1
|
Cai W, Yan Q, Deng Y, Guo Y. The correlation of bisphenol A exposure on inflammatory cytokines in preschool children. Cytokine 2025; 186:156835. [PMID: 39689452 DOI: 10.1016/j.cyto.2024.156835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE Based on current evidence suggesting that bisphenol A (BPA) may contribute to obesity through the modulation of inflammatory markers, this study aims to investigate the correlation between BPA exposure and cellular inflammatory factors in preschool children. METHODS A total of 155 preschool children aged 4-6 years were included. Urine and blood samples were collected. BPA exposure was detected by liquid chromatography-tandem mass spectrometry through urine samples. The levels of six inflammatory cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α, and IFN-γ) were determined by flow fluorescence technique. The correlation between urinary BPA exposure and cellular inflammatory factors was analyzed using Spearman's correlation and respectively stratified by gender and BMI. RESULTS The detection rate of BPA in urine samples was 100 %. The median urinary BPA concentration was 0.48 μg/L(IQR:0.25-1.02 μg/L), and the creatinine-adjusted BPA concentration was 0.94 μg/g(IQR:0.57-1.66 μg/g). BPA level was negatively correlated with IL-10 (r = -0.172, P < 0.05). After stratification by gender, the negative association between BPA exposure and IL-10 was found in females (r = -0.257, P < 0.05), while no association was found in males. According to BMI stratification, BPA exposure in overweight/obese children was positively correlated with IL-6 (r = 0.354, P < 0.05). CONCLUSIONS Our study demonstrated that BPA exposure in preschool children was correlated with a decrease in levels of IL-10, and this effect was significantly expressed in girls. In addition, BPA exposure in overweight/obese children was correlated with increased levels of IL-6. However, the mechanism between BPA and inflammatory factors remains to be further explored.
Collapse
Affiliation(s)
- Wenya Cai
- Department of Public Health, Guangzhou Medical University, Guangzhou 511436, China; Department of Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Qingshan Yan
- Department of Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China; Department of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China
| | - Yuhong Deng
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Yong Guo
- Department of Public Health, Guangzhou Medical University, Guangzhou 511436, China; Department of Health Care, Guangdong Women and Children Hospital, Guangzhou 511442, China
| |
Collapse
|
2
|
Bozec J, Rousseau-Ralliard D, Jouneau L, Prézelin A, Dahirel M, Richard C, Gelin V, Fournier N, Helies V, Joly T, El Fouikar S, Léandri R, Chavatte-Palmer P, Couturier-Tarrade A. Preconception and/or preimplantation exposure to a mixture of environmental contaminants altered fetoplacental development and placental function in a rabbit model. ENVIRONMENTAL RESEARCH 2024; 262:119829. [PMID: 39179140 DOI: 10.1016/j.envres.2024.119829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Pregnant women are daily exposed to environmental contaminants, including endocrine disruptors that can impact the offspring's health. This study aimed to evaluate the effects of maternal oral exposure to a mixture of contaminants at a dose mimicking women's exposure, during folliculogenesis and/or preimplantation period (FED and ED groups, respectively) on the fetoplacental phenotype in a rabbit model. The mixture (DEHP, pp'DDE, β-HCH, HCB, BDE-47, BPS, PFOS, PFOA) was defined based on data from HELIX and INMA cohorts. FED and ED females or unexposed females (control) were inseminated, their embryos were collected and transferred to unexposed control recipient rabbits at 80 h post-insemination. The effects of maternal FED and ED exposure were evaluated on fetoplacental growth and development by ultrasound, fetoplacental biometry, fetal metabolism, placental structure and function. The results demonstrated that the mixture weakly affected ultrasound measurements, as only placental volume increased significantly in FED vs ED. Analysis of placental structure demonstrated that the volume fraction of the maternal blood space was increased in FED vs control. Pre- and/or periconception exposure did not affect biometric at the end of gestation, but affected FED fetal biochemistry. Plasma triglyceride concentration was reduced compared to control. However, total cholesterol, urea, ASAT and ALAT in fetal blood were affected in both exposed groups. Multiple factor analysis, including biometric, biochemical, and stereological datasets, indicated that the three groups were significantly different. Additionally, several placental genes were differentially expressed between groups, compared two by two, in a sex-specific manner, with more difference in females than in males. The differentially expressed genes were involved in lipid, cholesterol, and drug/xenobiotic metabolism in both sexes. These results indicate that maternal exposure to environmental contaminants during crucial developmental windows only mildly impaired fetoplacental development but disturbed fetal blood biochemistry and placental gene expression with potential long-term effects on offspring phenotype.
