1
|
Osku M, Roozban MR, Sarikhani S, Arab MM, Akbari M, Vahdati K. Revealing drought tolerance strategies in pistachio clonal hybrids: role of osmotic adjustment. BMC PLANT BIOLOGY 2025; 25:580. [PMID: 40316914 DOI: 10.1186/s12870-025-06583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025]
Abstract
BACKGROUND Pistachio (Pistacia vera L.) growth, yield and quality are affected by abiotic stress especially drought. Understanding the strategies that improve dehydration tolerance is essential for developing resistant pistachio rootstocks. In the experiment, nine-month-old saplings of seven clonal interspecies hybrids of Pistacia atlantica × P. integerrima (C1, C2, C16-1, C8-3, C4-2, C9-4 and UCB1) were assessed for growth and physiological responses to water withholding and recovery. RESULT Water deficit negatively impacted growth parameters, including shoot dry weight, root dry weight and leaf area, in all hybrids; however, the C1 demonstrated relatively minor reductions compared to the other hybrids. Glycine betaine content in leaves increased by 49.4% in C9-4 and 47% in C1, while only 7% and 11% increases were found in the most sensitive clones, C8-3 and C4-2. Notably, C9-4, identified as the most tolerant clone, displayed the highest proline levels, with increases of 29.5% in leaves and 41.5% in roots, in contrast to C8-3, which showed minimal increases of 6% and 11% in leaves and roots, respectively. Clones with higher compatible solutes maintained higher relative water content (RWC), lower osmotic potential and smaller reductions in leaf water potential. RWC declined by just 6% in C9-4, whereas it dropped by 88% in C8-3. Osmotic potentials in C9-4 were - 1.61 MPa in leaves and - 0.271 MPa in roots, while in C8-3, they were - 0.93 MPa and - 0.11 MPa in leaves and roots, respectively. Following recovery, evaluations of growth, physiological traits and visual observations indicated that C8-3 had poor recovery ability. Heatmap and PCA analyses categorized the clones into three groups: "tolerant" (C9-4, C1 and C2), "moderately tolerant" (UCB1) and "sensitive" (C8-3, C4-2 and C16-1). CONCLUSION The results of this study underscore the significance of osmotic adjustment as a more critical trait compared to growth and stomatal parameters in effectively differentiating tolerant clones from sensitive ones.
Collapse
Affiliation(s)
- Mozhdeh Osku
- Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran
| | - Mahmoud Reza Roozban
- Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran.
| | - Saadat Sarikhani
- Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran.
| | - Mohammad Mehdi Arab
- School of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Akbari
- Royeshe Sabze Frada Research Center (Pistat), Nazari Business Group, Tehran, Iran
| | - Kourosh Vahdati
- Department of Horticulture, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Iran
| |
Collapse
|
2
|
Han C, Ma L, Tao X, Lian Y, Wu J, Fahim AM, Xu Y, Zhang X, Liu L, Yang G, Pu Y, Fan T, Wang W, Sun W. Genome-Wide Identification of the Cation/Proton Antiporter ( CPA) Gene Family and Expression Pattern Analysis Under Salt Stress in Winter Rapeseed ( Brassica rapa L.). Int J Mol Sci 2025; 26:3099. [PMID: 40243728 PMCID: PMC11988609 DOI: 10.3390/ijms26073099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The CPA gene family regulates ionic balance and pH homeostasis in cells, significantly contributing to plant stress tolerance. In this study, a total of 63 BrCPA gene family members were identified in the whole genome of Brassica rapa L. (B. rapa), and the three subfamily members were BrNHX (9), BrKEA (15), and BrCHX (39), respectively. The members of the BrCPA gene family encoded 303-1259 amino acids, with molecular weights in the range of 32,860.39~139,884.73 kDa, distributed on 10 chromosomes, and contained 17 conserved motifs, BrNHX and BraKEA, and the BrCPA gene family members had the same molecular weights on 10 chromosomes and contain 17 conserved motifs. The BrNHX and BraKEA subfamilies have more exons than the BrCHX subfamily. An analysis of promoter cis-acting elements in the BrCPA gene showed that members of this gene family contain TC-rich, LTR, MBS, and ARE stress response elements. In addition, transcriptome analysis revealed the expression of CPA genes in B. rapa under salt stress. The selected genes were verified by RT-qPCR. By detecting the Na+ and K+ flow rates in the root and chloroplast cells of salt-tolerant and salt-sensitive varieties after salt treatment, it was found that the rate of Na+ and K+ efflux from the root and chloroplast cells of salt-sensitive varieties was significantly higher than that of salt-tolerant varieties. This investigation marks the first systematic identification of the CPA gene family in B. rapa. This study further explores its expression patterns and the efflux rates of Na+ and K+ across salt-tolerant varieties, providing a theoretical basis for understanding the role of the CPA gene family in the salt stress response of B. rapa.
Collapse
Affiliation(s)
- Chunyang Han
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Li Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
| | - Xiaolei Tao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yintao Lian
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Abbas Muhammad Fahim
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanxia Xu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xianliang Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Fan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (C.H.); (X.T.); (Y.L.); (J.W.); (A.M.F.); (Y.X.); (X.Z.); (L.L.); (G.Y.); (Y.P.); (T.F.); (W.W.); (W.S.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Franzisky BL, Mueller HM, Du B, Lux T, White PJ, Carpentier SC, Winkler JB, Schnitzler JP, Kudla J, Kangasjärvi J, Reichelt M, Mithöfer A, Mayer KFX, Rennenberg H, Ache P, Hedrich R, Messerer M, Geilfus CM. Date palm diverts organic solutes for root osmotic adjustment and protects leaves from oxidative damage in early drought acclimation. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1244-1265. [PMID: 39521950 PMCID: PMC11850976 DOI: 10.1093/jxb/erae456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Date palm (Phoenix dactylifera L.) is an important crop in arid regions and it is well adapted to desert ecosystems. To understand its remarkable ability to grow and yield in water-limited environments, we conducted experiments in which water was withheld for up to 4 weeks. In response to drought, root, rather than leaf, osmotic strength increased, with organic solutes such as sugars and amino acids contributing more to the osmolyte increase than minerals. Consistently, carbon and amino acid metabolism was acclimated toward biosynthesis at both the transcriptional and translational levels. In leaves, a remodeling of membrane systems was observed, suggesting changes in thylakoid lipid composition which, together with the restructuring of the photosynthetic apparatus, indicated an acclimation preventing oxidative damage. Thus, xerophilic date palm avoids oxidative damage under drought by combined prevention and rapid detoxification of oxygen radicals. Although minerals were expected to serve as cheap key osmotics, date palm also relies on organic osmolytes for osmotic adjustment in the roots during early drought acclimation. The diversion of these resources away from growth is consistent with the date palm strategy of generally slow growth in harsh environments and clearly indicates a trade-off between growth and stress-related physiological responses.
Collapse
Affiliation(s)
- Bastian L Franzisky
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, D-65366 Geisenheim, Germany
| | - Heike M Mueller
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Würzburg, D-97082 Würzburg, Germany
| | - Baoguo Du
- College of Life Science and Biotechnology, Mianyang Normal University, Mianxing Road West 166, Mianyang 621000, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, Freiburg, D-79110, Germany
| | - Thomas Lux
- Research Unit Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | | | - Sebastien Christian Carpentier
- Facility for SYstems BIOlogy based MAss spectrometry, SYBIOMA, Proteomics Core Facility, KU Leuven, 3001 Leuven, Belgium
- Division of Crop Biotechnics, Laboratory of Tropical Crop Improvement, KU Leuven, 3001 Leuven, Belgium
| | - Jana Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Joerg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149 Münster, Germany
| | - Jaakko Kangasjärvi
- Faculty of Biological and Environmental Sciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Klaus F X Mayer
- Research Unit Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53, Freiburg, D-79110, Germany
| | - Peter Ache
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Würzburg, D-97082 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University Würzburg, D-97082 Würzburg, Germany
| | - Maxim Messerer
- Research Unit Plant Genome and Systems Biology, Helmholtz Center Munich, D-85764 Neuherberg, Germany
| | - Christoph-Martin Geilfus
- Department of Soil Science and Plant Nutrition, Hochschule Geisenheim University, D-65366 Geisenheim, Germany
| |
Collapse
|
4
|
Ramachandran P, Ramirez A, Dinneny JR. Rooting for survival: how plants tackle a challenging environment through a diversity of root forms and functions. PLANT PHYSIOLOGY 2024; 197:kiae586. [PMID: 39657006 DOI: 10.1093/plphys/kiae586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/23/2024] [Indexed: 12/17/2024]
Abstract
The current climate crisis has global impacts and will affect the physiology of plants across every continent. Ensuring resilience of our agricultural and natural ecosystems to the environmental stresses imposed by climate change will require molecular insight into the adaptations employed by a diverse array of plants. However, most current studies continue to focus on a limited set of model species or crops. Root systems are particularly understudied even though their functions in water and nutrient uptake are likely pivotal for plant stress resilience and sustainable agriculture. In this review, we highlight anatomical adaptations in roots that enable plant survival in different ecological niches. We then present the current state of knowledge for the molecular underpinnings of these adaptations. Finally, we identify areas where future research using a biodiversity approach can fill knowledge gaps necessary for the development of climate-resilient crops of the future.
Collapse
Affiliation(s)
- Prashanth Ramachandran
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Andrea Ramirez
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Wang Z, Li Z, Zhang Y, Liao J, Guan K, Zhai J, Meng P, Tang X, Dong T, Song Y. Root hair developmental regulators orchestrate drought triggered microbiome changes and the interaction with beneficial Rhizobiaceae. Nat Commun 2024; 15:10068. [PMID: 39567534 PMCID: PMC11579020 DOI: 10.1038/s41467-024-54417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Drought is one of the most serious abiotic stresses, and emerging evidence suggest plant microbiome affects plant drought tolerance. However, there is a lack of genetic evidence regarding whether and how plants orchestrate the dynamic assembly of the microbiome upon drought. By utilizing mutants with enhanced or decreased root hair densities, we find that root hair regulators also affect drought induced root microbiome changes. Rhizobiaceae is a key biomarker taxa affected by root hair related mutants. We isolated and sequenced 1479 root associated microbes, and confirmed that several Rhizobium strains presented stress-alleviating activities. Metagenome, root transcriptome and root metabolome studies further reveal the multi-omic changes upon drought stress. We knocked out an ornithine cyclodeaminase (ocd) gene in Rhizobium sp. 4F10, which significantly dampens its stress alleviating ability. Our genetic and integrated multi-omics studies confirm the involvement of host genetic effects in reshaping a stress-alleviating root microbiome during drought, and provide mechanistic insights into Rhizobiaceae mediated abiotic stress protection.
