogenic edema and cellular injuries. However, influence of curcumin on METH-induced neurotoxicity is still not well investigated. In this investigation, METH neurotoxicity and neuroprotective effects of curcumin nanodelivery were examined in a rat model. METH (20 mg/kg, i.p.) neurotoxicity is evident 4 h after its administration exhibiting breakdown of BBB to Evans blue albumin in the cerebral cortex, hippocampus, cerebellum, thalamus and hypothalamus associated with vasogenic brain edema as seen measured using water content in all these regions. Nissl attaining exhibited profound neuronal injuries in the regions of BBB damage. Normal curcumin (50 mg/kg, i.v.) 30 min after METH administration was able to reduce BBB breakdown and brain edema partially in some of the above brain regions. However, TiO2 nanowired delivery of curcumin (25 mg/kg, i.v.) significantly attenuated brain edema, neuronal injuries and the BBB leakage in all the brain areas. BDNF level showed a significant higher level in METH-treated rats as compared to saline-treated METH group. Significantly enhanced DA levels in METH-treated rats were also observed with nanowired delivery of curcumin. Normal curcumin was able to slightly elevate DA and BDNF levels in the selected brain regions. Taken together, our observations are the first to show that nanodelivery of curcumin induces superior neuroprotection in METH neurotoxicity probable by enhancing BDNF and DA levels in the brain, not reported earlier.
Collapse
Affiliation(s)
- Ilaria Ottonelli
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Surgical Sciences, Anesthesiology & Intensive Care Med., Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Barbara Ruozi
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Tosi
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jason Thomas Duskey
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Angela Vandelli
- Te.far.t.I, Dept of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - José Vicente Lafuente
- LaNCE, Department Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Ala Nozari
- Anesthesia and Critical Care, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Dafin Fior Muresanu
- "RoNeuro" Institute for Neurological Research and Diagnosis, Cluj-Napoca, Romania
- Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Z Ryan Tian
- Dept. Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, USA
| | - Zhiqiang Zhang
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong Li
- Department of Neurosurgery, Chinese Medicine Hospital of Guangdong Province; The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Zhongshan Road (West), Shijiazhuang, Hebei Province, China
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Surgical Sciences, Anesthesiology & Intensive Care Med., Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Surgical Sciences, Anesthesiology & Intensive Care Med., Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
16
|
Muacevic A, Adler JR. The Efficacy of Psychedelic-Assisted Therapy in Managing Post-traumatic Stress Disorder (PTSD): A New Frontier? Cureus 2022; 14:e30919. [PMID: 36465766 PMCID: PMC9710723 DOI: 10.7759/cureus.30919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2022] [Indexed: 01/25/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a significant public health concern for which existing therapies are only marginally effective. Indisputably, the primary line of treatment for PTSD is psychotherapy, according to current treatment guidelines. However, PTSD continues to be a chronic condition even after psychotherapy, with high psychiatric and medical illness rates. There is a dire need to search for new compounds and approaches for managing PTSD. The usage of psychedelic substances is a potential new method. This article reviews the efficacy of psychedelic-assisted therapy in treating PTSD and improving patient outcomes. It will examine current research on the topic and evaluate the benefits and drawbacks of different therapies. The current evidence for the use of four different types of psychedelics (3,4-methylenedioxymethamphetamine, ketamine, classical psychedelics, and cannabis) in the treatment of PTSD will be reviewed. It will also include an overview of the therapeutic justification, context of use, and level of evidence available for each drug. Several questions are formulated that could be studied in future research in order to gain a better understanding of the topic.
Collapse
|
17
|
Edinoff AN, Kaufman SE, Green KM, Provenzano DA, Lawson J, Cornett EM, Murnane KS, Kaye AM, Kaye AD. Methamphetamine Use: A Narrative Review of Adverse Effects and Related Toxicities. Health Psychol Res 2022; 10:38161. [PMID: 36118981 PMCID: PMC9476235 DOI: 10.52965/001c.38161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023] Open
Abstract
Methamphetamine has been labeled "America's most dangerous drug" and has received significant public health attention. Stimulant addiction and tolerance are heavily documented in the literature; increasingly larger doses maintain euphoria in short time periods to withstand stimulant tolerance. Stimulant deaths are high in the United States and abroad. Between 2013 and 2019, deaths related to methamphetamine use quadrupled from 3,616 to 16,127. Methamphetamine use increased four-fold from 2015 to 2016. Due to this increase in methamphetamine use and its associated medical complications, the mortality rate associated with methamphetamine use has doubled over the past ten years. Cardiopulmonary symptoms include chest pain, palpitations, and shortness of breath. Methamphetamine-related myocardial infarction can also occur. Central nervous system symptoms include agitation, anxiety, delusions, hallucinations, and seizures. Methamphetamine-induced psychosis may unmask underlying psychiatric disorders. It can also cause cerebral vasculitis, which elicits cortical blindness and ischemic strokes. Methamphetamine-induced neurotoxicity in serotonergic systems is more diffuse, involving the striatum, hippocampus, septum, amygdala, and hypothalamus leading to mood changes, psychosis, and memory impairment. This narrative review will aim to highlight the adverse effects as well as the toxicity that can occur with methamphetamine use.
Collapse
Affiliation(s)
- Amber N Edinoff
- Department of Psychiatry, Harvard School of Medicine, Massachusetts General Hospital; Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport; Louisiana Addiction Research Center
| | - Sarah E Kaufman
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport; Louisiana Addiction Research Center
| | - Keionne M Green
- School of Medicine, Louisiana State University Health Science Center Shreveport
| | - Daniel A Provenzano
- School of Medicine, Louisiana State University Health Science Center Shreveport
| | - Jesse Lawson
- Department of Emergency Medicine, Louisiana State University Health Science Center Shreveport
| | - Elyse M Cornett
- Department of Anesthesiology, Louisiana State University Health Science Center Shreveport
| | - Kevin S Murnane
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Shreveport; Louisiana Addiction Research Center; Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Science Center Shreveport
| | - Adam M Kaye
- Thomas J. Long School of Pharmacy and Health Sciences, University of The Pacific
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Science Center Shreveport
| |
Collapse
|
18
|
Increased Inflammatory Markers at AMPH-Addicts Are Related to Neurodegenerative Conditions: Alzheimer’s Disease. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amphetamine addiction is widespread worldwide despite causing severe physical and mental problems, including neurodegeneration. One of the most common neurodegenerative disorders is Alzheimer’s disease (AD). Several inflammatory markers have been linked to AD. Previous studies have also found these biomarkers in amphetamine-addicts (AMPH-add). This study thus seeks to understand how AD and AMPH-addiction are related. A case–control observational study was conducted. Seventeen AMPH-adds ranging in age from 23 to 40 were recruited from Al Amal Psychiatric Hospital. In addition, 19 healthy subjects matching their age and gender were also recruited. The Luminex technique was used to measure serum alpha 1 antichymotrypsin (ACT), pigment epithelium-derived factor (PEDF), and macrophage inflammatory protein-4 (MIP-4), after complying with ethical guidelines and obtaining informed consent. In addition, liver function enzymes were correlated to AD’s predictive biomarkers in AMPH-adds. AMPH-adds had significantly higher serum levels of ACT, PEDF, and MIP-4 when compared to healthy controls (p = 0.03, p = 0.001, and p = 0.012, respectively). Furthermore, there is a significant correlation between lower ALT levels and elevated AST to ALT ratios in AMPH-adds (r = 0.618, 0.651, and p = 0.0001). These changes in inflammatory biomarkers may be linked to the onset of AD at a young age in amphetamine-drug addicts.
Collapse
|
19
|
Jamt REG, Edvardsen HME, Middelkoop G, Kallevik AS, Bogstrand ST, Vevelstad MS, Vindenes V. Deaths associated with MDMA in the period 2000–2019. TIDSSKRIFT FOR DEN NORSKE LEGEFORENING 2022; 142:21-0547. [DOI: 10.4045/tidsskr.21.0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
20
|
Cabrera RJ, Baiardi L, Bregonzio C. AT1 Receptor as a Potential Target in Amphetamine-induced Neuroinflammation. Protein Pept Lett 2022; 29:371-374. [DOI: 10.2174/0929866529666220330154218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Ricardo Jorge Cabrera
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Mendoza, IMBECU–CONICET, Paseo Dr.
