1
|
Li D, Wu Q, Han X. Application of Medial Ganglionic Eminence Cell Transplantation in Diseases Associated With Interneuron Disorders. Front Cell Neurosci 2022; 16:939294. [PMID: 35865112 PMCID: PMC9294455 DOI: 10.3389/fncel.2022.939294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Excitatory projection neurons and inhibitory interneurons primarily accomplish the neural activity of the cerebral cortex, and an imbalance of excitatory-inhibitory neural networks may lead to neuropsychiatric diseases. Gamma-aminobutyric acid (GABA)ergic interneurons mediate inhibition, and the embryonic medial ganglionic eminence (MGE) is a source of GABAergic interneurons. After transplantation, MGE cells migrate to different brain regions, differentiate into multiple subtypes of GABAergic interneurons, integrate into host neural circuits, enhance synaptic inhibition, and have tremendous application value in diseases associated with interneuron disorders. In the current review, we describe the fate of MGE cells derived into specific interneurons and the related diseases caused by interneuron loss or dysfunction and explore the potential of MGE cell transplantation as a cell-based therapy for a variety of interneuron disorder-related diseases, such as epilepsy, schizophrenia, autism spectrum disorder, and Alzheimer’s disease.
Collapse
|
2
|
Zhang B, Zhang X, Xiao J, Zhou X, Chen Y, Gao C. Neuropeptide Y upregulates Runx2 and osterix and enhances osteogenesis in mouse MC3T3‑E1 cells via an autocrine mechanism. Mol Med Rep 2020; 22:4376-4382. [PMID: 33000198 PMCID: PMC7533442 DOI: 10.3892/mmr.2020.11506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
The neuropeptide Y (NPY) system is considered one of the primary neural signaling pathways. NPY, produced by osteoblasts and other peripheral tissues, is known to inhibit biological functions of osteoblasts. However, until recently, little was known of the autocrine mechanism by which NPY is regulated. To investigate this mechanism, overexpression plasmids and small interfering RNA (siRNA) targeting NPY were transfected into the MC3T3-E1 cell line to observe its effects on osteogenesis. NPY overexpression was found to markedly enhance the osteogenic ability of MC3T3-E1 cells by an autocrine mechanism, coincident with the upregulation of osterix and runt-related transcription factor 2 (Runx2). Furthermore, NPY increased the activities of alkaline phosphatase (ALP) and osteocalcin (OCN) by upregulating their osteoblastic expression in vitro (as well as that of osterix and Runx2). Following transfection with NPY-siRNA, the osteoblastic ability of MC3T3-E1 cells was markedly decreased, and NPY deficiency inhibited the protein expression of osterix, Runx2, OCN and ALP in primary osteoblasts. Collectively, these results indicated that NPY played an important role in osteoblast differentiation by regulating the osterix and Runx2 pathways.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Joint Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Juan Xiao
- Department of Evidence‑Based Medicine, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xuguang Zhou
- Department of Joint Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yuan Chen
- Departments of Central Research Lab, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chunzheng Gao
- Departments of Spinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
3
|
Kabel AM, Algethami SA, Algethami BS, Alzahrani AS, Almutairi SK, Almutairi AS. Knowledge, perceptions, and attitudes of students of health-related science colleges towards epilepsy in Taif, Saudi Arabia. J Family Med Prim Care 2020; 9:2394-2399. [PMID: 32754508 PMCID: PMC7380735 DOI: 10.4103/jfmpc.jfmpc_299_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/14/2020] [Accepted: 03/30/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Epilepsy is one of the most common disorders that may be associated with negative attitudes among general populations. This may be due to poor public awareness and knowledge toward epilepsy. Aim: To assess knowledge, perceptions and attitudes of students of health-related science colleges toward epilepsy in Taif. Methods: This study was conducted in three health-related science colleges in Taif University. A questionnaire was distributed to students of these colleges. Results: More than 80% of the participants have heard or read about epilepsy. About half of them had witnessed a seizure attack. More than three quarters of the participants thought that epilepsy is a neurological disease. In total 97% of the participants stated that convulsions are the main manifestations of epilepsy. In total 77.7% of the participants selected the medical treatment and follow-up as the most effective treatment of epilepsy. More than three quarters of the participants agreed with that epileptic woman can get married and have children. About 90% agreed to work with epileptic persons and become a close friend of them. About half of the participants believed that the equal job opportunity for epileptic and normal persons should be practiced. Conclusion: The knowledge, perceptions, and attitudes of students of health-related science colleges toward epilepsy in Taif were acceptable regarding to this study. However, the negative attitudes and misconceptions still exist. Further studies are needed to determine methods of overcoming these negative attitudes and misconceptions.
Collapse
Affiliation(s)
- Ahmed Mohamed Kabel
- Clinical Pharmacy Department, College of Pharmacy, Taif University, Taif, Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | | | | | | | | |
Collapse
|
4
|
Jeong I, Kim E, Kim S, Kim HK, Lee DW, Seong JY, Park HC. mRNA expression and metabolic regulation of npy and agrp1/2 in the zebrafish brain. Neurosci Lett 2018; 668:73-79. [PMID: 29329911 DOI: 10.1016/j.neulet.2018.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/23/2017] [Accepted: 01/09/2018] [Indexed: 11/25/2022]
Abstract
Neuropeptide Y (NPY) is an evolutionarily conserved neuropeptide implicated in feeding regulation in vertebrates. In mammals, NPY neurons coexpress Agouti-related protein (AgRP) in the arcuate nucleus of the hypothalamus, and NPY/AgRP neurons activate orexigenic signaling to increase food intake. Zebrafish express npy and two agrp genes, agrp1 and agrp2, in the brain. Similar to mammals, NPY and AgRP1 act as orexigenic factors in zebrafish, but the exact distribution of NPY and AgRP neurons in the zebrafish brain and the regulation of these genes by metabolic states remain unclear. In this study, we analyzed the tissue distribution of npy, agrp1, and agrp2 mRNA in the brain of larval and adult zebrafish. We detected the expression of agrp1, but not npy, in the hypothalamus of larval zebrafish. In the adult zebrafish brain, npy mRNA expression was detected in the dorsal area of the periventricular and lateral hypothalamus, but fasting induced upregulation of npy only in the lateral hypothalamus, indicating that NPY neurons in this area are implicated in feeding regulation. However, consistent with the findings in larval zebrafish, NPY neurons in the hypothalamus did not coexpress AgRP1. In contrast, fasting resulted in a dramatic increase in AgRP1 neurons in the ventral periventricular hypothalamus, which do not coexpress NPY. In addition, we found for the first time that npy- and agrp1-expressing neurons function as GABAergic inhibitory neurons in zebrafish, as they do in mammals. Taken together, our results show that the zebrafish NPY/AgRP system is involved in appetite regulation. In addition, our data suggest that although npy and agrp1 were initially expressed in distinct neurons, evolution has resulted in their coexpression in mammalian hypothalamic neurons.
Collapse
Affiliation(s)
- Inyoung Jeong
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Eunmi Kim
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Suhyun Kim
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Hwan-Ki Kim
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Dong-Won Lee
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea
| | - Jae Young Seong
- Department of Biomedical Sciences, Korea University, Seoul, 136-705, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan, Gyeonggido, 15355, Republic of Korea.
| |
Collapse
|
5
|
Effects of Neuropeptide Y on Stem Cells and Their Potential Applications in Disease Therapy. Stem Cells Int 2017; 2017:6823917. [PMID: 29109742 PMCID: PMC5646323 DOI: 10.1155/2017/6823917] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/01/2017] [Accepted: 08/08/2017] [Indexed: 01/04/2023] Open
Abstract
Neuropeptide Y (NPY), a 36-amino acid peptide, is widely distributed in the central and peripheral nervous systems and other peripheral tissues. It takes part in regulating various biological processes including food intake, circadian rhythm, energy metabolism, and neuroendocrine secretion. Increasing evidence indicates that NPY exerts multiple regulatory effects on stem cells. As a kind of primitive and undifferentiated cells, stem cells have the therapeutic potential to replace damaged cells, secret paracrine molecules, promote angiogenesis, and modulate immunity. Stem cell-based therapy has been demonstrated effective and considered as one of the most promising treatments for specific diseases. However, several limitations still hamper its application, such as poor survival and low differentiation and integration rates of transplanted stem cells. The regulatory effects of NPY on stem cell survival, proliferation, and differentiation may be helpful to overcome these limitations and facilitate the application of stem cell-based therapy. In this review, we summarized the regulatory effects of NPY on stem cells and discussed their potential applications in disease therapy.