Collapse
Affiliation(s)
- Zhenghong Wang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Zewen Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jingye Liao
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Kaixiang Guan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jingxuan Zhai
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Pengfei Meng
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Xianli Tang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yi Song
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Wang R, Yan SJ, Liu C, Guo H, Cui YN. Comparative Physiological and Gene Expression Analyses Reveal Mechanisms Involved in Maintaining Photosynthesis Capacity, Alleviating Ion Toxicity and Oxidative Stress of Kentucky Bluegrass under NaCl Treatment. PLANTS (BASEL, SWITZERLAND) 2024; 13:2107. [PMID: 39124225 PMCID: PMC11313982 DOI: 10.3390/plants13152107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
Kentucky bluegrass (Poa pratensis L.), a widely used cool-season turfgrass, shows a high sensitivity to soil salinity. Clarifying the adaptative mechanisms of Kentucky bluegrass that serve to improve its salt tolerance in saline environments is urgent for the application of this turfgrass in salt-affected regions. In this study, physiological responses of the Kentucky bluegrass cultivars "Explorer" and "Blue Best" to NaCl treatment, as well as gene expressions related to photosynthesis, ion transport, and ROS degradation, were analyzed. The results showed that the growth of "Explorer" was obviously better compared to "Blue Best" under 400 mM NaCl treatment. "Explorer" exhibited a much stronger photosynthetic capacity than "Blue Best" under NaCl treatment, and the expression of key genes involved in chlorophyll biosynthesis, photosystem II, and the Calvin cycle in "Explorer" was greatly induced by salt treatment. Compared with "Blue Best", "Explorer" could effectively maintain Na+/K+ homeostasis in its leaves under NaCl treatment, which can be attributed to upregulated expression of genes, such as HKT1;5, HAK5, and SKOR. The relative membrane permeability and contents of O2- and H2O2 in "Explorer" were significantly lower than those in "Blue Best" under NaCl treatment, and, correspondingly, the activities of SOD and POD in the former were significantly higher than in the latter. Moreover, the expression of genes involved in the biosynthesis of enzymes in the ROS-scavenging system of "Explorer" was immediately upregulated after NaCl treatment. Additionally, free proline and betaine are important organic osmolytes for maintaining hydration status in Kentucky bluegrass under NaCl treatment, as the contents of these metabolites in "Explorer" were significantly higher than in "Blue Best". This work lays a theoretical basis for the improvement of salt tolerance in Kentucky bluegrass.
Collapse
Affiliation(s)
| | | | | | - Huan Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; (R.W.); (S.-J.Y.); (C.L.)
| | - Yan-Nong Cui
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China; (R.W.); (S.-J.Y.); (C.L.)
| |
Collapse
|
7
|
Naufal M, Wu JH. Chemomixoautotrophy and stress adaptation of anammox bacteria: A review. WATER RESEARCH 2024; 257:121663. [PMID: 38669739 DOI: 10.1016/j.watres.2024.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria, which were first discovered nearly three decades ago, are crucial for treating ammonium-containing wastewater. Studies have reported on the biochemical nitrogen conversion process and the physiological, phylogenic, and ecological features of anammox bacteria. For a long time, anammox bacteria were assumed to have a lithoautotrophic lifestyle. However, recent studies have suggested the functional versatility of anammox bacteria. Genome-based analysis and experiments with enrichment cultures have demonstrated the association of the metabolic activities of anammox bacteria with different stress conditions, revealing the importance of utilizing specific organic substances, including organoautotrophy, for growth and adaptation to stress conditions. Our understanding regarding the utilization and metabolism of organic substances and their associations with anammox reactions in anammox bacteria is growing but still incomplete. In this review, we summarize the effect of the utilization of organic substances by anammox bacteria under environmental stress conditions, emphasizing their potential organoautotrophic activity and metabolic flexibility. Although most anammox bacteria may utilize specific organic substances, Ca. Brocadia exhibited the highest level of mixoautotrophic activity. The environmental factors that substantially affect the organoautotrophic activities of anammox bacteria were also examined. This review provides a new perspective on the organoautotrophic capacity of anammox bacteria.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 70101, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 70101, Taiwan.
| |
Collapse
|
8
|
Khoso MA, Wang M, Zhou Z, Huang Y, Li S, Zhang Y, Qian G, Ko SN, Pang Q, Liu C, Li L. Bacillus altitudinis AD13-4 Enhances Saline-Alkali Stress Tolerance of Alfalfa and Affects Composition of Rhizosphere Soil Microbial Community. Int J Mol Sci 2024; 25:5785. [PMID: 38891975 PMCID: PMC11171787 DOI: 10.3390/ijms25115785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Saline and alkaline stresses limit plant growth and reduce crop yield. Soil salinization and alkalization seriously threaten the sustainable development of agriculture and the virtuous cycle of ecology. Biofertilizers made from plant growth-promoting rhizobacteria (PGPR) not only enhance plant growth and stress tolerance, but also are environmentally friendly and cost-effective. There have been many studies on the mechanisms underlying PGPRs enhancing plant salt resistance. However, there is limited knowledge about the interaction between PGPR and plants under alkaline-sodic stress. To clarify the mechanisms underlying PGPR's improvement of plants' tolerance to alkaline-sodic stress, we screened PGPR from the rhizosphere microorganisms of local plants growing in alkaline-sodic land and selected an efficient strain, Bacillus altitudinis AD13-4, as the research object. Our results indicate that the strain AD13-4 can produce various growth-promoting substances to regulate plant endogenous hormone levels, cell division and differentiation, photosynthesis, antioxidant capacity, etc. Transcriptome analysis revealed that the strain AD13-4 significantly affected metabolism and secondary metabolism, signal transduction, photosynthesis, redox processes, and plant-pathogen interactions. Under alkaline-sodic conditions, inoculation of the strain AD13-4 significantly improved plant biomass and the contents of metabolites (e.g., soluble proteins and sugars) as well as secondary metabolites (e.g., phenols, flavonoids, and terpenoids). The 16S rRNA gene sequencing results indicated that the strain AD13-4 significantly affected the abundance and composition of the rhizospheric microbiota and improved soil activities and physiochemical properties. Our study provides theoretical support for the optimization of saline-alkali-tolerant PGPR and valuable information for elucidating the mechanism of plant alkaline-sodic tolerance.
Collapse
Affiliation(s)
- Muneer Ahmed Khoso
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Mingyu Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Zhenzhen Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Yongxue Huang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Shenglin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Yiming Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Guangtao Qian
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Song Nam Ko
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Qiuying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Changli Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| | - Lixin Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China; (M.A.K.); (M.W.); (Z.Z.); (Y.H.); (S.L.); (Y.Z.); (G.Q.); (S.N.K.); (Q.P.)
| |
Collapse
|
9
|
Li H, Liu Y, Zhen B, Lv M, Zhou X, Yong B, Niu Q, Yang S. Proline Spray Relieves the Adverse Effects of Drought on Wheat Flag Leaf Function. PLANTS (BASEL, SWITZERLAND) 2024; 13:957. [PMID: 38611486 PMCID: PMC11013815 DOI: 10.3390/plants13070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024]
Abstract
Drought stress is one of the key factors restricting crop yield. The beneficial effects of exogenous proline on crop growth under drought stress have been demonstrated in maize, rice, and other crops. However, little is known about its effects on wheat under drought stress. Especially, the water-holding capacity of leaves were overlooked in most studies. Therefore, a barrel experiment was conducted with wheat at two drought levels (severe drought: 45% field capacity, mild drought: 60% field capacity), and three proline-spraying levels (0 mM, 25 mM, and 50 mM). Meanwhile, a control with no stress and no proline application was set. The anatomical features, water-holding capacity, antioxidant capacity, and proline content of flag leaves as well as grain yields were measured. The results showed that drought stress increased the activity of catalase and peroxidase and the content of proline in flag leaves, lessened the content of chlorophyll, deformed leaf veins, and decreased the grain yield. Exogenous proline could regulate the osmotic-regulation substance content, chlorophyll content, antioxidant enzyme activity, water-holding capacity, and tissue structure of wheat flag leaves under drought stress, ultimately alleviating the impact of drought stress on wheat yield. The application of proline (25 mM and 50 mM) increased the yield by 2.88% and 10.81% under mild drought and 33.90% and 52.88% under severe drought compared to wheat without proline spray, respectively.
Collapse
Affiliation(s)
- Huizhen Li
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100091, China
| | - Yuan Liu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Bo Zhen
- Jiangsu Vocational College of Agriculture & Forestry, Jurong 212499, China;
| | - Mouchao Lv
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Xinguo Zhou
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Beibei Yong
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Qinglin Niu
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| | - Shenjiao Yang
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang 453002, China; (H.L.); (X.Z.); (Q.N.); (S.Y.)
| |
Collapse
|
10
|
Ozoliņa KA, Jēkabsone A, Andersone-Ozola U, Ievinsh G. Comparison of Growth and Physiological Effects of Soil Moisture Regime on Plantago maritima Plants from Geographically Isolated Sites on the Eastern Coast of the Baltic Sea. PLANTS (BASEL, SWITZERLAND) 2024; 13:633. [PMID: 38475478 DOI: 10.3390/plants13050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
The aim of the present study was to evaluate the morphological and physiological responses of P. maritima plants from five geographically isolated sites growing in habitats with different conditions to different substrate moisture levels in controlled conditions. Plants were produced from seed and cultivated in a greenhouse at four relatively constant soil moisture regimes: at 25, 50, and 75% soil water content and in soil flooded 3 cm above the surface (80% F). The two morphological traits that varied most strikingly among P. maritima accessions were the number of flower stalks and the number of leaves. Only plants from two accessions uniformly produced generative structures, and allocation to flowering was suppressed by both low moisture and flooding. Optimum shoot biomass accumulation for all accessions was at 50 and 75% soil moisture. The Performance Index Total was the most sensitive among the measured photosynthesis-related parameters, and it tended to decrease with an increase in soil water content for all P. maritima accessions. The initial hypothesis-that plants from relatively dry habitats will have a higher tolerance against low soil water levels, but plants from relatively wet habitats will have a higher tolerance against waterlogged or flooded soil-was not proven. The existence of three ecotypes of P. maritima within the five accessions from geographically isolated subpopulations on the eastern coast of the Baltic Sea at the level of morphological responses to soil water content can be proposed. P. maritima plants can be characterized as extremely tolerant to soil waterlogging and highly tolerant to soil flooding and low soil water content.
Collapse
Affiliation(s)
- Katrīna Anna Ozoliņa
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
| | - Astra Jēkabsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia
| |
Collapse
|
11
|
Wang XY, Li P, Du XJ, Wang S. Effect of glutathione-transport-related gene gsiD on desiccation tolerance of Cronobacter sakazakii and its related regulatory mechanism. Appl Environ Microbiol 2024; 90:e0156223. [PMID: 38289135 PMCID: PMC10880603 DOI: 10.1128/aem.01562-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/16/2023] [Indexed: 02/22/2024] Open
Abstract
The outstanding desiccation tolerance of Cronobacter sakazakii (C. sakazakii) enables long-term persistence in food products with low-water activity to increase the infection risk, especially in low-birth-weight, immuno-compromised neonates, and infants less than 4 weeks of age. In our previous study, the disruption of glutathione transport-related gene gsiD by transposon was found to significantly increase its inactivation rate under drying stress challenges. However, the mechanism underlying the association between glutathione transport and desiccation tolerance of C. sakazakii remains to be clarified. In this study, the mechanism underlying their association was investigated in detail by constructing the gsiD gene deletion mutant. gsiD gene deletion was found to cause the dysfunction of the glutathione transport system GsiABCD and the limitation of glutathione import. The resulting decrease in intracellular glutathione caused the decreased potassium ions uptake and increased potassium ions efflux, inhibited the proline synthesis process, limited extracellular glutathione utilization, increased oxidant stress, reduced biofilm formation, and increased outer membrane permeability, which may be the main reasons for the significant reduction of the desiccation tolerance of C. sakazakii.IMPORTANCEContributing to its superior environmental adaptability, Cronobacter sakazakii can survive under many abiotic stress conditions. The outstanding desiccation tolerance makes this species persist in low-water activity foods, which increases harm to humans. For decades, many studies have focused on the desiccation tolerance of C. sakazakii, but the existing research is still insufficient. Our study found that gsiD gene deletion inhibited glutathione uptake and further decreased intracellular glutathione content, causing a decrease in desiccation tolerance and biofilm formation and an increase in outer membrane permeability. Moreover, the expression level of relative genes verified that gsiD gene deletion made the mutant not conducive to surviving in dry conditions due to restricting potassium ions uptake and efflux, inhibiting the conversion of glutamate to compatible solute proline, and increasing the oxidative stress of C. sakazakii. The above results enrich our knowledge of the desiccation tolerance mechanism of C. sakazakii.
