1
|
Fan X, Li H. Integration of Single-Cell and Spatial Transcriptomic Data Reveals Spatial Architecture and Potential Biomarkers in Alzheimer's Disease. Mol Neurobiol 2025; 62:5395-5412. [PMID: 39543008 DOI: 10.1007/s12035-024-04617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by the gradual loss of neurons and the accumulation of amyloid plaques and neurofibrillary tangles. Despite advancements in the understanding of AD's pathophysiology, the cellular organization and interactions in the prefrontal cortex (PFC) remain elusive. Eight single-cell RNA sequencing (scRNA-seq) datasets from both normal controls and individuals with AD were harmonized. Stringent preprocessing protocols were implemented to uphold dataset integrity. Unsupervised clustering and annotation revealed 22 distinct cell clusters corresponding to 19 unique cell types. The spatial architecture of the PFC region was constructed using the CARD tool. Further analyses encompassed trajectory examination of Oligodendrocyte subtypes, evaluation of regulon activity scores, and spot clustering within white matter regions (WM). Differential expression analysis and functional enrichment assays unveiled molecular signatures linked to AD progression and were validated using microarray data sourced from neurodegenerative disorder patients. Our investigation employs scRNA-seq and spatial transcriptomics to uncover the cellular atlas and spatial architecture of the human PFC in AD. Moreover, our results indicate that Oligodendrocytes are more prevalent in AD patients, showcasing diverse subtypes and spatial organization within WM regions. Each subtype appears to be associated with distinct biological processes and transcriptional regulators, shedding light on their involvement in AD pathology. Notably, the Oligodendrocyte_C6 subtype is linked to neurological damage in AD patients, characterized by heightened expression of genes involved in cell-cell connections, cell membrane stability, and myelination. Additionally, 12 target genes regulated by NFIA were identified, which are upregulated in AD patients and associated with disease progression. Elevated PLXDC2 expression in peripheral blood was also identified, suggesting its potential as a non-invasive biomarker for early AD detection. Our study provides novel insights into the role of Oligodendrocytes in AD and highlights the potential of PLXDC2 as a blood biomarker for non-invasive diagnosis and monitoring of AD patients.
Collapse
Affiliation(s)
- Xing Fan
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, 226001, PR, China
| | - Huamei Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, 210008, PR, China.
| |
Collapse
|
2
|
Marsh DT, Sugiyama A, Imai Y, Kato R, Smid SD. The structurally diverse phytocannabinoids cannabichromene, cannabigerol and cannabinol significantly inhibit amyloid β-evoked neurotoxicity and changes in cell morphology in PC12 cells. Basic Clin Pharmacol Toxicol 2024; 134:293-309. [PMID: 37697481 DOI: 10.1111/bcpt.13943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Phytocannabinoids (pCBs) have been shown to inhibit the aggregation and neurotoxicity of the neurotoxic Alzheimer's disease protein beta amyloid (Aβ). We characterized the capacity of six pCBs-cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), cannabidivarin (CBDV), cannabidiol (CBD) and Δ9 -tetrahydrocannabinol (Δ9 -THC)-to disrupt Aβ aggregation and protect against Aβ-evoked neurotoxicity in PC12 cells. METHODS Neuroprotection against lipid peroxidation and Aβ-induced cytotoxicity was assessed using the MTT assay. Transmission electron microscopy was used to visualize pCB effects on Aβ aggregation and fluorescence microscopy, with morphometrics and principal component analysis to assess PC12 cell morphology. RESULTS CBD inhibited lipid peroxidation with no significant effect on Aβ toxicity, whilst CBN, CBDV and CBG provided neuroprotection. CBC, CBG and CBN inhibited Aβ1-42 -induced neurotoxicity in PC12 cells, as did Δ9 -THC, CBD and CBDV. CBC, CBN and CBDV inhibited Aβ aggregation, whilst Δ9 -THC reduced aggregate density. Aβ1-42 induced morphological changes in PC12 cells, including a reduction in neuritic projections and rounded cell morphology. CBC and CBG inhibited this effect, whilst Δ9 -THC, CBD and CBDV did not alter Aβ1-42 effects on cell morphology. CONCLUSIONS These findings highlight the neuroprotective activity of CBC, CBG and CBN as novel pCBs associated with variable effects on Aβ-evoked neurite damage and inhibition of amyloid β aggregation.
Collapse
Affiliation(s)
- Dylan T Marsh
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Ayato Sugiyama
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Yuta Imai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Ryuji Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
- Institute of Glyco-core Research (IGCORE), Nagoya University, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Scott D Smid
- Discipline of Pharmacology, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Gu J, Yan C, Yin S, Wu H, Liu C, Xue A, Lei X, Zhang N, Geng F. Erythrocyte membrane-coated nanocarriers modified by TGN for Alzheimer's disease. J Control Release 2024; 366:448-459. [PMID: 38128884 DOI: 10.1016/j.jconrel.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease, and the main pathological feature was β-amyloid protein (Aβ) deposition. Recently, bioactive materials-based drug delivery system has been widely investigated for the treatment of AD. In this study, we developed a red blood cells (RBC) membrane-coated polycaprolactone (PCL) nanoparticles (NPs) loading with a therapeutic agent for AD, curcumin (Cur). A functional peptide TGNYKALHPHN (TGN) was conjugated to the surface of membrane for blood-brain barrier (BBB) transport (TGN-RBC-NPs-Cur). TGN peptide can be recognized by receptors on the BBB and has great potential for brain transport. To confirm the targeted delivery of Cur to the brain, a cell co-culturing immortalized human cerebral microvascular endothelial cells and human brain astrocytes glioblastoma (hCMEC/D3 and U-118MG) in vitro model was established. As a result, the BBB transporting ratio of TGN-RBC-NPs-FITC was 29.64% at 12 h which was approximately eight-fold than RBC-NPs-FITC. The improvement of drug accumulation in the AD lesion was confirmed by the NPs modified with the BBB-penetrating peptide in the fluorescence imaging and quantitative analysis with UPLC-MS/MS in vivo. The neuroprotective effects were evaluated with new object recognition behavioral test, in vitro AD cell model, dendritic spine stain, GFAP and IBA1 immunofluorescence stain. The spatial learning and memory abilities of the AD model mice treated with TGN-RBC-NPs-Cur were obviously enhanced compared with the AD control mice and were also better than Cur at the same dosage. These results were consistent with the values of protection index of rat adrenal pheochromocytoma cells (PC12 cells) treated by Aβ25-35. TGN-RBC-NPs-Cur increased the dendritic segments densities and restrained activation of microglia and astrocytes of AD mice, as well as reversed cognitive function of AD mice. All of the results demonstrated TGN-RBC-NPs-Cur a promising therapeutic strategy for delaying the progression of AD by designing biomimetic nanosystems to deliver drugs into the brain.
Collapse
Affiliation(s)
- Jinlian Gu
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chang Yan
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Shun Yin
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Hao Wu
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chi Liu
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Ao Xue
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150004, China
| | - Xia Lei
- Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu 214071, China.
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150004, China; Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu 214071, China.
| | - Fang Geng
- School of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| |
Collapse
|
4
|
Pramanik SK, Sanphui P, Das AK, Banerji B, Biswas SC. Small-Molecule Cdc25A Inhibitors Protect Neuronal Cells from Death Evoked by NGF Deprivation and 6-Hydroxydopamine. ACS Chem Neurosci 2023; 14:1226-1237. [PMID: 36942687 DOI: 10.1021/acschemneuro.2c00474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases that are presently incurable. There have been reports of aberrant activation of cell cycle pathways in neurodegenerative diseases. Previously, we have found that Cdc25A is activated in models of neurodegenerative diseases, including AD and PD. In the present study, we have synthesized a small library of molecules targeting Cdc25A and tested their neuroprotective potential in cellular models of neurodegeneration. The Buchwald reaction and amide coupling were crucial steps in synthesizing the Cdc25A-targeting molecules. Several of these small-molecule inhibitors significantly prevented neuronal cell death induced by nerve growth factor (NGF) deprivation as well as 6-hydroxydopamine (6-OHDA) treatment. Lack of NGF signaling leads to neuron death during development and has been associated with AD pathogenesis. The NGF receptor TrkA has been reported to be downregulated at the early stages of AD, and its reduction is linked to cognitive failure. 6-OHDA, a PD mimic, is a highly oxidizable dopamine analogue that can be taken up by the dopamine transporters in catecholaminergic neurons and can induce cell death by reactive oxygen species (ROS) generation. Some of our newly synthesized molecules inhibit Cdc25A phosphatase activity, block loss of mitochondrial activity, and inhibit caspase-3 activation caused by NGF deprivation and 6-OHDA. Hence, it may be proposed that Cdc25A inhibition could be a therapeutic possibility for neurodegenerative diseases and these Cdc25A inhibitors could be effective treatments for AD and PD.