Collapse
|
6
|
Yahara M, Tei K, Tamura M. Inhibition of neuropeptide Y Y1 receptor induces osteoblast differentiation in MC3T3‑E1 cells. Mol Med Rep 2017; 16:2779-2784. [PMID: 28656295 DOI: 10.3892/mmr.2017.6866] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/03/2017] [Indexed: 01/07/2023] Open
Abstract
Neuropeptide Y (NPY) is a major neural signaling molecule. NPY is produced by peripheral tissues, such as osteoblasts, and binds to the corresponding Y1 receptor that belongs to the G‑protein‑coupled receptor family. Osteoblast‑specific Y1 receptor knockout mice exhibit high bone mass, indicating a role of the NPY‑Y1 receptor axis in the regulation of bone homeostasis. In the bone microenvironment, peripheral nerve fibers and osteoblasts produce NPY. However, the effects of the Y1 receptor on osteoblasts remain unexplored. In the present study, an RNA interference approach was employed to target the Y1 receptor, in order to determine whether it may function to regulate the growth, differentiation and viability of osteoblasts. Knockdown of the Y1 receptor by small interfering RNA (siRNA) lead to induction of alkaline phosphatase (ALP) activity and mineralization in mouse MC3T3‑E1 osteoblast cells. In addition, the mRNA expression levels of ALP, osteocalcin, collagen (I) α1, and bone sialoprotein were significantly increased following transfection of a Y1 receptor siRNA. Furthermore, the mRNA expression levels of Runx2 and osterix were significantly increased; however, no significant alterations in cell proliferation and caspase‑3/7 activity were observed in Y1 receptor siRNA‑transfected cells when compared with non‑targeting controls. The results demonstrate that Y1 receptor inhibition may increase osteoblastic differentiation, which indicates a role of the Y1 receptor in the regulation of osteoblastic differentiation.
Collapse
Affiliation(s)
- Motoki Yahara
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060‑8586, Japan
| | - Kanchu Tei
- Department of Oral and Maxillofacial Surgery, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060‑8586, Japan
| | - Masato Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060‑8586, Japan
| |
Collapse
|
7
|
Horsnell H, Baldock PA. Osteoblastic Actions of the Neuropeptide Y System to Regulate Bone and Energy Homeostasis. Curr Osteoporos Rep 2016; 14:26-31. [PMID: 26872458 DOI: 10.1007/s11914-016-0300-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neural pathways are now a well-appreciated factor in the regulatory milieu controlling the maintenance of bone mass. A number of neural pathways from the brain to bone have been identified. These pathways often involve elements of the energy homeostatic apparatus, indicating links between the regulation of bone metabolism and energy balance. Neuropeptide Y is one such factor that co-regulates these two processes. Initial studies outlined the skeletal actions of NPY from within the brain and the interactions with energy homeostatic processes. However, in recent years, an appreciation for the actions of NPY within bone cells has expanded. Cells of the osteoblastic lineage express both NPY ligand and a cognate receptor NPY, Y1R. Murine studies have demonstrated that both ligand and receptor actively control bone mass and osteoblast activity and interact with mechanical signals to integrate with the local loading environment. Local NPY signalling regulates osteoprogenitor production and differentiation, to cover the entire osteoblastic lineage. In addition, several recent studies have demonstrated extra-skeletal actions of osteoblastic NPY signalling, to regulate energy expenditure and with it adiposity, and in a separate study, to control release of a factor-controlling beta cell mass and insulin production/release and with it glucose tolerance. Thus, osteoblastic neuropeptide production and signalling illustrates the rapidly widening sphere of influence of skeletal tissue, and suggests a far more complex and interconnected physiology then is currently appreciated.
Collapse
Affiliation(s)
- Harry Horsnell
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, St Vincent's Hospital, 390 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia
- Department of Biology and Biochemistry, Bath University, Claverton Down Rd, Bath, North East Somerset, BA2 7AY, UK
| | - Paul A Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, St Vincent's Hospital, 390 Victoria St, Darlinghurst, Sydney, NSW, 2010, Australia.
- School of Medicine, The University of Notre Dame Australia, 160 Oxford St, Darlinghurst, Sydney, NSW, 2010, Australia.
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
8
|
Qi Y, Fu M, Herzog H. Y2 receptor signalling in NPY neurons controls bone formation and fasting induced feeding but not spontaneous feeding. Neuropeptides 2016; 55:91-7. [PMID: 26444586 DOI: 10.1016/j.npep.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 12/24/2022]
Abstract
Y2 receptors have been implicated in the development of obesity and are a potential target for obesity treatment due to their known role of inhibiting neuropeptide Y (NPY) induced feeding responses. However, the precise neuronal population on which Y2 receptors act to fulfil this role is less clear. Here we utilise a novel inducible, postnatal onset NPY neurons specific deletion model to investigate the functional consequences of loss of Y2 signalling in this population of neurons on feeding and energy homeostasis regulation. While the consequences of lack of Y2 signalling in NPY neurons are confirmed in terms of the uncoupling of suppression/increasing of NPY and pro-opiomelanocortin (POMC) mRNA expression in the arcuate nuclei (Arc), respectively, this lack of Y2 signalling surprisingly does not have any significant effect on spontaneous food intake. Fasting induced food intake, however, is strongly increased but only in the first 1h after re-feeding. Consequently no significant changes in body weight are being observed although body weight gain is increased in male mice after postnatal onset Y2 deletion. Importantly, another known function of central Y2 receptor signalling, the suppression of bone formation is conserved in this conditional model with whole body bone mineral content being decreased. Taken together this model confirms the critical role of Y2 signalling to control NPY and associated POMC expression in the Arc, but also highlights the possibility that others, non-NPY neuronal Y2 receptors, are also involved in controlling feeding and energy homeostasis regulation.
Collapse
Affiliation(s)
- Yue Qi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia.
| | - Melissa Fu
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia
| |
Collapse
|
9
|
Abstract
In the past 15 years, the field of physiology has been radically challenged by landmark studies using novel tools of genetic engineering. Particular to our interest, the reciprocal interactions between the skeleton and the nervous system were shown to be major ones. The demonstration that brain, via multiple pathways, is a powerful regulator of bone growth, has shed light on an important central regulation of skeletal homeostasis. More recently, it was shown that bone might return the favor to the brain through the secretion of a bone-derived hormone, osteocalcin. The skeleton influences development and cognitive functions of the central nervous system at different stages throughout life suggesting an intimate dialogue between bone and brain.
Collapse
Affiliation(s)
- Alexandre Chamouni
- Centre de Médecine Moléculaire, Institut Necker-Enfants Malades (INEM), 75014, Paris, France
| | | | | |
Collapse
|
10
|
Loh K, Herzog H, Shi YC. Regulation of energy homeostasis by the NPY system. Trends Endocrinol Metab 2015; 26:125-35. [PMID: 25662369 DOI: 10.1016/j.tem.2015.01.003] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
Obesity develops when energy intake exceeds energy expenditure over time. Numerous neurotransmitters, hormones, and factors have been implicated to coordinately control energy homeostasis, centrally and peripherally. However, the neuropeptide Y (NPY) system has emerged as the one with the most critical functions in this process. While NPY centrally promotes feeding and reduces energy expenditure, peptide YY (PYY) and pancreatic polypeptide (PP), the other family members, mediate satiety. Importantly, recent research has uncovered additional functions for these peptides that go beyond the simple feeding/satiety circuits and indicate a more extensive function in controlling energy homeostasis. In this review, we will discuss the actions of the NPY system in the regulation of energy balance, with a particular focus on energy expenditure.