Collapse
Affiliation(s)
- Xiao-yi Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ping Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xin-jun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
- Tianjin Key Laboratory of Food Science and Health, College of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
12
|
Wu S, Wei Y, Wang Y, Zhang Z, Liu D, Qin S, Shi J, Shen J. Liposomal Antibiotic Booster Potentiates Carbapenems for Combating NDMs-Producing Escherichia coli. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304397. [PMID: 37933983 PMCID: PMC10787095 DOI: 10.1002/advs.202304397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/19/2023] [Indexed: 11/08/2023]
Abstract
Infections caused by Enterobacterales producing New Delhi Metallo-β-lactamases (NDMs), Zn(II)-dependent enzymes hydrolyzing carbapenems, are difficult to treat. Depriving Zn(II) to inactivate NDMs is an effective solution to reverse carbapenems resistance in NDMs-producing bacteria. However, specific Zn(II) deprivation and better bacterial outer membrane penetrability in vivo are challenges. Herein, authors present a pathogen-primed liposomal antibiotic booster (M-MFL@MB), facilitating drugs transportation into bacteria and removing Zn(II) from NDMs. M-MFL@MB introduces bismuth nanoclusters (BiNCs) as a storage tank of Bi(III) for achieving ROS-initiated Zn(II) removal. Inspired by bacteria-specific maltodextrin transport pathway, meropenem-loaded BiNCs are camouflaged by maltodextrin-cloaked membrane fusion liposome to cross the bacterial envelope barrier via selectively targeting bacteria and directly outer membrane fusion. This fusion disturbs bacterial membrane homeostasis, then triggers intracellular ROS amplification, which activates Bi(III)-mediated Zn(II) replacement and meropenem release, realizing more precise and efficient NDMs producer treatment. Benefiting from specific bacteria-targeting, adequate drugs intracellular accumulation and self-activation Zn(II) replacement, M-MFL@MB rescues all mice infected by NDM producer without systemic side effects. Additionally, M-MFL@MB decreases the bacterial outer membrane vesicles secretion, slowing down NDMs producer's transmission by over 35 times. Taken together, liposomal antibiotic booster as an efficient and safe tool provides new strategy for tackling NDMs producer-induced infections.
Collapse
Affiliation(s)
- Sixuan Wu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- School of Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Yongbin Wei
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
| | - Yang Wang
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Dejun Liu
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| | - Shangshang Qin
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Jianzhong Shen
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| |
Collapse
|
13
|
Iqbal H, Yaning C, Waqas M, Raza ST, Shareef M, Ahmad Z. Salinity and exogenous H 2 O 2 improve gas exchange, osmoregulation, and antioxidant metabolism in quinoa under drought stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14057. [PMID: 38148196 DOI: 10.1111/ppl.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 12/28/2023]
Abstract
Climate change-induced concurrent drought and salinity stresses significantly threaten global crop yields, yet the physio-biochemical responses to combined stress in quinoa remain elusive. This study evaluated quinoa responses under four growth conditions: well-watered, drought stress, salt stress, and drought + salt stress with (15 mM) or without (0 mM) exogenous hydrogen peroxide (H2 O2 ) application. All examined stresses (alone or in combination) reduce quinoa growth and net photosynthesis, although salt stress was found to be less destructive than drought and combined stress. Strikingly, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), stomatal conductance (gs ), photosynthetic rate (PN ), K+ uptake, shoot height, shoot fresh, and dry weight were increased by 46.1%, 22.2%, 101.6%, 12.9%, 12.1%, 22.4%, 7.1%, 14%, and 16.4%, respectively, under combined stress compared to drought alone. In addition, exogenous H2 O2 effectively improved gaseous exchange, osmolytes' accumulation, and antioxidant activity, resulting in reduced lipid peroxidation, which eventually led to higher plant growth under all coercive conditions. The principle component analysis (PCA) indicated a strong positive correlation between antioxidant enzymes and inorganic ions, which contributed efficiently to osmotic adjustment, particularly under conditions of salinity followed by combined stress. In short, in combination, salt stress has the potential to mitigate drought-induced injuries by promoting the absorption of inorganic solutes for osmoregulation in quinoa plants. Furthermore, exogenous application of H2 O2 could be opted to enhance quinoa performance to increase its tolerance mechanism against drought and salinity, even under combined stress.
Collapse
Affiliation(s)
- Hassan Iqbal
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chen Yaning
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Muhammad Waqas
- Department of Soil Science and Plants Nutrition, Hochschule Geisenheim University, Geiseneim, Germany
| | - Syed Turab Raza
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, Yunnan University, Kunming, China
| | | | - Zeeshan Ahmad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
14
|
Arora S, Babele PK, Jha PN. Biochemical and metabolic signatures are fundamental to drought adaptation in PGPR Enterobacter bugandensis WRS7. Mol Omics 2023; 19:640-652. [PMID: 37338418 DOI: 10.1039/d3mo00051f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Drought alone causes more annual loss in crop yield than the sum of all other environmental stresses. There is growing interest in harnessing the potential of stress-resilient PGPR in conferring plant resistance and enhancing crop productivity in drought-affected agroecosystems. A detailed understanding of the complex physiological and biochemical responses will open up the avenues to stress adaptation mechanisms of PGPR communities under drought. It will pave the way for rhizosphere engineering through metabolically engineered PGPR. Therefore, to reveal the physiological and metabolic networks in response to drought-mediated osmotic stress, we performed biochemical analyses and applied untargeted metabolomics to investigate the stress adaptation mechanisms of a PGPR Enterobacter bugendensis WRS7 (Eb WRS7). Drought caused oxidative stress and resulted in slower growth rates in Eb WRS7. However, Eb WRS7 could tolerate drought stress and did not show changes in cell morphology under stress conditions. Overproduction of ROS caused lipid peroxidation (increment in MDA) and eventually activated antioxidant systems and cell signalling cascades, which led to the accumulation of ions (Na+, K+, and Ca2+), osmolytes (proline, exopolysaccharides, betaine, and trehalose), and modulated lipid dynamics of the plasma membranes for osmosensing and osmoregulation, suggesting an osmotic stress adaption mechanism in PGPR Eb WRS7. Finally, GC-MS-based metabolite profiling and deregulated metabolic responses highlighted the role of osmolytes, ions, and intracellular metabolites in regulating Eb WRS7 metabolism. Our results suggest that understanding the role of metabolites and metabolic pathways can be exploited for future metabolic engineering of PGPR and developing bio inoculants for plant growth promotion under drought-affected agroecosystems.
Collapse
Affiliation(s)
- Saumya Arora
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| | - Piyoosh K Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi 284003, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani 333031, Rajasthan, India.
| |
Collapse
|
15
|
Integrated Transcriptome and Metabolome Analysis of Rice Leaves Response to High Saline-Alkali Stress. Int J Mol Sci 2023; 24:ijms24044062. [PMID: 36835473 PMCID: PMC9960601 DOI: 10.3390/ijms24044062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Rice (Oryza sativa) is one of the most important crops grown worldwide, and saline-alkali stress seriously affects the yield and quality of rice. It is imperative to elucidate the molecular mechanisms underlying rice response to saline-alkali stress. In this study, we conducted an integrated analysis of the transcriptome and metabolome to elucidate the effects of long-term saline-alkali stress on rice. High saline-alkali stress (pH > 9.5) induced significant changes in gene expression and metabolites, including 9347 differentially expressed genes (DEGs) and 693 differentially accumulated metabolites (DAMs). Among the DAMs, lipids and amino acids accumulation were greatly enhanced. The pathways of the ABC transporter, amino acid biosynthesis and metabolism, glyoxylate and dicarboxylate metabolism, glutathione metabolism, TCA cycle, and linoleic acid metabolism, etc., were significantly enriched with DEGs and DAMs. These results suggest that the metabolites and pathways play important roles in rice's response to high saline-alkali stress. Our study deepens the understanding of mechanisms response to saline-alkali stress and provides references for molecular design breeding of saline-alkali resistant rice.
Collapse
|
16
|
Ma T, Zhang Y, Yan C, Zhang C. Phenotypic and Genomic Difference among Four Botryosphaeria Pathogens in Chinese Hickory Trunk Canker. J Fungi (Basel) 2023; 9:204. [PMID: 36836318 PMCID: PMC9963396 DOI: 10.3390/jof9020204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Botryosphaeria species are amongst the most widespread and important canker and dieback pathogens of trees worldwide, with B. dothidea as one of the most common Botryosphaeria species. However, the information related to the widespread incidence and aggressiveness of B. dothidea among various Botryosphaeria species causing trunk cankers is still poorly investigated. In this study, the metabolic phenotypic diversity and genomic differences of four Chinese hickory canker-related Botryosphaeria pathogens, including B. dothidea, B. qingyuanensis, B. fabicerciana, and B. corticis, were systematically studied to address the competitive fitness of B. dothidea. Large-scale screening of physiologic traits using a phenotypic MicroArray/OmniLog system (PMs) found B. dothidea has a broader spectrum of nitrogen source and greater tolerance toward osmotic pressure (sodium benzoate) and alkali stress among Botryosphaeria species. Moreover, the annotation of B. dothidea species-specific genomic information via a comparative genomics analysis found 143 B. dothidea species-specific genes that not only provides crucial cues in the prediction of B. dothidea species-specific function but also give a basis for the development of a B. dothidea molecular identification method. A species-specific primer set Bd_11F/Bd_11R has been designed based on the sequence of B. dothidea species-specific gene jg11 for the accurate identification of B. dothidea in disease diagnoses. Overall, this study deepens the understanding in the widespread incidence and aggressiveness of B. dothidea among various Botryosphaeria species, providing valuable clues to assist in trunk cankers management.