Collapse
Affiliation(s)
- Jeanne Bozec
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Delphine Rousseau-Ralliard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Audrey Prézelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Michèle Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Valérie Gelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Natalie Fournier
- Lip(Sys)2 - EA 7357, Athérosclérose et Macrophages: Impact des Phospholipides et des Fonctions Mitochondriales sur L'efflux du Cholestérol, Université Paris Saclay, UFR de Pharmacie, 91400, Orsay, France; Laboratoire de Biochimie, AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, 75015, Paris, France
| | - Virginie Helies
- GenPhySE, INRAE, Université de Toulouse, INPT, ENVT, Castanet Tolosan, France
| | - Thierry Joly
- Université de Lyon, VetAgro Sup, UPSP Interaction Cellule Environnement, 69280, Marcy L'Etoile, France; Université de Lyon, ISARA-Lyon, 69007, Lyon, France
| | - Sara El Fouikar
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Roger Léandri
- ToxAlim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Médecine de La Reproduction, Hôpital Paule de Viguier, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
3
|
Chen A, Tian M, Luo Z, Cao X, Gu Y. Analysis of the evolution of placental oxidative stress research from a bibliometric perspective. Front Pharmacol 2024; 15:1475244. [PMID: 39484166 PMCID: PMC11524950 DOI: 10.3389/fphar.2024.1475244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024] Open
Abstract
Background Research on placental oxidative stress is pivotal for comprehending pregnancy-related physiological changes and disease mechanisms. Despite recent advancements, a comprehensive review of current status, hotspots, and trends remains challenging. This bibliometric study systematically analyzes the evolution of placental oxidative stress research, offering a reference for future studies. Objective To conduct a comprehensive bibliometric analysis of the literature on placental oxidative stress to identify research hotspots, trends, and key contributors, thereby providing guidance for future research. Methods Relevant data were retrieved from the Web of Science Core Collection database and analyzed using VOSviewer, CiteSpace, and the bibliometrix package. An in-depth analysis of 4,796 publications was conducted, focusing on publication year, country/region, institution, author, journal, references, and keywords. Data collection concluded on 29 April 2024. Results A total of 4,796 papers were retrieved from 1,173 journals, authored by 18,835 researchers from 4,257 institutions across 103 countries/regions. From 1991 to 2023, annual publications on placental oxidative stress increased from 7 to 359. The United States (1,222 publications, 64,158 citations), the University of Cambridge (125 publications, 13,562 citations), and Graham J. Burton (73 publications, 11,182 citations) were the most productive country, institution, and author, respectively. The journal Placenta had the highest number of publications (329) and citations (17,152), followed by the International Journal of Molecular Sciences (122 publications). The most frequent keywords were "oxidative stress," "expression," "pregnancy," "preeclampsia," and "lipid peroxidation." Emerging high-frequency keywords included "gestational diabetes mellitus," "health," "autophagy," "pathophysiology," "infection," "preterm birth," "stem cell," and "inflammation." Conclusion Over the past 3 decades, research has concentrated on oxidative stress processes, antioxidant mechanisms, pregnancy-related diseases, and gene expression regulation. Current research frontiers involve exploring pathophysiology and mechanisms, assessing emerging risk factors and environmental impacts, advancing cell biology and stem cell research, and understanding the complex interactions of inflammation and immune regulation. These studies elucidate the mechanisms of placental oxidative stress, offering essential scientific evidence for future intervention strategies, therapeutic approaches, and public health policies.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Cao
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yanfang Gu
- Department of Obstetrics and Gynecology, Women’s Hospital of Jiangnan University, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| |
Collapse
|
4
|
Lu X, Yu M, Yang Y, Zhang X, Chen T, Lei B. G-Protein Coupled Receptor 1 Is Involved in Tetrachlorobisphenol A-Induced Inflammatory Response in Jurkat Cells. TOXICS 2024; 12:485. [PMID: 39058137 PMCID: PMC11281156 DOI: 10.3390/toxics12070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
Estrogens can affect the immune inflammatory response through estrogen receptor alpha (ERα), but the specific role of estrogen member receptor G-protein coupled receptor 1 (GPER1) in this process remains unclear. In this study, we evaluated the effects of tetrachlorobisphenol A (TCBPA), which has estrogen activity, on immune inflammatory-related indicators of Jurkat cells, as well as investigated the role of GPER1 in these effects. The results showed that TCBPA at lower concentrations significantly promoted the viability of Jurkat cells, whereas higher concentrations decreased cell viability. TCBPA at concentrations ranging from 1 to 25 μM increased the intracellular reactive oxygen species (ROS) levels. Additionally, treatment with 10 μM TCBPA increased the protein expression of ERα and GPER1, elevated the phosphorylation of protein kinase B (p-Akt), and upregulated the mRNA levels of GPER1, Akt, and phosphoinositide 3-kinase (PI3K) genes. Treatment with 10 μM TCBPA also upregulated the protein or gene expression of pro-inflammatory cytokines, such as interleukins (IL1β, IL2, IL6, IL8, IL12α) and tumor necrosis factor alpha (TNFα) in Jurkat cells. Furthermore, pretreatment with a GPER1 inhibitor G15 significantly reduced the mRNA levels of Akt induced by 10 μM TCBPA. Moreover, the upregulation of mRNA expression of RelA (p65), TNFα, IL6, IL8, and IL12α induced by 10 μM TCBPA was also significantly attenuated after G15 pretreatment. These findings suggest that TCBPA upregulates the expression of genes related to inflammatory responses by activating the GPER1-mediated PI3K/Akt signaling pathway. This study provides new insights into the mechanism of TCBPA-induced inflammatory response.
Collapse
Affiliation(s)
- Xiaoyu Lu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Mengjie Yu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Yingxin Yang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Xiaolan Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| | - Tian Chen
- Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Bingli Lei
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (X.L.); (M.Y.); (Y.Y.); (X.Z.)
| |
Collapse
|
5
|
El-Degwi BAA, Awad MES, Laimon W, Askar SA, El-Morsi DAW, Ahmed DAM. The potential Association of Bisphenol A exposure and type 1 diabetes mellitus among Dakahlia Governorate's children sample, Egypt. Toxicol Res (Camb) 2024; 13:tfae093. [PMID: 38912005 PMCID: PMC11188686 DOI: 10.1093/toxres/tfae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/12/2024] [Indexed: 06/25/2024] Open
Abstract
Background Bisphenol A (BPA) is an endocrine disrupter affecting glucose homeostasis. Objectives This study aimed to investigate BPA's relationship with Type 1 Diabetes Mellitus (T1DM) in Dakahlia Governorate's children, in Egypt. Subjects materials and methods The study had two parts: clinical and experimental. Clinical Study was conducted on 200 children, equally divided into control and T1DM groups. They underwent: demographic data, height, weight, body mass index, glycosylated HbA1C, random blood glucose, and urinary BPA measurements. Experimental Study was conducted on 60 adult albino rats. Rats were randomly divided into three equal groups: control group: received 0.5 mL of pure olive oil, group 1: received 20 mg/kg/day BPA, and group 2: received 100 mg/kg/day BPA orally for 6 weeks. Fasting and two hours postprandial glucose levels were measured at the beginning and end of the study. Histopathological examination and imaging study of the pancreas were done. Results In clinical study: HbA1C and random blood glucose levels in diabetic children showed a significant increase compared to control. Children in control group showed controlled HbA1C, while the T1DM group showed 86% with poor diabetic control. There was a significant increase in BPA level in the T1DM group compared to the control. Rats that received BPA showed a marked increase in fasting and two hours postprandial glucose levels, histopathological changes in the pancreas with more changes determined in the high dose group, and a significant decrease in the islets of Langerhans diameters with group 2 more affected. Conclusion So, BPA exposure could be considered a risk factor for T1DM in children.