Emilio Descotte 720, 5500 Mendoza, Argentina
| | - Lucia Baiardi
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET),
Departamento de Farmacología. Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba,
Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental Córdoba (IFEC-CONICET),
Departamento de Farmacología. Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Córdoba,
Argentina
| |
Collapse
|
21
|
A review on the mitochondrial toxicity of “ecstasy” (3,4-methylenedioxymethamphetamine, MDMA). Curr Res Toxicol 2022; 3:100075. [PMID: 35651589 PMCID: PMC9149009 DOI: 10.1016/j.crtox.2022.100075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
in vitro and in vivo studies on MDMA mitochondria toxicity are revised. MDMA causes ATP depletion and inhibition of mitochondrial complexes. MDMA or its metabolites impair mitochondrial trafficking in vitro. MDMA evokes deletion on mitochondrial DNA in vivo. A direct translation to humans is hampered by the doses and concentrations of MDMA.
3,4-Methylenedioxymethamphetamine (MDMA or “ecstasy”) is a drug of abuse used by millions worldwide. MDMA human abuse and dependence is well described, but addictive properties are not always consistent among studies. This amphetamine is a substrate type releaser, binding to monoamine transporters, leading to a pronounced release of serotonin and noradrenaline and to a minor extent dopamine. The toxicity of MDMA is well studied at the pre-clinical level, with neurotoxicity and hepatotoxicity being particularly described. In this review, we describe the most relevant MDMA effects at the mitochondrial level found in in vitro and in vivo models, these later conducted in mice and rats. Most of these reports focus on the mitochondria of brain or liver. In in vitro models, MDMA causes depletion of ATP levels and inhibition of mitochondrial complex I and III, loss in mitochondrial membrane potential (ΔΨm) and induction of mitochondrial permeability transition. The involvement of mitochondria in the apoptotic cell death evoked by MDMA has also been shown, such as the release of cytochrome c. Additionally, MDMA or its metabolites impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria. In animal studies, MDMA decreased mitochondrial complex I activity and decreased ATP levels. Moreover, MDMA-evoked oxidative stress has been shown to cause deletion on mitochondrial DNA and impairment in mitochondrial protein synthesis. Although the concentrations and doses used in some studies do not always correlate to the human scenario, the mitochondrial abnormalities evoked by MDMA are well described and are in part responsible for its mechanism of toxicity.
Collapse
|
22
|
Sottile RJ, Vida T. A proposed mechanism for the MDMA-mediated extinction of traumatic memories in PTSD patients treated with MDMA-assisted therapy. Front Psychiatry 2022; 13:991753. [PMID: 36311515 PMCID: PMC9596814 DOI: 10.3389/fpsyt.2022.991753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a devastating psychiatric disorder afflicting millions of people around the world. Characterized by severe anxiety, intrusive thoughts, pervasive nightmares, an assortment of somatic symptoms, associations with severe long-term health problems, and an elevated risk of suicide, as much as 40-70% of patients suffer from refractory disease. 3,4-Methylenedioxy-methamphetamine (MDMA), like classic psychedelics such as psilocybin, have been used to enhance the efficacy of psychotherapy almost since their discovery, but due to their perceived potential for abuse and inclusion on USFDA (United States Food and Drug Administration) schedule 1, research into the mechanism by which they produce improvements in PTSD symptomology has been limited. Nevertheless, several compelling rationales have been explored, with the pro-social effects of MDMA thought to enhance therapeutic alliance and thus facilitate therapist-assisted trauma processing. This may be insufficient to fully explain the efficacy of MDMA in the treatment of psychiatric illness. Molecular mechanisms such as the MDMA mediated increase of brain-derived neurotrophic factor (BDNF) availability in the fear memory learning pathways combined with MDMA's pro-social effects may provide a more nuanced explanation for the therapeutic actions of MDMA.
Collapse
Affiliation(s)
- Robert J Sottile
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, University of Nevada Las Vegas, Las Vegas, NV, United States
| | - Thomas Vida
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, University of Nevada Las Vegas, Las Vegas, NV, United States
| |
Collapse
|
23
|
Khom S, Nguyen JD, Vandewater SA, Grant Y, Roberto M, Taffe MA. Self-Administration of Entactogen Psychostimulants Dysregulates Gamma-Aminobutyric Acid (GABA) and Kappa Opioid Receptor Signaling in the Central Nucleus of the Amygdala of Female Wistar Rats. Front Behav Neurosci 2021; 15:780500. [PMID: 34975428 PMCID: PMC8716434 DOI: 10.3389/fnbeh.2021.780500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Male rats escalate intravenous self-administration of entactogen psychostimulants, 3,4-methylenedioxymethcathinone (methylone) and 3,4-methylenedioxymethamphetamine (MDMA) under extended access conditions, as with typical psychostimulants. Here, we investigated whether female rats escalate self-administration of methylone, 3,4-methylenedioxypentedrone (pentylone), and MDMA and then studied consequences of MDMA and pentylone self-administration on GABAA receptor and kappa opioid receptor (KOR) signaling in the central nucleus of the amygdala (CeA), a brain area critically dysregulated by extended access self-administration of alcohol or cocaine. Adult female Wistar rats were trained to self-administer methylone, pentylone, MDMA (0.5 mg/kg/infusion), or saline-vehicle using a fixed-ratio 1 response contingency in 6-h sessions (long-access: LgA) followed by progressive ratio (PR) dose-response testing. The effects of pentylone-LgA, MDMA-LgA and saline on basal GABAergic transmission (miniature post-synaptic inhibitory currents, mIPSCs) and the modulatory role of KOR at CeA GABAergic synapses were determined in acute brain slices using whole-cell patch-clamp. Methylone-LgA and pentylone-LgA rats similarly escalated their drug intake (both obtained more infusions compared to MDMA-LgA rats), however, pentylone-LgA rats reached higher breakpoints in PR tests. At the cellular level, baseline CeA GABA transmission was markedly elevated in pentylone-LgA and MDMA-LgA rats compared to saline-vehicle. Specifically, pentylone-LgA was associated with increased CeA mIPSC frequency (GABA release) and amplitude (post-synaptic GABAA receptor function), while mIPSC amplitudes (but not frequency) was larger in MDMA-LgA rats compared to saline rats. In addition, pentylone-LgA and MDMA-LgA profoundly disrupted CeA KOR signaling such as both KOR agonism (1 mM U50488) and KOR antagonism (200 nM nor-binaltorphimine) decreased mIPSC frequency suggesting recruitment of non-canonical KOR signaling pathways. This study confirms escalated self-administration of entactogen psychostimulants under LgA conditions in female rats which is accompanied by increased CeA GABAergic inhibition and altered KOR signaling. Collectively, our study suggests that CeA GABA and KOR mechanisms play a critical role in entactogen self-administration like those observed with escalation of alcohol or cocaine self-administration.
Collapse
Affiliation(s)
- Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Jacques D. Nguyen
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Sophia A. Vandewater
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
| | - Yanabel Grant
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Michael A. Taffe
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, United States
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
24
|
Affas S, Ayas MF, Kassab IA. Use of N-Acetylcysteine in Amphetamine-Induced Acute Liver Failure. J Med Cases 2021; 12:54-56. [PMID: 34434429 PMCID: PMC8383615 DOI: 10.14740/jmc3611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 11/14/2020] [Indexed: 01/22/2023] Open
Abstract
Acute liver failure (ALF) is a serious complication of many drugs. Amongst recreational drugs, cocaine, amphetamines and ecstasy (methylenedioxymethamphetamine) have been known to cause ALF as a complication. However, the true effects and management on the liver of such cases have not been well reported and treatment of such conditions needs prompt action. N-acetylcysteine (NAC) is a known hepatoprotective agent but remains controversial in the use of recreational drug-induced acute liver injury. We present a case of ALF secondary to amphetamine ingestion, with a rapid recovery after administration of intravenous NAC.