Collapse
Affiliation(s)
- Kim Loh
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, 2010, Australia; Faculty of Medicine, UNSW Australia, Sydney, 2052, Australia.
| |
Collapse
|
11
|
Central genes, pathways and modules that regulate bone mass. Arch Biochem Biophys 2014; 561:130-6. [DOI: 10.1016/j.abb.2014.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/07/2023]
|
12
|
Abstract
Bones are structures in vertebrates that provide support to organs, protect soft organs, and give them shape and defined features, functions that are essential for their survival. To perform these functions, bones are constantly renewed throughout life. The process through which bones are renewed is known as bone remodeling, an energy demanding process sensitive to changes in energy homeostasis of the organism. A close interplay takes place between the diversity of nutritional cues and metabolic signals with different elements of the hypothalamic circuits to co-ordinate energy metabolism with the regulation of bone mass. In this review, we focus on how mouse and human genetics have elucidated the roles of hormonal signals and neural circuits that originate in, or impinge on, the hypothalamus in the regulation of bone mass. This will help to understand the mechanisms whereby regulation of bone is gated and dynamically regulated by the hypothalamus.
Collapse
Affiliation(s)
- Kunal Sharan
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
| | - Vijay K Yadav
- Systems Biology of Bone Laboratory, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; Sanger Mouse Genetics Project, Department of Mouse and Zebrafish Genetics, The Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom.
| |
Collapse
|
13
|
Kurebayashi N, Sato M, Fujisawa T, Fukushima K, Tamura M. Regulation of neuropeptide Y Y1 receptor expression by bone morphogenetic protein 2 in C2C12 myoblasts. Biochem Biophys Res Commun 2013; 439:506-10. [PMID: 24025680 DOI: 10.1016/j.bbrc.2013.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 12/25/2022]
Abstract
The neuropeptide Y (NPY) system is known as one of the major neural signaling pathways. NPY, produced by peripheral tissues including osteoblasts, is known to bind to the Y1 receptor. Recently, osteoblast-specific Y1 receptor knockout mice were developed and were found to have a high bone mass phenotype, indicating a role for the NPY-Y1 receptor axis as a regulator of bone homeostasis. However, regulation of Y1 receptor expression during osteoblastic differentiation remains unexplored. In the present study, we examined the role of bone morphogenetic protein (BMP) 2 signaling in regulating Y1 receptor expression. In C2C12 cells, expression of Y1 receptor mRNA was induced by BMP2. This induction was also observed after co-transfection with Smad1 and Smad4, the intracellular signaling molecules of the BMP2 signaling pathway. In a transfection assay, Smad1/4 up-regulated transcriptional activity through interaction with the Y1 receptor gene promoter. Following transfection of MC3T3-E1 cells with siRNA for the Y1 receptor, the expression of alkaline phosphatase, osteocalcin, Runx2 and osterix were increased. These results show that BMP2 signaling regulates Y1 receptor gene expression, and raises the possibility that NPY acts in osteoblasts via an autocrine mechanism.
Collapse
Affiliation(s)
- Naoko Kurebayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan; Department of Dental Anesthesiology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| | | | | | | | | |
Collapse
|
14
|
Casillas-Espinosa PM, Powell KL, O'Brien TJ. Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 2013; 53 Suppl 9:41-58. [PMID: 23216578 DOI: 10.1111/epi.12034] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Synaptic transmission is the communication between a presynaptic and a postsynaptic neuron, and the subsequent processing of the signal. These processes are complex and highly regulated, reflecting their importance in normal brain functioning and homeostasis. Sustaining synaptic transmission depends on the continuing cycle of synaptic vesicle formation, release, and endocytosis, which requires proteins such as dynamin, syndapin, synapsin, and synaptic vesicle protein 2A. Synaptic transmission is regulated by diverse mechanisms, including presynaptic modulators of synaptic vesicle formation and release, postsynaptic receptors and signaling, and modulators of neurotransmission. Neurotransmitters released presynaptically can bind to their postsynaptic receptors, the inhibitory γ-aminobutyric acid (GABA)ergic receptors or the excitatory glutamate receptors. Once released, glutamate activates a variety of postsynaptic receptors including α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), N-methyl-D-aspartate (NMDA), kainate, and metabotropic receptors. The activation of the receptors triggers downstream signaling cascades generating a vast array of effects, which can be modulated by a numerous auxiliary regulatory subunits. Moreover, different neuropeptides such as neuropeptide Y, brain-derived neurotrophic factor (BDNF), somatostatin, ghrelin, and galanin, act as regulators of diverse synaptic functions and along with the classic neurotransmitters. Abnormalities in the regulation of synaptic transmission play a critical role in the pathogenesis of numerous brain diseases, including epilepsy. This review focuses on the different mechanisms involved in the regulation of synaptic transmission, which may play a role in the pathogenesis of epilepsy: the presynaptic modulators of synaptic vesicle formation and release, postsynaptic receptors, and modulators of neurotransmission, including the mechanism by which drugs can modulate the frequency and severity of epileptic seizures.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- The Departments of Medicine and Neurology, The Royal Melbourne Hospital, The Melbourne Brain Centre, The University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
15
|
Chachua T, Poon KL, Yum MS, Nesheiwat L, DeSantis K, Velíšková J, Velíšek L. Rapamycin has age-, treatment paradigm-, and model-specific anticonvulsant effects and modulates neuropeptide Y expression in rats. Epilepsia 2012; 53:2015-25. [PMID: 23016669 PMCID: PMC3496841 DOI: 10.1111/j.1528-1167.2012.03674.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Rapamycin (RAP) has certain antiepileptogenic features. However, it is unclear whether these effects can be explained by the anticonvulsant action of RAP, which has not been studied. To address this question, we tested potential anticonvulsant effects of RAP in immature and adult rats using different seizure models and treatment paradigms. In addition, we studied changes in the expression of neuropeptide Y (NPY) induced by RAP, which may serve as an indirect target of the RAP action. METHODS A complex approach was adopted to evaluate the anticonvulsant potential of RAP: We used flurothyl-, pentylenetetrazole (PTZ)-, N-methyl-D-aspartate (NMDA)-, and kainic acid (KA)-induced seizures to test the effects of RAP using different pretreatment protocols in immature and adult rats. We also evaluated expression of NPY within the primary motor cortex, hippocampal CA1, and dentate gyrus (DG) after different pretreatments with RAP in immature rats. KEY FINDINGS We found the following: (1) RAP administered with short-term pretreatment paradigms has a weak anticonvulsant potential in the seizure models with compromised inhibition. (2) Lack of RAP efficacy correlates with decreased NPY expression in the cortex, CA1, and DG. Specifically in immature rats, a single dose of RAP (3 mg/kg) 4 or 24 h before seizure testing had anticonvulsant effects against PTZ-induced seizures. In the flurothyl seizure model only the 4-h pretreatment with RAP was anticonvulsant in the both age groups. Short-term pretreatments with RAP had no effects against NMDA- and KA-induced seizures tested in immature rats. Long-term pretreatments with RAP over 8 days did not show beneficial effect in all tested seizure models in developing rats. Moreover, the long-term pretreatment with RAP had a slight proconvulsant effect on KA-induced seizures. In immature rats, any lack of anticonvulsant effect (including proconvulsant effect of multiple doses of RAP) was associated with downregulation of NPY expression in the cortex and DG. In immature animals, after a single dose of RAP with 24 h delay, we found a decrease of NPY expression in DG, and CA1 as well. SIGNIFICANCE Our data show weak age-, treatment paradigm-, and model-specific anticonvulsant effects of RAP as well as loss of those effects after long-term RAP pretreatment associated with downregulation of NPY expression. These findings suggest that RAP is a poor anticonvulsant and may have beneficial effects only against epileptogenesis. In addition, our data present new insights into mechanisms of RAP action on seizures indicating a possible connection between mammalian target of rapamycin (mTOR) signaling and NPY system.
