1
|
Magedans YVS, Antonelo FA, Rodrigues-Honda KCS, Ribeiro POS, Alves-Áquila ME, Fett-Neto AG. Phytotoxic Activity of Myrciaria cuspidata O. Berg, a Dominant Myrtaceae Woodland Tree Native of Brazil. PLANTS (BASEL, SWITZERLAND) 2024; 13:3293. [PMID: 39683086 DOI: 10.3390/plants13233293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Limited phytodiversity and regeneration rates occur in some of the southern Brazilian formations known as the Myrtacean Woodlands. Data on phytotoxicity, chemical composition, and allelopathic potential of Myrciaria cuspidata O. Berg, a dominant species in such woodlands, is missing. In this study, both the chemical composition and phytotoxic activity of an aqueous extract (AE) from M. cuspidata leaves were investigated. Target plants were the model species Lactuca sativa L. and the weed Bidens pilosa L. Germination rates, seedling growth, and phenotypic responses of target species were assessed following AE application to determine the inhibitory capacity of M. cuspidata leaf extract. Germination of L. sativa was reduced and delayed in the presence of AE. Strong inhibition of germination was recorded in B. pilosa achenes under the same treatment. Pre-germinated seedlings of L. sativa were essentially not affected by AE, whereas those of the weed showed some negative developmental responses. Overall, inhibitory responses were consistent both in vitro and in soil substrate. Detrimental effects were most apparent in roots and included tip darkening and growth anomalies often preceded by loss of mitochondrial viability. AE proved rich in phytotoxic phenolic compounds including quercetin, gallic and tannic acid. To sum up, AE shows potential as an environmentally friendly pre-emergence bioherbicide of low residual effect and minor environmental impact. Experimental data in laboratory conditions were consistent with potential allelopathic activity of this tree, as inferred from field observations of dominance in the Myrtaceae Woodlands.
Collapse
Affiliation(s)
- Yve V S Magedans
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Plant Physiology Laboratory, Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Fábio A Antonelo
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Kelly C S Rodrigues-Honda
- Plant Physiology Laboratory, Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Paula O S Ribeiro
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Maria E Alves-Áquila
- Plant Physiology Laboratory, Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| | - Arthur G Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
- Plant Physiology Laboratory, Department of Botany, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre 91501-970, Brazil
| |
Collapse
|
2
|
Martino C, Badalamenti R, Frinchi M, Chiarelli R, Palumbo Piccionello A, Urone G, Mauro M, Arizza V, Luparello C, Di Liberto V, Mudò G, Vazzana M. The stunting effect of an oxylipins-containing macroalgae extract on sea urchin reproduction and neuroblastoma cells viability. CHEMOSPHERE 2024; 359:142278. [PMID: 38734249 DOI: 10.1016/j.chemosphere.2024.142278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Different bioactive molecules extracted from macroalgae, including oxylipins, showed interesting potentials in different applications, from healthcare to biomaterial manufacturing and environmental remediation. Thus far, no studies reported the effects of oxylipins-containing macroalgae extracts on embryo development of marine invertebrates and on neuroblastoma cancer cells. Here, the effects of an oxylipins-containing extract from Ericaria brachycarpa, a canopy-forming brown algae, were investigated on the development of Arbacia lixula sea urchin embryos and on SH-SY5Y neuroblastoma cells viability. Embryos and cells were exposed to concentrations covering a full 0-100% dose-response curve, with doses ranging from 0 to 40 μg mL-1 for embryos and from 0 to 200 μg mL-1 for cells. These natural marine toxins caused a dose-dependent decrease of normal embryos development and of neuroblastoma cells viability. Toxicity was higher for exposures starting from the gastrula embryonal stage if compared to the zygote and pluteus stages, with an EC50 significantly lower by 33 and 68%, respectively. Embryos exposed to low doses showed a general delay in development with a decrease in the ability to calcify, while higher doses caused 100% block of embryo growth. Exposure of SH-SY5Y neuroblastoma cells to 40 μg mL-1 for 72 h caused 78% mortality, while no effect was observed on their neuronal-like cells derivatives, suggesting a selective targeting of proliferating cells. Western Blot experiments on both model systems displayed the modulation of different molecular markers (HSP60, HSP90, LC3, p62, CHOP and cleaved caspase-7), showing altered stress response and enhanced autophagy and apoptosis, confirmed by increased fragmented DNA in apoptotic nuclei. Our study gives new insights into the molecular strategies that marine invertebrates use when responding to their environmental natural toxins and suggests the E. brachycarpa's extract as a potential source for the development of innovative, environmentally friendly products with larvicide and antineoplastic activity.