Collapse
Affiliation(s)
| | | | | | - Chuanqing Zhang
- Department of Plant Pathology, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| |
Collapse
|
17
|
Ji Y, Li F, Qiao Y. Modulating liquid-liquid phase separation of FUS: mechanisms and strategies. J Mater Chem B 2022; 10:8616-8628. [PMID: 36268634 DOI: 10.1039/d2tb01688e] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules inspires the construction of protocells and drives the formation of cellular membraneless organelles. The resulting biomolecular condensates featuring dynamic assembly, disassembly, and phase transition play significant roles in a series of biological processes, including RNA metabolism, DNA damage response, signal transduction and neurodegenerative disease. Intensive investigations have been conducted for understanding and manipulating intracellular phase-separated disease-related proteins (e.g., FUS, tau and TDP-43). Herein, we review current studies on the regulation strategies of intracellular LLPS focusing on FUS, which are categorized into physical stimuli, biochemical modulators, and protein structural modifications, with summarized molecular mechanisms. This review is expected to provide a sketch of the modulation of FUS LLPS with its pros and cons, and an outlook for the potential clinical treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Purmale L, Jēkabsone A, Andersone-Ozola U, Ievinsh G. Salinity Tolerance, Ion Accumulation Potential and Osmotic Adjustment In Vitro and In Planta of Different Armeria maritima Accessions from a Dry Coastal Meadow. PLANTS (BASEL, SWITZERLAND) 2022; 11:2570. [PMID: 36235436 PMCID: PMC9571588 DOI: 10.3390/plants11192570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to compare tolerance to salinity and ion accumulation potential of Armeria maritima subsp. elongata. Three accessions (AM1 and AM2, both from Latvia, and AM3 from Sweden) from relatively dry sandy soil habitats in the Baltic Sea region were selected and compared using both in vitro cultivated shoot explants and long-term soil-cultivated plants at flowering stage. Growth of root non-forming explants treated with increasing concentrations of NaCl was significantly inhibited starting from 110 mmol L-1, and the rate of shoot formation was even more sensitive. Significant differences in morphology and responses to salinity were found between different accessions. For soil-grown plants, biomass accumulation in above-ground parts was relatively little affected by salinity in AM1 and AM2 in comparison to that in AM3. Differences in ion accumulation were evident between the accessions as well as in respect to cultivation system used. Maximum accumulation capacity for Na+ was up to 2.5 mol kg-1 both in shoot explant tissues and in old leaves of soil-grown plants treated with NaCl, but that for K+ reached 4.0 mol kg-1 in old leaves of soil-grown plants treated with KCl. Non-ionic component of osmotic value was relatively high in old leaves and significantly increased under NaCl treatment, especially for AM2 and AM3 plants at moderate salinity, but in AM1 only at high salinity. In contrast, it significantly decreased in old leaves of AM2 plants treated with increasing concentration of KCl. It can be concluded that a wide salinity tolerance exists within A. maritima accessions from dry sandy soil habitats, associated with the ability to accumulate surplus ions both in salt glands and old leaves.
Collapse
Affiliation(s)
- Līva Purmale
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Astra Jēkabsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Rīga, Latvia
| |
Collapse
|
19
|
Salinity Tolerance and Ion Accumulation of Coastal and Inland Accessions of Clonal Climbing Plant Species Calystegia sepium in Comparison with a Coastal-Specific Clonal Species Calystegia soldanella. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plant species adapted to saline habitats represent an important resource in the assessment of salinity tolerance mechanisms. The aim of the present study was to analyze salinity tolerance and ion accumulation characteristics for various accessions of Calystegia sepium from different habitats in comparison to these of Calystegia soldanella in controlled conditions. Plants were introduced in culture using stem explants with leaf and were cultivated in controlled conditions under six different substrate salinities. Salinity tolerance of both C. sepium and C. soldanella plants was relatively high, but the tolerance of particular accessions did not depend on the substrate salinity level in their natural habitats. C. sepium accession from a mesophytic non-saline habitat was only slightly negatively affected by increasing substrate salinity. However, coastal accession of C. sepium and coastal-specific species C. soldanella had some similarities in ion accumulation characteristics, both accumulating a high concentration of soluble ions in aboveground parts and excluding them from underground parts. All C. sepium accessions from different habitats represented varied physiotypes, possibly associated with their genetic differences. C. sepium accessions from different habitats can be suggested as models for further studies aiming at dissecting possible genetic, epigenetic and physiological mechanisms of adaptation to heterogeneous environmental conditions.
Collapse
|
20
|
Del-Saz NF, Iglesias-Sanchez A, Alonso-Forn D, López-Gómez M, Palma F, Clemente-Moreno MJ, Fernie AR, Ribas-Carbo M, Florez-Sarasa I. The Lack of Alternative Oxidase 1a Restricts in vivo Respiratory Activity and Stress-Related Metabolism for Leaf Osmoprotection and Redox Balancing Under Sudden Acute Water and Salt Stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:833113. [PMID: 35656009 PMCID: PMC9152546 DOI: 10.3389/fpls.2022.833113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
In plants salt and water stress result in an induction of respiration and accumulation of stress-related metabolites (SRMs) with osmoregulation and osmoprotection functions that benefit photosynthesis. The synthesis of SRMs may depend on an active respiratory metabolism, which can be restricted under stress by the inhibition of the cytochrome oxidase pathway (COP), thus causing an increase in the reduction level of the ubiquinone pool. However, the activity of the alternative oxidase pathway (AOP) is thought to prevent this from occurring while at the same time, dissipates excess of reducing power from the chloroplast and thereby improves photosynthetic performance. The present research is based on the hypothesis that the accumulation of SRMs under osmotic stress will be affected by changes in folial AOP activity. To test this, the oxygen isotope-fractionation technique was used to study the in vivo respiratory activities of COP and AOP in leaves of wild-type Arabidopsis thaliana plants and of aox1a mutants under sudden acute stress conditions induced by mannitol and salt treatments. Levels of leaf primary metabolites and transcripts of respiratory-related proteins were also determined in parallel to photosynthetic analyses. The lack of in vivo AOP response in the aox1a mutants coincided with a lower leaf relative water content and a decreased accumulation of crucial osmoregulators. Additionally, levels of oxidative stress-related metabolites and transcripts encoding alternative respiratory components were increased. Coordinated changes in metabolite levels, respiratory activities and photosynthetic performance highlight the contribution of the AOP in providing flexibility to carbon metabolism for the accumulation of SRMs.
Collapse
Affiliation(s)
- Néstor F. Del-Saz
- Laboratorio de Fisiología Vegetal, Universidad de Concepción, Concepción, Chile
| | | | - David Alonso-Forn
- Unidad de Recursos Forestales, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain
| | | | - Francisco Palma
- Department of Plant Physiology, University of Granada, Granada, Spain
| | - María José Clemente-Moreno
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Palma, Spain
| | | | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Palma, Spain
| | - Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnología Agroalimentàries (IRTA), Edifici CRAG, Barcelona, Spain
| |
Collapse
|
21
|
Guo J, Lu X, Tao Y, Guo H, Min W. Comparative Ionomics and Metabolic Responses and Adaptive Strategies of Cotton to Salt and Alkali Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:871387. [PMID: 35548284 PMCID: PMC9084190 DOI: 10.3389/fpls.2022.871387] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 05/27/2023]
Abstract
Soil salinization and alkalization severely inhibit agriculture. However, the response mechanisms of cotton to salt stress or alkali stress are unclear. Ionomics and metabolomics were used to investigate salt and alkali stresses in cotton roots and leaves. Compared with the control, salt-treated and alkali-treated cotton plants showed 51.8 and 53.0% decreases in biomass, respectively. Under salt stress, the concentration of N decreased in roots but increased in leaves, and the concentrations of P and K increased in roots but decreased in leaves. Salt stress inhibited Ca, B, N, and Fe uptake and Mg, K, P, S, and Cu transport, but promoted Mo, Mn, Zn, Mg, K, P, S, and Cu uptake and Mo, Mn, Zn, B, N, and Fe transport. Under alkali stress, the concentrations of N and P in roots and leaves decreased, while the concentrations of K in roots and leaves increased. Alkali stress inhibited P, Ca, S, N, Fe, and Zn uptake and N, P, Mg and B transport, but promoted K, Mn, Cu, Mo, Mg, and B uptake and K, Mn, Cu, Mo, Fe, and Zn transport. Under salt stress in the leaves, 93 metabolites increased, mainly organic acids, amino acids, and sugars, increased in abundance, while 6 decreased. In the roots, 72 metabolites increased, mainly amino acids, organic acids, and sugars, while 18 decreased. Under alkali stress, in the leaves, 96 metabolites increased, including organic acids, amino acids, and sugars, 83 metabolites decreased, including organic acids, amino acids, and sugars; In the roots, 108 metabolites increased, including organic acids, amino acids, and sugars. 83 metabolites decreased, including organic acids and amino acids. Under salt stress, cotton adapts to osmotic stress through the accumulation of organic acids, amino acids and sugars, while under alkali stress, osmoregulation was achieved via inorganic ion accumulation. Under salt stress, significant metabolic pathways in the leaves and roots were associated with amino acid and organic acid metabolism, sugar metabolism was mainly used as a source of energy, while under alkali stress, the pathways in the leaves were related to amino acid and linoleic acid metabolism, β-Oxidation, TCA cycle, and glycolysis were enhanced to provide the energy needed for life activities. Enhancing organic acid accumulation and metabolism in the roots is the key response mechanism of cotton to alkalinity.
Collapse
Affiliation(s)
| | | | | | | | - Wei Min
- Department of Resources and Environmental Science, Shihezi University, Shihezi, China
| |
Collapse
|
22
|
Lira-Martins D, Quesada CA, Strekopytov S, Humphreys-Williams E, Herault B, Lloyd J. Wood Nutrient-Water-Density Linkages Are Influenced by Both Species and Environment. FRONTIERS IN PLANT SCIENCE 2022; 13:778403. [PMID: 35444675 PMCID: PMC9014131 DOI: 10.3389/fpls.2022.778403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Tropical trees store a large amount of nutrients in their woody tissues, thus triggering the question of what the functional association of these elements with other wood traits is. Given the osmotic activity of mineral elements such as potassium, sodium, and calcium, these elements should be strong candidates in mediating the water storing capacity in tropical trees. We investigated the role of wood nutrients in facilitating wood water storage in trees by using branch samples from 48 tropical tree species in South America and examined their associations with wood density (ρ). Wood density varied from 316 kg/m3 in Peru plots, where the soil nutrient status is relatively higher, to 908 kg/m3 in Brazil plots, where the nutrient availability is lower. Phosphorus content in wood varied significantly between plots with lowest values found in French Guiana (1.2 mol/m3) and plots with highest values found in Peru (43.6 mol/m3). Conversely, potassium in woody tissues showed a significant cross-species variation with Minquartia guianensis in Brazil showing the lowest values (8.8 mol/m3) and with Neea divaricata in Peru having the highest values (114 mol/m3). We found that lower wood density trees store more water in their woody tissues with cations, especially potassium, having a positive association with water storage. Specific relationships between wood cation concentrations and stem water storage potential nevertheless depend on both species' identity and growing location. Tropical trees with increased water storage capacity show lower wood density and have an increased reliance on cations to regulate this reservoir. Our study highlights that cations play a more important role in tropical tree water relations than has previously been thought, with potassium being particularly important.
Collapse
Affiliation(s)
- Demetrius Lira-Martins
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carlos Alberto Quesada
- Coordination of Environmental Dynamics, National Institute for Amazonian Research (INPA), Manaus, Brazil
| | - Stanislav Strekopytov
- Imaging and Analysis Centre, Natural History Museum, London, United Kingdom
- National Measurement Laboratory, LGC, Teddington, United Kingdom
| | | | - Bruno Herault
- UR Forests and Societies, Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (Cirad), Montpellier, France
- Université de Montpellier, Montpellier, France
- Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Ivory Coast
| | - Jon Lloyd
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Centre for Tropical, Environmental and Sustainability Sciences, College of Science and Engineering, James Cook University, Smithfield, QLD, Australia
- Faculdade de Filosofia, Ciencias e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
23
|
Ishikawa T, Shabala L, Zhou M, Venkataraman G, Yu M, Sellamuthu G, Chen ZH, Shabala S. Comparative Analysis of Root Na+ Relation under Salinity between Oryza sativa and Oryza coarctata. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050656. [PMID: 35270125 PMCID: PMC8912616 DOI: 10.3390/plants11050656] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 06/01/2023]
Abstract
Na+ toxicity is one of the major physiological constraints imposed by salinity on plant performance. At the same time, Na+ uptake may be beneficial under some circumstances as an easily accessible inorganic ion that can be used for increasing solute concentrations and maintaining cell turgor. Two rice species, Oryza sativa (cultivated rice, salt-sensitive) and Oryza coarctata (wild rice, salt-tolerant), demonstrated different strategies in controlling Na+ uptake. Glasshouse experiments and gene expression analysis suggested that salt-treated wild rice quickly increased xylem Na+ loading for osmotic adjustment but maintained a non-toxic level of stable shoot Na+ concentration by increased activity of a high affinity K+ transporter HKT1;5 (essential for xylem Na+ unloading) and a Na+/H+ exchanger NHX (for sequestering Na+ and K+ into root vacuoles). Cultivated rice prevented Na+ uptake and transport to the shoot at the beginning of salt treatment but failed to maintain it in the long term. While electrophysiological assays revealed greater net Na+ uptake upon salt application in cultivated rice, O. sativa plants showed much stronger activation of the root plasma membrane Na+/H+ Salt Overly Sensitive 1 (SOS1) exchanger. Thus, it appears that wild rice limits passive Na+ entry into root cells while cultivated rice relies heavily on SOS1-mediating Na+ exclusion, with major penalties imposed by the existence of the "futile cycle" at the plasma membrane.