Collapse
Affiliation(s)
- Basma Ahmed Ali El-Degwi
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University El Gomhouria Street, Mansoura 35516, Egypt
| | - Mahmoud El-Sayed Awad
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University El Gomhouria Street, Mansoura 35516, Egypt
| | - Wafaa Laimon
- Pediatric Endocrinology and Diabetes Unit, Department of Pediatrics, Mansoura Faculty of Medicine, Mansoura University, Mansoura University Children's Hospital, El Gomhouria Sreet, Mansoura 35516, Egypt
| | - Samar A Askar
- Histology Department, Faculty of Medicine, Mansoura University, El Gomhouria Street, Mansoura, Egypt
| | - Doaa Abdel Wahab El-Morsi
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University El Gomhouria Street, Mansoura 35516, Egypt
- Medical Education Department, Faculty of Medicine, Delta University for Science and Technology, International Coastal Rd, Al Hafir WA Al Amal, Al Satamoni, Dakahlia Governorate, 7730103, Egypt
| | - Dalia Alsaied Moustafa Ahmed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Mansoura University El Gomhouria Street, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Li Y, Yuan M, Zhang C, Zhang X, Hao J, Tao F, Wang G, Su P. Bisphenol AF exposure synergistically increases the risk for suicidality among early adolescents with child maltreatment: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116511. [PMID: 38810289 DOI: 10.1016/j.ecoenv.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Child maltreatment (CM) is correlated with suicidality risk among adolescents. Additionally, exposure to bisphenol AF (BPAF) may increase this risk. However, the combined effect of CM and BPAF exposure remains unknown and should be further investigated. METHODS In this study, 1,475 early adolescents (mean age = 12.48 years) from the Chinese Early Adolescents Cohort were enrolled. Data were collected at three time points with an interval of 12 months between 2019 and 2021. Participants' history of CM and suicidality (including suicidal ideation and suicidal attempts) were evaluated using a self-report questionnaire. Blood samples were obtained from participants to measure serum BPAF concentrations at baseline. Group-based trajectory modeling was employed to identify different developmental trajectories of suicidality across the three waves. After adjusting for potential confounders, the association between CM and BPAF exposure on suicidal ideation and suicidal attempts was assessed using logistic regression and Poisson regression analyses. RESULTS Participants with CM were associated with a risk of one- and two-year incident suicidality (all ps < 0.05), and BPAF levels were positively associated with two-year incident suicidal ideation (adjusted OR = 1.68, 95% CI: 1.13-2.50). Additionally, middle and high levels of BPAF exposure synergistically increase the risk for one- and two-year incident suicidal ideation among participants with CM (adjusted ORs = 2.00-3.83). Similarly, participants exposed to high-level BPAF as well as CM were at a greater risk of one- and two-year incident suicidal attempts than those with low-level BPAF exposure and no CM (adjusted incidence rate ratio [IRRs] = 2.82-4.34). Moreover, compared with participants with a low developmental trajectory of suicidality across the three waves, high BPAF exposure exhibited a significant synergistic effect on participants with CM in the persistently high suicidal ideation trajectory and the increasing suicidal attempts trajectory (all ps < 0.05). Sex subgroup analysis revealed that females were more susceptible to the synergistic effect of BPAF and CM exposure on suicidality than males. CONCLUSIONS Environmental factors and the psychological status of individuals may synergistically increase their susceptibility to suicidality. These results offer novel insights into enhancing our understanding of suicidality among adolescents.