Collapse
Affiliation(s)
- Chiara Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy.
| | - Rosario Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Monica Frinchi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy.
| | - Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Antonio Palumbo Piccionello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Giulia Urone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Manuela Mauro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy
| | - Vincenzo Arizza
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Claudio Luparello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| | - Valentina Di Liberto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Giuseppa Mudò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Corso Tukory 129, 90134, Palermo, Italy
| | - Mirella Vazzana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 18, 90123, Palermo, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
3
|
Gam HJ, Injamum-Ul-Hoque M, Kang Y, Ahsan SM, Hasan MM, Shaffique S, Kang SM, Lee IJ. Allelopathic effect of the methanol extract of the weed species-red sorrel (Rumex acetosella L.) on the growth, phytohormone content and antioxidant activity of the cover crop - white clover (Trifolium repens L.). BMC PLANT BIOLOGY 2024; 24:523. [PMID: 38853237 PMCID: PMC11163812 DOI: 10.1186/s12870-024-05240-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Allelopathy is a biological process in which one organism releases biochemicals that affect the growth and development of other organisms. The current investigation sought to determine the allelopathic effect of Rumex acetosella on white clover (Trifolium repens) growth and development by using its shoot extract (lower IC50 value) as a foliar treatment. Here, different concentrations (25, 50, 100, and 200 g/L) of shoot extract from Rumex acetosella were used as treatments. With increasing concentrations of shoot extract, the plant growth parameters, chlorophyll and total protein content of Trifolium repens decreased. On the other hand, ROS, such as O2.- and H2O2, and antioxidant enzymes, including SOD, CAT, and POD, increased with increasing shoot extract concentration. A phytohormonal study indicated that increased treatment concentrations increased ABA and SA levels while JA levels were reduced. For the identification of allelochemicals, liquid‒liquid extraction, thin-layer chromatography, and open-column chromatography were conducted using R. acetosella shoot extracts, followed by a seed bioassay on the separated layer. A lower IC50 value was obtained through GC/MS analysis. gammaSitosterol was identified as the most abundant component. The shoot extract of Rumex acetosella has strong allelochemical properties that may significantly impede the growth and development of Trifolium repens. This approach could help to understand the competitive abilities of this weed species and in further research provide an alternate weed management strategy.
Collapse
Affiliation(s)
- Ho-Jun Gam
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Md Injamum-Ul-Hoque
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Yosep Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - S M Ahsan
- Department of Plant Medicals, Andong National University, Andong, Republic of Korea
| | - Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Shifa Shaffique
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
- Institute of Agricultural Science and Technology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
4
|
Mugnai S, Derossi N, Hendlin Y. Algae communication, conspecific and interspecific: the concepts of phycosphere and algal-bacteria consortia in a photobioreactor (PBR). PLANT SIGNALING & BEHAVIOR 2023; 18:2148371. [PMID: 36934349 PMCID: PMC10026891 DOI: 10.1080/15592324.2022.2148371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 06/18/2023]
Abstract
Microalgae in the wild often form consortia with other species promoting their own health and resource foraging opportunities. The recent application of microalgae cultivation and deployment in commercial photobioreactors (PBR) so far has focussed on single species of algae, resulting in multi-species consortia being largely unexplored. Reviewing the current status of PBR ecological habitat, this article argues in favor of further investigation into algal communication with conspecifics and interspecifics, including other strains of microalgae and bacteria. These mutualistic species form the 'phycosphere': the microenvironment surrounding microalgal cells, potentiating the production of certain metabolites through biochemical interaction with cohabitating microorganisms. A better understanding of the phycosphere could lead to novel PBR configurations, capable of incorporating algal-microbial consortia, potentially proving more effective than single-species algal systems.