Collapse
Affiliation(s)
- Tetsuya Ishikawa
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7005, Australia; (T.I.); (L.S.); (M.Z.)
| | - Lana Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7005, Australia; (T.I.); (L.S.); (M.Z.)
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7005, Australia; (T.I.); (L.S.); (M.Z.)
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India; (G.V.); (G.S.)
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China;
| | - Gothandapani Sellamuthu
- Plant Molecular Biology Laboratory, M. S. Swaminathan Research Foundation, III Cross Street, Taramani Institutional Area, Chennai 600113, India; (G.V.); (G.S.)
- Forest Molecular Entomology Lab, Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, TAS 7005, Australia; (T.I.); (L.S.); (M.Z.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China;
| |
Collapse
|
24
|
Prokofieva MY, Shuyskaya EV, Rakhmankulova ZF. Intraspecific Variability of Sedobassia sedoides Plants with Intermediate C3-C4 Type of Photosynthesis under Osmotic Stress Conditions. CONTEMP PROBL ECOL+ 2022. [DOI: 10.1134/s1995425522010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Shahzad B, Rehman A, Tanveer M, Wang L, Park SK, Ali A. Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management. JOURNAL OF PLANT GROWTH REGULATION 2022. [PMID: 0 DOI: 10.1007/s00344-021-10338-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
26
|
Shohat H, Eliaz NI, Weiss D. Gibberellin in tomato: metabolism, signaling and role in drought responses. MOLECULAR HORTICULTURE 2021; 1:15. [PMID: 37789477 PMCID: PMC10515025 DOI: 10.1186/s43897-021-00019-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/05/2021] [Indexed: 10/05/2023]
Abstract
The growth-promoting hormone gibberellin (GA) regulates numerous developmental processes throughout the plant life cycle. It also affects plant response to biotic and abiotic stresses. GA metabolism and signaling in tomato (Solanum lycopersicum) have been studied in the last three decades and major components of the pathways were characterized. These include major biosynthesis and catabolism enzymes and signaling components, such as the three GA receptors GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA protein PROCERA (PRO), the central response suppressor. The role of these components in tomato plant development and response to the environment have been investigated. Cultivated tomato, similar to many other crop plants, are susceptible to water deficiency. Numerous studies on tomato response to drought have been conducted, including the possible role of GA in tomato drought resistance. Most studies showed that reduced levels or activity of GA improves drought tolerance and drought avoidance. This review aims to provide an overview on GA biosynthesis and signaling in tomato, how drought affects these pathways and how changes in GA activity affect tomato plant response to water deficiency. It also presents the potential of using the GA pathway to generate drought-tolerant tomato plants with improved performance under both irrigation and water-limited conditions.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Natanella Illouz Eliaz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel.
| |
Collapse
|
27
|
Boughalleb F, Maaloul S, Mahmoudi M, Mabrouk M, Bakhshandeh E, Abdellaoui R. Limoniastrum guyonianum behavior under seasonal conditions fluctuations of Sabkha Aïn Maïder (Tunisia). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:305-320. [PMID: 34673320 DOI: 10.1016/j.plaphy.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
In Sabkha biotope, several environmental factors (i.e., salinity, drought, temperature, etc.) especially during dry season affect halophytes developments. To cope with these harmful conditions, halophytes use multiple mechanisms of adaptations. In this study, we focused on the effect of environmental condition changes over a year in the Sabkha of Aïn Maïder (Medenine - Tunisia) on the physiological and biochemical behavior of Limoniastrum guyonianum using a modeling approach. Our study showed that the model depicted well (R2 > 0.75) the monthly fluctuations of the studied parameters in this habitat. During the dry period (June to September), the salinity of the soil increased remarkably (high level of EC and Na+ content), resulting in high Na+ content in the aerial parts followed by a nutrient deficiency in K+, Ca2+, and Mg2+. As a result of this disruption, L. guyonianum decreased its water potential to more negative values to maintain osmotic potential using inorganic osmolytes (i.e., Na+) and organic osmolytes (i.e., sugars: sucrose, fructose, glucose, and xylitol, and organic acids: citric and malic acids). In addition, CO2 assimilation rate, stomatal conductance, transpiration rate, and photosynthetic pigments decreased significantly with increasing salinity. The phenolic compounds contents and the antioxidant activity increased significantly in the dry period as a result of increased levels of H2O2 and lipid peroxidation. This increase was highly correlated with soil salinity and air temperature. The maintenance of tissue hydration (i.e., moderate decrease of relative water content), the accumulation of sugars and organic acids, the enhancement of phenolic compounds amounts, and the increase of antioxidant activity during the dry period suggest that L. guyonianum possesses an efficient tolerance mechanism that allows the plant to withstand the seasonal fluctuations of climatic conditions in its natural biotope.
Collapse
Affiliation(s)
- Fayçal Boughalleb
- University of Gabes, Arid Regions Institute, LR16IRA03 Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, El Fjé, Medenine, Tunisia.
| | - Sameh Maaloul
- University of Gabes, Arid Regions Institute, LR16IRA03 Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, El Fjé, Medenine, Tunisia
| | - Maher Mahmoudi
- University of Gabes, Faculty of Sciences of Gabes, Tunisia
| | - Mahmoud Mabrouk
- University of Gabes, Platform Advances Analysis, Institute of Arid Regions, Medenine, Tunisia
| | - Esmaeil Bakhshandeh
- Genetics and Agricultural Biotechnology Institute of Tabarestan and Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Raoudha Abdellaoui
- University of Gabes, Arid Regions Institute, LR16IRA03 Laboratory of Rangeland Ecosystems and Valorization of Spontaneous Plants and Associated Microorganisms, El Fjé, Medenine, Tunisia
| |
Collapse
|
28
|
Hameed A, Ahmed MZ, Hussain T, Aziz I, Ahmad N, Gul B, Nielsen BL. Effects of Salinity Stress on Chloroplast Structure and Function. Cells 2021; 10:2023. [PMID: 34440792 PMCID: PMC8395010 DOI: 10.3390/cells10082023] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
Salinity is a growing problem affecting soils and agriculture in many parts of the world. The presence of salt in plant cells disrupts many basic metabolic processes, contributing to severe negative effects on plant development and growth. This review focuses on the effects of salinity on chloroplasts, including the structures and function of these organelles. Chloroplasts house various important biochemical reactions, including photosynthesis, most of which are considered essential for plant survival. Salinity can affect these reactions in a number of ways, for example, by changing the chloroplast size, number, lamellar organization, lipid and starch accumulation, and interfering with cross-membrane transportation. Research has shown that maintenance of the normal chloroplast physiology is necessary for the survival of the entire plant. Many plant species have evolved different mechanisms to withstand the harmful effects of salt-induced toxicity on their chloroplasts and its machinery. The differences depend on the plant species and growth stage and can be quite different between salt-sensitive (glycophyte) and salt-tolerant (halophyte) plants. Salt stress tolerance is a complex trait, and many aspects of salt tolerance in plants are not entirely clear yet. In this review, we discuss the different mechanisms of salt stress tolerance in plants with a special focus on chloroplast structure and its functions, including the underlying differences between glycophytes and halophytes.
Collapse
Affiliation(s)
- Abdul Hameed
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Muhammad Zaheer Ahmed
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Tabassum Hussain
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Irfan Aziz
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Niaz Ahmad
- Agricultural Biotechnology Division, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad 44000, Pakistan;
- Department of Biotechnology, Pakistan Institute of Engineering and Applied Science (PIEAS), Islamabad 44000, Pakistan
| | - Bilquees Gul
- Dr. M. Ajmal Khan Institute for Sustainable Halophyte Utilization, University of Karachi, Sindh 75270, Pakistan; (A.H.); (M.Z.A.); (T.H.); (I.A.); (B.G.)
| | - Brent L. Nielsen
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
29
|
Ahmed HAI, Shabala L, Shabala S. Understanding the mechanistic basis of adaptation of perennial Sarcocornia quinqueflora species to soil salinity. PHYSIOLOGIA PLANTARUM 2021; 172:1997-2010. [PMID: 33826749 DOI: 10.1111/ppl.13413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Succulent halophytes can be used as convenient models for understanding the mechanistic basis of plant adaptation to salt stress. In this work, effects of salinity (0-1000 mM NaCl range) on growth, ion accumulation, and stomatal features were investigated in the succulent halophyte Sarcocornia quinqueflora. Elevated salinity levels up to 400 mM NaCl largely promoted dry matter yield, succulence, shoot surface area, and stomatal characteristics. Plant growth was optimal at 200 mM NaCl and reduced at concentrations exceeding 600 mM NaCl. Osmotic adjustment in a succulent shoot was achieved by a massive accumulation of inorganic ions, with Na+ and Cl- contributing approximately 85% of its osmolality, while organic compatible solutes and K+ were responsible for only approximately 15%. Shoot K+ was unchanged across the entire range of salinity treatments (200-1000 mM NaCl) and positively correlated with the transpiration rate (R = 0.98). Carbohydrates were not reduced at high salinity compared to plants at optimal conditions, implying that growth retardation at severe salt dosages was attributed to limitations in a vacuolar Na+ and Cl- sequestrations capacity rather than inadequate photosynthesis and/or substrate limitation. It is concluded that the superior salt tolerance of S. quinqueflora is achieved by the effective reliance on Na+ and Cl- accumulation for osmoregulation and turgor maintenance, and efficient K+ homeostasis for adequate stomatal functioning over the entire salinity range. The above findings could be instrumental in developing strategies to improve salinity stress tolerance in perennial horticultural crops and optimize their water-use efficiency.
Collapse
Affiliation(s)
- Hassan Ahmed Ibraheem Ahmed
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- Department of Botany, Faculty of Science, Port Said University, Port Said, Egypt
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| |
Collapse
|
30
|
Abstract
Nowadays, crop insufficiency resulting from soil salinization is threatening the world. On the basis that soil salinization has become a worldwide problem, studying the mechanisms of plant salt tolerance is of great theoretical and practical significance to improve crop yield, to cultivate new salt-tolerant varieties, and to make full use of saline land. Based on previous studies, this paper reviews the damage of salt stress to plants, including suppression of photosynthesis, disturbance of ion homeostasis, and membrane peroxidation. We have also summarized the physiological mechanisms of salt tolerance, including reactive oxygen species (ROS) scavenging and osmotic adjustment. Four main stress-related signaling pathways, salt overly sensitive (SOS) pathway, calcium-dependent protein kinase (CDPK) pathway, mitogen-activated protein kinase (MAPKs) pathway, and abscisic acid (ABA) pathway, are included. We have also enumerated some salt stress-responsive genes that correspond to physiological mechanisms. In the end, we have outlined the present approaches and techniques to improve salt tolerance of plants. All in all, we reviewed those aspects above, in the hope of providing valuable background knowledge for the future cultivation of agricultural and forestry plants.