Collapse
Affiliation(s)
- Yonghan Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Mengyuan Yuan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiahu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
7
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
8
|
Tantengco OAG, Vidal MS, Bento GFC, Menon R. Impact of bisphenol A on cell viability and inflammatory cytokine production in human cervical epithelial cells. Am J Reprod Immunol 2023; 90:e13784. [PMID: 37881122 PMCID: PMC10607601 DOI: 10.1111/aji.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023] Open
Abstract
PROBLEM An intact cervix is a barrier that prevents pathogenic bacteria from invading the uterine and amniotic cavity during pregnancy. Its disruption is associated with ascending infection and adverse pregnancy outcomes. This study analyzed the effects of bisphenol A (BPA), a chemical used in plastics manufacturing, on cell death and inflammation in cervical epithelial cells. METHODS Ectocervical epithelial (ecto) and endocervical epithelial (endo) cells were treated with 100 ng/mL and 300 ng/mL of BPA for 48 h. The cells were subjected to flow cytometry using annexin V and propidium iodide to determine apoptosis and necrosis, cell cycle analysis, and ELISA to determine the levels of inflammatory cytokines (IL-6, IL-8, and IL-10). RESULTS Low-dose and high-dose BPA significantly increased the live ecto cell population dose-dependently. BPA did not have any noticeable effect on cell cycle progression in either cell type. BPA treatment also decreased the apoptotic ecto and endo cell population dose-dependently. Lastly, high dose BPA significantly increased IL-6 in ecto and endo cells. However, IL-8 and IL-10 were not affected by BPA treatments. CONCLUSION Chemical exposure damage to the cervix can lead to adverse pregnancy outcomes. Our study showed that the BPA concentrations reported in pregnant subjects do not induce cervical cell toxicity . The decrease in apoptosis and increase in live cells may be a compensatory mechanism to preserve the integrity of the cervical epithelial layer.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic Science & Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
- Department of Biology, College of Science, De La Salle University, Manila, Philippines
| | - Manuel S. Vidal
- Division of Basic Science & Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Giovana Fernanda Cosi Bento
- Division of Basic Science & Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Pathology, Botucatu Medical School, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Ramkumar Menon
- Division of Basic Science & Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
9
|
Kim H, Park H, Hwang B, Kim S, Choi YH, Kim WJ, Moon SK. Bisphenol A exposure inhibits vascular smooth muscle cell responses: Involvement of proliferation, migration, and invasion. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104060. [PMID: 36610522 DOI: 10.1016/j.etap.2023.104060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Previous studies have associated bisphenol A (BPA) with malignant tumor formation, infertility, and atherosclerosis in vitro and in vivo. However, the precise mechanisms through which BPA affects the cardiovascular system under normal conditions remain unclear. Therefore, this study investigated the biological mechanisms through which BPA affects the responses of aortic vascular smooth muscle cells (VSMCs). BPA treatment inhibited the proliferative activity of VSMCs and induced G2/M-phase cell cycle arrest via stimulation of the ATM-CHK2-Cdc25C-p21WAF1-Cdc2 cascade in VSMCs. Furthermore, BPA treatment upregulated the phosphorylation of mitogen-activated protein kinase (MAPK) pathways such as ERK, JNK, and p38 MAPK in VSMCs. However, the phosphorylation level of AKT was down-regulated by BPA treatment. Additionally, the phosphorylation of ERK, JNK, and p38 MAPK was suppressed when the cells were treated with their respective inhibitors (U0126, SP600125, and SB203580). BPA suppressed MMP-9 activity by reducing the binding activity of AP-1, Sp-1, and NF-κB, thus inhibiting the invasive and migratory ability of VSMCs. These data demonstrate that BPA interferes with the proliferation, migration, and invasion capacities of VSMCs. Therefore, our findings suggest that overexposure to BPA can lead to cardiovascular damage due to dysregulated VSMC responses.
Collapse
Affiliation(s)
- Hoon Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hongbum Park
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Byungdoo Hwang
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Soobin Kim
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, College of Oriental Medicine, Dongeui University, Busan 47340, Republic of Korea
| | - Wun-Jae Kim
- Institute of Urotech, Cheongju, Chungbuk 28120, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
10
|
Fetal Myocardial Expression of GLUT1: Roles of BPA Exposure and Cord Blood Exosomes in a Rat Model. Cells 2022; 11:cells11203195. [PMID: 36291063 PMCID: PMC9601122 DOI: 10.3390/cells11203195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary exposure to Bisphenol A (BPA), an industrial chemical present in food containers, affects nutrient metabolism in the myocardium of offspring during intrauterine life. Using a murine model, we observed that fetal hearts from mothers exposed to BPA (2.5 μg/kg/day) for 20 days before mating and for all of the gestation had decreased expression of glucose transporter-1 (GLUT1), the principal sugar transporter in the fetal heart, and increased expression of fatty acid cluster of differentiation 36 transporter (CD36), compared to control fetuses from vehicle-treated mothers. We confirmed the suppression of GLUT1 by exposing fetal heart organotypic cultures to BPA (1 nM) for 48 h but did not detect changes in CD36 compared to controls. During pregnancy, the placenta continuously releases extracellular vesicles such as exosomes into fetal circulation. These vesicles influence the growth and development of fetal organs. When fetal heart cultures were treated with cord blood-derived exosomes isolated from BPA-fed animals, GLUT1 expression was increased by approximately 40%. Based on our results, we speculate that exosomes from cord blood, in particular placenta-derived nanovesicles, could contribute to the stabilization of the fetal heart metabolism by ameliorating the harmful effects of BPA on GLUT1 expression.
Collapse
|
11
|
Vidal MS, Menon R, Yu GFB, Amosco MD. Actions of Bisphenol A on Different Feto-Maternal Compartments Contributing to Preterm Birth. Int J Mol Sci 2022; 23:ijms23052411. [PMID: 35269554 PMCID: PMC8910111 DOI: 10.3390/ijms23052411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Abstract
Preterm birth remains to be one of the most prevalent obstetric complications worldwide. Since there are multiple etiological factors associated with this disease process, an integrative literature search in PubMed and Scopus databases on possible mechanism of action and effect of bisphenols on exposure on human or animal placental samples in preterm birth was conducted. From 2332 articles on initial literature search, 63 studies were included for full data extraction. Altogether, several pathways were shown to be possibly affected by bisphenols, leading to dysregulations in structural and endocrine foundation in the placenta, potential induction of senescence and failure of decidualization in the decidua, and possible propagation of inflammation in the fetal membranes. Combined, these actions may eventually counteract bisphenol-induced relaxation of the myometrium and promote contractility alongside fetal membrane weakening. In totality, these individual impairments in gestation-critical processes may lead to failure of maintenance of pregnancy, and thus effecting preterm birth.