Collapse
Affiliation(s)
| | | | - Yogi Hendlin
- Erasmus School of Philosophy, Erasmus University, Rotterdam, Netherlands
| |
Collapse
|
5
|
Casanova LM, Macrae A, de Souza JE, Neves Junior A, Vermelho AB. The Potential of Allelochemicals from Microalgae for Biopesticides. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091896. [PMID: 37176954 PMCID: PMC10181251 DOI: 10.3390/plants12091896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Improvements in agricultural productivity are required to meet the demand of a growing world population. Phytopathogens, weeds, and insects are challenges to agricultural production. The toxicity and widespread application of persistent synthetic pesticides poses a major threat to human and ecosystem health. Therefore, sustainable strategies to control pests are essential for agricultural systems to enhance productivity within a green paradigm. Allelochemicals are a less persistent, safer, and friendly alternative to efficient pest management, as they tend to be less toxic to non-target organisms and more easily degradable. Microalgae produce a great variety of allelopathic substances whose biocontrol potential against weeds, insects, and phytopathogenic fungi and bacteria has received much attention. This review provides up-to-date information and a critical perspective on allelochemicals from microalgae and their potential as biopesticides.
Collapse
Affiliation(s)
- Livia Marques Casanova
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Andrew Macrae
- Sustainable Biotechnology and Microbial Bioinformatics Laboratory, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Jacqueline Elis de Souza
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Athayde Neves Junior
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Alane Beatriz Vermelho
- Biotechnology Center-Bioinovar, Institute of Microbiology Paulo de Goes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| |
Collapse
|
6
|
Identification and Isolation Techniques for Plant Growth Inhibitors in Rice. SEPARATIONS 2023. [DOI: 10.3390/separations10020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Plant growth inhibitors (PGIs) in rice (Oryza sativa), or rice allelochemicals, are secondary metabolites that are either exudated by rice plants to cope with natural competitors or produced during the decomposition of rice by-products in the paddy fields. Of these, the major groups of rice PGIs include phenolics, flavonoids, terpenoids, alkaloids, steroids, and fatty acids, which also exhibit potential medicinal and pharmaceutical properties. Recently, the exploitation of rice PGIs has attracted considerable attention from scientists worldwide. The biosynthesis, exudation, and release of PGIs are dependent on environmental conditions, relevant gene expression, and biodiversity among rice varieties. Along with the mechanism clarification, numerous analytical methods have been improved to effectively support the identification and isolation of rice PGIs during the last few decades. This paper provides an overview of rice PGIs and techniques used for determining and extracting those compounds from rice. In particular, the features, advantages, and limitations of conventional and upgraded extraction methods are comprehensively reported and discussed. The conventional extraction methods have been gradually replaced by advanced techniques consisting of pressurized liquid extraction (PLE), microwave-assisted extraction (MAE), and solid-phase extraction (SPE). Meanwhile, thin-layer chromatography (TLC), liquid chromatography (LC), gas chromatography (GC), mass spectrometry (MS), nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), infrared spectroscopy (IR), near-infrared spectroscopy (NIRS), and X-ray crystallography are major tools for rice PGI identification and confirmation. With smart agriculture becoming more prevalent, the statistics of rice PGIs and extraction methods will help to provide useful datasets for building an autonomous model for safer weed control. Conceivably, the efficient exploitation of rice PGIs will not only help to increase the yield and economic value of rice but may also pave the way for research directions on the development of smart and sustainable rice farming methods.
Collapse
|
7
|
Rahaman F, Shukor Juraimi A, Rafii MY, Uddin K, Hassan L, Chowdhury AK, Karim SMR, Yusuf Rini B, Yusuff O, Bashar HMK, Hossain A. Allelopathic potential in rice - a biochemical tool for plant defence against weeds. FRONTIERS IN PLANT SCIENCE 2022; 13:1072723. [PMID: 36589133 PMCID: PMC9795009 DOI: 10.3389/fpls.2022.1072723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Rice is a key crop for meeting the global food demand and ensuring food security. However, the crop has been facing great problems to combat the weed problem. Synthetic herbicides pose a severe threat to the long-term viability of agricultural output, agroecosystems, and human health. Allelochemicals, secondary metabolites of allelopathic plants, are a powerful tool for biological and eco-friendly weed management. The dynamics of weed species in various situations are determined by crop allelopathy. Phenolics and momilactones are the most common allelochemicals responsible for herbicidal effects in rice. The dispersion of allelochemicals is influenced not only by crop variety but also by climatic conditions. The most volatile chemicals, such as terpenoids, are usually emitted by crop plants in drought-stricken areas whereas the plants in humid zones release phytotoxins that are hydrophilic in nature, including phenolics, flavonoids, and alkaloids. The allelochemicals can disrupt the biochemical and physiological processes in weeds causing them to die finally. This study insight into the concepts of allelopathy and allelochemicals, types of allelochemicals, techniques of investigating allelopathic potential in rice, modes of action of allelochemicals, pathways of allelochemical production in plants, biosynthesis of allelochemicals in rice, factors influencing the production of allelochemicals in plants, genetical manipulation through breeding to develop allelopathic traits in rice, the significance of rice allelopathy in sustainable agriculture, etc. Understanding these biological phenomena may thus aid in the development of new and novel weed-control tactics while allowing farmers to manage weeds in an environmentally friendly manner.