Collapse
|
5
|
Carbon Monoxide Modulation of Microglia-Neuron Communication: Anti-Neuroinflammatory and Neurotrophic Role. Mol Neurobiol 2021; 59:872-889. [PMID: 34796462 DOI: 10.1007/s12035-021-02643-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Microglia, the 'resident immunocompetent cells' of the central nervous system (CNS), are key players in innate immunity, synaptic refinement and homeostasis. Dysfunctional microglia contribute heavily to creating a toxic inflammatory milieu, a driving factor in the pathophysiology of several CNS disorders. Therefore, strategies to modulate the microglial function are required to tackle exacerbated tissue inflammation. Carbon monoxide (CO), an endogenous gaseous molecule produced by the degradation of haem, has anti-inflammatory, anti-apoptotic, and pro-homeostatic and cytoprotective roles, among others. ALF-826A, a novel molybdenum-based CO-releasing molecule, was used for the assessment of neuron-microglia remote communication. Primary cultures of rat microglia and neurons, or the BV-2 microglial and CAD neuronal murine cell lines, were used to study the microglia-neuron interaction. An approach based on microglial-derived conditioned media in neuronal culture was applied. Medium derived from CO-treated microglia provided indirect neuroprotection against inflammation by limiting the lipopolysaccharide (LPS)-induced expression of reactivity markers (CD11b), the production of reactive oxygen species (ROS) and the secretion of inflammatory factors (TNF-α, nitrites). This consequently prevented neuronal cell death and maintained neuronal morphology. In contrast, in the absence of inflammatory stimulus, conditioned media from CO-treated microglia improved neuronal morphological complexity, which is an indirect manner of assessing neuronal function. Likewise, the microglial medium also prevented neuronal cell death induced by pro-oxidant tert-Butyl hydroperoxide (t-BHP). ALF-826 treatment reinforced microglia secretion of Interleukin-10 (IL-10) and adenosine, mediators that may protect against t-BHP stress in this remote communication model. Chemical inhibition of the adenosine receptors A2A and A1 reverted the CO-derived neuroprotective effect, further highlighting a role for CO in regulating neuron-microglia communication via purinergic signalling. Our findings indicate that CO has a modulatory role on microglia-to-neuron communication, promoting neuroprotection in a non-cell autonomous manner. CO enhances the microglial release of neurotrophic factors and blocks exacerbated microglial inflammation. CO improvement of microglial neurotrophism under non-inflammatory conditions is here described for the first time.
Collapse
|
6
|
A general principle of dendritic constancy: A neuron's size- and shape-invariant excitability. Neuron 2021; 109:3647-3662.e7. [PMID: 34555313 DOI: 10.1016/j.neuron.2021.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/29/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022]
Abstract
Reducing neuronal size results in less membrane and therefore lower input conductance. Smaller neurons are thus more excitable, as seen in their responses to somatic current injections. However, the impact of a neuron's size and shape on its voltage responses to dendritic synaptic activation is much less understood. Here we use analytical cable theory to predict voltage responses to distributed synaptic inputs in unbranched cables, showing that these are entirely independent of dendritic length. For a given synaptic density, neuronal responses depend only on the average dendritic diameter and intrinsic conductivity. This remains valid for a wide range of morphologies irrespective of their arborization complexity. Spiking models indicate that morphology-invariant numbers of spikes approximate the percentage of active synapses. In contrast to spike rate, spike times do depend on dendrite morphology. In summary, neuronal excitability in response to distributed synaptic inputs is largely unaffected by dendrite length or complexity.
Collapse
|
7
|
Xiang X, Wind K, Wiedemann T, Blume T, Shi Y, Briel N, Beyer L, Biechele G, Eckenweber F, Zatcepin A, Lammich S, Ribicic S, Tahirovic S, Willem M, Deussing M, Palleis C, Rauchmann BS, Gildehaus FJ, Lindner S, Spitz C, Franzmeier N, Baumann K, Rominger A, Bartenstein P, Ziegler S, Drzezga A, Respondek G, Buerger K, Perneczky R, Levin J, Höglinger GU, Herms J, Haass C, Brendel M. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci Transl Med 2021; 13:eabe5640. [PMID: 34644146 DOI: 10.1126/scitranslmed.abe5640] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
2-Deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) is widely used to study cerebral glucose metabolism. Here, we investigated whether the FDG-PET signal is directly influenced by microglial glucose uptake in mouse models and patients with neurodegenerative diseases. Using a recently developed approach for cell sorting after FDG injection, we found that, at cellular resolution, microglia displayed higher glucose uptake than neurons and astrocytes. Alterations in microglial glucose uptake were responsible for both the FDG-PET signal decrease in Trem2-deficient mice and the FDG-PET signal increase in mouse models for amyloidosis. Thus, opposite microglial activation states determine the differential FDG uptake. Consistently, 12 patients with Alzheimer’s disease and 21 patients with four-repeat tauopathies also exhibited a positive association between glucose uptake and microglial activity as determined by 18F-GE-180 18-kDa translocator protein PET (TSPO-PET) in preserved brain regions, indicating that the cerebral glucose uptake in humans is also strongly influenced by microglial activity. Our findings suggest that microglia activation states are responsible for FDG-PET signal alterations in patients with neurodegenerative diseases and mouse models for amyloidosis. Microglial activation states should therefore be considered when performing FDG-PET.
Collapse
Affiliation(s)
- Xianyuan Xiang
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- CAS Key Laboratory of Brain Connectome and Manipulation, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055 Shenzhen, China
| | - Karin Wind
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Thomas Wiedemann
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Tanja Blume
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Yuan Shi
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Nils Briel
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University München, 81377 Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Artem Zatcepin
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Sven Lammich
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sara Ribicic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Maximilian Deussing
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Carla Palleis
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Franz-Josef Gildehaus
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Charlotte Spitz
- Institute of Biochemistry and Molecular Biology, University of Augsburg, 86159 Augsburg, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Karlheinz Baumann
- Roche, Pharma Research and Early Development, NORD DTA/Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- Department of Nuclear Medicine, University of Bern, Inselspital, CH-3010 Bern, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 5091 Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn-Cologne, 53127 Bonn, Germany
- Institute of Neuroscience and Medicine (INM-2), Molecular Organization of the Brain, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Gesine Respondek
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital of Munich, LMU Munich, 81377 Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Department of Neurology, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
- Department of Neurology, Technical University Munich, 81675 Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University München, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Christian Haass
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| |
Collapse
|
8
|
Matsuzono K, Suzuki M, Miura K, Ozawa T, Mashiko T, Koide R, Tanaka R, Fujimoto S. Internal Jugular Vein Velocity and Spontaneous Echo Contrast Correlate with Alzheimer's Disease and Cognitive Function. J Alzheimers Dis 2021; 84:787-796. [PMID: 34602471 DOI: 10.3233/jad-210490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Many issues persist in the today's Alzheimer's disease (AD) screening and the breakthrough method is desired. OBJECTIVE We aim to validate the association between venous reflux and AD, and to develop a new method for AD screening. METHODS We examined spontaneous echo contrast, area, diameter, retrograde velocity, and anterograde velocity of the bilateral cervical internal jugular vein (IJV) using carotid ultrasonography. RESULTS A total of 112 patients participated in this study, with 26 diagnosed as AD. The proportion of both or either IJV spontaneous echo contrast (+) occupied 25 of total 26 AD patients, which showed 96.2%of sensitivity and 98.5%negative predictive value. The IJV velocities also showed significant correlation with AD diagnosis, although the IJV area or diameter did not. CONCLUSION Our results indicate that the validation of the spontaneous echo contrast or velocities of the IJV are convenient AD diagnosis screening methods and that the venous reflux disturbance correlates with AD development.