Collapse
Affiliation(s)
- Manuel S. Vidal
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Correspondence:
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Gracia Fe B. Yu
- Department of Biochemistry and Molecular Biology, University of the Philippines Manila, Manila 1000, Philippines;
| | - Melissa D. Amosco
- Department of Obstetrics and Gynecology, Philippine General Hospital, University of the Philippines Manila, Manila 1000, Philippines;
| |
Collapse
|
12
|
Facile preparation of aluminum nanocomposites and the utilization in analyzing BPA in urine samples. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01983-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Beler M, Cansız D, Ünal İ, Üstündağ ÜV, Dandin E, Ak E, Alturfan AA, Emekli-Alturfan E. Bisphenol A reveals its obesogenic effects through disrupting glucose tolerance, oxidant-antioxidant balance, and modulating inflammatory cytokines and fibroblast growth factor in zebrafish. Toxicol Ind Health 2022; 38:19-28. [PMID: 35090367 DOI: 10.1177/07482337211054372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesogens affect lipid metabolism, and genetic or epigenetic factors may also contribute to the progression of obesity. Endocrine-disrupting chemicals (EDCs) are the most striking among obesogens. Bisphenol A (BPA) is an estrogenic EDC used in food containers, adhesives, dye powders, and dental fillers. We aimed to elucidate molecular mechanisms of BPA's obesogenic effects focusing on obesogenic pathways in the liver including fibroblast growth factor (FGF) and Dnmt3a which is its epigenetic regulator, oxidant-antioxidant status, and inflammatory cytokines. Zebrafish were divided into three groups as control, low-dose BPA (1 μm BPA), and high-dose BPA groups (10 μm BPA). At the end of 30 days, oral glucose tolerance test (OGTT) was performed, fasting blood glucose levels were measured, and hepatopancreas tissues were taken. Malondialdehyde (MDA) levels, superoxide dismutase (SOD), glutathione S-transferase (GST), and nitric oxide (NO) activities were examined in the hepatopancreas. Inflammatory cytokines, lepa, fgf21, and dnmt3a expressions were determined by RT-PCR. BPA exposure increased the body weights, il1ß, tnfα, il6, lepa, fgf21, and dnmt3a expressions, impaired glucose tolerance, and oxidant-antioxidant status in a dose-dependent manner. Hepatocyte degeneration, lipid vacuolization, and vasocongestion were observed in both BPA-exposed groups. Our study suggests impaired glucose tolerance, oxidant-antioxidant balance, increased inflammatory response, fgf21 expression, and dnmt3a expressions as the possible mechanisms for the BPA-induced obesity model in zebrafish.
Collapse
Affiliation(s)
- Merih Beler
- Institute of Health Sciences, Department Biochemistry, 52982Marmara University, Istanbul, Turkey
| | - Derya Cansız
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacık, Istanbul, Turkey
| | - İsmail Ünal
- Institute of Health Sciences, Department Biochemistry, 52982Marmara University, Istanbul, Turkey
| | - Ünsal V Üstündağ
- Department of Biochemistry, Faculty of Medicine, Istanbul Medipol University, Kavacık, Istanbul, Turkey
| | - Esra Dandin
- Institute of Health Sciences, Department Biochemistry, 52982Marmara University, Istanbul, Turkey
| | - Esin Ak
- Department of Basic Medical Sciences, Division of Histology and Embryology, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - A Ata Alturfan
- Department of Biochemistry, Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Fatih, Turkey
| | - Ebru Emekli-Alturfan
- Department of Basic Medical Sciences, Division of Biochemistry, Faculty of Dentistry, 52982Marmara University, Istanbul, Turkey
| |
Collapse
|
14
|
Adu-Gyamfi EA, Rosenfeld CS, Tuteja G. The impact of bisphenol a (BPA) on the placenta. Biol Reprod 2022; 106:826-834. [PMID: 35020819 DOI: 10.1093/biolre/ioac001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that is used in a wide-variety of plastic and common house-hold items. Therefore, there is potential continual exposure to this compound. BPA exposure has been linked to certain placenta-associated obstetric complications such as preeclampsia, fetal growth restriction, miscarriage, and preterm birth. However, how BPA exposure results in these disorders remains uncertain. Hence, we have herein summarized the reported impact of BPA on the morphology and metabolic state of the placenta and have proposed mechanisms by which BPA affects placentation, potentially leading to obstetric complications. Current findings suggest that BPA induces pathological changes in the placenta and disrupts its metabolic activities. Based on exposure concentrations, BPA can elicit apoptotic or anti-apoptotic signals in the trophoblasts; and can exaggerate trophoblast fusion while inhibiting trophoblast migration and invasion to affect pregnancy. Accordingly, the usage of BPA products by pregnant women should be minimized and less harmful alternative chemicals should be explored and employed where possible.
Collapse
Affiliation(s)
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Data Science and Informatics Institute, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
15
|
Arita Y, Kirk M, Gupta N, Antony R, Park HJ, Stecker MM, Peltier MR. Effect of 2,6-xylidine (DMA) on secretion of biomarkers for inflammation and neurodevelopment by the placenta. J Reprod Immunol 2021; 149:103458. [PMID: 34952372 DOI: 10.1016/j.jri.2021.103458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/17/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Cigarette smoke enhances placental inflammation and interferes with steroidogenesis. However, the chemicals in the smoke responsible for these biological activities are unclear. 2,6 xylidine (also called 2,6 Dimethylaniline, DMA) is a component of cigarette smoke that has carcinogenic properties but its effects on the placenta are unknown. Therefore, we hypothesized that DMA may interfere with placental steroidogenesis or enhance placental inflammation. Placental explant cultures were treated with 0-50,000 nM DMA and concentrations of progesterone (P4), estradiol (E2), testosterone (T), IL-1β, TNF-α, IL-6, sgp130, HO-1, IL-10, 8-Isoprostane (8-IsoP), and BDNF in the conditioned medium were quantified. Since many environmental toxins enhance the proinflammatory host response to infection, we also performed experiments on placental cultures co-stimulated with 107 heat-killed E. coli. DMA alone significantly reduced P4 and T secretion but enhanced E2 secretion. The toxin also reduced placental secretion of IL-6, sgp130, and BDNF. For bacteria-stimulated cultures, DMA increased secretion of P4 and T, and proinflammatory cytokines (IL-1β, TNF-α) but had mixed effects on anti-inflammatory markers, increasing some (sgp130, IL-10) and reducing others (HO-1). However, DMA enhanced 8-IsoP levels by bacteria-stimulated placental cultures, suggesting that it increases oxidative stress by the tissues. These studies suggest that DMA affects secretion of biomarkers by the placenta and may promote inflammation. Further studies are needed to determine if these observed changes occur in vivo and the extent to which DMA exposure increases the risk of adverse pregnancy outcomes associated with smoking in pregnancy.