Collapse
Affiliation(s)
- Tamar Chachua
- Department of Cell Biology & Anatomy, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, U.S.A.
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The past decade has seen a significant expansion of our understanding of the interaction between the neural system and bone. While innervation of bone was long appreciated, the discovery of central relays from the hypothalamus to the cells of bone has seen the identification of a number of efferent neural pathways to bone. The neuropeptide Y (NPY) system has proven to represent a major central pathway, regulating the activity of osteoblasts and osteoclasts, through signaling of central and peripheral ligands, through specific receptors within the hypothalamus and the osteoblast. Moreover, this pathway is now recognized as acting to coordinate both skeletal and energy homeostasis. This review examines the mechanism and actions of the NPY pathway to regulate bone mass and bone cell activity.
Collapse
Affiliation(s)
- Ee Cheng Khor
- Bone Regulation, Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | | |
Collapse
|
17
|
Wu G, Feder A, Wegener G, Bailey C, Saxena S, Charney D, Mathé AA. Central functions of neuropeptide Y in mood and anxiety disorders. Expert Opin Ther Targets 2012; 15:1317-31. [PMID: 21995655 DOI: 10.1517/14728222.2011.628314] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Neuropeptide Y (NPY) is a highly conserved neuropeptide belonging to the pancreatic polypeptide family. Its potential role in the etiology and pathophysiology of mood and anxiety disorders has been extensively studied. NPY also has effects on feeding behavior, ethanol intake, sleep regulation, tissue growth and remodeling. Findings from animal studies have delineated the physiological and behavioral effects mediated by specific NPY receptor subtypes, of which Y1 and Y2 are the best understood. AREAS COVERED Physiological roles and alterations of the NPYergic system in anxiety disorders, depression, posttraumatic stress disorder (PTSD), alcohol dependence and epilepsy. For each disorder, studies in animal models and human investigations are outlined and discussed, focusing on behavior, neurophysiology, genetics and potential for novel treatment targets. EXPERT OPINION The wide implications of NPY in psychiatric disorders such as depression and PTSD make the NPYergic system a promising target for the development of novel therapeutic interventions. These include intranasal NPY administration, currently under study, and the development of agonists and antagonists targeting NPY receptors. Therefore, we are proposing that via this mode of administration, NPY might exert CNS therapeutic actions without untoward systemic effects. Future work will show if this is a feasible approach.
Collapse
Affiliation(s)
- Gang Wu
- Karolinska Institutet-Clinical Neuroscience, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Shi YC, Baldock PA. Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 2012; 50:430-6. [PMID: 22008645 DOI: 10.1016/j.bone.2011.10.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 12/24/2022]
Abstract
Skeletal research is currently undergoing a period of marked expansion. The boundaries of "bone" research are being re-evaluated and with this, a growing recognition of a more complex and interconnected biology than previously considered. One aspect that has become the focus of particular attention is the relationship between bone and fat homeostasis. Evidence from a number of avenues indicates that bone and adipose regulation are both related and interdependent. This review examines the neuropeptide Y (NPY) system, known to exert powerful control over both bone and fat tissue. The actions of this system are characterized by signaling both within specific nuclei of the hypothalamus and also the target tissues, mediated predominantly through two G-protein coupled receptors (Y1 and Y2). In bone tissue, elevated NPY levels act consistently to repress osteoblast activity. Moreover, both central Y2 receptor and osteoblastic Y1 receptor signaling act similarly to repress bone formation. Conversely, loss of NPY expression or receptor signaling induces increased osteoblast activity and bone mass in both cortical and cancellous envelopes. In fat tissue, NPY action is more complex. Energy homeostasis is powerfully altered by elevations in hypothalamic NPY, resulting in increases in fat accretion and body-wide energy conservation, through the action of locally expressed Y1 receptors, while local Y2 receptors act to inhibit NPY-ergic tone. Loss of central NPY expression has a markedly reduced effect, consistent with a physiological drive to promote fat accretion. In fat tissue, NPY and Y1 receptors act to promote lipogenesis, consistent with their roles in the brain. Y2 receptors expressed in adipocytes also act in this manner, showing an opposing action to their role in the hypothalamus. While direct investigation of these processes has yet to be completed, these responses appear to be interrelated to some degree. The starvation-based signal of elevated central NPY inducing marked inhibition of osteoblast activity, whilst promoting fat accretion, indicating skeletal tissue is a component of the energy conservation system. Moreover, when NPY expression is reduced, consistent with high calorie intake and weight gain, bone formation is stimulated, strengthening the skeleton. In conclusion, NPY acts to regulate both bone and fat tissue in a coordinated manner, and remains a strong candidate for mediating interactions between these two tissues.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst NSW 2010, Australia
| | | |
Collapse
|
19
|
De la Cruz E, Zhao M, Guo L, Ma H, Anderson SA, Schwartz TH. Interneuron progenitors attenuate the power of acute focal ictal discharges. Neurotherapeutics 2011; 8:763-73. [PMID: 21748528 PMCID: PMC3250298 DOI: 10.1007/s13311-011-0058-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interneuron progenitors from the embryonic medial ganglionic eminence (MGE) can migrate, differentiate, and enhance local inhibition after transplantation into the postnatal cortex. Whether grafted MGE cells can reduce ictal activity in adult neocortex is unknown. We transplanted live MGE or killed cells (control) from pan green fluorescent protein expressing mice into adult mouse sensorimotor cortex. One week, 2 and 1/2 weeks, or 6 to 8 weeks after transplant, acute focal ictal epileptiform discharges were induced by injection of 4-aminopyridine (4-AP) 2 mm away from the site of transplantation. The local field potential of the events was recorded with 2 electrodes, 1 located in the 4-AP focus and the other 1 in the transplantation site. In all control groups and in the 1-week live cell transplant, 4-AP ictal discharges revealed no attenuation in power and duration from the onset site to the site of transplantation. However, 2.5 or 6 ~ 8 weeks after MGE transplants, there was a dramatic decrease in local field potential power at the MGE transplanted site with little decrease in ictal duration. Surprisingly, there was no relationship between grafted cell distribution or density and the degree of attenuation. As remarkably low graft densities still significantly reduced discharge power, these data provide further support for the therapeutic potential of interneuron precursor transplants in the treatment of neocortical epilepsy.
Collapse
Affiliation(s)
- Estanislao De la Cruz
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| | - Mingrui Zhao
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| | - Lihua Guo
- Department of Psychiatry, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| | - Stewart A. Anderson
- Department of Psychiatry, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| | - Theodore H. Schwartz
- Departments of Neurological Surgery, Neurology and Neuroscience, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY 10065 USA
| |
Collapse
|
20
|
Francès F, Guillen M, Verdú F, Portolés O, Castelló A, Sorlí J, Corella D. The 1258 G>A polymorphism in the neuropeptide Y gene is associated with greater alcohol consumption in a Mediterranean population. Alcohol 2011; 45:131-6. [PMID: 21303710 DOI: 10.1016/j.alcohol.2010.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 08/10/2010] [Accepted: 08/10/2010] [Indexed: 11/25/2022]
Abstract
Neuropeptide Y (NPY) is a neurotransmitter widely distributed in the central nervous system. Several studies have demonstrated that increases of NPY are associated with reduced alcohol intake and anxiety manifestations. The Leu7Pro polymorphism in the NPY has been associated with alcohol consumption, but evidence is scarce. In the Spanish Mediterranean population, this variant is not polymorphic. Thus, our aim is to identify novel functional variants in the NPY and to investigate the impact of these markers and others previously described on alcohol consumption in this population. A total of 911 subjects (321 men and 590 women) from the Spanish Mediterranean population were recruited. Alcohol consumption, and demographic and lifestyle variables were measured. Nucleotide sequence determination and SNP analyses were carried out. Only one exonic SNP was detected by direct sequencing (1258 G>A or rs9785023; allele frequency 0.47). From the intronic markers chosen (483 A>G or rs13235938, 2517 A>G or rs4722342, and 7065 A>G or rs4722343), only the two latter ones were polymorphic (allele frequencies 0.46 and 0.04, respectively), and none of them were associated with alcohol consumption. However, the 1258 G>A SNP was associated (recessive pattern) with higher alcohol intake. This association was particularly relevant in men with high alcohol intake (59.1±5.0 g/day in AA as opposed to 40.6±7.5 in the G carriers, P=.022) and women with moderate alcohol intake (7.3±5.5 g/day in AA as opposed to 4.6±3.9g/day in G carriers, P=.048). The 1258 G>A polymorphism in the NPY is associated with higher alcohol consumption in the Mediterranean population.