Collapse
Affiliation(s)
- Kosuke Matsuzono
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Masayuki Suzuki
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kumiko Miura
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tadashi Ozawa
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Takafumi Mashiko
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Reiji Koide
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Ryota Tanaka
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
9
|
Li Y, Zhu K, Li N, Wang X, Xiao X, Li L, Li L, He Y, Zhang J, Wo J, Cui Y, Huang H, Zhang J, Wang W, Wang X, Zheng Y. Reversible GABAergic dysfunction involved in hippocampal hyperactivity predicts early-stage Alzheimer disease in a mouse model. Alzheimers Res Ther 2021; 13:114. [PMID: 34127063 PMCID: PMC8204558 DOI: 10.1186/s13195-021-00859-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuronal hyperactivity related to β-amyloid (Aβ) is considered an early warning sign of Alzheimer disease (AD). Although increasing evidence supports this opinion, the underlying mechanisms are still unknown. METHODS Here, we recorded whole-cell synaptic currents and membrane potentials using patch clamping of acute hippocampal slices from human amyloid precursor protein (APP)/presenilin-1 transgenic (5XFAD) mice and their wild-type littermates. Biochemical methods, electron microscopic imaging, behavioral tests, and intraventricular drug delivery applied with osmotic pumps were used in this study. RESULTS We confirmed hyperactivity of hippocampal CA1 pyramidal neurons in 5XFAD mice using whole-cell electrophysiological recording at 2.5 months old, when local Aβ-positive plaques had not developed and only mild cognitive dysfunction occurred. We further discovered attenuated inhibitory postsynaptic currents and unchanged excitatory postsynaptic currents in CA1 pyramidal neurons, in which the intrinsic excitability was unchanged. Moreover, the density of both γ-aminobutyric acid A (GABAA) receptor subunits, α1 and γ2, was reduced in synapses of the hippocampus in transgenic mice. Intriguingly, early intervention with the GABAA receptor agonist gaboxadol reversed the hippocampal hyperactivity and modestly ameliorated cognitive performance in 5XFAD mice under our experimental conditions. CONCLUSIONS Inhibitory postsynaptic disruption critically contributes to abnormalities in the hippocampal network and cognition in 5XFAD mice and possibly in AD. Therefore, strengthening the GABAergic system could be a promising therapy for AD in the early stages.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069 China
| | - Ke Zhu
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| | - Ning Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
| | - Xiaotong Wang
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| | - Xuansheng Xiao
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| | - Linying Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069 China
| | - Lijuan Li
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Ying He
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| | - Jinglan Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Jiaoyang Wo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Yanqiu Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Jianliang Zhang
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Xiaomin Wang
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
| | - Yan Zheng
- Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Capital Medical University, Beijing, 100069 China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Beijing, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Beijing, China
| |
Collapse
|
10
|
Reddy JS, Allen M, Ho CCG, Oatman SR, İş Ö, Quicksall ZS, Wang X, Jin J, Patel TA, Carnwath TP, Nguyen TT, Malphrus KG, Lincoln SJ, Carrasquillo MM, Crook JE, Kanekiyo T, Murray ME, Bu G, Dickson DW, Ertekin-Taner N. Genome-wide analysis identifies a novel LINC-PINT splice variant associated with vascular amyloid pathology in Alzheimer's disease. Acta Neuropathol Commun 2021; 9:93. [PMID: 34020725 PMCID: PMC8147512 DOI: 10.1186/s40478-021-01199-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 01/09/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) contributes to accelerated cognitive decline in Alzheimer’s disease (AD) dementia and is a common finding at autopsy. The APOEε4 allele and male sex have previously been reported to associate with increased CAA in AD. To inform biomarker and therapeutic target discovery, we aimed to identify additional genetic risk factors and biological pathways involved in this vascular component of AD etiology. We present a genome-wide association study of CAA pathology in AD cases and report sex- and APOE-stratified assessment of this phenotype. Genome-wide genotypes were collected from 853 neuropathology-confirmed AD cases scored for CAA across five brain regions, and imputed to the Haplotype Reference Consortium panel. Key variables and genome-wide genotypes were tested for association with CAA in all individuals and in sex and APOEε4 stratified subsets. Pathway enrichment was run for each of the genetic analyses. Implicated loci were further investigated for functional consequences using brain transcriptome data from 1,186 samples representing seven brain regions profiled as part of the AMP-AD consortium. We confirmed association of male sex, AD neuropathology and APOEε4 with increased CAA, and identified a novel locus, LINC-PINT, associated with lower CAA amongst APOEε4-negative individuals (rs10234094-C, beta = −3.70 [95% CI −0.49—−0.24]; p = 1.63E-08). Transcriptome profiling revealed higher LINC-PINT expression levels in AD cases, and association of rs10234094-C with altered LINC-PINT splicing. Pathway analysis indicates variation in genes involved in neuronal health and function are linked to CAA in AD patients. Further studies in additional and diverse cohorts are needed to assess broader translation of our findings.
Collapse
|
11
|
Sosulina L, Mittag M, Geis HR, Hoffmann K, Klyubin I, Qi Y, Steffen J, Friedrichs D, Henneberg N, Fuhrmann F, Justus D, Keppler K, Cuello AC, Rowan MJ, Fuhrmann M, Remy S. Hippocampal hyperactivity in a rat model of Alzheimer's disease. J Neurochem 2021; 157:2128-2144. [PMID: 33583024 DOI: 10.1111/jnc.15323] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/19/2021] [Accepted: 01/31/2021] [Indexed: 12/21/2022]
Abstract
Neuronal network dysfunction is a hallmark of Alzheimer's disease (AD). However, the underlying pathomechanisms remain unknown. We analyzed the hippocampal micronetwork in transgenic McGill-R-Thy1-APP rats (APPtg) at the beginning of extracellular amyloid beta (Aβ) deposition. We established two-photon Ca2+ -imaging in vivo in the hippocampus of rats and found hyperactivity of CA1 neurons. Patch-clamp recordings in brain slices in vitro revealed increased neuronal input resistance and prolonged action potential width in CA1 pyramidal neurons. We did neither observe changes in synaptic inhibition, nor in excitation. Our data support the view that increased intrinsic excitability of CA1 neurons may precede inhibitory dysfunction at an early stage of Aβ-deposition and disease progression.
Collapse
Affiliation(s)
- Liudmila Sosulina
- Neuronal Networks Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Manuel Mittag
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Hans-Rüdiger Geis
- Neuronal Networks Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Kerstin Hoffmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Igor Klyubin
- Department of Pharmacology and Therapeutics, Trinity College, Dublin, Ireland
| | - Yingjie Qi
- Department of Pharmacology and Therapeutics, Trinity College, Dublin, Ireland
| | - Julia Steffen
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Detlef Friedrichs
- Neuronal Networks Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Niklas Henneberg
- Neuronal Networks Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Falko Fuhrmann
- Neuronal Networks Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniel Justus
- Neuronal Networks Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Kevin Keppler
- Light Microscopy Facility, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Michael J Rowan
- Department of Pharmacology and Therapeutics, Trinity College, Dublin, Ireland
| | - Martin Fuhrmann
- Neuroimmunology and Imaging Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Stefan Remy
- Neuronal Networks Group, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Cellular Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
12
|
Salvadores N, Gerónimo-Olvera C, Court FA. Axonal Degeneration in AD: The Contribution of Aβ and Tau. Front Aging Neurosci 2020; 12:581767. [PMID: 33192476 PMCID: PMC7593241 DOI: 10.3389/fnagi.2020.581767] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease (AD) represents the most common age-related neurodegenerative disorder, affecting around 35 million people worldwide. Despite enormous efforts dedicated to AD research over decades, there is still no cure for the disease. Misfolding and accumulation of Aβ and tau proteins in the brain constitute a defining signature of AD neuropathology, and mounting evidence has documented a link between aggregation of these proteins and neuronal dysfunction. In this context, progressive axonal degeneration has been associated with early stages of AD and linked to Aβ and tau accumulation. As the axonal degeneration mechanism has been starting to be unveiled, it constitutes a promising target for neuroprotection in AD. A comprehensive understanding of the mechanism of axonal destruction in neurodegenerative conditions is therefore critical for the development of new therapies aimed to prevent axonal loss before irreversible neuronal death occurs in AD. Here, we review current evidence of the involvement of Aβ and tau pathologies in the activation of signaling cascades that can promote axonal demise.