Collapse
|
31
|
Fedorova EE, Coba de la Peña T, Lara-Dampier V, Trifonova NA, Kulikova O, Pueyo JJ, Lucas MM. Potassium content diminishes in infected cells of Medicago truncatula nodules due to the mislocation of channels MtAKT1 and MtSKOR/GORK. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1336-1348. [PMID: 33130893 PMCID: PMC7904148 DOI: 10.1093/jxb/eraa508] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 12/03/2020] [Indexed: 05/26/2023]
Abstract
Rhizobia establish a symbiotic relationship with legumes that results in the formation of root nodules, where bacteria encapsulated by a membrane of plant origin (symbiosomes), convert atmospheric nitrogen into ammonia. Nodules are more sensitive to ionic stresses than the host plant itself. We hypothesize that such a high vulnerability might be due to defects in ion balance in the infected tissue. Low temperature SEM (LTSEM) and X-ray microanalysis of Medicago truncatula nodules revealed a potassium (K+) decrease in symbiosomes and vacuoles during the life span of infected cells. To clarify K+ homeostasis in the nodule, we performed phylogenetic and gene expression analyses, and confocal and electron microscopy localization of two key plant Shaker K+ channels, AKT1 and SKOR/GORK. Phylogenetic analyses showed that the genome of some legume species, including the Medicago genus, contained one SKOR/GORK and one AKT1 gene copy, while other species contained more than one copy of each gene. Localization studies revealed mistargeting and partial depletion of both channels from the plasma membrane of M. truncatula mature nodule-infected cells that might compromise ion transport. We propose that root nodule-infected cells have defects in K+ balance due to mislocation of some plant ion channels, as compared with non-infected cells. The putative consequences are discussed.
Collapse
Affiliation(s)
- Elena E Fedorova
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | | | - Natalia A Trifonova
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | | | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
32
|
Synergistic effects of endolysin Lysqdvp001 and ε-poly-lysine in controlling Vibrio parahaemolyticus and its biofilms. Int J Food Microbiol 2021; 343:109112. [PMID: 33640572 DOI: 10.1016/j.ijfoodmicro.2021.109112] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/10/2021] [Indexed: 11/23/2022]
Abstract
The synergistic antibacterial effects between endolysin Lysqdvp001 and ε-poly-lysine (ε-PL) against Vibrio parahaemolyticus (V. parahaemolyticus) were investigated in this study. Lysqdvp001 combined with ε-PL exhibited a strong antibacterial synergism against V. parahaemolyticus. The combinations of Lysqdvp001 (≥60 U/mL) and ε-PL (≥0.2 mg/mL) dramatically decreased cell density of the bacterial suspensions at both 25 °C and 37 °C. Surface zeta potential increment and membrane hyperpolarization of V. parahaemolyticus were observed after treatment by ε-PL and its combination with Lysqdvp001. More β-lactamase and β-galactosidase were leaked from V. parahaemolyticus with combined treatment of Lysqdvp001 and ε-PL than from the bacteria treated with single Lysqdvp001 or ε-PL. Fluorescence and transmission electron microscope revealed that Lysqdvp001 and ε-PL synergistically induced the damage and morphological destruction of V. parahaemolyticus cells. When applying in Gadus macrocephalus, Penaeus orientalis and oyster, the two antimicrobials' cocktail allowed for 3.75, 4.16 and 2.50 log10CFU/g reductions of V. parahaemolyticus, respectively. Besides, Lysqdvp001 in combination with ε-PL removed approximately 44%-68% of V. parahaemolyticus biofilms on polystyrene, glass and stainless steel surfaces. These results demonstrated that Lysqdvp001 and ε-PL might be used together for controlling V. parahaemolyticus and the bacterial biofilms in food industry.
Collapse
|
33
|
Genome Insights into the Novel Species Jejubacter calystegiae, a Plant Growth-Promoting Bacterium in Saline Conditions. DIVERSITY 2021. [DOI: 10.3390/d13010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Jejubacter calystegiae KSNA2T, a moderately halophilic, endophytic bacterium isolated from beach morning glory (Calystegia soldanella), was determined to be a novel species in a new genus in the family Enterobacteriaceae. To gain insights into the genetic basis of the salinity stress response of strain KSNA2T, we sequenced its genome using two complementary sequencing platforms (Illumina HiSeq and PacBio RSII). The genome contains a repertoire of metabolic pathways, such as those for nitrogen, phosphorus, and some amino acid metabolism pathways. Functional annotation of the KSNA2T genome revealed several genes involved in salt tolerance pathways, such as those encoding sodium transporters, potassium transporters, and osmoprotectant enzymes. Plant growth-promoting bacteria-based experiments indicated that strain KSNA2T promotes the germination of vegetable seeds in saline conditions. Overall, the genetic and biological analyses of strain KSNA2T provide valuable insights into bacteria-mediated salt tolerance in agriculture.
Collapse
|
34
|
Cui YN, Li XT, Yuan JZ, Wang FZ, Guo H, Xia ZR, Wang SM, Ma Q. Chloride is beneficial for growth of the xerophyte Pugionium cornutum by enhancing osmotic adjustment capacity under salt and drought stresses. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4215-4231. [PMID: 32219322 PMCID: PMC7337195 DOI: 10.1093/jxb/eraa158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/25/2020] [Indexed: 05/11/2023]
Abstract
Chloride (Cl-) is pervasive in saline soils, and research on its influence on plants has mainly focused on its role as an essential nutrient and its toxicity when excessive accumulation occurs. However, the possible functions of Cl- in plants adapting to abiotic stresses have not been well documented. Previous studies have shown that the salt tolerance of the xerophytic species Pugionium cornutum might be related to high Cl- accumulation. In this study, we investigated the Cl--tolerant characteristics and possible physiological functions of Cl- in the salt tolerance and drought resistance of P. cornutum. We found that P. cornutum can accumulate a large amount of Cl- in its shoots, facilitating osmotic adjustment and turgor generation under saline conditions. Application of DIDS (4,4´-diisothiocyanostilbene-2,2´-disulfonic acid), a blocker of anion channels, significantly inhibited Cl- uptake, and decreased both the Cl- content and its contribution to leaf osmotic adjustment, resulting in the exacerbation of growth inhibition in response to NaCl. Unlike glycophytes, P. cornutum was able to maintain NO3- homeostasis in its shoots when large amounts of Cl- were absorbed and accumulated. The addition of NaCl mitigated the deleterious effects of osmotic stress on P. cornutum because Cl- accumulation elicited a strong osmotic adjustment capacity. These findings suggest that P. cornutum is a Cl--tolerant species that can absorb and accumulate Cl- to improve growth under salt and drought stresses.
Collapse
Affiliation(s)
- Yan-Nong Cui
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Xiao-Ting Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Jian-Zhen Yuan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Fang-Zhen Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Huan Guo
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Zeng-Run Xia
- Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Laboratory of Se-enriched Food Development, Ankang R&D Center for Se-enriched Products, Ankang Shaanxi, P. R. China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
| | - Qing Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, P. R. China
- Correspondence:
| |
Collapse
|
35
|
Zhao C, Zhang H, Song C, Zhu JK, Shabala S. Mechanisms of Plant Responses and Adaptation to Soil Salinity. Innovation (N Y) 2020; 1:100017. [PMID: 34557705 PMCID: PMC8454569 DOI: 10.1016/j.xinn.2020.100017] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Soil salinity is a major environmental stress that restricts the growth and yield of crops. Understanding the physiological, metabolic, and biochemical responses of plants to salt stress and mining the salt tolerance-associated genetic resource in nature will be extremely important for us to cultivate salt-tolerant crops. In this review, we provide a comprehensive summary of the mechanisms of salt stress responses in plants, including salt stress-triggered physiological responses, oxidative stress, salt stress sensing and signaling pathways, organellar stress, ion homeostasis, hormonal and gene expression regulation, metabolic changes, as well as salt tolerance mechanisms in halophytes. Important questions regarding salt tolerance that need to be addressed in the future are discussed.
Collapse
Affiliation(s)
- Chunzhao Zhao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Heng Zhang
- State Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chunpeng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
36
|
Ishikawa T, Shabala S. Control of xylem Na + loading and transport to the shoot in rice and barley as a determinant of differential salinity stress tolerance. PHYSIOLOGIA PLANTARUM 2019; 165:619-631. [PMID: 29761494 DOI: 10.1111/ppl.12758] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Control of xylem Na+ loading has often been named as the essential component of salinity tolerance mechanism. However, it is less clear to what extent the difference in this trait may determine differential salinity tolerance between species. In this study, barley (Hordeum vulgare L. cv. CM72) and rice (Oryza sativa L. cv. Dongjin) plants were grown under two levels of salinity. Na+ and K+ concentrations in the xylem sap, and shoot and root tissues were measured at different time points after stress onset. Salt-exposed rice plants prevented xylem Na+ loading for several days, but failed to control this process in the longer term, ultimately resulting in a massive Na+ shoot loading. Barley plants quickly increased xylem Na+ concentration and its delivery to the shoot (most likely for the purpose of osmotic adjustment) but were able to reduce this process later on, keeping most of accumulated Na+ in the root, thus maintaining non-toxic shoot Na+ level. Rice plants increased shoot K+ concentration, while barley plants maintained higher root K+ concentration. Control of xylem Na+ loading is remarkably different between rice and barley; this difference may differentiate the extent of the salinity tolerance between species. This trait should be investigated in more detail to be used in the breeding programs aimed to improve salinity tolerance in crops.
Collapse
Affiliation(s)
- Tetsuya Ishikawa
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania 7001, Australia
- Department of Horticulture, Foshan University, Foshan 528000, China
| |
Collapse
|
37
|
Khaleque HN, González C, Shafique R, Kaksonen AH, Holmes DS, Watkin ELJ. Uncovering the Mechanisms of Halotolerance in the Extremely Acidophilic Members of the Acidihalobacter Genus Through Comparative Genome Analysis. Front Microbiol 2019; 10:155. [PMID: 30853944 PMCID: PMC6396713 DOI: 10.3389/fmicb.2019.00155] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
There are few naturally occurring environments where both acid and salinity stress exist together, consequently, there has been little evolutionary pressure for microorganisms to develop systems that enable them to deal with both stresses simultaneously. Members of the genus Acidihalobacter are iron- and sulfur-oxidizing, halotolerant acidophiles that have developed the ability to tolerate acid and saline stress and, therefore, have the potential to bioleach ores with brackish or saline process waters under acidic conditions. The genus consists of four members, A. prosperus DSM 5130T, A. prosperus DSM 14174, A. prosperus F5 and "A. ferrooxidans" DSM 14175. An in depth genome comparison was undertaken in order to provide a more comprehensive description of the mechanisms of halotolerance used by the different members of this genus. Pangenome analysis identified 29, 3 and 9 protein families related to halotolerance in the core, dispensable and unique genomes, respectively. The genes for halotolerance showed Ka/Ks ratios between 0 and 0.2, confirming that they are conserved and stabilized. All the Acidihalobacter genomes contained similar genes for the synthesis and transport of ectoine, which was recently found to be the dominant osmoprotectant in A. prosperus DSM 14174 and A. prosperus DSM 5130T. Similarities also existed in genes encoding low affinity potassium pumps, however, A. prosperus DSM 14174 was also found to contain genes encoding high affinity potassium pumps. Furthermore, only A. prosperus DSM 5130T and "A. ferrooxidans" DSM 14175 contained genes allowing the uptake of taurine as an osmoprotectant. Variations were also seen in genes encoding proteins involved in the synthesis and/or transport of periplasmic glucans, sucrose, proline, and glycine betaine. This suggests that versatility exists in the Acidihalobacter genus in terms of the mechanisms they can use for halotolerance. This information is useful for developing hypotheses for the search for life on exoplanets and moons.