Collapse
|
21
|
Shi YC, Lin S, Wong IPL, Baldock PA, Aljanova A, Enriquez RF, Castillo L, Mitchell NF, Ye JM, Zhang L, Macia L, Yulyaningsih E, Nguyen AD, Riepler SJ, Herzog H, Sainsbury A. NPY neuron-specific Y2 receptors regulate adipose tissue and trabecular bone but not cortical bone homeostasis in mice. PLoS One 2010; 5:e11361. [PMID: 20613867 PMCID: PMC2894044 DOI: 10.1371/journal.pone.0011361] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 06/01/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Y2 receptor signalling is known to be important in neuropeptide Y (NPY)-mediated effects on energy homeostasis and bone physiology. Y2 receptors are located post-synaptically as well as acting as auto receptors on NPY-expressing neurons, and the different roles of these two populations of Y2 receptors in the regulation of energy homeostasis and body composition are unclear. METHODOLOGY/PRINCIPAL FINDINGS We thus generated two conditional knockout mouse models, Y2(lox/lox) and NPYCre/+;Y2(lox/lox), in which Y2 receptors can be selectively ablated either in the hypothalamus or specifically in hypothalamic NPY-producing neurons of adult mice. Specific deletion of hypothalamic Y2 receptors increases food intake and body weight compared to controls. Importantly, specific ablation of hypothalamic Y2 receptors on NPY-containing neurons results in a significantly greater adiposity in female but not male mice, accompanied by increased hepatic triglyceride levels, decreased expression of liver carnitine palmitoyltransferase (CPT1) and increased expression of muscle phosphorylated acetyl-CoA carboxylase (ACC). While food intake, body weight, femur length, bone mineral content, density and cortical bone volume and thickness are not significantly altered, trabecular bone volume and number were significantly increased by hypothalamic Y2 deletion on NPY-expressing neurons. Interestingly, in situ hybridisation reveals increased NPY and decreased proopiomelanocortin (POMC) mRNA expression in the arcuate nucleus of mice with hypothalamus-specific deletion of Y2 receptors in NPY neurons, consistent with a negative feedback mechanism between NPY expression and Y2 receptors on NPY-ergic neurons. CONCLUSIONS/SIGNIFICANCE Taken together these data demonstrate the anti-obesogenic role of Y2 receptors in the brain, notably on NPY-ergic neurons, possibly via inhibition of NPY neurons and concomitant stimulation of POMC-expressing neurons in the arcuate nucleus of the hypothalamus, reducing lipogenic pathways in liver and/or skeletal muscle in females. These data also reveal as an anti-osteogenic effect of Y2 receptors on hypothalamic NPY-expressing neurons on trabecular but not on cortical bone.
Collapse
Affiliation(s)
- Yan-Chuan Shi
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Shu Lin
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Iris P. L. Wong
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Paul A. Baldock
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Aygul Aljanova
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ronaldo F. Enriquez
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Lesley Castillo
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Natalie F. Mitchell
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ji-Ming Ye
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Lei Zhang
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Laurence Macia
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ernie Yulyaningsih
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Amy D. Nguyen
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sabrina J. Riepler
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Amanda Sainsbury
- Neuroscience Research Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
22
|
Mullins D, Adham N, Hesk D, Wu Y, Kelly J, Huang Y, Guzzi M, Zhang X, McCombie S, Stamford A, Parker E. Identification and characterization of pseudoirreversible nonpeptide antagonists of the neuropeptide Y Y5 receptor and development of a novel Y5-selective radioligand. Eur J Pharmacol 2008; 601:1-7. [PMID: 18976648 DOI: 10.1016/j.ejphar.2008.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/24/2008] [Accepted: 10/09/2008] [Indexed: 11/24/2022]
Abstract
The neuropeptide Y (NPY) Y(5) receptor is believed to be involved in the central regulation of appetite. Thus, antagonists of this receptor have been pursued as potential therapeutic agents for the treatment of obesity. A novel series of potent and selective phenylamide or biaryl urea NPY Y(5) receptor antagonists was identified. Four representative compounds from this series, SCH 208639 (N-[4-[(1,1-dimethylbutyl)thio]phenyl]-2,2-dimethylpropanamide), SCH 430765 (N-[[[3'-fluoro[1,1'-biphenyl]-4-yl]amino]carbonyl]-N-methyl-1-(methylsulfonyl)-4-piperidinamine), SCH 488106 (N-[[[3',5'-difluoro[1,1'-biphenyl]-4-yl]amino]carbonyl]-N-methyl-1-[(5-methyl-3-pyridinyl)carbonyl]-4-piperidinamine) and SCH 500946 (N-[[[5-(3,5-difluorophenyl)-2-pyrazinyl]amino]carbonyl]-N-methyl-1-(methylsulfonyl)-4-piperidinamine), behaved as competitive antagonists in radioligand binding assays, but displayed apparently insurmountable antagonism in a cell-based functional assay. The apparently insurmountable antagonism was due to slow receptor dissociation rates rather than covalent binding, because the antagonists' effects could be reduced by extensive washing of cells after antagonist exposure. A novel radioligand, [(35)S]SCH 500946, was also developed and used to characterize the interaction of these antagonists with the NPY Y(5) receptor. [(35)S]SCH 500946 had high affinity for the NPY Y(5) receptor (K(d)=0.29 nM), and the binding kinetics (k(on) 4.414 x 10(7) M(-)(1) min(-1); k(off) 0.009816 min(-1)) confirmed that the compound slowly dissociates from the receptor. In a competition binding assay, NPY failed to displace [(35)S]SCH 500946 completely, indicating that the binding sites for NPY and [(35)S]SCH 500946 are not identical. These data indicate that the apparent insurmountable antagonism of these NPY Y(5) receptor antagonists is attributable both to slow receptor dissociation rates and to binding at a site distinct from NPY.