Collapse
Affiliation(s)
- Natalia Salvadores
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Cristian Gerónimo-Olvera
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Fondap Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Buck Institute for Research on Aging, Novato, CA, United States
| |
Collapse
|
13
|
Trem2 Deletion Reduces Late-Stage Amyloid Plaque Accumulation, Elevates the Aβ42:Aβ40 Ratio, and Exacerbates Axonal Dystrophy and Dendritic Spine Loss in the PS2APP Alzheimer's Mouse Model. J Neurosci 2020; 40:1956-1974. [PMID: 31980586 PMCID: PMC7046459 DOI: 10.1523/jneurosci.1871-19.2019] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/08/2019] [Accepted: 12/23/2019] [Indexed: 01/17/2023] Open
Abstract
TREM2 is an Alzheimer's disease (AD) risk gene expressed in microglia. To study the role of Trem2 in a mouse model of β-amyloidosis, we compared PS2APP transgenic mice versus PS2APP mice lacking Trem2 (PS2APP;Trem2ko) at ages ranging from 4 to 22 months. Microgliosis was impaired in PS2APP;Trem2ko mice, with Trem2-deficient microglia showing compromised expression of proliferation/Wnt-related genes and marked accumulation of ApoE. TREM2 is an Alzheimer's disease (AD) risk gene expressed in microglia. To study the role of Trem2 in a mouse model of β-amyloidosis, we compared PS2APP transgenic mice versus PS2APP mice lacking Trem2 (PS2APP;Trem2ko) at ages ranging from 4 to 22 months. Microgliosis was impaired in PS2APP;Trem2ko mice, with Trem2-deficient microglia showing compromised expression of proliferation/Wnt-related genes and marked accumulation of ApoE. Plaque abundance was elevated in PS2APP;Trem2ko females at 6–7 months; but by 12 or 19–22 months of age, it was notably diminished in female and male PS2APP;Trem2ko mice, respectively. Across all ages, plaque morphology was more diffuse in PS2APP;Trem2ko brains, and the Aβ42:Aβ40 ratio was elevated. The amount of soluble, fibrillar Aβ oligomers also increased in PS2APP;Trem2ko hippocampi. Associated with these changes, axonal dystrophy was exacerbated from 6 to 7 months onward in PS2APP;Trem2ko mice, notwithstanding the reduced plaque load at later ages. PS2APP;Trem2ko mice also exhibited more dendritic spine loss around plaque and more neurofilament light chain in CSF. Thus, aggravated neuritic dystrophy is a more consistent outcome of Trem2 deficiency than amyloid plaque load, suggesting that the microglial packing of Aβ into dense plaque is an important neuroprotective activity. SIGNIFICANCE STATEMENT Genetic studies indicate that TREM2 gene mutations confer increased Alzheimer's disease (AD) risk. We studied the effects of Trem2 deletion in the PS2APP mouse AD model, in which overproduction of Aβ peptide leads to amyloid plaque formation and associated neuritic dystrophy. Interestingly, neuritic dystrophies were intensified in the brains of Trem2-deficient mice, despite these mice displaying reduced plaque accumulation at later ages (12–22 months). Microglial clustering around plaques was impaired, plaques were more diffuse, and the Aβ42:Aβ40 ratio and amount of soluble, fibrillar Aβ oligomers were elevated in Trem2-deficient brains. These results suggest that the Trem2-dependent compaction of Aβ into dense plaques is a protective microglial activity, limiting the exposure of neurons to toxic Aβ species.
Collapse
|
14
|
Colon-Perez LM, Ibanez KR, Suarez M, Torroella K, Acuna K, Ofori E, Levites Y, Vaillancourt DE, Golde TE, Chakrabarty P, Febo M. Neurite orientation dispersion and density imaging reveals white matter and hippocampal microstructure changes produced by Interleukin-6 in the TgCRND8 mouse model of amyloidosis. Neuroimage 2019; 202:116138. [PMID: 31472250 DOI: 10.1016/j.neuroimage.2019.116138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/15/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Extracellular β-amyloid (Aβ) plaque deposits and inflammatory immune activation are thought to alter various aspects of tissue microstructure, such as extracellular free water, fractional anisotropy and diffusivity, as well as the density and geometric arrangement of axonal processes. Quantifying these microstructural changes in Alzheimer's disease and related neurodegenerative dementias could serve to monitor or predict disease course. In the present study we used high-field diffusion magnetic resonance imaging (dMRI) to investigate the effects of Aβ and inflammatory interleukin-6 (IL6), alone or in combination, on in vivo tissue microstructure in the TgCRND8 mouse model of Alzheimer's-type Aβ deposition. TgCRND8 and non-transgenic (nTg) mice expressing brain-targeted IL6 or enhanced glial fibrillary protein (EGFP controls) were scanned at 8 months of age using a 2-shell, 54-gradient direction dMRI sequence at 11.1 T. Images were processed using the diffusion tensor imaging (DTI) model or the neurite orientation dispersion and density imaging (NODDI) model. DTI and NODDI processing in TgCRND8 mice revealed a microstructure pattern in white matter (WM) and hippocampus consistent with radial and longitudinal diffusivity deficits along with an increase in density and geometric complexity of axonal and dendritic processes. This included reduced FA, mean, axial and radial diffusivity, and increased orientation dispersion (ODI) and intracellular volume fraction (ICVF) measured in WM and hippocampus. IL6 produced a 'protective-like' effect on WM FA in TgCRND8 mice, observed as an increased FA that counteracted a reduction in FA observed with endogenous Aβ production and accumulation. In addition, we found that ICVF and ODI had an inverse relationship with the functional connectome clustering coefficient. The relationship between NODDI and graph theory metrics suggests that currently unknown microstructure alterations in WM and hippocampus are associated with diminished functional network organization in the brain.
Collapse
Affiliation(s)
- Luis M Colon-Perez
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kristen R Ibanez
- Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States
| | - Mallory Suarez
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kristin Torroella
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Kelly Acuna
- Department of Psychiatry, University of Florida, Gainesville, United States
| | - Edward Ofori
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Applied Physiology & Kinesiology, University of Florida, Gainesville, United States
| | - Yona Levites
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States
| | - David E Vaillancourt
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States; Applied Physiology & Kinesiology, University of Florida, Gainesville, United States
| | - Todd E Golde
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States
| | - Paramita Chakrabarty
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Center for Translational Research on Neurodegenerative Diseases, University of Florida, Gainesville, United States; Department of Neuroscience, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States.
| | - Marcelo Febo
- Florida Alzheimer's Disease Research Center, University of Florida, Gainesville, United States; Advanced Magnetic Resonance Imaging and Spectroscopy Facility, University of Florida, Gainesville, United States; Department of Psychiatry, University of Florida, Gainesville, United States; McKnight Brain Institute, University of Florida, Gainesville, United States.
| |
Collapse
|
15
|
Martinez Hernandez A, Urbanke H, Gillman AL, Lee J, Ryazanov S, Agbemenyah HY, Benito E, Jain G, Kaurani L, Grigorian G, Leonov A, Rezaei-Ghaleh N, Wilken P, Arce FT, Wagner J, Fuhrmann M, Caruana M, Camilleri A, Vassallo N, Zweckstetter M, Benz R, Giese A, Schneider A, Korte M, Lal R, Griesinger C, Eichele G, Fischer A. The diphenylpyrazole compound anle138b blocks Aβ channels and rescues disease phenotypes in a mouse model for amyloid pathology. EMBO Mol Med 2019; 10:32-47. [PMID: 29208638 PMCID: PMC5760857 DOI: 10.15252/emmm.201707825] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease is a devastating neurodegenerative disease eventually leading to dementia. An effective treatment does not yet exist. Here we show that oral application of the compound anle138b restores hippocampal synaptic and transcriptional plasticity as well as spatial memory in a mouse model for Alzheimer's disease, when given orally before or after the onset of pathology. At the mechanistic level, we provide evidence that anle138b blocks the activity of conducting Aβ pores without changing the membrane embedded Aβ-oligomer structure. In conclusion, our data suggest that anle138b is a novel and promising compound to treat AD-related pathology that should be investigated further.