Collapse
Affiliation(s)
- Himel N. Khaleque
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- CSIRO Land and Water, Floreat, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
| | | | | | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Elizabeth L. J. Watkin
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
38
|
Waqas M, Yaning C, Iqbal H, Shareef M, Ur Rehman H, Iqbal S, Mahmood S. Soil drenching of paclobutrazol: An efficient way to improve quinoa performance under salinity. PHYSIOLOGIA PLANTARUM 2019; 165:219-231. [PMID: 30133704 DOI: 10.1111/ppl.12820] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/08/2018] [Accepted: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Salinity extent and severity is rising because of poor management practices on agricultural lands, possibility lies to grow salt-tolerant crops with better management techniques. Therefore, a highly nutritive salt-tolerant crop quinoa with immense potential to contribute for future food security was selected for this investigation. Soil drenching of paclobutrazol (PBZ; 20 mg l-1 ) was used to understand the ionic relations, gaseous exchange characteristics, oxidative defense system and yield under saline conditions (400 mM NaCl) including normal (0 mM NaCl) and no PBZ (0 mg l-1 ) as controls. The results revealed that salinity stress reduced the growth and yield of quinoa through perturbing ionic homeostasis with the consequences of overproduction of reactive oxygen species (ROS), oxidative damages and reduced photosynthesis. PBZ improved the quinoa performance through regulation of ionic homeostasis by decreasing Na+ , Cl- , while improving K+ , Mg2+ and Ca2+ concentration. It also enhanced the antioxidative system including ascorbic acid, phenylalanine ammonia-lyase, polyphenol oxidase and glutathione peroxidase, which scavenged the ROS (H2 O2 and O2 •- ) and lowered the oxidative damages (malondialdehyde level) under salinity in roots and more specifically in leaf tissues. The photosynthetic rate and stomatal conductance consequently improved (16 and 21%, respectively) in salt-stressed quinoa PBZ-treated compared to the non-treated ones and contributed to the improvement of panicle length (33%), 100-grain weight (8%) and grain yield (38%). Therefore, PBZ can be opted as a shotgun approach to improve quinoa performance and other crops under high saline conditions.
Collapse
Affiliation(s)
- Muhammad Waqas
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Institute of Ecology and Geography, University of Chinese Academy of Sciences, Beijing, China
| | - Chen Yaning
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hassan Iqbal
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Institute of Ecology and Geography, University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shareef
- Xinjiang Institute of Ecology and Geography, University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hafeez Ur Rehman
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Shahid Iqbal
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Sajid Mahmood
- Rapid Soil Fertility Survey and Soil Testing Institute Punjab, Lahore, Pakistan
| |
Collapse
|
39
|
Cui YN, Xia ZR, Ma Q, Wang WY, Chai WW, Wang SM. The synergistic effects of sodium and potassium on the xerophyte Apocynum venetum in response to drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:489-498. [PMID: 30447942 DOI: 10.1016/j.plaphy.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/27/2018] [Accepted: 11/08/2018] [Indexed: 06/09/2023]
Abstract
Apocynum venetum is an eco-economic plant species with high adaptability to saline and arid environments. Our previous work has found that A. venetum could absorb large amount of Na+ and maintain high K+ level under saline conditions. To investigate whether K+ and Na+ could simultaneously enhance drought resistance in A. venetum, seedlings were exposed to osmotic stress (-0.2 MPa) in the presence or absence of additional 25 mM NaCl under low (0.01 mM) and normal (2.5 mM) K+ supplying conditions, respectively. The results showed that A. venetum should be considered as a typical K+-efficient species since its growth was unimpaired and possessed a strong K+ uptake and prominent K+ utilization efficiency under K+ deficiency condition. Leaf K+ concentration remained stable or was even significantly increased under osmotic stress in the presence or absence of NaCl, compared with that under control condition, regardless of whether the K+ supply was sufficient or not, and the contribution of K+ to leaf osmotic potential consistently exceeded 37%, indicating K+ is the uppermost contributor to osmotic adjustment of A. venetum. Under osmotic stress, the addition of 25 mM NaCl significantly increase Na+ accumulation in leaves and the contribution of Na+ to osmotic adjustment, thus improving the relative water content, concomitantly, promoting the photosynthetic activity resulting in an enhancement of overall plant growth. These findings suggested that, K+ and Na+ simultaneously play crucial roles in the osmotic adjustment and the maintenance of water status and photosynthetic activity, which is beneficial for A. venetum to cope with drought stress.
Collapse
Affiliation(s)
- Yan-Nong Cui
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Zeng-Run Xia
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China; Ankang R&D Center of Se-enriched Products, Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture, Ankang, Shaanxi, 725000, PR China
| | - Qing Ma
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Wen-Ying Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Wei-Wei Chai
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
40
|
The Synergistic Antibacterial Properties of Glycinin Basic Peptide against Bacteria via Membrane Damage and Inactivation of Enzymes. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-018-09564-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
41
|
Shaar‐Moshe L, Hayouka R, Roessner U, Peleg Z. Phenotypic and metabolic plasticity shapes life-history strategies under combinations of abiotic stresses. PLANT DIRECT 2019; 3:e00113. [PMID: 31245755 PMCID: PMC6508786 DOI: 10.1002/pld3.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/11/2018] [Accepted: 12/23/2018] [Indexed: 05/23/2023]
Abstract
Plants developed various reversible and non-reversible acclimation mechanisms to cope with the multifaceted nature of abiotic-stress combinations. We hypothesized that in order to endure these stress combinations, plants elicit distinctive acclimation strategies through specific trade-offs between reproduction and defense. To investigate Brachypodium distachyon acclimation strategies to combinations of salinity, drought and heat, we applied a system biology approach, integrating physiological, metabolic, and transcriptional analyses. We analyzed the trade-offs among functional and performance traits, and their effects on plant fitness. A combination of drought and heat resulted in escape strategy, while under a combination of salinity and heat, plants exhibited an avoidance strategy. On the other hand, under combinations of salinity and drought, with or without heat stress, plant fitness (i.e., germination rate of subsequent generation) was severely impaired. These results indicate that under combined stresses, plants' life-history strategies were shaped by the limits of phenotypic and metabolic plasticity and the trade-offs between traits, thereby giving raise to distinct acclimations. Our findings provide a mechanistic understanding of plant acclimations to combinations of abiotic stresses and shed light on the different life-history strategies that can contribute to grass fitness and possibly to their dispersion under changing environments.
Collapse
Affiliation(s)
- Lidor Shaar‐Moshe
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| | - Ruchama Hayouka
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| | - Ute Roessner
- School of BioSciencesThe University of MelbourneMelbourneAustralia
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovotIsrael
| |
Collapse
|
42
|
Antifungal Actions of Glycinin Basic Peptide against Aspergillus niger through the Collaborative Damage to Cell Membrane and Mitochondria. FOOD BIOPHYS 2018. [DOI: 10.1007/s11483-018-9561-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Iqbal H, Yaning C, Waqas M, Shareef M, Raza ST. Differential response of quinoa genotypes to drought and foliage-applied H 2O 2 in relation to oxidative damage, osmotic adjustment and antioxidant capacity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:344-354. [PMID: 30130733 DOI: 10.1016/j.ecoenv.2018.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/28/2018] [Accepted: 08/01/2018] [Indexed: 05/21/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.), a highly nutritious grain crop, is resistant to abiotic stresses (drought, salinity, and cold) and offers an alternate crop to endure harsh environmental conditions under the face of climate change. Naturally, quinoa genome displays a wide degree of variabilities in drought tolerance strategies. Therefore, the present study was designed to investigate drought tolerance variations and stress tolerance enhancement in four quinoa genotypes (Pichaman, Colorado-407D, IESP and 2-Want) thorough foliage-applied H2O2 with the purpose of identifying suitable genotype for water limited environments. The plants were exposed to two watering regimes (75% and 30% pot WHC) and foliage-applied H2O2 treatments (15 mM). The drought stress significantly reduced plant growth, relative water contents, chlorophyll and carotenoids contents and increased ROS production (H2O2 and O2•-) resulting in higher oxidative damage in all quinoa genotypes. Besides, drought stress significantly enhanced the antioxidants (SOD, PPO, and PAL) activity, total soluble sugars, proline, AsA contents and increased the total accumulation of measured inorganic ions in all quinoa genotypes. The PCA analysis indicated that parameters related to osmotic adjustment and antioxidant capacity were more pronounced in 2-Want and IESP genotypes, while parameters depicting oxidative damage were higher in Colorado-407D and more specifically in Pichaman. However, foliage-applied H2O2 effectively improved the osmolytes accumulation, antioxidants activity and K+/Na+ ratio which increased water relations, reduced lipid peroxidation and ultimately resulted in higher plant growth. Overall, 2-Want and IESP genotypes were found relatively more drought resistant, while exogenous application of H2O2 can be opted for more improvement in osmotic adjustment and antioxidant system, which may further enhance drought tolerance, even in sensitive genotypes of quinoa, such as Pichaman.
Collapse
Affiliation(s)
- Hassan Iqbal
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Chen Yaning
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Muhammad Waqas
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shareef
- Key Laboratory of Biography and Bio Resource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China; University of Chinese Academy of Sciences, Beijing, China
| | - Syed Turab Raza
- University of Chinese Academy of Sciences, Beijing, China; Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
44
|
Pretreatment with NaCl Promotes the Seed Germination of White Clover by Affecting Endogenous Phytohormones, Metabolic Regulation, and Dehydrin-Encoded Genes Expression under Water Stress. Int J Mol Sci 2018; 19:ijms19113570. [PMID: 30424572 PMCID: PMC6274820 DOI: 10.3390/ijms19113570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/03/2018] [Accepted: 11/09/2018] [Indexed: 01/01/2023] Open
Abstract
This study was designed to examine the effects of NaCl pretreatment on the seed germination of white clover (Trifolium repens cv. Ladino) under water stress induced by 19% polyethylene glycol (PEG) 6000. Lower concentrations of NaCl (0.5, 1, and 2.5 mM) pretreatment significantly alleviated stress-induced decreases in germination percentage, germination vigor, germination index, and radicle length of seedlings after seven days of germination under water stress. The soaking with 1 mM of NaCl exhibited most the pronounced effects on improving seed germination and alleviating stress damage. NaCl-induced seeds germination and growth could be associated with the increases in endogenous gibberellic acid (GA) and indole-3-acetic acid (IAA) levels through activating amylases leading to improved amylolysis under water stress. Seedlings pretreated with NaCl had a significantly lower osmotic potential than untreated seedlings during seed germination, which could be related to significantly higher soluble sugars and free proline content in NaCl-treated seedlings under water stress. For antioxidant metabolism, NaCl pretreatment mainly improved superoxide dismutase, peroxidase, ascorbate peroxidase, and glutathione reductase activities, transcript levels of FeSOD, APX, and DHAR, and the content of ascorbic acid, reduced glutathione, and oxidized glutathione during seed germination under water stress. The results indicated that seeds soaking with NaCl could remarkably enhance antioxidant metabolism, thereby decreasing the accumulation of reactive oxygen species and membrane lipid peroxidation during germination under water stress. In addition, NaCl-upregulated dehydrin-encoded genes SK2 expression could be another important mechanism of drought tolerance during seeds germination of white clover in response to water stress.