Collapse
Affiliation(s)
- Deborra Mullins
- Department of Neurobiology, Schering-Plough Research Institute, 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Frerker N, Wagner L, Wolf R, Heiser U, Hoffmann T, Rahfeld JU, Schade J, Karl T, Naim HY, Alfalah M, Demuth HU, von Hörsten S. Neuropeptide Y (NPY) cleaving enzymes: structural and functional homologues of dipeptidyl peptidase 4. Peptides 2007; 28:257-68. [PMID: 17223229 DOI: 10.1016/j.peptides.2006.09.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 09/06/2006] [Indexed: 10/23/2022]
Abstract
N-terminal truncation of NPY has important physiological consequences, because the truncated peptides lose their capability to activate the Y1-receptor. The sources of N-terminally truncated NPY and related peptides are unknown and several proline specific peptidases may be involved. First, we therefore provide an overview on the peptidases, belonging to structural and functional homologues of dipeptidyl peptidase 4 (DP4) as well as aminopeptidase P (APP) and thus, represent potential candidates of NPY cleavage in vivo. Second, applying selective inhibitors against DP4, DP8/9 and DP2, respectively, the enzymatic distribution was analyzed in brain extracts from wild type and DP4 deficient F344 rat substrains and human plasma samples in activity studies as well as by matrix assisted laser desorption/ionisation-time of flight (MALDI-TOF)-mass spectrometry. Third, co-transfection of Cos-1 cells with Dpp4 and Npy followed by confocal lasermicroscopy illustrated that hNPY-dsRed1-N1 was transported in large dense core vesicles towards the membrane while rDP4-GFP-C1 was transported primarily in different vesicles thereby providing no clear evidence for co-localization of NPY and DP4. Nevertheless, the review and experimental results of activity and mass spectrometry studies support the notion that at least five peptidases (DP4, DP8, DP9, XPNPEP1, XPNPEP2) are potentially involved in NPY cleavage while the serine protease DP4 (CD26) could be the principal peptidase involved in the N-terminal truncation of NPY. However, DP8 and DP9 are also capable of cleaving NPY, whereas no cleavage could be demonstrated for DP2.
Collapse
Affiliation(s)
- Nadine Frerker
- Department of Functional and Applied Anatomy, Hannover Medical School, OE 4120, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Christensen DZ, Olesen MV, Kristiansen H, Mikkelsen JD, Woldbye DPD. Unaltered neuropeptide Y (NPY)-stimulated [35S]GTPgammaS binding suggests a net increase in NPY signalling after repeated electroconvulsive seizures in mice. J Neurosci Res 2007; 84:1282-91. [PMID: 16941487 DOI: 10.1002/jnr.21028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although electroconvulsive seizures (ECS) are widely used as a treatment for severe depression, the working mechanism of ECS remains unclear. Repeated ECS causes anticonvulsant effects that have been proposed to underlie the therapeutic effect of ECS, and neuropeptide Y (NPY) is a potential candidate for mediating this anticonvulsant effect. Repeated ECS results in prominent increases in NPY synthesis. In contrast, NPY-sensitive receptor binding is decreased, so it is unclear whether ECS causes a net increase in NPY signalling. Agonist-stimulated [35S]GTPgammaS binding is a method for detecting functional activation of G-protein-coupled receptors. The present study in mice examined the effects of daily ECS for 14 days on NPY-stimulated [35S]GTPgammaS functional binding and compared this with gene expression of NPY and NPY receptors as well as [125I]peptide YY (PYY) binding in hippocampus of the same animals. Significant increases in NPY mRNA and concomitant reductions in NPY-sensitive binding were found in the dentate gyrus, hippocampal CA1, and neocortex of ECS treated mice, which is consistent with previous rat data. These changes remained significant 1 week after repeated ECS. Significant increases in NPY Y1, Y2, and Y5 mRNA were found in the dentate gyrus after ECS. Surprisingly, unaltered levels of functional NPY receptor binding accompanied the decreased NPY-sensitive binding. This suggests that mechanisms coupling NPY receptor stimulation to G-protein activation could be augmented after repeated ECS. Thus increased synthesis of NPY after repeated ECS should result in a net increase in NPY signalling in spite of reduced levels of NPY-sensitive binding.
Collapse
Affiliation(s)
- D Z Christensen
- Laboratory of Neuropsychiatry, Department of Pharmacology, University of Copenhagen and Rigshospitalet University Hospital 6102, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
25
|
Eva C, Serra M, Mele P, Panzica G, Oberto A. Physiology and gene regulation of the brain NPY Y1 receptor. Front Neuroendocrinol 2006; 27:308-39. [PMID: 16989896 DOI: 10.1016/j.yfrne.2006.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 07/18/2006] [Accepted: 07/25/2006] [Indexed: 10/24/2022]
Abstract
Neuropeptide Y (NPY) is one of the most prominent and abundant neuropeptides in the mammalian brain where it interacts with a family of G-protein coupled receptors, including the Y(1) receptor subtype (Y(1)R). NPY-Y(1)R signalling plays a prominent role in the regulation of several behavioural and physiological functions including feeding behaviour and energy balance, sexual hormone secretion, stress response, emotional behaviour, neuronal excitability and ethanol drinking. Y(1)R expression is regulated by neuronal activity and peripheral hormones. The Y(1)R gene has been isolated from rodents and humans and it contains multiple regulatory elements that may participate in the regulation of its expression. Y(1)R expression in the hypothalamus is modulated by changes in energetic balance induced by a wide variety of conditions (fasting, pregnancy, hyperglycaemic challenge, hypophagia, diet induced obesity). Estrogens up-regulate responsiveness to NPY to stimulate preovulatory GnRH and gonadotropin surges by increasing Y(1)R gene expression both in the hypothalamus and the pituitary. Y(1)R expression is modulated by different kinds of brain insults, such as stress and seizure activity, and alteration in its expression may contribute to antidepressant action. Chronic modulation of GABA(A) receptor function by benzodiazepines or neuroactive steroids also affects Y(1)R expression in the amygdala, suggesting that a functional interaction between the GABA(A) receptor and Y(1)R mediated signalling may contribute to the regulation of emotional behaviour. In this paper, we review the state of the art concerning Y(1)R function and gene expression, including our personal contribution to many of the subjects mentioned above.
Collapse
Affiliation(s)
- Carola Eva
- Sezione di Farmacologia, Dipartimento di Anatomia, Farmacologia e Medicina Legale, Università di Torino, Italy; Centro Rita Levi Montalcini, Università di Torino, Italy.
| | | | | | | | | |
Collapse
|
26
|
Hattiangady B, Rao MS, Shetty GA, Shetty AK. Brain-derived neurotrophic factor, phosphorylated cyclic AMP response element binding protein and neuropeptide Y decline as early as middle age in the dentate gyrus and CA1 and CA3 subfields of the hippocampus. Exp Neurol 2005; 195:353-71. [PMID: 16002067 DOI: 10.1016/j.expneurol.2005.05.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 03/24/2005] [Accepted: 05/13/2005] [Indexed: 12/18/2022]
Abstract
The hippocampus is very susceptible to aging. Severely diminished dentate neurogenesis at middle age is one of the most conspicuous early changes in the aging hippocampus, which is likely linked to an early decline in the concentration of neurotrophic factors and signaling proteins that influence neurogenesis. We analyzed three proteins that are well-known to promote dentate neurogenesis and learning and memory function in the dentate gyrus and the hippocampal CA1 and CA3 subfields of young, middle-aged and aged F344 rats. These include the brain-derived neurotrophic factor (BDNF), the transcription factor phosphorylated cyclic AMP response element binding protein (p-CREB) and the neuropeptide neuropeptide Y (NPY). The BDNF was analyzed via ELISA and BDNF immunohistochemistry, the p-CREB through densitometric analysis of p-CREB immunopositive cells, and the NPY via stereological counting of NPY-immunopositive interneurons. We provide new evidence that the BDNF concentration, the p-CREB immunoreactivity and the number of NPY immunopositive interneurons decline considerably by middle age in both dentate gyrus and CA1 and CA3 subfields of the hippocampus. However, both BDNF concentration and NPY immunopositive interneuron numbers exhibit no significant decrease between middle age and old age. In contrast, the p-CREB immunoreactivity diminishes further during this period, which is also associated with reduced BDNF immunoreaction within the soma of dentate granule cells and hippocampal pyramidal neurons. Collectively, these results suggest that severely dampened dentate neurogenesis observed at middle age is linked at least partially to reduced concentrations of BDNF, p-CREB and NPY, as each of these proteins is a positive regulator of dentate neurogenesis. Dramatically diminished CREB phosphorylation (and persistently reduced levels of BDNF and NPY) at old age may underlie the learning and memory impairments observed during senescence.