Collapse
Affiliation(s)
- Ana Martinez Hernandez
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department for Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Hendrik Urbanke
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Alan L Gillman
- Department of Bioengineering, Materials Science and Engineering, Department of Mechanical and Aerospace Engineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joon Lee
- Department of Bioengineering, Materials Science and Engineering, Department of Mechanical and Aerospace Engineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sergey Ryazanov
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Hope Y Agbemenyah
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Benito
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Lalit Kaurani
- DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Gayane Grigorian
- Department of Cellular Neurobiology, Technical University Braunschweig, Braunschweig, Germany
| | - Andrei Leonov
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,Department of Translational Structural Biology of Dementia, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Petra Wilken
- DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Group for Translational Research in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Fernando Teran Arce
- Department of Bioengineering, Materials Science and Engineering, Department of Mechanical and Aerospace Engineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jens Wagner
- Group for Neuroimmunology and Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Martin Fuhrmann
- Group for Neuroimmunology and Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mario Caruana
- Department of Physiology and Biochemistry, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Angelique Camilleri
- Department of Physiology and Biochemistry, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Markus Zweckstetter
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.,Department of Translational Structural Biology of Dementia, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Roland Benz
- Life Sciences and Chemistry, Jacobs University of Bremen, Bremen, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anja Schneider
- DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Group for Translational Research in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen, Göttingen, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Technical University Braunschweig, Braunschweig, Germany .,Helmholtz Center for Infections Research, Braunschweig, Germany
| | - Ratnesh Lal
- Department of Bioengineering, Materials Science and Engineering, Department of Mechanical and Aerospace Engineering and Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, USA
| | - Christian Griesinger
- Department of NMR Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany .,DFG Research Center Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Gregor Eichele
- Department for Genes and Behavior, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany .,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Synaptotoxicity in Alzheimer's Disease Involved a Dysregulation of Actin Cytoskeleton Dynamics through Cofilin 1 Phosphorylation. J Neurosci 2018; 38:10349-10361. [PMID: 30341179 DOI: 10.1523/jneurosci.1409-18.2018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/18/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Amyloid-β (Aβ) drives the synaptic impairment and dendritic spine loss characteristic of Alzheimer's disease (AD), but how Aβ affects the actin cytoskeleton remains unknown and contentious. The actin-binding protein, cofilin-1 (cof1), is a major regulator of actin dynamics in dendritic spines, and is subject to phospho-regulation by multiple pathways, including the Rho-associated protein kinase (ROCK) pathway. While cof1 is implicated as a driver of the synaptotoxicity characteristic of the early phases of AD pathophysiology, questions remain about the molecular mechanisms involved. Cofilin-actin rods are observed in neurons exposed to Aβ oligomers (Aβo) and in tissue from AD patients, and others have described an increased cofilin phosphorylation (p-cof1) in AD patients. Here, we report elevated p-cof1 of the postsynaptic enriched fraction of synaptosomes from cortical samples of male APP/PS1 mice and human AD cases of either sex. In primary cortical neurons, Aβo induced rapid actin stabilization and increased p-cof1 in the postsynaptic compartment of excitatory synapses within 30 min. Fluorescence recovery after photobleaching of actin-GFP and calcium imaging in live neurons expressing active or inactive cof1 mutants suggest that cof1 phosphorylation is necessary and sufficient for Aβo-induced synaptic impairment via actin stabilization before the reported formation of cofilin-actin rods. Moreover, the clinically available and well-tolerated ROCK inhibitor, fasudil, prevented Aβo-induced actin stabilization, synaptic impairment, and synaptic loss by blocking cofilin phosphorylation. Aβo also blocked the LTP-induced insertion of the AMPAR subunit, GluA1, at the postsynaptic density, in a fasudil-sensitive manner. These data support an important role for ROCKs and cofilin in mediating Aβ-induced synaptic impairment.SIGNIFICANCE STATEMENT We report that amyloid-β oligomers rapidly induce aberrant stabilization of F-actin within dendritic spines, which impairs synaptic strength and plasticity. Activation of the Rho-associated protein kinase (ROCK) pathway results in phosphorylation of cof1 and is sufficient to mediate Aβo-induced actin stabilization synaptic impairment and synaptic loss. Further, the ROCK inhibitor, fasudil, prevents cofilin phosphorylation, acute synaptic disruption, and synaptotoxicity in primary cortical neurons. Together, the herein presented data provide strong support for further study of the ROCK pathway as a therapeutic target for the cognitive decline and synaptotoxicity in Alzheimer's disease.
Collapse
|
17
|
Dawson TM, Golde TE, Lagier-Tourenne C. Animal models of neurodegenerative diseases. Nat Neurosci 2018; 21:1370-1379. [PMID: 30250265 PMCID: PMC6615039 DOI: 10.1038/s41593-018-0236-8] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
Animal models of adult-onset neurodegenerative diseases have enhanced the understanding of the molecular pathogenesis of Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Nevertheless, our understanding of these disorders and the development of mechanistically designed therapeutics can still benefit from more rigorous use of the models and from generation of animals that more faithfully recapitulate human disease. Here we review the current state of rodent models for Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. We discuss the limitations and utility of current models, issues regarding translatability, and future directions for developing animal models of these human disorders.
Collapse
Affiliation(s)
- Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology; and Department of Pharmacology and Molecular Sciences, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Adrienne Helis Malvin Medical Research Foundation, New Orleans, LA, USA.
| | - Todd E Golde
- McKnight Brain Institute Center for Translational Research in Neurodegenerative Disease Department of Neuroscience and Neurology, University of Florida, Gainesville, FL, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease (MIND), Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard University and MIT, Cambridge, MA, USA.
| |
Collapse
|
18
|
Vicente MC, Almeida MC, Bícego KC, Carrettiero DC, Gargaglioni LH. Hypercapnic and Hypoxic Respiratory Response During Wakefulness and Sleep in a Streptozotocin Model of Alzheimer's Disease in Rats. J Alzheimers Dis 2018; 65:1159-1174. [PMID: 30124447 DOI: 10.3233/jad-180397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Besides the typical cognitive decline, patients with Alzheimer's disease (AD) develop disorders of the respiratory system, such as sleep apnea, shortness of breath, and arrhythmias. These symptoms are aggravated with the progression of the disease. However, the cause and nature of these disturbances are not well understood. Here, we treated animals with intracerebroventricular streptozotocin (STZ, 2 mg/kg), a drug that has been described to cause Alzheimer-like behavioral and histopathological impairments. We measured ventilation (V̇E), electroencephalography, and electromyography during normocapnia, hypercapnia, and hypoxia in Wistar rats. In addition, we performed western blot analyses for phosphorylated tau, total tau, and amyloid-β (Aβ) peptide in the locus coeruleus (LC), retrotrapezoid nucleus, medullary raphe, pre-Bötzinger/Bötzinger complex, and hippocampus, and evaluated memory and learning acquisition using the Barnes maze. STZ treatment promoted memory and learning deficits and increased the percentage of total wakefulness during normocapnia and hypercapnia due to a reduction in the length of episodes of wakefulness. CO2-drive to breathe during wakefulness was increased by 26% in STZ-treated rats due to an enhanced tidal volume, but no changes in V̇E were observed in room air or hypoxic conditions. The STZ group also showed a 70% increase of Aβ in the LC and no change in tau protein phosphorylation. In addition, no alteration in body temperature was observed. Our findings suggest that AD animals present an increased sensitivity to CO2 during wakefulness, enhanced Aβ in the LC, and sleep disruption.