Collapse
Affiliation(s)
- Ferdoushi Rahaman
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Abdul Shukor Juraimi
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Mohd Y. Rafii
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| | - Kamal Uddin
- Department of Land Management, University Putra Malaysia (UPM), Serdang, Malaysia
| | - Lutful Hassan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Abul Kashem Chowdhury
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | | | - Bashir Yusuf Rini
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali, Bangladesh
| | - Oladosu Yusuff
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia
| | - H. M. Khairul Bashar
- Department of Crop Science, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang, Malaysia
- On-Farm Research Division (OFRD), Bangladesh Agricultural Research Institute, Gazipur, Bangladesh
| | - Akbar Hossain
- Soil Science Division, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
8
|
Li X, Wang T, Fu B, Mu X. Improvement of aquaculture water quality by mixed Bacillus and its effects on microbial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:69731-69742. [PMID: 35576039 DOI: 10.1007/s11356-022-20608-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Microbial remediation, especially the application of probiotics, has recently gained popularity in improving water quality and maintaining aquatic animal health. The efficacy and mechanism of mixed Bacillus for improvement of water quality and its effects on aquatic microbial community structure remain unknown. To elucidate these issues, we applied two groups of mixed Bacillus (Bacillus megaterium and Bacillus subtilis (A0 + BS) and Bacillus megaterium and Bacillus coagulans (A0 + BC)) to the aquaculture system of Crucian carp. Our results showed that the improvement effect of mixed Bacillus A0 + BS on water quality was better than that of A0 + BC, and the NH4+-N, NO2--N, NO3--N, and total phosphorus (TP) concentrations were reduced by 46.3%, 76.3%, 35.6%, and 80.3%, respectively. In addition, both groups of mixed Bacillus increased the diversity of the bacterial community and decreased the diversity of the fungal community. Microbial community analysis showed that mixed Bacillus A0 + BS increased the relative abundance of bacteria related with nitrogen and phosphorus removal, such as Proteobacteria, Actinobacteria, Comamonas, and Stenotrophomonas, but decreased the relative abundance of pathogenic bacteria (Acinetobacter and Pseudomonas) and fungi (Epicoccum and Fusarium). Redundancy analysis showed that NH4+-N, NO2--N, and TP were the primary environmental factors affecting the microbial community in aquaculture water. PICRUST analysis indicated that all functional pathways in the A0 + BS group were richer than those in other groups. These results indicated that mixed Bacillus A0 + BS addition produced good results in reducing nitrogenous and phosphorus compounds and shaped a favorable microbial community structure to further improve water quality.
Collapse
Affiliation(s)
- Xue Li
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, People's Republic of China
| | - Tianjie Wang
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China
| | - Baorong Fu
- School of Environmental Science, Liaoning University, Shenyang, 110036, People's Republic of China.