Collapse
Affiliation(s)
- Bharathi Hattiangady
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
27
|
Woldbye DPD, Nanobashvili A, Sørensen AT, Husum H, Bolwig TG, Sørensen G, Ernfors P, Kokaia M. Differential suppression of seizures via Y2 and Y5 neuropeptide Y receptors. Neurobiol Dis 2005; 20:760-72. [PMID: 15979311 DOI: 10.1016/j.nbd.2005.05.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2004] [Revised: 04/14/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022] Open
Abstract
Neuropeptide Y (NPY) prominently inhibits epileptic seizures in different animal models. The NPY receptors mediating this effect remain controversial partially due to lack of highly selective agonists and antagonists. To circumvent this problem, we used various NPY receptor knockout mice with the same genetic background and explored anti-epileptic action of NPY in vitro and in vivo. In Y2 (Y2-/-) and Y5 (Y5-/-) receptor knockouts, NPY partially inhibited 0 Mg2+-induced epileptiform activity in hippocampal slices. In contrast, in double knockouts (Y2Y5-/-), NPY had no effect, suggesting that in the hippocampus in vitro both receptors mediate anti-epileptiform action of NPY in an additive manner. Systemic kainate induced more severe seizures in Y5-/- and Y2Y5-/-, but not in Y2-/- mice, as compared to wild-type mice. Moreover, kainate seizures were aggravated by administration of the Y5 antagonist L-152,804 in wild-type mice. In Y5-/- mice, hippocampal kindling progressed faster, and afterdischarge durations were longer in amygdala, but not in hippocampus, as compared to wild-type controls. Taken together, these data suggest that, in mice, both Y2 and Y5 receptors regulate hippocampal seizures in vitro, while activation of Y5 receptors in extra-hippocampal regions reduces generalized seizures in vivo.
Collapse
Affiliation(s)
- David P D Woldbye
- Section of Restorative Neurology, Wallenberg Neuroscience Center, BMC A-11, Lund University Hospital, S-221 84 Lund, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
The endogenous NPY system in the brain is centrally involved in seizure regulation. The present paper reviews the evidence that exogenously applied NPY receptor ligands can inhibit epileptic seizures in various rodent in vitro and in vivo models. Agonists at Y2 and/or Y5 receptors and antagonists at Y1 receptors appear to inhibit seizures, depending on the seizure model studied. Although progress has been made, further studies are needed using transgenic animals as well as novel selective agonists and antagonists to firmly identify the NPY receptors mediating antiepileptic effects. This may lead to the development of future antiepileptic drug treatments targeting the NPY system.
Collapse
Affiliation(s)
- D P D Woldbye
- Laboratory of Neuropsychiatry, Rigshospitalet University Hospital and Department of Pharmacology, University of Copenhagen, 9 Blegdamsvej, DK-2100 Copenhagen, Denmark.
| | | |
Collapse
|
29
|
Löckinger A, Köberle D, König PS, Saria A, Herold M, Cornélissen G, Halberg F. Neuropeptide chronomics in clinically healthy young adults: circaoctohoran and circadian patterns. Peptides 2004; 25:533-42. [PMID: 15165707 DOI: 10.1016/j.peptides.2004.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 02/15/2004] [Accepted: 02/20/2004] [Indexed: 12/01/2022]
Abstract
Endothelin-1 (ET-1) undergoes an about 8-h (circaoctohoran) rather than a circadian variation in clinical health. Herein, 24 h plasma concentrations of vasoactive intestinal peptide (VIP), substance P (SP), neuropeptide Y (NpY), and cortisol used as reference, were obtained from 20 healthy young adults starting at 07:00 or 19:00 h. Like ET-1, SP and NpY undergo a circaoctohoran variation, whereas VIP is circadian rhythmic, peaking during the night, some 8 h prior to the circadian acrophase of cortisol. Maps of circadian and extra-circadian patterns may serve for screening, diagnosis and a better understanding of mechanisms underlying the etiology of various diseases.
Collapse
Affiliation(s)
- Alex Löckinger
- Department of Internal Medicine, University of Innsbruck, Anichstrasse 35, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
30
|
Gu J, Lynch BA, Anderson D, Klitgaard H, Lu S, Elashoff M, Ebert U, Potschka H, Löscher W. The antiepileptic drug levetiracetam selectively modifies kindling-induced alterations in gene expression in the temporal lobe of rats. Eur J Neurosci 2004; 19:334-45. [PMID: 14725628 DOI: 10.1111/j.0953-816x.2003.03106.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Gene expression profiling by microarrays is a powerful tool for identification of genes that may encode key proteins involved in molecular mechanisms underlying epileptogenesis. Using the Affymetrix oligonucleotide microarray, we have surveyed the expression levels of more than 26,000 genes and expressed sequence tags (ESTs) in the amygdala-kindling model of temporal lobe epilepsy. Furthermore, the effect of the antiepileptic drug levetiracetam (LEV) on kindling-induced alterations of gene expression was studied. Treatment of rats with LEV during kindling acquisition significantly suppressed kindling development. For gene expression profiling, six groups of rats were included in the present study: (i) and (ii) sham-operated rats treated with saline or LEV; (iii) and (iv) electrode-implanted but non-kindled rats treated with saline or LEV; (v) and (vi) kindled rats treated with saline or LEV. Treatment was terminated after 11 or 12 daily amygdala stimulations, when all vehicle-treated rats had reached kindling criterion, i.e. a stage 5 seizure. Twenty-four hours later, the ipsilateral temporal lobe was dissected for mRNA preparation. Six temporal lobe preparations from each group were analysed for differential gene expression. In control (non-kindled) rats, LEV treatment was devoid of any significant effect on gene expression. In saline-treated kindled rats, a large number of genes were observed to display mRNA expression alterations compared with non-kindled rats. LEV treatment induced marked effects on gene expression from kindled rats. Previously described epilepsy-related genes, such as neuropeptide Y (NPY), thyrotropin-releasing hormone (TRH) and glial fibrillary acidic protein (GFAP) were confirmed to be up-regulated by kindling and partially normalized by LEV treatment. Real-time quantitative polymerase chain reaction confirmed NPY, TRH and GFAP expression data from chip experiments. Furthermore, a number of novel genes were identified from the gene chip experiments. A subgroup of these genes demonstrated correlation between expression changes and kindled phenotype measurements. In summary, this study identified many genes with potentially important roles in epileptogenesis and highlighted several important issues in using the gene chip technology for the study of animal models of CNS disorders.
Collapse
Affiliation(s)
- Jessie Gu
- UCB Pharma, UCB Research, Cambridge, MA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003; 228:217-44. [PMID: 12626767 DOI: 10.1177/153537020322800301] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The three peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure known as the PP-fold. There are four known human G-protein coupled receptors for the PP-fold peptides, namely Y1, Y2, Y4, and Y5, each of them being able to bind at least two of the three endogenous ligands. All three peptides are found in the circulation acting as hormones. Although NPY is only released from neurons, PYY and PP are primarily found in endocrine cells in the gut, where they exert such effects as inhibition of gall bladder secretion, gut motility, and pancreatic secretion. However, when PYY is administered in an experimental setting to animals, cloned receptors, or tissue preparations, it can mimic the effects of NPY in essentially all studies, making it difficult to study the effects of PP-fold peptides and to delineate what receptor and peptide accounts for a particular effect. Initial studies with transgenic animals confirmed the well-established action of NPY on metabolism, food-intake, vascular systems, memory, mood, neuronal excitability, and reproduction. More recently, using transgenic techniques and novel antagonists for the Y1, Y2, and Y5 receptors, NPY has been found to be a key player in the regulation of ethanol consumption and neuronal development.
Collapse
Affiliation(s)
- Magnus M Berglund
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
32
|
Abstract
Neuropeptide Y (NPY) family of hormones exhibits a wide spectrum of central and peripheral activities mediated by six G-protein coupled receptor subtypes denoted as Y1, Y2, Y3, Y4, Y5, and y6. Investigations to date have implicated NPY in the pathophysiology of a number of diseases including feeding disorders, seizures, anxiety, diabetes, hypertension, congestive heart failure and intestinal disorders. These observations suggest that long-acting, potent NPY receptor selective agonists and antagonists developed could be used to treat a variety of diseases. These possibilities are discussed in this paper.