Collapse
Affiliation(s)
- Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Michael Kirk
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Neha Gupta
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Ronny Antony
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Hyeon-Jeong Park
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States
| | - Mark M Stecker
- Fresno Institute of Neuroscience, Fresno, CA, United States
| | - Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, NY, 11501, United States; Department of Psychiatry, Jersey Shore University Medical Center, Neptune, NJ, 07753, United States.
| |
Collapse
|
16
|
Peltier MR, Fassett MJ, Arita Y, Chiu VY, Takhar HS, Getahun D. Exposure to polybrominated diphenyl ether-47 increases the risk of post-partum depression. J Matern Fetal Neonatal Med 2021; 35:8350-8354. [PMID: 34510997 DOI: 10.1080/14767058.2021.1974386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Post-partum depression (PPD) affects up to 19.1% of pregnancies and is associated with increased levels of proinflammatory cytokines, inflammation, and reductions in brain-derived neurotrophic factor (BDNF). Previous work by our team suggests that environmental toxins such as polybrominated diphenyl ethers (PBDEs) enhance placental inflammation and reduce BDNF production. Nearly, 100% of studied women in California have some level of exposure to these compounds due to extensive use of the flame retardants. High levels of exposure to PBDEs has been linked to increased risk of adverse pregnancy complications associated with placental inflammation such as preterm birth and gestational diabetes but their effects on risk of PPD is unclear. OBJECTIVE To determine if PPD is associated with higher levels of PBDE-47, the most common PBDE congener in maternal plasma. METHODS PBDE-47 was quantified in first trimester plasma samples collected from a cohort of 367 asymptomatic pregnant women that were routinely screened for depressive symptoms for 1 year post-partum. Data were analyzed using general linear models and multivariable logistic regression to determine if higher levels of PBDE-47 in the first trimester are associated with development of PPD. RESULTS Women who developed PPD (n = 22) had significantly higher PBDE-47 levels in their plasma (p=.031) relative to those in which PPD was not diagnosed. Logistic regression analysis suggested that each two-fold increase in PBDE-47 concentrations increased the risk of PPD by 22% (OR = 1.22, 95% CI: 1.03, 1.47). Groups were similar regarding PTB rate, race-ethnicity, parity, child's sex, maternal pre-pregnancy obesity status, maternal age, family income, and study center. Results remained significant after adjustment for these possible confounding factors. CONCLUSIONS These results suggest that PBDE-47 exposure in the first trimester is associated with increased risk of PPD.
Collapse
Affiliation(s)
- Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island University, Mineola, NY, USA
| | - Michael J Fassett
- Department of Obstetrics and Gynecology, West Los Angeles Medical Center, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island University, Mineola, NY, USA
| | - Vicki Y Chiu
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Harpreet S Takhar
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Darios Getahun
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA.,Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| |
Collapse
|
17
|
Hao K, Luo J, Sun J, Ge H, Wang Z. Associations of urinary bisphenol A and its alternatives bisphenol S and F concentrations with depressive symptoms among adults. CHEMOSPHERE 2021; 279:130573. [PMID: 33878692 DOI: 10.1016/j.chemosphere.2021.130573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol S (BPS) and bisphenol F (BPF), as substitutes for bisphenol A (BPA), are synthetic compounds detected increasingly frequently in plastics and resins. BPA, BPS, and BPF are endocrine disruptors with unclear effects on depressive symptoms. This study aims to evaluate the effects of these compounds on depressive symptoms in adults. METHODS We used data from the U.S. National Health and Nutrition Examination Survey (NHANES) 2007-2016 for BPA (N = 7,085) and NHANES 2013-2016 for BPS and BPF (N = 2,707). BPA, BPS and BPF were detected in urine samples. Depressive symptoms were assessed with a nine-item patient health questionnaire (PHQ-9). Logistic regression models were used to investigate the effects of urinary BPA, BPS, and BPF concentrations on depressive symptoms. RESULTS In the general population, no significant association was observed between urinary BPA, BPS, and BPF and depressive symptoms. However, in stratified analyses, urinary BPS was positively associated with depressive symptoms in men (odds ratio [OR], 2.90; 95% confidence interval [CI], 1.13-7.47). In elderly men (≥60 years old), urinary BPA and BPS were positively correlated with depressive symptoms with ORs (95% CIs) of 5.53 (1.55-19.70) and 28.89 (4.23-192.75), respectively. In addition, urinary BPS was negatively associated with depressive symptoms (OR, 0.16; 95% CI, 0.04-0.59) in elderly women (≥60 years old). CONCLUSIONS This study indicated that exposure to BPA and BPS was positively associated with depressive symptoms, especially in men. However, BPS was negatively associated with depressive symptoms in elderly women.