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, 100141, People's Republic of China
| |
Collapse
|
9
|
Заіменко Н, Павлюченко Н, Дідик Н, Елланська Н, Юношева О. ЗАСТОСУВАННЯ КРЕМНІЙВМІСНОГО МІНЕРАЛУ АНАЛЬЦИМУ ДЛЯ ОПТИМІЗАЦІЇ ФІЗІОЛОГО-БІОХІМІЧНИХ, АЛЕЛОПАТИЧНИХ ТА МІКРОБІОЛОГІЧНИХ ВЛАСТИВОСТЕЙ СИСТЕМИ РОСЛИНА—ҐРУНТ. SCIENCE AND INNOVATION 2022. [DOI: 10.15407/scine18.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Вступ. Глобальні кліматичні зміни спричинюють нерівномірність опадів, що погіршує водно-фізичні властивості ґрунту та порушує мікробіологічні процеси. Як наслідок може виникати алелопатична ґрунтовтома.Проблематика. Пошук й розроблення нових ефективних та безпечних заходів регулювання фізіолого-біохімічного, алелопатичного й мікробіологічного стану системи рослина–ґрунт є нагальною необхідністю за умов нестабільноїекологічної ситуації.Мета. Оптимізувати фізіолого-біохімічні, алелопатичні й мікробіологічні характеристики системи рослина–ґрунт за умов недостатнього вологозабезпечення та ґрунтовтоми шляхом застосування кремнійвмісного мінералу анальциму.Матеріали й методи. У модельних вегетаційних дослідах вивчали вплив кремнійвмісного мінералу анальцимуу концентрації 0, 100, 200 та 300 мг на 200 мл ґрунтового субстрату на показники росту, водного режиму рослин пшениці та кукурудзи за різних умов зволоження (20, 40 та 60% повної вологоємкості) та типу ґрунтового субстрату. У польовому експерименті анальцим вносили в ґрунтовий субстрат перед посадкою насіння під рослини цукрового буряку у нормі 50 кг/га. У модельних та польових дослідах аналізували перебіг редокс-процесів, вміст фенолів та мікробіологічні показники ґрунту.Результати. Використання анальциму оптимізувало показники росту, водного режиму рослин, а також алелопатичні характеристики системи рослина–ґрунт шляхом зниження вмісту вільних фенолів, активізації розвитку мікробних ценозів й редокс-процесів. При цьому відмічено відсутність фітотоксичного прояву анальциму,Висновки. Запропоновано застосування анальциму для покращення фізіолого-біохімічних, алелопатичних й мікробіологічних властивостей системи рослина–ґрунт. Окреслено перспективи використання мінералу для підвищення адаптаційної здатності рослин за умов посухи та для подолання наслідків ґрунтовтоми.
Collapse
|
10
|
Budzałek G, Śliwińska-Wilczewska S, Wiśniewska K, Wochna A, Bubak I, Latała A, Wiktor JM. Macroalgal Defense against Competitors and Herbivores. Int J Mol Sci 2021; 22:7865. [PMID: 34360628 PMCID: PMC8346039 DOI: 10.3390/ijms22157865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/02/2022] Open
Abstract
Macroalgae are the source of many harmful allelopathic compounds, which are synthesized as a defense strategy against competitors and herbivores. Therefore, it can be predicted that certain species reduce aquaculture performance. Herein, the allelopathic ability of 123 different taxa of green, red, and brown algae have been summarized based on literature reports. Research on macroalgae and their allelopathic effects on other animal organisms was conducted primarily in Australia, Mexico, and the United States. Nevertheless, there are also several scientific reports in this field from South America and Asia; the study areas in the latter continents coincide with areas where aquaculture is highly developed and widely practiced. Therefore, the allelopathic activity of macroalgae on coexisting animals is an issue that is worth careful investigation. In this work, we characterize the distribution of allelopathic macroalgae and compare them with aquaculture locations, describe the methods for the study of macroalgal allelopathy, present the taxonomic position of allelopathic macroalgae and their impact on coexisting aquatic competitors (Cnidaria) and herbivores (Annelida, Echinodermata, Arthropoda, Mollusca, and Chordata), and compile information on allelopathic compounds produced by different macroalgae species. This work gathers the current knowledge on the phenomenon of macroalgal allelopathy and their allelochemicals affecting aquatic animal (competitors and predators) worldwide and it provides future research directions for this topic.
Collapse
Affiliation(s)
- Gracjana Budzałek
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, P-81-378 Gdynia, Poland; (G.B.); (A.L.)
| | - Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, P-81-378 Gdynia, Poland; (G.B.); (A.L.)
| | - Kinga Wiśniewska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, P-81-378 Gdynia, Poland;
| | - Agnieszka Wochna
- GIS Centre, Institute of Oceanography, University of Gdańsk, P-81-378 Gdynia, Poland;
| | - Iwona Bubak
- Division of Hydrology, Institute of Geography, University of Gdansk, P-80-309 Gdańsk, Poland;
| | - Adam Latała
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, P-81-378 Gdynia, Poland; (G.B.); (A.L.)