Collapse
Affiliation(s)
- Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Maria C Almeida
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Daniel C Carrettiero
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| |
Collapse
|
19
|
Zhao L, Ge Y, Xiong C, Tang L, Yan Y, Law P, Qiu Y, Chen H. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluAl subunit. FASEB J 2018; 32:4247-4257. [DOI: 10.1096/fj.201800029r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lan‐Xue Zhao
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan‐Hui Ge
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Cai‐Hong Xiong
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ling Tang
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying‐Hui Yan
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ping‐Yee Law
- Department of PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Yu Qiu
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hong‐Zhuan Chen
- Department of Pharmacology and Chemical BiologyInstitute of Medical SciencesShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
20
|
Gumuslu E, Cine N, Ertan M, Mutlu O, Komsuoglu Celikyurt I, Ulak G. Exenatide upregulates gene expression of glucagon-like peptide-1 receptor and nerve growth factor in streptozotocin/nicotinamide-induced diabetic mice. Fundam Clin Pharmacol 2017; 32:174-180. [DOI: 10.1111/fcp.12329] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 09/15/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Esen Gumuslu
- Department of Medical Genetics; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| | - Naci Cine
- Department of Medical Genetics; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| | - Merve Ertan
- Department of Medical Genetics; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| | - Oguz Mutlu
- Department of Medical Pharmacology; Psychopharmacology Lab.; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| | - Ipek Komsuoglu Celikyurt
- Department of Medical Pharmacology; Psychopharmacology Lab.; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| | - Guner Ulak
- Department of Medical Pharmacology; Psychopharmacology Lab.; Medical Faculty; Kocaeli University; Kocaeli 41380 Turkey
| |
Collapse
|
21
|
Gelfo F, Mandolesi L, Serra L, Sorrentino G, Caltagirone C. The Neuroprotective Effects of Experience on Cognitive Functions: Evidence from Animal Studies on the Neurobiological Bases of Brain Reserve. Neuroscience 2017; 370:218-235. [PMID: 28827089 DOI: 10.1016/j.neuroscience.2017.07.065] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022]
Abstract
Brain plasticity is the ability of the nervous system to change structurally and functionally in response to experience. By shaping brain structure and function, experience leads to the creation of a protective reserve that accounts for differences among individuals in susceptibility to age-related brain modifications and pathology. This review is aimed to address the biological bases of the experience-dependent "brain reserve" by describing the results of animal studies that focused on the neuroanatomical and molecular effects of environmental enrichment. More specifically, the effects at the cellular level are considered in terms of changes in neurogenesis, gliogenesis, angiogenesis, and synaptogenesis. Moreover, the effects at the molecular level are described, highlighting gene- and protein-level changes in neurotransmitter and neurotrophin expression. The experimental evidence for the basic biological consequences of environmental enrichment is described for healthy animals. Subsequently, by discussing the findings for animal models that mimic age-related diseases, the involvement of such plastic changes in supporting an organism as it copes with normal and pathological age-related cognitive decline is considered. On the whole, studies of the structural and molecular effects of environmental enrichment strongly support the neuroprotective action of a particularly stimulating lifestyle on cognitive functions. Our current level of understanding of these effects and mechanisms is such that additional and novel studies, systematic reviews, and meta-analyses are necessary to investigate the specific effects of the different components of environmental enrichment in both healthy and pathological models. Only in this way can comprehensive recommendations for proper life habits be developed.
Collapse
Affiliation(s)
- Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systemic Medicine, University of Rome "Tor Vergata", Rome, Italy.
| | - Laura Mandolesi
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Movement Sciences and Wellbeing, University "Parthenope", Naples, Italy
| | | | - Giuseppe Sorrentino
- Department of Movement Sciences and Wellbeing, University "Parthenope", Naples, Italy; Istituto di diagnosi e cura Hermitage Capodimonte, Naples, Italy
| | - Carlo Caltagirone
- IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Systemic Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
22
|
Calcineurin/NFAT Signaling in Activated Astrocytes Drives Network Hyperexcitability in Aβ-Bearing Mice. J Neurosci 2017; 37:6132-6148. [PMID: 28559377 DOI: 10.1523/jneurosci.0877-17.2017] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 12/25/2022] Open
Abstract
Hyperexcitable neuronal networks are mechanistically linked to the pathologic and clinical features of Alzheimer's disease (AD). Astrocytes are a primary defense against hyperexcitability, but their functional phenotype during AD is poorly understood. Here, we found that activated astrocytes in the 5xFAD mouse model were strongly associated with proteolysis of the protein phosphatase calcineurin (CN) and the elevated expression of the CN-dependent transcription factor nuclear factor of activated T cells 4 (NFAT4). Intrahippocampal injections of adeno-associated virus vectors containing the astrocyte-specific promoter Gfa2 and the NFAT inhibitory peptide VIVIT reduced signs of glutamate-mediated hyperexcitability in 5xFAD mice, measured in vivo with microelectrode arrays and ex vivo brain slices, using whole-cell voltage clamp. VIVIT treatment in 5xFAD mice led to increased expression of the astrocytic glutamate transporter GLT-1 and to attenuated changes in dendrite morphology, synaptic strength, and NMDAR-dependent responses. The results reveal astrocytic CN/NFAT4 as a key pathologic mechanism for driving glutamate dysregulation and neuronal hyperactivity during AD.SIGNIFICANCE STATEMENT Neuronal hyperexcitability and excitotoxicity are increasingly recognized as important mechanisms for neurodegeneration and dementia associated with Alzheimer's disease (AD). Astrocytes are profoundly activated during AD and may lose their capacity to regulate excitotoxic glutamate levels. Here, we show that a highly active calcineurin (CN) phosphatase fragment and its substrate transcription factor, nuclear factor of activated T cells (NFAT4), appear in astrocytes in direct proportion to the extent of astrocyte activation. The blockade of astrocytic CN/NFAT signaling in a common mouse model of AD, using adeno-associated virus vectors normalized glutamate signaling dynamics, increased astrocytic glutamate transporter levels and alleviated multiple signs of neuronal hyperexcitability. The results suggest that astrocyte activation drives hyperexcitability during AD through a mechanism involving aberrant CN/NFAT signaling and impaired glutamate transport.
Collapse
|
23
|
Bukreeva I, Campi G, Fratini M, Spanò R, Bucci D, Battaglia G, Giove F, Bravin A, Uccelli A, Venturi C, Mastrogiacomo M, Cedola A. Quantitative 3D investigation of Neuronal network in mouse spinal cord model. Sci Rep 2017; 7:41054. [PMID: 28112212 PMCID: PMC5253662 DOI: 10.1038/srep41054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 12/16/2016] [Indexed: 12/04/2022] Open
Abstract
The investigation of the neuronal network in mouse spinal cord models represents the basis for the research on neurodegenerative diseases. In this framework, the quantitative analysis of the single elements in different districts is a crucial task. However, conventional 3D imaging techniques do not have enough spatial resolution and contrast to allow for a quantitative investigation of the neuronal network. Exploiting the high coherence and the high flux of synchrotron sources, X-ray Phase-Contrast multiscale-Tomography allows for the 3D investigation of the neuronal microanatomy without any aggressive sample preparation or sectioning. We investigated healthy-mouse neuronal architecture by imaging the 3D distribution of the neuronal-network with a spatial resolution of 640 nm. The high quality of the obtained images enables a quantitative study of the neuronal structure on a subject-by-subject basis. We developed and applied a spatial statistical analysis on the motor neurons to obtain quantitative information on their 3D arrangement in the healthy-mice spinal cord. Then, we compared the obtained results with a mouse model of multiple sclerosis. Our approach paves the way to the creation of a "database" for the characterization of the neuronal network main features for a comparative investigation of neurodegenerative diseases and therapies.