Collapse
Affiliation(s)
- Kangyu Hao
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, Shandong, 266071, China
| | - Jia Luo
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, Shandong, 266071, China
| | - Jing Sun
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, Shandong, 266071, China
| | - Honghan Ge
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, Shandong, 266071, China
| | - Zhaoguo Wang
- Department of Epidemiology and Health Statistics, The College of Public Health of Qingdao University, Qingdao, Shandong, 266071, China; Municipal Centre of Disease Control and Prevention of Qingdao, Qingdao Institute of Prevention Medicine, Qingdao, Shandong, 266034, China.
| |
Collapse
|
18
|
Alsubaie AM, Arita Y, Atwater M, Mahfuz A, Peltier MR. Enhancement of placental inflammation by Dibutyl Phthalate. J Reprod Immunol 2021; 147:103368. [PMID: 34461555 DOI: 10.1016/j.jri.2021.103368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/11/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Recent studies suggest that women with high exposures to dibutyl phthalate (DBP) are at increased risk for preterm birth, a condition associated with aberrant inflammation in the placenta often caused by subclinical infections. Placental inflammation is also a risk factor for neurodevelopmental disorders whose risk may also be enhanced by DBP. It is unclear, however, if DBP enhances placental inflammation. Therefore, we studied the effects of DBP on the production of biomarkers of placental inflammation and neurodevelopment under basal conditions and a setting of mild infection. Placental explant cultures established from women undergoing elective caesarean delivery were treated with DBP with and without co-stimulation by 107 CFU/mL heat-killed E. coli for 24 h at 37 °C. Conditioned medium was harvested and concentrations of IL-1β, TNF-α, IL-10, HO-1 and BDNF, a biomarker for neurodevelopment, were quantified. DBP significantly enhanced IL-6 production in basal cultures but had no significant on the other biomarkers quantified. Both TNF-α and IL-1β production was enhanced by DBP for cultures co-stimulated with E. coli. Although marginal enhancement of IL-6, and IL-10 were observed for bacteria co-treated cultures, results were either non-monotonic or only approached statistical significance. HO-1 production tended to be reduced at the highest concentration of DBP tested and BDNF production was reduced by DBP in a dose-dependent manner for bacteria-stimulated cultures. These results suggest that DBP enhances basal IL-6 production but has little or no effect on other biomarkers studied. However, DBP enhances IL-1β and TNF-α production but reduces BDNF production by bacteria-stimulated cultures.
Collapse
Affiliation(s)
- Aisha Manna Alsubaie
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, United States; Department of Biology, Adelphi University, Garden City, NY, United States
| | - Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, United States
| | - Matthew Atwater
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, United States; George Washington University, School of Medicine, Washington DC, United States
| | - Ali Mahfuz
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, United States; Texas Christian University University of North Texas Health Science Center School of Medicine, Fort Worth, TX, United States
| | - Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, United States.
| |
Collapse
|
19
|
Marinello WP, Patisaul HB. Endocrine disrupting chemicals (EDCs) and placental function: Impact on fetal brain development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:347-400. [PMID: 34452690 DOI: 10.1016/bs.apha.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Pregnancy is a critical time of vulnerability for the development of the fetal brain. Exposure to environmental pollutants at any point in pregnancy can negatively impact many aspects of fetal development, especially the organization and differentiation of the brain. The placenta performs a variety of functions that can help protect the fetus and sustain brain development. However, disruption of any of these functions can have negative impacts on both the pregnancy outcome and fetal neurodevelopment. This review presents current understanding of how environmental exposures, specifically to endocrine disrupting chemicals (EDCs), interfere with placental function and, in turn, neurodevelopment. Some of the key differences in placental development between animal models are presented, as well as how placental functions such as serving as a xenobiotic barrier and exchange organ, immune interface, regulator of growth and fetal oxygenation, and a neuroendocrine organ, could be vulnerable to environmental exposure. This review illustrates the importance of the placenta as a modulator of fetal brain development and suggests critical unexplored areas and possible vulnerabilities to environmental exposure.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Heather B Patisaul
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
20
|
Wang K, Qiu L, Zhu J, Sun Q, Qu W, Yu Y, Zhao Z, Yu Y, Shao G. Environmental contaminant BPA causes intestinal damage by disrupting cellular repair and injury homeostasis in vivo and in vitro. Biomed Pharmacother 2021; 137:111270. [PMID: 33485121 DOI: 10.1016/j.biopha.2021.111270] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 02/07/2023] Open
Abstract
Our previous studies have shown that the environmental contaminant bisphenol A (BPA) exhibits strong intestinal toxicity and can readily cause intestinal barrier dysfunction. However, the causal relationship between adverse biological processes of BPA-induced intestinal tissue and the role of key signaling molecules in it requires further investigation. In this study, we established a mouse and intestinal epithelial cell model of BPA treatment to determine the underlying molecular mechanisms of BPA-induced intestinal injury. The results showed that the BPA treatment increased the intestinal permeability and disrupted the barrier function by increasing the chemical marker content and tight junction expression in intestinal tissues and blood circulation. BPA also altered the oxidative and antioxidant status of intestinal epithelial cells by increasing ROS and RNS contents and decreasing the activity levels of SOD, GPx, CAT, and T-AOC. BPA further induced inflammatory responses by upregulating the gene abundance of key factors of the innate immune system (TLR2, TLR4, MyD88, and NF-κB), the transcriptional activity of NF-kB, and the secretion of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α). Moreover, apoptosis was activated by BPA, whereas cell proliferation was inhibited by BPA. Mechanistically, co-treatment of intestinal epithelial cells with BPA using the oxidative stress scavenger NAC, the NF-κB-specific inhibitor JSH-23, and the apoptosis inhibitor Z-VAD-FMK, respectively, showed that BPA activates the innate immune response by inducing oxidative stress. Consequently, apoptosis is promoted, and cell proliferation is inhibited, ultimately disrupting the intestinal barrier function. Our findings provide insight into the pathogenesis of BPA-induced gut injury.