| | - Józef Maria Wiktor
- Department of Marine Ecology, Institute of Oceanology of the Polish Academy of Sciences, P-81-779 Sopot, Poland;
| |
Collapse
|
11
|
Śliwińska-Wilczewska S, Wiśniewska K, Konarzewska Z, Cieszyńska A, Barreiro Felpeto A, Lewandowska AU, Latała A. The current state of knowledge on taxonomy, modulating factors, ecological roles, and mode of action of phytoplankton allelochemicals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145681. [PMID: 33940759 DOI: 10.1016/j.scitotenv.2021.145681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/09/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Allelopathy is widespread in marine, brackish, and freshwater habitats. Literature data indicate that allelopathy could offer a competitive advantage for some phytoplankton species by reducing the growth of competitors. It is also believed that allelopathy may affect species succession. Thus, allelopathy may play a role in the development of blooms. Over the past few decades, the world's coastal waters have experienced increases in the numbers of cyanobacterial and microalgal blooming events. Understanding how allelopathy is implicated with other biological and environmental factors as a bloom-development mechanism is an important topic for future research. This review focuses on a taxonomic overview of allelopathic cyanobacteria and microalgae, the biological and environmental factors that affect allelochemical production, their role in ecological dynamics, and their physiological modes of action, as well as potential industrial applications of allelopathic compounds.
Collapse
Affiliation(s)
- Sylwia Śliwińska-Wilczewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Kinga Wiśniewska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Zofia Konarzewska
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Agata Cieszyńska
- Institute of Oceanology Polish Academy of Sciences, Department of Marine Physics, Marine Biophysics Laboratory, Sopot, Poland
| | - Aldo Barreiro Felpeto
- Interdisciplinary Center of Marine and Environmental Research-CIMAR/CIIMAR, University of Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Anita U Lewandowska
- Division of Marine Chemistry and Environmental Protection, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Adam Latała
- Division of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdańsk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| |
Collapse
|
12
|
Effect of Extracts from Dominant Forest Floor Species of Clear-Cuts on the Regeneration and Initial Growth of Pinus sylvestris L. with Respect to Climate Change. PLANTS 2021; 10:plants10050916. [PMID: 34063305 PMCID: PMC8147409 DOI: 10.3390/plants10050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 11/17/2022]
Abstract
Climate change influences the ecological environment and affects the recruitment of plants, in addition to population dynamics, including Scots pine regeneration processes. Therefore, the impact of cover-dominant species extracts on the germination of pine seeds and morpho-physiological traits of seedling under different environmental conditions was evaluated. Increasing temperature reinforces the plant-donor allelochemical effect, reduces Scots pine seed germination, and inhibits seedling morpho-physiological parameters. Conditions unfavourable for the seed germination rate were observed in response to the effect of aqueous extracts of 2-year-old Vaccinium vitis-ideae and 1-year-old Calluna vulgaris under changing environmental conditions. The lowest radicle length and hypocotyl growth were observed in response to the effect of 1-year-old C. vulgaris and 2-year-old Rumex acetosella under increasing temperature (+4 °C) conditions. The chlorophyll a + b concentration in control seedlings strongly decreased from 0.76 to 0.66 mg g−1 (due to current environmental and changing environmental conditions). These factors may reduce the resistance of Scots pine to the effects of dominant species and affect the migration of Scots pine habitats to more favourable environmental conditions.
Collapse
|
13
|
Li B, Yin Y, Kang L, Feng L, Liu Y, Du Z, Tian Y, Zhang L. A review: Application of allelochemicals in water ecological restoration--algal inhibition. CHEMOSPHERE 2021; 267:128869. [PMID: 33218724 DOI: 10.1016/j.chemosphere.2020.128869] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Problems caused by harmful algal blooms have attracted worldwide attention due to their severe harm to aquatic ecosystems, prompting researchers to study applicable measures to inhibit the growth of algae. Allelochemicals, as secondary metabolites secreted by plants, have excellent biocompatibility, biodegradability, obvious algal inhibiting effect and little ecological harm, and have promising application prospect in the field of water ecological restoration. This review summarized the research progress of allelochemicals, including (i) definition, development, and classification, (ii) influencing factors and mechanism of algal inhibition, (iii) the preparation methods of algal inhibitors based on allelochemicals. The future research directions of allelochemicals sustained-released microspheres (SRMs) were also prospected. In the future, it is urgent to explore more efficient allelochemicals, to study the regulation mechanism of allelochemicals in natural water bodies, and to improve the preparation method of allelopathic algal suppressant. This paper proposed a feasible direction for the development of allelochemicals SRMs which exhibited certain guiding significance for their application in water ecological restoration.