Collapse
Affiliation(s)
- Ambikaipakan Balasubramaniam
- Division of Gastrointestinal Hormones, Department of Surgery, University of Cincinnati Medical Center, Cincinnati, OH 45267-0558, USA.
| |
Collapse
|
33
|
Okubo T, Harada S. Polymorphism of the Neuropeptide Y Gene: An Association Study With Alcohol Withdrawal. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02420.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Okubo T, Harada S. Polymorphism of the neuropeptide Y gene: an association study with alcohol withdrawal. Alcohol Clin Exp Res 2001; 25:59S-62S. [PMID: 11410744 DOI: 10.1097/00000374-200106001-00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) exists in both the central and peripheral nervous system and is thought to modulate many functions such as feeding behavior, anxiety-associated behavior, circadian rhythm, seizure modulation, and hormone secretion. Recent studies have revealed that NPY influences alcohol consumption in mice and that alcohol-preferring rats showed lower concentrations of NPY-like immunoreactivity compared with alcohol-nonpreferring rats in several brain regions. METHODS In the present study, we analyzed the whole coding region and 5'-untranslating region of the NPY gene for 163 Japanese male alcoholics with different withdrawal symptoms (93 with delirium tremens, 71 with seizures, 49 with hallucinations) and 98 Japanese male controls. ALDH2 genotypes of all subjects tested were ALDH2*1 homozygote. RESULTS Three polymorphic nucleotide substitutions, namely -121C/A (promoter), 1258G/A (exon 2), and 5671C/T (exon 3), were detected in both groups. Substituting C to A in the -121 locus produced a putative binding site of GATA-1 and GATA-2. Also, -90G/A (promoter) as a rare variant and 5642-5651 single nucleotide repeats T10/T11 (intron 2) were found. Polymorphism (C/T) at the 1128 locus has been reported to be associated with a higher serum cholesterol level in obese white subjects, but such a polymorphism was not found in our samples. The genotypical distributions for these polymorphic loci (-121C/A, 1258G/A, 5642-5651 T10/T11, and 5671C/T) were not significantly different between the alcoholics and controls. However, frequency of the T allele and frequency of the genotype that possessed T alleles (CT, TT) at the 5671 locus were significantly higher in patients with seizure than in those without seizure (p < 0.05, p < 0.02). CONCLUSION Our data suggested that a C to T substitution at the 5671 locus of the NPY gene may be associated with seizure during alcohol withdrawal.
Collapse
Affiliation(s)
- T Okubo
- Department of Environmental Ecosystem, Doctoral Program in Medical Science, University of Tsukuba, Tsukuba, Japan
| | | |
Collapse
|
35
|
Trivedi PG, Yu H, Trumbauer M, Chen H, Van der Ploeg LH, Guan X. Differential regulation of neuropeptide Y receptors in the brains of NPY knock-out mice. Peptides 2001; 22:395-403. [PMID: 11287094 DOI: 10.1016/s0196-9781(01)00349-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To study the effect of NPY deletion on the regulation of its receptors in the NPY knockout (NPY KO) mice, the expression and binding of NPY receptors were investigated by in situ hybridization and receptor autoradiography using (125)I-[Leu(31),Pro(34)]PYY and (125)I-PYY(3-36) as radioligands. A 6-fold increase in Y2 receptor mRNA was observed in the CA1 region of the hippocampus in NPY KO mice, but a significant change could not be detected for Y1, Y4, Y5 and y6 receptors. Receptor binding reveals a 60-400% increase of Y2 receptor binding in multiple brain areas. A similar increase in Y1 receptor binding was seen only in the hypothalamus. These results demonstrate the NPY receptor expression is altered in mice deficient for its natural ligand.
Collapse
Affiliation(s)
- P G Trivedi
- Department of Obesity Research, Merck Research Laboratories, 07065, Rahway, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Intracerebroventricular injection of NPY inhibits epileptiform seizures and seizure-related "wet dog shakes" (WDS) following electrical stimulation of the dentate gyrus or subiculum. This study examined the effects of NPY on seizures and WDS elicited in hippocampal CA3. Like in the other hippocampal regions, NPY significantly inhibited both seizures and accompanying WDS consistent with in vitro data. The identification of an additional antiepileptic hippocampal target for NPY could prove therapeutically relevant considering that the hippocampal formation is a frequent seizure focus in human epilepsy. The effects of NPY were found to persist on seven repeated NPY injection days. Thus tolerance to the anti-seizure effects of NPY does not appear to develop rapidly. Tolerance being a problem with several current antiepileptic drugs, this further strengthens the concept of NPY receptors as a potential future antiepileptic target.
Collapse
Affiliation(s)
- K Klemp
- Laboratory of Neuropsychiatry, Department of Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
37
|
Harrington ME, Schak KM. Neuropeptide Y phase advances the in vitro hamster circadian clock during the subjective day with no effect on phase during the subjective night. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y99-130] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mammalian daily (circadian) clock is located in the suprachiasmatic nuclei of the hypothalamus. Clock function can be detected by the measurement of the circadian change in spontaneous firing rate of suprachiasmatic nuclei cells in a brain slice preparation in vitro. We investigated the effects of neuropeptide Y on this rhythm of firing rate in hamster suprachiasmatic nuclei neurons. Slices were prepared using standard techniques. On the 1st day in vitro, neuropeptide Y (200 ng/200 nL; 47 pmol) was applied as a microdrop to the suprachiasmatic nuclei region at various times. Spontaneous single-unit firing was measured for 6-12 h on the 2nd day in vitro. Peak firing rate in treated slices was compared with that of untreated control slices to measure phase shifts induced by the peptide. Neuropeptide Y induced phase advances of circa-3h when applied during the subjective day (ZT 2-10) but did not significantly alter phase when applied during the subjective night. The phase shifts to neuropeptide Y in the hamster tissue in vitro are similar in phase dependency and magnitude to shifts measured in vivo.Key words: circadian, neuropeptide Y, rhythm, suprachiasmatic.
Collapse
|
38
|
Meldrum BS, Akbar MT, Chapman AG. Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 1999; 36:189-204. [PMID: 10515165 DOI: 10.1016/s0920-1211(99)00051-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate, the principal excitatory neurotransmitter in the brain, acts on three families of ionotropic receptor--AMPA (alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid), kainate and NMDA (N-methyl-D-aspartate) receptors and three families of metabotropic receptor (Group I: mGlu1 and mGlu5; Group II: mGlu2 and mGlu3; Group III: mGlu4, mGlu6, mGlu7 and mGlu8). Glutamate is removed from the synaptic cleft and the extracellular space by Na+-dependent transporters (GLAST/EAAT1, GLT/EAAT2, EAAC/EAAT3, EAAT4, EAAT5). In rodents, genetic manipulations relating to the expression or function of glutamate receptor proteins can induce epilepsy syndromes or raise seizure threshold. Decreased expression of glutamate transporters (EAAC knockdown, GLT knockout) can lead to seizures. In acquired epilepsy syndromes, a wide variety of changes in receptors and transporters have been described. Electrically-induced kindling in the rat is associated with functional potentiation of NMDA receptor-mediated responses at various limbic sites. Group I metabotropic responses are enhanced in the amygdala. To date, no genetic epilepsy in man has been identified in which the primary genetic defect involves glutamate receptors or transporters. Changes are found in some acquired syndromes, including enhanced NMDA receptor responses in dentate granule cells in patients with hippocampal sclerosis.
Collapse
Affiliation(s)
- B S Meldrum
- Department of Clinical Neurosciences, Institute of Psychiatry, De Crespigny Park, London, UK.
| | | | | |
Collapse
|