Collapse
Affiliation(s)
- Saif Affas
- Department of Internal Medicine, Ascension St. John Hospital, Detroit, MI, USA.,These authors contributed equally to this work
| | - Mohamad Fekredeen Ayas
- Department of Internal Medicine, Ascension St. John Hospital, Detroit, MI, USA.,These authors contributed equally to this work
| | - Ihab A Kassab
- Division of Hospital Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
25
|
García-Cabrerizo R, Bis-Humbert C, García-Fuster MJ. Electroconvulsive seizures protect against methamphetamine-induced inhibition of neurogenesis in the rat hippocampus. Neurotoxicology 2021; 86:185-191. [PMID: 34418438 DOI: 10.1016/j.neuro.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/19/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022]
Abstract
Following methamphetamine consumption and during abstinence many behavioral consequences emerge (i.e., cognitive deficits, ongoing episodes of psychosis, depression, severe cravings, brain neurotoxicity), which are likely linked to propensity to relapse. In this line of thought, we recently showed that binge methamphetamine administration enhanced negative affect and voluntary drug consumption in rats, while it induced persistent neurotoxic effects (i.e., impaired hippocampal neurogenesis), effects that emerged long after drug removal. To date, no pharmacological strategies have been proven to be effective for the treatment of methamphetamine toxicity. A few studies have evaluated the impact of combining methamphetamine pretreatment with electroconvulsive seizures (ECS) post-treatment, an alternative non-pharmacological option used in psychiatry for resistant depression that offers a safe and really potent therapeutic response. Against this background, the present study aimed at testing whether repeated ECS treatment could ameliorate some of the long-term neurotoxicity effects induced by adolescent methamphetamine exposure in rats and emerging after drug removal. At the behavioral level, the main results showed that methamphetamine administration did not alter negative affect immediate during adolescence or later on in adulthood. Interestingly, repeated ECS improved the negative impact of methamphetamine administration on reducing hippocampal neurogenesis, demonstrating that ECS can attenuate certain degree of methamphetamine-induced neurotoxicity in rats, and suggesting ECS as a good therapeutical candidate that deserves further studies.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Cristian Bis-Humbert
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain.
| |
Collapse
|
26
|
Altered metabolic pathways elucidated via untargeted in vivo toxicometabolomics in rat urine and plasma samples collected after controlled application of a human equivalent amphetamine dose. Arch Toxicol 2021; 95:3223-3234. [PMID: 34414480 PMCID: PMC8448701 DOI: 10.1007/s00204-021-03135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 10/28/2022]
Abstract
Amphetamine is widely consumed as drug of abuse due to its stimulating and cognitive enhancing effects. Since amphetamine has been on the market for quite a long time and it is one of the most commonly used stimulants worldwide, to date there is still limited information on its effects on the metabolome. In recent years, untargeted toxicometabolomics have been increasingly used to study toxicity-related pathways of such drugs of abuse to find and identify important endogenous and exogenous biomarkers. In this study, the acute effects of amphetamine intake on plasma and urinary metabolome in rats were investigated. For this purpose, samples of male Wistar rats after a single dose of amphetamine (5 mg/kg) were compared to a control group using an untargeted metabolomics approach. Analysis was performed using normal and reversed phase liquid chromatography coupled to high-resolution mass spectrometry using positive and negative ionization mode. Statistical evaluation was performed using Welch's two-sample t test, hierarchical clustering, as well as principal component analysis. The results of this study demonstrate a downregulation of amino acids in plasma samples after amphetamine exposure. Furthermore, four new potential biomarkers N-acetylamphetamine, N-acetyl-4-hydroxyamphetamine, N-acetyl-4-hydroxyamphetamine glucuronide, and amphetamine succinate were identified in urine. The present study complements previous data and shows that several studies are necessary to elucidate altered metabolic pathways associated with acute amphetamine exposure.
Collapse
|
27
|
Fultz EK, Quadir SG, Martin D, Flaherty DM, Worley PF, Kippin TE, Szumlinski KK. ERK-Directed Phosphorylation of mGlu5 Gates Methamphetamine Reward and Reinforcement in Mouse. Int J Mol Sci 2021; 22:ijms22031473. [PMID: 33540617 PMCID: PMC7867251 DOI: 10.3390/ijms22031473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 01/22/2023] Open
Abstract
Methamphetamine (MA) is a highly addictive psychomotor stimulant drug. In recent years, MA use has increased exponentially on a global scale, with the number of MA-involved deaths reaching epidemic proportions. There is no approved pharmacotherapy for treating MA use disorder, and we know relatively little regarding the neurobiological determinants of vulnerability to this disease. Extracellular signal-regulated kinase (ERK) is an important signaling molecule implicated in the long-lasting neuroadaptations purported to underlie the development of substance use disorders, but the role for this kinase in the propensity to develop addiction, particularly MA use disorder, is uncharacterized. In a previous MA-induced place-conditioning study of C57BL/6J mice, we characterized mice as MA-preferring, -neutral, or -avoiding and collected tissue from the medial prefrontal cortex (mPFC). Using immunoblotting, we determined that elevated phosphorylated ERK expression within the medial prefrontal cortex (mPFC) is a biochemical correlate of the affective valence of MA in a population of C57BL/6J mice. We confirmed the functional relevance for mPFC ERK activation for MA-induced place-preference via site-directed infusion of the MEK inhibitor U0126. By contrast, ERK inhibition did not have any effect upon MA-induced locomotion or its sensitization upon repeated MA treatment. Through studies of transgenic mice with alanine point mutations on T1123/S1126 of mGlu5 that disrupt ERK-dependent phosphorylation of the receptor, we discovered that ERK-dependent mGlu5 phosphorylation normally suppresses MA-induced conditioned place-preference (MA-CPP), but is necessary for this drug’s reinforcing properties. If relevant to humans, the present results implicate individual differences in the capacity of MA-associated cues/contexts to hyper-activate ERK signaling within mPFC in MA Use Disorder vulnerability and pose mGlu5 as one ERK-directed target contributing to the propensity to seek out and take MA.
Collapse
Affiliation(s)
- Elissa K. Fultz
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Sema G. Quadir
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Douglas Martin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Daniel M. Flaherty
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
| | - Paul F. Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (E.K.F.); (S.G.Q.); (D.M.); (D.M.F.); (T.E.K.)
- Department of Molecular, Cellular and Developmental Biology and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Correspondence: ; Tel.: +1-805-893-2987; Fax: +1-805-893-4303
| |
Collapse
|
28
|
Sassi KLM, Rocha NP, Colpo GD, John V, Teixeira AL. Amphetamine Use in the Elderly: A Systematic Review of the Literature. Curr Neuropharmacol 2020; 18:126-135. [PMID: 31660835 PMCID: PMC7324882 DOI: 10.2174/1570159x17666191010093021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/01/2019] [Accepted: 09/30/2019] [Indexed: 11/25/2022] Open
Abstract
Objective: To systematically review the literature on the therapeutic use of amphetamine, lisdexamfetamine and methylphenidate in elderly population with and without dementia. Methods: We conducted two researches on the PubMed, Scopus and Embase using the keywords (“elderly”) AND (“amphetamine” OR “methylphenidate” OR “lisdexamfetamine”) and then (“Alzheimer” OR “dementia”) AND (“amphetamine” OR “methylphenidate” OR “lisdexamfetamine”). Results: Twenty-nine papers met all the eligibility criteria. The results are encouraging as 81.5% of the studies showed clinical improvement of the investigated condition. Conclusion: Amphetamines and methylphenidate are probably effective strategies for different conditions in the elderly population. However, further studies are needed to provide more robust evidence on efficacy, dosage and safety for this population.