Collapse
Affiliation(s)
- I. Bukreeva
- Institute of Nanotechnology-CNR c/o Physics Department at ‘Sapienza’ University, Piazzale Aldo Moro 2, 00185 Rome, Italy
| | - G. Campi
- Institute of Crystallography-CNR, 00015 Monterotondo, Rome, Italy
| | - M. Fratini
- Institute of Nanotechnology-CNR c/o Physics Department at ‘Sapienza’ University, Piazzale Aldo Moro 2, 00185 Rome, Italy
- Fondazione Santa Lucia I.R.C.C.S., Via Ardeatina 306, 00179 Roma, Italy
| | - R. Spanò
- Department of Experimental Medicine, University of Genova & AUO San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, 16132 Genova, Italy
| | - D. Bucci
- I.R.C.C.S. Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - G. Battaglia
- I.R.C.C.S. Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - F. Giove
- Fondazione Santa Lucia I.R.C.C.S., Via Ardeatina 306, 00179 Roma, Italy
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, 00184 Roma, Italy
| | - A. Bravin
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, Cedex France
| | - A. Uccelli
- University of Genova DINOGMI Largo Daneo, 3 IT-16132 Genova, Italy
- IRCCS Azienda Ospedaliera Universitaria San Martino – IST, Genoa, Italy
| | - C. Venturi
- University of Genova DINOGMI Largo Daneo, 3 IT-16132 Genova, Italy
| | - M. Mastrogiacomo
- Department of Experimental Medicine, University of Genova & AUO San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, Largo R. Benzi 10, 16132 Genova, Italy
| | - A. Cedola
- Institute of Nanotechnology-CNR c/o Physics Department at ‘Sapienza’ University, Piazzale Aldo Moro 2, 00185 Rome, Italy
| |
Collapse
|
24
|
Palop JJ, Mucke L. Network abnormalities and interneuron dysfunction in Alzheimer disease. Nat Rev Neurosci 2016; 17:777-792. [PMID: 27829687 DOI: 10.1038/nrn.2016.141] [Citation(s) in RCA: 673] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The function of neural circuits and networks can be controlled, in part, by modulating the synchrony of their components' activities. Network hypersynchrony and altered oscillatory rhythmic activity may contribute to cognitive abnormalities in Alzheimer disease (AD). In this condition, network activities that support cognition are altered decades before clinical disease onset, and these alterations predict future pathology and brain atrophy. Although the precise causes and pathophysiological consequences of these network alterations remain to be defined, interneuron dysfunction and network abnormalities have emerged as potential mechanisms of cognitive dysfunction in AD and related disorders. Here, we explore the concept that modulating these mechanisms may help to improve brain function in these conditions.
Collapse
Affiliation(s)
- Jorge J Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California 94158, USA.,Department of Neurology, University of California, San Francisco, 1650 Owens Street, San Francisco, California 94158, USA
| |
Collapse
|
25
|
Song Q, Feng G, Huang Z, Chen X, Chen Z, Ping Y. Aberrant Axonal Arborization of PDF Neurons Induced by Aβ42-Mediated JNK Activation Underlies Sleep Disturbance in an Alzheimer's Model. Mol Neurobiol 2016; 54:6317-6328. [PMID: 27718103 DOI: 10.1007/s12035-016-0165-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/27/2016] [Indexed: 12/15/2022]
Abstract
Impaired sleep patterns are common symptoms of Alzheimer's disease (AD). Cellular mechanisms underlying sleep disturbance in AD remain largely unknown. Here, using a Drosophila Aβ42 AD model, we show that Aβ42 markedly decreases sleep in a large population, which is accompanied with postdevelopmental axonal arborization of wake-promoting pigment-dispersing factor (PDF) neurons. The arborization is mediated in part via JNK activation and can be reversed by decreasing JNK signaling activity. Axonal arborization and impaired sleep are correlated in Aβ42 and JNK kinase hemipterous mutant flies. Image reconstruction revealed that these aberrant fibers preferentially project to pars intercerebralis (PI), a fly brain region analogous to the mammalian hypothalamus. Moreover, PDF signaling in PI neurons was found to modulate sleep/wake activities, suggesting that excessive release of PDF by these aberrant fibers may lead to the impaired sleep in Aβ42 flies. Finally, inhibition of JNK activation in Aβ42 flies restores nighttime sleep loss, decreases Aβ42 accumulation, and attenuates neurodegeneration. These data provide a new mechanism by which sleep disturbance could be induced by Aβ42 burden, a key initiator of a complex pathogenic cascade in AD.
Collapse
Affiliation(s)
- Qian Song
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ge Feng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zehua Huang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaoman Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhaohuan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.,Institute of Systems Biomedicine, Collaborative Innovation Center of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong Ping
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China. .,Shanghai Key Laboratory of Psychotic Disorders (No.13dz2260500), Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
26
|
Somogyi A, Katonai Z, Alpár A, Wolf E. A Novel Form of Compensation in the Tg2576 Amyloid Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2016; 10:152. [PMID: 27378850 PMCID: PMC4909742 DOI: 10.3389/fncel.2016.00152] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/27/2016] [Indexed: 12/02/2022] Open
Abstract
One century after its first description, pathology of Alzheimer’s disease (AD) is still poorly understood. Amyloid-related dendritic atrophy and membrane alterations of susceptible brain neurons in AD, and in animal models of AD are widely recognized. However, little effort has been made to study the potential effects of combined morphological and membrane alterations on signal transfer and synaptic integration in neurons that build up affected neural networks in AD. In this study spatial reconstructions and electrophysiological measurements of layer II/III pyramidal neurons of the somatosensory cortex from wild-type (WT) and transgenic (TG) human amyloid precursor protein (hAPP) overexpressing Tg2576 mice were used to build faithful segmental cable models of these neurons. Local synaptic activities were simulated in various points of the dendritic arbors and properties of subthreshold dendritic impulse propagation and predictors of synaptic input pattern recognition ability were quantified and compared in modeled WT and TG neurons. Despite the widespread dendritic degeneration and membrane alterations in mutant mouse neurons, surprisingly little, or no change was detected in steady-state and 50 Hz sinusoidal voltage transfers, current transfers, and local and propagation delays of PSPs traveling along dendrites of TG neurons. Synaptic input pattern recognition ability was also predicted to be unaltered in TG neurons in two different soma-dendritic membrane models investigated. Our simulations predict the way how subthreshold dendritic signaling and pattern recognition are preserved in TG neurons: amyloid-related membrane alterations compensate for the pathological effects that dendritic atrophy has on subthreshold dendritic signal transfer and integration in layer II/III somatosensory neurons of this hAPP mouse model for AD. Since neither propagation of single PSPs nor integration of multiple PSPs (pattern recognition) changes in TG neurons, we conclude that AD-related neuronal hyperexcitability cannot be accounted for by altered subthreshold dendritic signaling in these neurons but hyperexcitability is related to changes in active membrane properties and network connectivity.