Collapse
|
45
|
Wu H, Shabala L, Azzarello E, Huang Y, Pandolfi C, Su N, Wu Q, Cai S, Bazihizina N, Wang L, Zhou M, Mancuso S, Chen Z, Shabala S. Na+ extrusion from the cytosol and tissue-specific Na+ sequestration in roots confer differential salt stress tolerance between durum and bread wheat. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3987-4001. [PMID: 29897491 PMCID: PMC6054258 DOI: 10.1093/jxb/ery194] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/21/2018] [Indexed: 05/25/2023]
Abstract
The progress in plant breeding for salinity stress tolerance is handicapped by the lack of understanding of the specificity of salt stress signalling and adaptation at the cellular and tissue levels. In this study, we used electrophysiological, fluorescence imaging, and real-time quantitative PCR tools to elucidate the essentiality of the cytosolic Na+ extrusion in functionally different root zones (elongation, meristem, and mature) in a large number of bread and durum wheat accessions. We show that the difference in the root's ability for vacuolar Na+ sequestration in the mature zone may explain differential salinity stress tolerance between salt-sensitive durum and salt-tolerant bread wheat species. Bread wheat genotypes also had on average 30% higher capacity for net Na+ efflux from the root elongation zone, providing the first direct evidence for the essentiality of the root salt exclusion trait at the cellular level. At the same time, cytosolic Na+ accumulation in the root meristem was significantly higher in bread wheat, leading to the suggestion that this tissue may harbour a putative salt sensor. This hypothesis was then tested by investigating patterns of Na+ distribution and the relative expression level of several key genes related to Na+ transport in leaves in plants with intact roots and in those in which the root meristems were removed. We show that tampering with this sensing mechanism has resulted in a salt-sensitive phenotype, largely due to compromising the plant's ability to sequester Na+ in mesophyll cell vacuoles. The implications of these findings for plant breeding for salinity stress tolerance are discussed.
Collapse
Affiliation(s)
- Honghong Wu
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| | - Elisa Azzarello
- Department of Horticulture, University of Florence, Sesto Fiorentino, Italy
| | - Yuqing Huang
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Camilla Pandolfi
- Department of Horticulture, University of Florence, Sesto Fiorentino, Italy
| | - Nana Su
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| | - Qi Wu
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| | - Shengguan Cai
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Nadia Bazihizina
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
- Department of Horticulture, University of Florence, Sesto Fiorentino, Italy
| | - Lu Wang
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| | - Stefano Mancuso
- Department of Horticulture, University of Florence, Sesto Fiorentino, Italy
| | - Zhonghua Chen
- School of Science and Health, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag, Hobart, Tasmania, Australia
| |
Collapse
|
46
|
Al Hassan M, Estrelles E, Soriano P, López-Gresa MP, Bellés JM, Boscaiu M, Vicente O. Unraveling Salt Tolerance Mechanisms in Halophytes: A Comparative Study on Four Mediterranean Limonium Species with Different Geographic Distribution Patterns. FRONTIERS IN PLANT SCIENCE 2017; 8:1438. [PMID: 28861106 PMCID: PMC5562691 DOI: 10.3389/fpls.2017.01438] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/03/2017] [Indexed: 05/23/2023]
Abstract
We have performed an extensive study on the responses to salt stress in four related Limonium halophytes with different geographic distribution patterns, during seed germination and early vegetative growth. The aims of the work were twofold: to establish the basis for the different chorology of these species, and to identify relevant mechanisms of salt tolerance dependent on the control of ion transport and osmolyte accumulation. Seeds were germinated in vitro, in the presence of increasing NaCl concentrations, and subjected to "recovery of germination" tests; germination percentages and velocity were determined to establish the relative tolerance and competitiveness of the four Limonium taxa. Salt treatments were also applied to young plants, by 1-month irrigation with NaCl up to 800 mM; then, growth parameters, levels of monovalent and divalent ions (in roots and leaves), and leaf contents of photosynthetic pigments and common osmolytes were determined in control and stressed plants of the four species. Seed germination is the most salt-sensitive developmental phase in Limonium. The different germination behavior of the investigated species appears to be responsible for their geographical range size: L. narbonense and L. virgatum, widespread throughout the Mediterranean, are the most tolerant and the most competitive at higher soil salinities; the endemic L. santapolense and L. girardianum are the most sensitive and more competitive only at lower salinities. During early vegetative growth, all taxa showed a strong tolerance to salt stress, although slightly higher in L. virgatum and L. santapolense. Salt tolerance is based on the efficient transport of Na+ and Cl- to the leaves and on the accumulation of fructose and proline for osmotic adjustment. Despite some species-specific quantitative differences, the accumulation patterns of the different ions were similar in all species, not explaining differences in tolerance, except for the apparent activation of K+ transport to the leaves at high external salinity, observed only in the most tolerant L. narbonense and L. virgatum. This specific response may be therefore relevant for salt tolerance in Limonium. The ecological implications of these results, which can contribute to a more efficient management of salt marshes conservation/regeneration programs, are also discussed.
Collapse
Affiliation(s)
- Mohamad Al Hassan
- Instituto de Biología Molecular y Celular de Plantas, (UPV-CSIC), Universitat Politècnica de ValènciaValencia, Spain
| | - Elena Estrelles
- Jardín Botánico—ICBiBE, Universitat de ValènciaValencia, Spain
| | - Pilar Soriano
- Jardín Botánico—ICBiBE, Universitat de ValènciaValencia, Spain
| | - María P. López-Gresa
- Instituto de Biología Molecular y Celular de Plantas, (UPV-CSIC), Universitat Politècnica de ValènciaValencia, Spain
| | - José M. Bellés
- Instituto de Biología Molecular y Celular de Plantas, (UPV-CSIC), Universitat Politècnica de ValènciaValencia, Spain
| | - Monica Boscaiu
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de ValènciaValencia, Spain
| | - Oscar Vicente
- Instituto de Biología Molecular y Celular de Plantas, (UPV-CSIC), Universitat Politècnica de ValènciaValencia, Spain
| |
Collapse
|
47
|
Jeong DW, Heo S, Ryu S, Blom J, Lee JH. Genomic insights into the virulence and salt tolerance of Staphylococcus equorum. Sci Rep 2017; 7:5383. [PMID: 28710456 PMCID: PMC5511256 DOI: 10.1038/s41598-017-05918-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022] Open
Abstract
To shed light on the genetic background behind the virulence and salt tolerance of Staphylococcus equorum, we performed comparative genome analysis of six S. equorum strains. Data on four previously published genome sequences were obtained from the NCBI database, while those on strain KM1031 displaying resistance to multiple antibiotics and strain C2014 causing haemolysis were determined in this study. Examination of the pan-genome of five of the six S. equorum strains showed that the conserved core genome retained the genes for general physiological processes and survival of the species. In this comparative genomic analysis, the factors that distinguish the strains from each other, including acquired genomic factors in mobile elements, were identified. Additionally, the high salt tolerance of strains enabling growth at a NaCl concentration of 25% (w/v) was attributed to the genes encoding potassium voltage-gated channels. Among the six strains, KS1039 does not possess any of the functional virulence determinants expressed in the other strains.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Sojeong Heo
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jochen Blom
- Bioinformatics and System Biology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea.
| |
Collapse
|
48
|
Tanveer M, Shah AN. An insight into salt stress tolerance mechanisms of Chenopodium album. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16531-16535. [PMID: 28589277 DOI: 10.1007/s11356-017-9337-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/22/2017] [Indexed: 05/27/2023]
Abstract
Salt stress is one of the most dramatic abiotic stresses that induce oxidative and osmotic stress simultaneously. Salt stress is known to be more effective in reducing growth and yield of glycophytes; however, halophytes are able to withstand salt stress. Nonetheless, variability exists among different halophytic plants species from different plant families. Chenopodium album belongs to Chenopodiacea family and is known as weed in many regions of world; however, it is a very interesting halophytic plant. Little research has conducted so far by considering C. album as model plant to study salt stress tolerance mechanisms. This article attempts to compile current literature in order to explain C. album salt stress tolerance mechanism and to highlight the knowledge gap relating to salt stress tolerance mechanism in C. album. Briefly, C. album has remarkable ability of seed dimorphism, sodium exclusion, and potassium retention. C. album further tolerates salt stress by increasing redox potential associated with high production of osmolytes and antioxidants.
Collapse
Affiliation(s)
- Mohsin Tanveer
- School of Land and Food, University of Tasmania, Hobart, Australia.
| | - Adnan Noor Shah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
49
|
Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. PLANT, CELL & ENVIRONMENT 2017; 40:4-10. [PMID: 27417527 DOI: 10.1111/pce.12800] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/08/2016] [Accepted: 07/11/2016] [Indexed: 05/03/2023]
Abstract
Osmotic adjustment (OA) and cellular compatible solute accumulation are widely recognized to have a role in plant adaptation to dehydration mainly through turgor maintenance and the protection of specific cellular functions by defined solutes. At the same time, there has been an ongoing trickle of skepticism in the literature about the role of OA in supporting crop yield under drought stress. Contrarian reviews argued that OA did not sustain turgor or that it served mainly for plant survival rather than productivity. This critical review examined 26 published studies where OA was compared with yield under drought stress in variable genotypes of 12 crops, namely, barley, wheat, maize, sorghum, chickpea, pea, pigeon pea, soybean, canola, mustard, castor bean and sunflower. Over all crops a positive and significant association between OA and yield under drought stress were found in 24 out of 26 cases. Considering that it is generally difficult to find a singular plant trait responsible for yield advantage of numerous crops under different drought stress conditions, this evidence is no less than remarkable as proof that OA sustains crop yield under drought stress.
Collapse
Affiliation(s)
- Abraham Blum
- Plantstress.com, PO Box 16246, Tel Aviv, 62641, Israel
| |
Collapse
|
50
|
Bojórquez-Quintal E, Ruiz-Lau N, Velarde-Buendía A, Echevarría-Machado I, Pottosin I, Martínez-Estévez M. Natural variation in primary root growth and K + retention in roots of habanero pepper (Capsicum chinense) under salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1114-1125. [PMID: 32480531 DOI: 10.1071/fp15391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 07/24/2016] [Indexed: 06/11/2023]
Abstract
In this work, we analysed the natural variation in mechanisms for protection against salt stress in pepper varieties (Capsicum chinense Jacq. cv. Rex, Chichen-Itza and Naranja and Capsicum annuum L. cv. Padron), considering primary root growth and viability of the post-stressed seedlings. NaCl-induced K+ and H+ efflux in roots was also studied by ion-selective microelectrodes under application of pharmacological agents. In these pepper varieties, the magnitude of the K+ leakage in the roots positively correlated with growth inhibition of the primary root in the presence of NaCl, with Rex variety showing a higher level of tolerance than Chichen-Itza. The K+ leakage and the activity of the H+ pump in the roots were dependent on the NaCl concentration. Pharmacological analysis indicated that the NaCl-induced K+ leakage was mediated by TEA+-sensitive KOR channels but not by NSCC channels. In addition, we present evidence for the possible participation of proline, and a Na+-insensitive HAK K+ transporter expressed in habanero pepper roots for maintaining K+ homeostasis under salt stress conditions.
Collapse
Affiliation(s)
- Emanuel Bojórquez-Quintal
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Yucatán, México
| | - Nancy Ruiz-Lau
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Yucatán, México
| | - Ana Velarde-Buendía
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Yucatán, México
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, México
| | - Manuel Martínez-Estévez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Yucatán, México
| |
Collapse
|