Collapse
Affiliation(s)
- Karina Lúcia Moreira Sassi
- Department of Psychiatry and Behavioral Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Natalia Pessoa Rocha
- Department of Psychiatry and Behavioral Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Gabriela Delevati Colpo
- Department of Psychiatry and Behavioral Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Vineeth John
- Department of Psychiatry and Behavioral Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Science, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
29
|
Methiopropamine, a methamphetamine analogue, produces neurotoxicity via dopamine receptors. Chem Biol Interact 2019; 305:134-147. [PMID: 30922767 DOI: 10.1016/j.cbi.2019.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/03/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022]
Abstract
Methiopropamine (MPA) is structurally categorized as a thiophene ring-based methamphetamine (MA) derivative. Although abusive potential of MPA was recognized, little is known about the neurotoxic potential of MPA up to now. We investigated whether MPA induces dopaminergic neurotoxicity, and whether MPA activates a specific dopamine receptor. Here, we observed that treatment with MPA resulted in dopaminergic neurotoxicity in a dose-dependent manner. MPA treatment potentiated oxidative parameters (i.e., increases in the level of reactive oxygen species, 4-hydroxynonenal, and protein carbonyl), M1 phenotype-related microglial activity, and pro-apoptotic property (i.e., increases in Bax- and cleaved caspase-3-expressions, while a decrease in Bcl-2-expression). Moreover, treatment with MPA resulted in significant impairments in dopaminergic parameters [i.e., changes in dopamine level, dopamine turnover rate, tyrosine hydroxylase (TH) levels, dopamine transporter (DAT) expression, and vesicular monoamine transporter-2 (VMAT-2) expression], and in behavioral deficits. Both dopamine D1 receptor antagonist SCH23390 and D2 receptor antagonist sulpiride protected from these neurotoxic consequences. Therefore, our results suggest that dopamine D1 and D2 receptors simultaneously mediate MPA-induced dopaminergic neurodegeneration in mice via oxidative burdens, microgliosis, and pro-apoptosis.
Collapse
|
30
|
Koek RJ, Luong TN. Theranostic pharmacology in PTSD: Neurobiology and timing. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:245-263. [PMID: 30529001 DOI: 10.1016/j.pnpbp.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/17/2018] [Accepted: 12/05/2018] [Indexed: 02/06/2023]
Abstract
Recent reviews and treatment guidelines regard trauma-focused cognitive-behavior therapies as the treatments of choice for chronic post-traumatic stress disorder (PTSD). However, many patients do not engage in this treatment when it is available, drop out before completion, or do not respond. Medications remain widely used, alone and in conjunction with psychotherapy, although the limitations of traditional monoamine-based pharmacotherapy are increasingly recognized. This article will review recent developments in psychopharmacology for PTSD, with a focus on current clinical data that apply putative neurobiologic mechanisms to medication use-i.e., a theranostic approach. A theranostic approach however, also requires consideration of timing, pre, peri or post trauma in conjunction with underlying dynamic processes affecting synaptic plasticity, the HPA axis, hippocampal activation, PFC-amygdala circuitry and fear memory.
Collapse
Affiliation(s)
- Ralph J Koek
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Sepulveda Ambulatory Care Center, VA Greater Los Angeles Healthcare System, North Hills, CA, USA.
| | - Tinh N Luong
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Olive View Medical Center, Sylmar, CA, USA
| |
Collapse
|
31
|
García-Cabrerizo R, García-Fuster MJ. Methamphetamine binge administration dose-dependently enhanced negative affect and voluntary drug consumption in rats following prolonged withdrawal: role of hippocampal FADD. Addict Biol 2019; 24:239-250. [PMID: 29282816 DOI: 10.1111/adb.12593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/24/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
While prior studies have established various interacting mechanisms and neural consequences (i.e. monoaminergic nerve terminal damage) that might contribute to the adverse effects caused by methamphetamine administration, the precise mechanisms that mediate relapse during withdrawal remain unknown. This study evaluated the long-term consequences of binge methamphetamine administration (three pulses/day, every 3 hours, 4 days, i.p.; dose-response: 2.5, 5 and 7.5 mg/kg) in adult Sprague-Dawley rats at two behavioral levels following 25 days of withdrawal: (1) negative affect (behavioral despair-forced-swim test, and anhedonia-1% sucrose consumption, two-bottle choice test) and (2) voluntary methamphetamine consumption (20 mg/l, two-bottle choice test). Striatal and hippocampal brain samples were dissected to quantify monoamines content by high-performance liquid chromatography and to evaluate neurotoxicity (dopaminergic and serotonergic markers) and neuroplasticity markers [i.e. cell fate regulator (Fas-associated protein with death domain) FADD] by Western blot. The results showed that methamphetamine administration induced dose-dependent negative effects during prolonged withdrawal in adult rats. In particular, rats treated repeatedly with methamphetamine (7.5 mg/kg) showed (1) enhanced negative affect-increased anhedonia associated with behavioral despair, (2) increased voluntary methamphetamine consumption, (3) enhanced neurotoxicity-decreased dopamine and metabolites in striatum and decreased serotonin in hippocampus, (4) altered neuroplasticity markers-decreased FADD protein and increased p-FADD/FADD balance selectively in hippocampus and (5) higher consumption rates of methamphetamine that were associated with lower FADD content in hippocampus. These results confirm that methamphetamine withdrawal dose-dependently induced negative affect and decreased monoamines content, while also increased voluntary methamphetamine consumption and suggested a role for hippocampal FADD neuroplasticity in these drug-withdrawal adaptations.
Collapse
Affiliation(s)
- Rubén García-Cabrerizo
- IUNICS; University of the Balearic Islands; Palma Spain
- Balearic Islands Health Research Institute (IdISBa); Palma Spain
| | - M. Julia García-Fuster
- IUNICS; University of the Balearic Islands; Palma Spain
- Balearic Islands Health Research Institute (IdISBa); Palma Spain
| |
Collapse
|
32
|
Mauna JC, Harris SS, Pino JA, Edwards CM, DeChellis-Marks MR, Bassi CD, Garcia-Olivares J, Amara SG, Guajardo FG, Sotomayor-Zarate R, Terminel M, Castañeda E, Vergara M, Baust T, Thiels E, Torres GE. G protein βγ subunits play a critical role in the actions of amphetamine. Transl Psychiatry 2019; 9:81. [PMID: 30745563 PMCID: PMC6370791 DOI: 10.1038/s41398-019-0387-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/30/2018] [Accepted: 01/01/2019] [Indexed: 11/18/2022] Open
Abstract
Abnormal levels of dopamine (DA) are thought to contribute to several neurological and psychiatric disorders including drug addiction. Extracellular DA levels are regulated primarily via reuptake by the DA transporter (DAT). Amphetamine, a potent psychostimulant, increases extracellular DA by inducing efflux through DAT. Recently, we discovered that G protein βγ subunits (Gβγ) interact with DAT, and that in vitro activation of Gβγ promotes DAT-mediated efflux. Here, we investigated the role of Gβγ in the actions of amphetamine in DA neurons in culture, ex vivo nucleus accumbens (NAc), and freely moving rats. Activation of Gβγ with the peptide myr-Ser-Ile-Arg-Lys-Ala-Leu-Asn-Ile-Leu-Gly-Tyr-Pro-Asp-Tyr-Asp (mSIRK) in the NAc potentiated amphetamine-induced hyperlocomotion, but not cocaine-induced hyperlocomotion, and systemic or intra-accumbal administration of the Gβγ inhibitor gallein attenuated amphetamine-induced, but not cocaine-induced hyperlocomotion. Infusion into the NAc of a TAT-fused peptide that targets the Gβγ-binding site on DAT (TAT-DATct1) also attenuated amphetamine-induced but not cocaine-induced hyperlocomotion. In DA neurons in culture, inhibition of Gβγ with gallein or blockade of the Gβγ-DAT interaction with the TAT-DATct1 peptide decreased amphetamine-induced DA efflux. Furthermore, activation of Gβγ with mSIRK potentiated and inhibition of Gβγ with gallein reduced amphetamine-induced increases of extracellular DA in the NAc in vitro and in freely moving rats. Finally, systemic or intra-accumbal inhibition of Gβγ with gallein blocked the development of amphetamine-induced, but not cocaine-induced place preference. Collectively, these results suggest that interaction between Gβγ and DAT plays a critical role in the actions of amphetamine and presents a novel target for modulating the actions of amphetamine in vivo.