Collapse
Affiliation(s)
- Kai Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Jiangsu Province, China
| | - Lei Qiu
- Department of Gastrointestinal Surgery, The Second People's Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Junjia Zhu
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Qi Sun
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Wei Qu
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Yifeng Yu
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Zhenguo Zhao
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China; Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Yifeng Yu
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China
| | - Guoyi Shao
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, 214400, China.
| |
Collapse
|
21
|
Minatoya M, Kishi R. A Review of Recent Studies on Bisphenol A and Phthalate Exposures and Child Neurodevelopment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073585. [PMID: 33808331 PMCID: PMC8036555 DOI: 10.3390/ijerph18073585] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 01/17/2023]
Abstract
Purpose of Review: Bisphenol A and phthalate have been found in the environment, as well as in humans. In this narrative review pre- and postnatal bisphenol A and phthalate exposures, their relationship to neurodevelopment, and the behavioral outcomes of children are elucidated, focusing in particular on the recent case-control, cross-sectional, and longitudinal studies. This review also introduces some of the possible mechanisms behind the observed associations between exposures and outcomes. Recent Findings: Although bisphenol A and phthalate exposure have been reported to influence neurobehavioral development in children, there are various kinds of test batteries for child neurodevelopmental assessment at different ages whose findings have been inconsistent among studies. In addition, the timing and number of exposure assessments have varied. Summary: Overall, this review suggests that prenatal exposure to bisphenol A and phthalates may contribute to neurobehavioral outcomes in children. The evidence is still limited; however, Attention Deficit Hyperactivity Disorder (ADHD) symptoms, especially among boys, constantly suggested association with both prenatal and concurrent exposure to bisphenol A. Although there is limited evidence on the adverse effects of prenatal and postnatal bisphenol A and phthalate exposures provided, pregnant women and young children should be protected from exposure based on a precautionary approach.
Collapse
|
22
|
Clementelli C, Arita Y, Ahmed S, Pijush DB, Jeong Park H, Levenson AS, Peltier MR. Short communication: Ex-vivo effects of fluoxetine on production of biomarkers for inflammation and neurodevelopment by the placenta. Placenta 2021; 107:46-50. [PMID: 33765533 DOI: 10.1016/j.placenta.2021.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/11/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Fluoxetine is commonly prescribed during pregnancy but developmental exposure to the drug, like infection, is associated with sex-specific behavioral changes in the offspring. We evaluated the effects of Fluoxetine on production of biomarkers for inflammation (pro/anti-inflammatory cytokines) and neurodevelopment (Brain-Derived Neurotrophic Factor, BDNF) in the presence and absence of infection in female and male placenta explant cultures. In addition to minor anti-inflammatory effects of the drug, Fluoxetine had significant sex- and infection-dependent effects on BDNF production. Further studies are needed to determine the extent to which these observed changes occur in vivo and their impact on pregnancy and neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Cara Clementelli
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, 11201, USA; Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, USA
| | - Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, USA
| | - Sarosh Ahmed
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, 11201, USA; Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, USA
| | - Debduth B Pijush
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, USA
| | - Hyeon Jeong Park
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, USA; Philadelphia College of Osteopathic Medicine, Suwanee, GA, 30024, USA
| | - Anait S Levenson
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, 11201, USA; Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University-Post, Brookville, NY, 11548, USA
| | - Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, 11501, USA.
| |
Collapse
|
23
|
Liang F, Huo X, Wang W, Li Y, Zhang J, Feng Y, Wang Y. Association of bisphenol A or bisphenol S exposure with oxidative stress and immune disturbance among unexplained recurrent spontaneous abortion women. CHEMOSPHERE 2020; 257:127035. [PMID: 32702804 DOI: 10.1016/j.chemosphere.2020.127035] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Human exposure to environmental chemicals might play a role in the pathogenesis of unexplained recurrent spontaneous abortion (URSA). Bisphenol A (BPA) and bisphenol S (BPS) have been suggested to affect reproductive health. However, the mechanism remains unclear. To explore the association between BPA and BPS exposure and oxidative stress and immune homeostasis, we conducted a cross-sectional study and revealed BPA and BPS levels in relation to these two factors which were supposed to be implicated in miscarriage. 111 URSA patients were recruited and we analyzed urinary BPA and BPS concentrations, oxidative stress biomarkers (8-hydroxydeoxyguanosine and 8-isoprostane) and serum immune balance biomarkers (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-α, TGF-β and IFN-γ). Multivariable linear regression models were used to evaluate the correlation between bisphenols exposure and outcome biomarkers. After adjustment for age, BMI, menstrual cycle, and parity history, creatinine-adjusted BPA was significantly associated with increases in 8-isoprostane (β = 0.74, 95% CI = 0.07, 1.41; p = 0.031) and IFN-γ (β = 0.18, 95% CI = 0.00, 0.36; p = 0.046). No statistical correlation between BPS and biomarkers of oxidative stress or immune balance was observed when all participants were analyzed. Further analysis revealed that in the subgroup of BPS > limit of detection (0.01 ng/ml), creatinine-adjusted BPS was significantly associated with increases in IL-10 (β = 0.22, 95% CI = 0.00, 0.45; p = 0.048). Our findings suggested that BPA and BPS exposure might be related to oxidative stress and immune imbalance in URSA patients. Overall, our work might suggest potential pathogenic and aetiological associations among the bisphenols, biomarkers and URSA, which offers hypotheses for further studies.
Collapse
Affiliation(s)
- Fan Liang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Xiaona Huo
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Wei Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yan Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China
| | - Yan Feng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China.
| | - Yan Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, PR China; The Ninth People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China.
| |
Collapse
|