Collapse
Affiliation(s)
- Benhang Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing, 100083, China
| | - Yijun Yin
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing, 100083, China
| | - Longfei Kang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing, 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing, 100083, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing, 100083, China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing, 100083, China
| | - Yajun Tian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Ecoremediation, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Sudatti DB, Duarte HM, Soares AR, Salgado LT, Pereira RC. New Ecological Role of Seaweed Secondary Metabolites as Autotoxic and Allelopathic. FRONTIERS IN PLANT SCIENCE 2020; 11:347. [PMID: 32523586 PMCID: PMC7261924 DOI: 10.3389/fpls.2020.00347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Allelopathy and autotoxicity are well-known biological processes in angiosperms but are very little explored or even unknown in seaweeds. In this study, extract and major pure compounds from two distinct populations of the red seaweed Laurencia dendroidea were investigated to evaluate the effect of autotoxicity through auto- and crossed experiments under laboratory conditions, using chlorophyll fluorescence imaging to measure inhibition of photosynthesis (ΦPSII) as a variable response. Individuals of L. dendroidea from Azeda beach were inhibited by their own extract (IC50 = 219 μg/ml) and the major compound elatol (IC50 = 87 μg/ml); both chemicals also inhibited this seaweed species from Forno beach (IC50 = 194 μg/ml for the extract and IC50 = 277 μg/ml for elatol). By contrast, the extract of L. dendroidea from Forno and its major compound obtusol showed no inhibitory effect in individuals of both populations; but obtusol was insoluble to be tested at higher concentrations, which could be active as observed for elatol. The Azeda population displayed higher susceptibility to the Azeda extract and to elatol, manifested on the first day, unlike Forno individuals, in which the effect was only detected on the second day; and inhibition of ΦPSII was more pronounced at apical than basal portions of the thalli of L. dendroidea. This first finding of seaweed autotoxicity and allelopathic effects revealed the potential of the chemistry of secondary metabolites for intra- and inter-populational interactions, and for structuring seaweed populations.
Collapse
Affiliation(s)
- Daniela Bueno Sudatti
- Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Heitor Monteiro Duarte
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Núcleo de Estudos em Ecologia e Desenvolvimento Sócio-ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | - Angélica Ribeiro Soares
- Grupo de Produtos Naturais de Organismos Aquáticos (GPNOA), Núcleo de Estudos em Ecologia e Desenvolvimento Sócio-ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Brazil
| | | | - Renato Crespo Pereira
- Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Lu T, Xu N, Zhang Q, Zhang Z, Debognies A, Zhou Z, Sun L, Qian H. Understanding the influence of glyphosate on the structure and function of freshwater microbial community in a microcosm. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114012. [PMID: 31995771 DOI: 10.1016/j.envpol.2020.114012] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/29/2019] [Accepted: 01/16/2020] [Indexed: 05/07/2023]
Abstract
Glyphosate, one of the most popular herbicides, has become a prominent aquatic contaminant because of its huge usage. The eco-safety of glyphosate is still in controversy, and it is inconclusive how glyphosate influences aquatic microbial communities. In the present study, the effects of glyphosate on the structure and function of microbial communities in a freshwater microcosm were investigated. 16S/18S rRNA gene sequencing results showed that glyphosate treatment (2.5 mg L-1, 15 days) did not significantly alter the physical and chemical condition of the microcosm or the composition of the main species in the community, but metatranscriptomic analyses indicated that the transcriptions of some cyanobacteria were significantly influenced by glyphosate. The microbial community enhanced the gene expression in pathways related to translation, secondary metabolites biosynthesis, transport and catabolism to potentially withstand glyphosate contamination. In the low phosphorus (P) environment, a common cyanobacterium, Synechococcus, plays a special role by utilizing glyphosate as P source and thus reducing its toxicity to other microbes, such as Pseudanabaena. In general, addition of glyphosate in our artificial microcosms did not strongly affect the aquatic microbial community composition but did alter the community's transcription levels, which might be potentially explained by that some microbes could alleviate glyphosate's toxicity by utilizing glyphosate as a P source.
Collapse
Affiliation(s)
- Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Andries Debognies
- Faculty of Bioscience Engineering, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500, Kortrijk, Belgium
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, PR China.
| |
Collapse
|