Collapse
Affiliation(s)
- J C Mauna
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S S Harris
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - J A Pino
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - C M Edwards
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M R DeChellis-Marks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C D Bassi
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Garcia-Olivares
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - S G Amara
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - F G Guajardo
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
- Laboratory of Neurochemistry and Neuropharmacology, Center for Neurobiology and Brain Plasticity, Universidad de Valparaíso, Valparaíso, Chile
| | - R Sotomayor-Zarate
- Laboratory of Neurochemistry and Neuropharmacology, Center for Neurobiology and Brain Plasticity, Universidad de Valparaíso, Valparaíso, Chile
| | - M Terminel
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - E Castañeda
- Department of Psychology, University of Texas at El Paso, El Paso, TX, USA
| | - M Vergara
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA
| | - T Baust
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E Thiels
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - G E Torres
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL, USA.
- Center for Addiction Research and Education, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
33
|
Lv XF, Tao LM, Zhong H. Long-term systemic administration with low dose of 3,4-methylenedioxymethamphetamine causes photoreceptor cell damage in CD1 mice. Cutan Ocul Toxicol 2018; 38:81-87. [PMID: 30360644 DOI: 10.1080/15569527.2018.1539007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE As a powerful psychostimulant with high potential for abuse, 3,4-methylenedioxymethamphetamine (MDMA) causes long-lasting neurotoxicity. This study was to investigate the effects of systemic administration of MDMA on retinal damage in CD1 mice and its underlying mechanisms. MATERIAL AND METHODS CD1 mice were randomly divided into two groups (n = 10): group 1 receiving PBS by intraperitoneal injection daily; group 2 receiving 2 mg/kg MDMA by intraperitoneal injection daily for 3 months. The retinal function was tested by electroretinography (ERG). The retinal morphology and histology was evaluated by Toluidine blue staining and TUNEL assay, respectively. Inflammatory cytokines were measured by ELISA assays. Gene and protein expression was detected by real-time PCR and western blot. RESULTS Results demonstrated that retinal damage was caused by MDMA after 3-month treatment, evidenced by retinal dysfunction through photoreceptor cell apoptosis induced by inflammatory response and oxidative stress. CONCLUSION Our study indicated that systemic administration of MDMA increased inflammatory response in photoreceptor cells to cause retinal dysfunction on CD1 mice, providing the scientific rationale for the photoreceptor cell damage caused by the MDMA abuse.
Collapse
Affiliation(s)
- Xiu-Fang Lv
- a Department of Ophthalmology , the Second Hospital Affiliated to Anhui Medical University , Hefei , People's Republic of China
| | - Li-Ming Tao
- a Department of Ophthalmology , the Second Hospital Affiliated to Anhui Medical University , Hefei , People's Republic of China
| | - Hui Zhong
- b Department of Ophthalmology , Shenzhen Children's Hospital , Shenzhen , People's Republic of China
| |
Collapse
|
34
|
Breitbarth AK, Morgan J, Jones AL. E-cigarettes-An unintended illicit drug delivery system. Drug Alcohol Depend 2018; 192:98-111. [PMID: 30245461 DOI: 10.1016/j.drugalcdep.2018.07.031] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/12/2018] [Accepted: 07/04/2018] [Indexed: 12/15/2022]
Abstract
Since the introduction of electronic cigarettes (e-cigarettes) in 2003, the technology has advanced allowing for greater user modifications, with users now able to control voltage, battery power, and constituents of the e-cigarette liquid. E-cigarettes have been the subject of a growing body of research with most research justifiably focused on the chemical makeup and risk analysis of chemicals, metals, and particulates found in e-cigarette liquids and vapor. Little research to date has focused on assessing the risks associated with the drug delivery unit itself and its potential for use as an illicit drug delivery system. In light of this, a range of illicit drugs was researched focusing on pharmacodynamics, usual method of administration, the dosage required for toxicity, toxic effects, and evidence of existing use in e-cigarettes in both literature and online illicit drug forums. A systematic literature search found evidence of current use of e-cigarettes to vape almost all illicit drug types analyzed. This presents both a potential population health risk and a management issue for clinicians. It also raises the issue of policing illicit drugs due to potential altered characteristic smells and storage within e-cigarette fluids. E-cigarettes are a viable illicit drug delivery system with evidence both inside and outside of the formal medical literature detailing their potential use for drug delivery of a wide range of illicit and legal drugs.
Collapse
Affiliation(s)
| | - Jody Morgan
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Alison L Jones
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
35
|
Dunlap LE, Andrews AM, Olson DE. Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine. ACS Chem Neurosci 2018; 9:2408-2427. [PMID: 30001118 PMCID: PMC6197894 DOI: 10.1021/acschemneuro.8b00155] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Better known as "ecstasy", 3,4-methylenedioxymethamphetamine (MDMA) is a small molecule that has played a prominent role in defining the ethos of today's teenagers and young adults, much like lysergic acid diethylamide (LSD) did in the 1960s. Though MDMA possesses structural similarities to compounds like amphetamine and mescaline, it produces subjective effects that are unlike any of the classical psychostimulants or hallucinogens and is one of the few compounds capable of reliably producing prosocial behavioral states. As a result, MDMA has captured the attention of recreational users, the media, artists, psychiatrists, and neuropharmacologists alike. Here, we detail the synthesis of MDMA as well as its pharmacology, metabolism, adverse effects, and potential use in medicine. Finally, we discuss its history and why it is perhaps the most important compound for the future of psychedelic science-having the potential to either facilitate new psychedelic research initiatives, or to usher in a second Dark Age for the field.
Collapse
Affiliation(s)
- Lee E Dunlap
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Anne M Andrews
- Departments of Psychiatry and Chemistry & Biochemistry, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology , University of California , Los Angeles , California 90095 , United States
| | - David E Olson
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
- Department of Biochemistry & Molecular Medicine, School of Medicine , University of California, Davis , 2700 Stockton Blvd, Suite 2102 , Sacramento , California 95817 , United States
- Center for Neuroscience , University of California, Davis , 1544 Newton Ct , Davis , California 95616 , United States
| |
Collapse
|
36
|
Methamphetamine binge administration during late adolescence induced enduring hippocampal cell damage following prolonged withdrawal in rats. Neurotoxicology 2018; 66:1-9. [PMID: 29501631 DOI: 10.1016/j.neuro.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 11/20/2022]
Abstract
A recent study from our laboratory demonstrated that binge methamphetamine induced hippocampal cell damage (i.e., impaired cell genesis) in rats when administered specifically during late adolescence (postnatal day, PND 54-57) and evaluated 24 h later (PND 58). The results also suggested a possible role for brain-derived neurotrophic factor (BDNF) regulating cell genesis and survival. This subsequent study evaluated whether these effects persisted in time as measured following prolonged withdrawal. Male Sprague-Dawley rats were treated (i.p.) with BrdU (2 × 50 mg/kg, 3 days, PND 48-50) followed by a binge paradigm (3 pulses/day, every 3 h, 4 days, PND 54-57) of methamphetamine (5 mg/kg, n = 14, M) or saline (0.9% NaCl, 1 ml/kg, n = 12, C). Following 34 days of forced withdrawal (PND 91), rats were killed 45 min after a challenge dose of saline (Sal: C-Sal, n = 6; M-Sal, n = 7) or methamphetamine (Meth: C-Meth, n = 6; M-Meth, n = 7). Neurogenesis markers (Ki-67: cell proliferation; NeuroD: early neuronal survival; BrdU: prolonged cell survival, 41-43 days old cells) were evaluated by immunohistochemistry while neuroplasticity markers (BDNF and Fos forms) were evaluated by Western blot. The main results showed that a history of methamphetamine administration (PND 54-57) induced enduring hippocampal cell damage (i.e., observed on PND 91) by decreasing cell survival (BrdU + cells) and mature-BDNF (m-BDNF) protein content, associated with neuronal survival, growth and differentiation. Interestingly, m-BDNF regulation paralleled hippocampal c-Fos protein content, indicating decreased neuronal activity, and thus reinforcing the persisting negative effects induced by methamphetamine in rat hippocampus following prolonged withdrawal.
Collapse
|
37
|
Liu X, Zhan LH, Sun XH, Zhang T, Liu ZL, Liang XF, Zhao F, Liu F, Zeng G, Luan CS. 3,4-Methylenedioxymethamphetamine causes cytotoxicity on 661W cells through inducing macrophage polarization. Cutan Ocul Toxicol 2017; 37:143-150. [PMID: 28743199 DOI: 10.1080/15569527.2017.1359838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The abuse of 3,4-methylenedioxymethamphetamine (MDMA), a psychedelic drug, can lead to a variety of disorders in neural system, including the death of retinal neural cells. MDMA at lower doses does not cause obvious cytotoxicity to photoreceptor cells, indicating potential indirect mechanisms which have not yet been elucidated. This study investigated the effect of MDMA at nontoxic concentration on macrophage activation state and its resultant toxicity to photoreceptor cells. Using a co-culture system, cytotoxicity was caused by MDMA on 661W cells after co-culturing with RAW264.7 macrophage. Results showed that MDMA induced the macrophages to M1 polarization, releasing more pro-inflammatory cytokines, upregulating the M1-related gene and protein expression. The phenotype, secretion pattern, and cytotoxicity of the macrophages treated by MDMA are comparable to those of the ones stimulated by IFNγ and LPS. Our study demonstrated that MDMA promoted macrophage polarization to M1 and induced inflammatory response, providing the scientific rationale for the photoreceptor cell damage caused by the MDMA abuse.
Collapse
Affiliation(s)
- Xin Liu
- a Department of Ophthalmology , Daqing Oil General Hospital , Daqing , People's Republic of China
| | - Li-Hui Zhan
- b Department of Ophthalmology , Daqing People's Hospital , Daqing , People's Republic of China
| | - Xiao-Hong Sun
- a Department of Ophthalmology , Daqing Oil General Hospital , Daqing , People's Republic of China
| | - Tao Zhang
- c Department of Ophthalmology , Secondary People's Hospital of Mudanjiang City , Mudanjiang City , People's Republic of China
| | - Zhi-Li Liu
- d Department of Opthalmology , Dashiqiao Central Hospital , Yingkou , People's Republic of China
| | - Xiao-Fang Liang
- e Department of Ophthalmology , Beijing Tiantan Hospital Affiliated to the Capital Medical University , Beijing , People's Republic of China
| | - Fei Zhao
- f Department of Ophthalmology , Shenyang Red Cross Hospital , Shenyang , People's Republic of China
| | - Fang Liu
- a Department of Ophthalmology , Daqing Oil General Hospital , Daqing , People's Republic of China
| | - Guang Zeng
- a Department of Ophthalmology , Daqing Oil General Hospital , Daqing , People's Republic of China
| | - Chun-Sheng Luan
- a Department of Ophthalmology , Daqing Oil General Hospital , Daqing , People's Republic of China
| |
Collapse
|
38
|
Simmler LD, Liechti ME. Interactions of Cathinone NPS with Human Transporters and Receptors in Transfected Cells. Curr Top Behav Neurosci 2017; 32:49-72. [PMID: 27272068 DOI: 10.1007/7854_2016_20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pharmacological assays carried out in transfected cells have been very useful for describing the mechanism of action of cathinone new psychoactive substances (NPS). These in vitro characterizations provide fast and reliable information on psychoactive substances soon after they emerge for recreational use. Well-investigated comparator compounds, such as methamphetamine, 3,4-methylenedioxymethamphetamine, cocaine, and lysergic acid diethylamide, should always be included in the characterization to enhance the translation of the in vitro data into clinically useful information. We classified cathinone NPS according to their pharmacology at monoamine transporters and receptors. Cathinone NPS are monoamine uptake inhibitors and most induce transporter-mediated monoamine efflux with weak to no activity at pre- or postsynaptic receptors. Cathinones with a nitrogen-containing pyrrolidine ring emerged as NPS that are extremely potent transporter inhibitors but not monoamine releasers. Cathinones exhibit clinically relevant differences in relative potencies at serotonin vs. dopamine transporters. Additionally, cathinone NPS have more dopaminergic vs. serotonergic properties compared with their non-β-keto amphetamine analogs, suggesting more stimulant and reinforcing properties. In conclusion, in vitro pharmacological assays in heterologous expression systems help to predict the psychoactive and toxicological effects of NPS.
Collapse
Affiliation(s)
- Linda D Simmler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Matthias E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
39
|
Sealover NR, Felts B, Kuntz CP, Jarrard RE, Hockerman GH, Lamb PW, Barker EL, Henry LK. The external gate of the human and Drosophila serotonin transporters requires a basic/acidic amino acid pair for 3,4-methylenedioxymethamphetamine (MDMA) translocation and the induction of substrate efflux. Biochem Pharmacol 2016; 120:46-55. [PMID: 27638414 PMCID: PMC11851564 DOI: 10.1016/j.bcp.2016.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/08/2016] [Indexed: 11/24/2022]
Abstract
The substituted amphetamine, 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy), is a widely used drug of abuse that induces non-exocytotic release of serotonin, dopamine, and norepinephrine through their cognate transporters as well as blocking the reuptake of neurotransmitter by the same transporters. The resulting dramatic increase in volume transmission and signal duration of neurotransmitters leads to psychotropic, stimulant, and entactogenic effects. The mechanism by which amphetamines drive reverse transport of the monoamines remains largely enigmatic, however, promising outcomes for the therapeutic utility of MDMA for post-traumatic stress disorder and the long-time use of the dopaminergic and noradrenergic-directed amphetamines in treatment of attention-deficit hyperactivity disorder and narcolepsy increases the importance of understanding this phenomenon. Previously, we identified functional differences between the human and Drosophila melanogaster serotonin transporters (hSERT and dSERT, respectively) revealing that MDMA is an effective substrate for hSERT but not dSERT even though serotonin is a potent substrate for both transporters. Chimeric dSERT/hSERT transporters revealed that the molecular components necessary for recognition of MDMA as a substrate was linked to regions of the protein flanking transmembrane domains (TM) V through IX. Here, we performed species-scanning mutagenesis of hSERT, dSERT and C. elegans SERT (ceSERT) along with biochemical and electrophysiological analysis and identified a single amino acid in TM10 (Glu394, hSERT; Asn484, dSERT, Asp517, ceSERT) that is primarily responsible for the differences in MDMA recognition. Our findings reveal that an acidic residue is necessary at this position for MDMA recognition as a substrate and serotonin releaser.
Collapse
Affiliation(s)
- Natalie R Sealover
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, United States
| | - Bruce Felts
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States
| | - Charles P Kuntz
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, United States
| | - Rachel E Jarrard
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, United States
| | - Gregory H Hockerman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, United States
| | | | - Eric L Barker
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University College of Pharmacy, West Lafayette, IN 47907, United States.
| | - L Keith Henry
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, United States.
| |
Collapse
|
40
|
Comparative effects of amphetamine-like psychostimulants on rat hippocampal cell genesis at different developmental ages. Neurotoxicology 2016; 56:29-39. [DOI: 10.1016/j.neuro.2016.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
|
41
|
Soleimani Asl S, Mehdizadeh M, Hamedi Shahraki S, Artimani T, Joghataei MT. Sex differences in MDMA-induced toxicity in Sprague-Dawley rats. FUNCTIONAL NEUROLOGY 2016; 30:131-7. [PMID: 26415786 DOI: 10.11138/fneur/2015.30.2.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent evidence demonstrates that female subjects show exaggerated responses to 3,4-methylenedioxymethamphetamine (MDMA) compared with males. The aim of our study was to evaluate sex differences and the role of endogenous gonadal hormones on the effects of MDMA. Fifty-six intact and gonadectomized male and female Sprague-Dawley rats were randomly assigned to either MDMA (5 mg/kg) or saline treatment. Learning and memory were assessed using the Morris water maze (MWM). The expression of Bax and Bcl-2 in the hippocampus was detected by Western blotting. Behavioral analysis showed that MDMA led to memory impairment in both male and female rats. The female rats showed more sensitivity to impairment than the males, as assessed using all the memory parameters in the MWM. Ovariectomy attenuated the MDMA-induced memory impairment. By contrast, orchiectomized rats showed more impairment than MDMA-treated intact male rats. Bcl-2 and Bax were down-regulated and up-regulated in MDMA-treated male and female rats, respectively. MDMA treatment in the orchiectomized rats led to upregulation of Bax and down-regulation of Bcl-2. Ovariectomy attenuated the MDMA-induced up-regulation of Bax and caused more expression of Bcl-2 compared with what was observed in the MDMA-treated intact female rats. In summary, female rats showed exaggerated responses to the effects of MDMA and this may be explained by endogenous gonadal hormones.
Collapse
|
42
|
Cao DN, Shi JJ, Hao W, Wu N, Li J. Advances and challenges in pharmacotherapeutics for amphetamine-type stimulants addiction. Eur J Pharmacol 2016; 780:129-35. [DOI: 10.1016/j.ejphar.2016.03.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/03/2016] [Accepted: 03/23/2016] [Indexed: 10/22/2022]
|
43
|
Methylone-induced hyperthermia and lethal toxicity: role of the dopamine and serotonin transporters. Behav Pharmacol 2016; 26:345-52. [PMID: 25794333 DOI: 10.1097/fbp.0000000000000135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Methylone (2-methylamino-1-[3,4-methylenedioxy-phenyl]propan-1-one), an amphetamine analog, has emerged as a popular drug of abuse worldwide. Methylone induces hyperthermia, which is thought to contribute toward the lethal consequences of methylone overdose. Methylone has been assumed to induce hyperthermic effects through inhibition of serotonin and/or dopamine transporters (SERT and DAT, respectively). To examine the roles of each of these proteins in methylone-induced toxic effects, we used SERT and DAT knockout (KO) mice and assessed the hyperthermic and lethal effects caused by a single administration of methylone. Methylone produced higher rates of lethal toxicity compared with other amphetamine analogs in wild-type mice. Compared with wild-type mice, lethality was significantly lower in DAT KO mice, but not in SERT KO mice. By contrast, only a slight diminution in the hyperthermic effects of methylone was observed in DAT KO mice, whereas a slight enhancement of these effects was observed in SERT KO mice. Administration of the selective D1 receptor antagonist SCH 23390 and the D2 receptor antagonist raclopride reduced methylone-induced hyperthermia, but these drugs also had hypothermic effects in saline-treated mice, albeit to a smaller extent than the effects observed in methylone-treated mice. In contradistinction to 3,4-methylenedioxymethamphetamine, which induces its toxicity through SERT and DAT, these data indicate that DAT, but not SERT, is strongly associated with the lethal toxicity produced by methylone, which did not seem to be dependent on the hyperthermic effects of methylone. DAT is therefore a strong candidate molecule for interventions aimed at preventing acute neurotoxic and lethal effects of methylone.
Collapse
|
44
|
Sandtner W, Stockner T, Hasenhuetl PS, Partilla JS, Seddik A, Zhang YW, Cao J, Holy M, Steinkellner T, Rudnick G, Baumann MH, Ecker GF, Newman AH, Sitte HH. Binding Mode Selection Determines the Action of Ecstasy Homologs at Monoamine Transporters. Mol Pharmacol 2016; 89:165-75. [PMID: 26519222 PMCID: PMC4702095 DOI: 10.1124/mol.115.101394] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/23/2015] [Indexed: 11/22/2022] Open
Abstract
Determining the structural elements that define substrates and inhibitors at the monoamine transporters is critical to elucidating the mechanisms underlying these disparate functions. In this study, we addressed this question directly by generating a series of N-substituted 3,4-methylenedioxyamphetamine analogs that differ only in the number of methyl substituents on the terminal amine group. Starting with 3,4-methylenedioxy-N-methylamphetamine, 3,4-methylenedioxy-N,N-dimethylamphetamine (MDDMA) and 3,4-methylenedioxy-N,N,N-trimethylamphetamine (MDTMA) were prepared. We evaluated the functional activities of the compounds at all three monoamine transporters in native brain tissue and cells expressing the transporters. In addition, we used ligand docking to generate models of the respective protein-ligand complexes, which allowed us to relate the experimental findings to available structural information. Our results suggest that the 3,4-methylenedioxyamphetamine analogs bind at the monoamine transporter orthosteric binding site by adopting one of two mutually exclusive binding modes. 3,4-methylenedioxyamphetamine and 3,4-methylenedioxy-N-methylamphetamine adopt a high-affinity binding mode consistent with a transportable substrate, whereas MDDMA and MDTMA adopt a low-affinity binding mode consistent with an inhibitor, in which the ligand orientation is inverted. Importantly, MDDMA can alternate between both binding modes, whereas MDTMA exclusively binds to the low-affinity mode. Our experimental results are consistent with the idea that the initial orientation of bound ligands is critical for subsequent interactions that lead to transporter conformational changes and substrate translocation.
Collapse
Affiliation(s)
- Walter Sandtner
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Thomas Stockner
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Peter S Hasenhuetl
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - John S Partilla
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Amir Seddik
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Yuan-Wei Zhang
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Jianjing Cao
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Marion Holy
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Thomas Steinkellner
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Gary Rudnick
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Michael H Baumann
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Gerhard F Ecker
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Amy Hauck Newman
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology (W.S., T.Sto., P.S.H., M.H., T.Ste., H.H.S.) and Center for Addiction Research and Science (H.H.S.), Medical University of Vienna, Vienna, Austria; Designer Drug Research Unit (J.S.P., M.H.B.) and Medicinal Chemistry Section (J.J.C., A.H.N.), Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland; Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria (A.S., G.F.E.); and Department of Pharmacology, Yale University, New Haven, Connecticut (Y.-W.Z., G.R.)
| |
Collapse
|
45
|
Wang L, Qu G, Dong X, Huang K, Kumar M, Ji L, Wang Y, Yao J, Yang S, Wu R, Zhang H. Long-term effects of methamphetamine exposure in adolescent mice on the future ovarian reserve in adulthood. Toxicol Lett 2015; 242:1-8. [PMID: 26657179 DOI: 10.1016/j.toxlet.2015.11.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/11/2015] [Accepted: 11/30/2015] [Indexed: 11/24/2022]
Abstract
Currently, there is an increasing prevalence of adolescent exposure to methamphetamine (MA). However, there is a paucity of information concerning the long-term impact of early exposure to MA upon female fertility and ovarian reserve. The aim of this study was to investigate the effect of long-term MA exposure in adolescents on their ovarian reserve in adulthood. Adolescent mice received intraperitoneal injections of MA (5mg/kg, three times per week) or saline from the 21st postnatal day for an 8 week period. Morphological, histological, biochemical, hormonal and ethological parameters were evaluated. An impaired ovarian reserve and vitality was found in the group treated with MA, manifesting in morphological-apparent mitochondrial damage, an activated apoptosis pathway in the ovarian tissue, a downward expression of ovarian anti-Mullerian hormone (AMH), a decreased number of primordial and growing follicles, an increased number of atretic follicles, and a depressed secretion of AMH, estradiol and progesterone from granulosa cells. However, no significant difference was noticed regarding the estrous cycle, the mating ability and the fertility outcome in the reproductive age of the mice after a period of non-medication. The present results confirmed that a long term exposure to methamphetamine in adolescent mice does have an adverse impact on their ovarian reserve, which indicates that such an early abuse of MA might influence the fertility lifespan of the female mouse.
Collapse
Affiliation(s)
- Lan Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Guoqiang Qu
- Criminal Science and Technology Institute of Public Security Bureau of Wuxi City, Wuxi, Jiangsu 214000, China
| | - Xiyuan Dong
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Kai Huang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; Reproductive Medicine Center, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, Henan 450000, China
| | - Molly Kumar
- Laboratory of Reproductive Medicine, New York University Langone Medical Center, New York, NY 10014, USA
| | - Licheng Ji
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ya Wang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junning Yao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shulin Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ruxing Wu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hanwang Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
46
|
Sriram U, Haldar B, Cenna JM, Gofman L, Potula R. Methamphetamine mediates immune dysregulation in a murine model of chronic viral infection. Front Microbiol 2015; 6:793. [PMID: 26322025 PMCID: PMC4531300 DOI: 10.3389/fmicb.2015.00793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/21/2015] [Indexed: 02/03/2023] Open
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant that not only affects the brain and cognitive functions but also greatly impacts the host immune system, rendering the body susceptible to infections and exacerbating the severity of disease. Although there is gathering evidence about METH abuse and increased incidence of HIV and other viral infections, not much is known about the effects on the immune system in a chronic viral infection setting. We have used the lymphocytic choriomeningitis virus (LCMV) chronic mouse model of viral infection in a chronic METH environment and demonstrate that METH significantly increases CD3 marker on splenocytes and programmed death-1 (PD-1) expression on T cells, a cell surface signaling molecule known to inhibit T cell function and cause exhaustion in a lymphoid organ. Many of these METH effects were more pronounced during early stage of infection, which are gradually attenuated during later stages of infection. An essential cytokine for T-lymphocyte homeostasis, Interleukin-2 (IL-2) in serum was prominently reduced in METH-exposed infected mice. In addition, the serum pro-inflammatory (TNF, IL12 p70, IL1β, IL-6, and KC-GRO) and Th2 (IL-2, IL-10, and IL-4) cytokine profiles were also altered in the presence of METH. Interestingly CXCR3, an inflammatory chemokine receptor, showed significant increase in the METH treated LCMV infected mice. Similarly, compared to only infected mice, epidermal growth factor receptor (EGFR) in METH exposed LCMV infected mice were up regulated. Collectively, our data suggest that METH alters systemic, peripheral immune responses and modulates key markers on T cells involved in pathogenesis of chronic viral infection.
Collapse
Affiliation(s)
- Uma Sriram
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Bijayesh Haldar
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Jonathan M Cenna
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Larisa Gofman
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA
| | - Raghava Potula
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine Philadelphia, PA, USA ; Center for Substance Abuse Research, Temple University School of Medicine Philadelphia, PA, USA
| |
Collapse
|
47
|
García-Cabrerizo R, García-Fuster MJ. Chronic MDMA induces neurochemical changes in the hippocampus of adolescent and young adult rats: Down-regulation of apoptotic markers. Neurotoxicology 2015; 49:104-13. [DOI: 10.1016/j.neuro.2015.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 11/24/2022]
|
48
|
[Researcher of the month]. Wien Klin Wochenschr 2015; 127:408-9. [PMID: 25990532 DOI: 10.1007/s00508-015-0806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Saha K, Partilla JS, Lehner KR, Seddik A, Stockner T, Holy M, Sandtner W, Ecker GF, Sitte HH, Baumann MH. 'Second-generation' mephedrone analogs, 4-MEC and 4-MePPP, differentially affect monoamine transporter function. Neuropsychopharmacology 2015; 40:1321-31. [PMID: 25502630 PMCID: PMC4397398 DOI: 10.1038/npp.2014.325] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 11/09/2022]
Abstract
The nonmedical use of synthetic cathinones is increasing on a global scale. 4-Methyl-N-methylcathinone (mephedrone) is a popular synthetic cathinone that is now illegal in the United States and other countries. Since the legislative ban on mephedrone, a number of 'second-generation' analogs have appeared in the street drug marketplace, including 4-methyl-N-ethylcathinone (4-MEC) and 4'-methyl-α-pyrrolidinopropiophenone (4-MePPP). Here we characterized the interactions of 4-MEC and 4-MePPP with transporters for 5-HT (SERT) and dopamine (DAT) using molecular, cellular, and whole-animal methods. In vitro transporter assays revealed that 4-MEC displays unusual 'hybrid' activity as a SERT substrate (ie, 5-HT releaser) and DAT blocker, whereas 4-MePPP is a blocker at both transporters but more potent at DAT. In vivo microdialysis experiments in rat brain demonstrated that 4-MEC (1-3 mg/kg, i.v.) produced large increases in extracellular 5-HT, small increases in dopamine, and minimal motor stimulation. In contrast, 4-MePPP (1-3 mg/kg, i.v.) produced selective increases in dopamine and robust motor stimulation. Consistent with its activity as a SERT substrate, 4-MEC evoked inward current in SERT-expressing Xenopus oocytes, whereas 4-MePPP was inactive in this regard. To examine drug-transporter interactions at the molecular level, we modeled the fit of 4-MEC and 4-MePPP into the binding pockets for DAT and SERT. Subtle distinctions in ligand-transporter binding were found that account for the differential effects of 4-MEC and 4-MePPP at SERT. Collectively, our results provide key information about the pharmacology of newly emerging mephedrone analogs, and give clues to structural requirements that govern drug selectivity at DAT vs SERT.
Collapse
Affiliation(s)
- Kusumika Saha
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - John S Partilla
- Designer Drug Research Unit (DDRU), Intramural Research Program (IRP), NIDA, NIH, Baltimore, MD, USA
| | - Kurt R Lehner
- Designer Drug Research Unit (DDRU), Intramural Research Program (IRP), NIDA, NIH, Baltimore, MD, USA
| | - Amir Seddik
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Thomas Stockner
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Marion Holy
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Walter Sandtner
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Harald H Sitte
- Medical University of Vienna, Center for Physiology and Pharmacology, Institute of Pharmacology, Vienna, Austria,Medical University of Vienna, Center for Addiction Research and Science, Vienna, Austria
| | - Michael H Baumann
- Designer Drug Research Unit (DDRU), Intramural Research Program (IRP), NIDA, NIH, Baltimore, MD, USA,Designer Drug Research Unit, IRP, NIDA, NIH, DHHS, 333 Cassell Drive, Suite 4400, Baltimore, MD 21224, USA, Tel: +1 443 740 2660, Fax: +1 443 740 2241, E-mail:
| |
Collapse
|
50
|
Pifl C, Reither H, Hornykiewicz O. The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter. Eur J Pharmacol 2015; 755:119-26. [PMID: 25771452 DOI: 10.1016/j.ejphar.2015.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 11/29/2022]
Abstract
Mephedrone (4-methylmethcathinone, MMC) and 3,4-methylenedioxymethamphetamine (MDMA) are constituents of popular party drugs with psychoactive effects. Structurally they are amphetamine-like substances with monoamine neurotransmitter enhancing actions. We therefore compared their effects on the human monoamine transporters using human cell lines stably expressing the human noradrenaline, dopamine and serotonin transporter (NET, DAT and SERT); preparations of synaptic vesicles from human striatum in uptake experiments; and a superfusion system where releasing effects can be reliably measured. MMC and MDMA were equally potent in inhibiting noradrenaline uptake at NET, with IC50 values of 1.9 and 2.1 µM, respectively. Compared to their NET inhibition potency, both drugs were weaker uptake inhibitors at DAT and SERT, with MMC being more potent than MDMA at DAT (IC50: 5.9 vs 12.6 µM) and less potent than MDMA at SERT (IC50: 19.3 vs 7.6 µM). MMC and MDMA both induced concentration-dependently [(3)H]1-methyl-4-phenylpyridinium-release from NET-, DAT or SERT-expressing cells which was clearly transporter-mediated release as demonstrated by the selective inhibitory effects of nmolar to low µmolar concentrations of desipramine, GBR 12909 and fluoxetine, respectively. MMC and MDMA differed most in their inhibition of [(3)H]dopamine uptake by synaptic vesicles from human striatum with MDMA being 10-fold more potent than MMC (IC50: 20 vs 223 µM) and their ability to release [(3)H]dopamine from human vesicular monoamine transporter expressing SH-SY5Y neuroblastoma cells in which MDMA seems to have a stronger effect. Our findings give a molecular explanation to the lower long-term neurotoxicity of MMC compared to MDMA.
Collapse
Affiliation(s)
- Christian Pifl
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria.
| | - Harald Reither
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | - Oleh Hornykiewicz
- Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| |
Collapse
|