Collapse
Affiliation(s)
- Attila Somogyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary; Kenézy Gyula Hospital Ltd., Department of Emergency MedicineDebrecen, Hungary
| | - Zoltán Katonai
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| | - Alán Alpár
- MTA-SE NAP B Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of SciencesBudapest, Hungary; Department of Anatomy, Semmelweis UniversityBudapest, Hungary
| | - Ervin Wolf
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen Debrecen, Hungary
| |
Collapse
|
27
|
Smith MA, Xia CZ, Dengler-Crish CM, Fening KM, Inman DM, Schofield BR, Crish SD. Persistence of intact retinal ganglion cell terminals after axonal transport loss in the DBA/2J mouse model of glaucoma. J Comp Neurol 2016; 524:3503-3517. [PMID: 27072596 DOI: 10.1002/cne.24012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/30/2016] [Accepted: 04/05/2016] [Indexed: 01/24/2023]
Abstract
Axonal transport defects are an early pathology occurring within the retinofugal projection of the DBA/2J mouse model of glaucoma. Retinal ganglion cell (RGC) axons and terminals are detectable after transport is affected, yet little is known about the condition of these structures. We examined the ultrastructure of the glaucomatous superior colliculus (SC) with three-dimensional serial block-face scanning electron microscopy to determine the distribution and morphology of retinal terminals in aged mice exhibiting varying levels of axonal transport integrity. After initial axonal transport failure, retinal terminal densities did not vary compared with either transport-intact or control tissue. Although retinal terminals lacked overt signs of neurodegeneration, transport-intact areas of glaucomatous SC exhibited larger retinal terminals and associated mitochondria. This likely indicates increased oxidative capacity and may be a compensatory response to the stressors that this projection is experiencing. Areas devoid of transported tracer label showed reduced mitochondrial volumes as well as decreased active zone number and surface area, suggesting that oxidative capacity and synapse strength are reduced as disease progresses but before degeneration of the synapse. Mitochondrial volume was a strong predictor of bouton size independent of pathology. These findings indicate that RGC axons retain connectivity after losing function early in the disease process, creating an important therapeutic opportunity for protection or restoration of vision in glaucoma. J. Comp. Neurol. 524:3503-3517, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew A Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, 44272.,Integrated Pharmaceutical Medicine Program, Northeast Ohio Medical University, Rootstown, Ohio, 44272
| | - Christina Z Xia
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, 44272
| | | | - Kelly M Fening
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, 44272
| | - Denise M Inman
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, 44272
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, 44272
| | - Samuel D Crish
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, 44272.
| |
Collapse
|
28
|
Yuan TF, Peng B, Machado S, Arias-Carrion O. Morphological Bases of Neuronal Hyperexcitability in Neurodegeneration. CNS Neurosci Ther 2015; 21:867-9. [PMID: 26494127 DOI: 10.1111/cns.12439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Ti-Fei Yuan
- School of psychology, Nanjing Normal university, Nanjing, China
| | - Bo Peng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sergio Machado
- Panic and Respiration, Institute of Psychiatry of Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Oscar Arias-Carrion
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González/IFC-UNAM, Mexico City, Mexico
| |
Collapse
|
29
|
Gautam V, D'Avanzo C, Berezovska O, Tanzi RE, Kovacs DM. Synaptotagmins interact with APP and promote Aβ generation. Mol Neurodegener 2015. [PMID: 26202512 PMCID: PMC4511450 DOI: 10.1186/s13024-015-0028-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Accumulation of the β-amyloid peptide (Aβ) is a major pathological hallmark of Alzheimer’s disease (AD). Recent studies have shown that synaptic Aβ toxicity may directly impair synaptic function. However, proteins regulating Aβ generation at the synapse have not been characterized. Here, we sought to identify synaptic proteins that interact with the extracellular domain of APP and regulate Aβ generation. Results Affinity purification-coupled mass spectrometry identified members of the Synaptotagmin (Syt) family as novel interacting proteins with the APP ectodomain in mouse brains. Syt-1, −2 and −9 interacted with APP in cells and in mouse brains in vivo. Using a GST pull-down approach, we have further demonstrated that the Syt interaction site lies in the 108 amino acids linker region between the E1 and KPI domains of APP. Stable overexpression of Syt-1 or Syt-9 with APP in CHO and rat pheochromocytoma cells (PC12) significantly increased APP-CTF and sAPP levels, with a 2 to 3 fold increase in secreted Aβ levels in PC12 cells. Moreover, using a stable knockdown approach to reduce the expression of endogenous Syt-1 in PC12 cells, we have observed a ~ 50 % reduction in secreted Aβ generation. APP processing also decreased in these cells, shown by lower CTF levels. Lentiviral-mediated knock down of endogenous Syt-1 in mouse primary neurons also led to a significant reduction in both Aβ40 and Aβ42 generation. As secreted sAPPβ levels were significantly reduced in PC12 cells lacking Syt-1 expression, our results suggest that Syt-1 regulates Aβ generation by modulating BACE1-mediated cleavage of APP. Conclusion Altogether, our data identify the synaptic vesicle proteins Syt-1 and 9 as novel APP-interacting proteins that promote Aβ generation and thus may play an important role in the pathogenesis of AD. Electronic supplementary material The online version of this article (doi:10.1186/s13024-015-0028-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vivek Gautam
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Carla D'Avanzo
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| | - Dora M Kovacs
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA.
| |
Collapse
|
30
|
Audoy-Rémus J, Bozoyan L, Dumas A, Filali M, Lecours C, Lacroix S, Rivest S, Tremblay ME, Vallières L. GPR84 deficiency reduces microgliosis, but accelerates dendritic degeneration and cognitive decline in a mouse model of Alzheimer's disease. Brain Behav Immun 2015; 46:112-20. [PMID: 25637481 DOI: 10.1016/j.bbi.2015.01.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 01/06/2023] Open
Abstract
Microglia surrounds the amyloid plaques that form in the brains of patients with Alzheimer's disease (AD), but their role is controversial. Under inflammatory conditions, these cells can express GPR84, an orphan receptor whose pathophysiological role is unknown. Here, we report that GPR84 is upregulated in microglia of APP/PS1 transgenic mice, a model of AD. Without GPR84, these mice display both accelerated cognitive decline and a reduced number of microglia, especially in areas surrounding plaques. The lack of GPR84 affects neither plaque formation nor hippocampal neurogenesis, but promotes dendritic degeneration. Furthermore, GPR84 does not influence the clinical progression of other diseases in which its expression has been reported, i.e., experimental autoimmune encephalomyelitis (EAE) and endotoxic shock. We conclude that GPR84 plays a beneficial role in amyloid pathology by acting as a sensor for a yet unknown ligand that promotes microglia recruitment, a response affecting dendritic degeneration and required to prevent further cognitive decline.
Collapse
Affiliation(s)
- Julie Audoy-Rémus
- Axis of Neuroscience, University Hospital Center of Quebec, Quebec, QC, Canada
| | - Lusine Bozoyan
- Axis of Neuroscience, University Hospital Center of Quebec, Quebec, QC, Canada
| | - Aline Dumas
- Axis of Neuroscience, University Hospital Center of Quebec, Quebec, QC, Canada
| | - Mohammed Filali
- Axis of Neuroscience, University Hospital Center of Quebec, Quebec, QC, Canada
| | - Cynthia Lecours
- Axis of Neuroscience, University Hospital Center of Quebec, Quebec, QC, Canada
| | - Steve Lacroix
- Axis of Neuroscience, University Hospital Center of Quebec, Quebec, QC, Canada; Department of Molecular Medicine, Laval University, Quebec, QC, Canada
| | - Serge Rivest
- Axis of Neuroscience, University Hospital Center of Quebec, Quebec, QC, Canada; Department of Molecular Medicine, Laval University, Quebec, QC, Canada
| | - Marie-Eve Tremblay
- Axis of Neuroscience, University Hospital Center of Quebec, Quebec, QC, Canada; Department of Molecular Medicine, Laval University, Quebec, QC, Canada
| | - Luc Vallières
- Axis of Neuroscience, University Hospital Center of Quebec, Quebec, QC, Canada; Department of Molecular Medicine, Laval University, Quebec, QC, Canada.
| |
Collapse
|
31
|
Busche MA, Konnerth A. Neuronal hyperactivity - A key defect in Alzheimer's disease? Bioessays 2015; 37:624-32. [DOI: 10.1002/bies.201500004] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Marc Aurel Busche
- Institute of Neuroscience; Technische Universität München; München Germany
- Department of Psychiatry and Psychotherapy; Technische Universität München; München Germany
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM); Technische Universität München; Munich Germany
| | - Arthur Konnerth
- Institute of Neuroscience; Technische Universität München; München Germany
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM); Technische Universität München; Munich Germany
| |
Collapse
|
32
|
Dubal DB, Zhu L, Sanchez PE, Worden K, Broestl L, Johnson E, Ho K, Yu GQ, Kim D, Betourne A, Kuro-O M, Masliah E, Abraham CR, Mucke L. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. J Neurosci 2015; 35:2358-71. [PMID: 25673831 PMCID: PMC4323521 DOI: 10.1523/jneurosci.5791-12.2015] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 12/06/2014] [Accepted: 12/21/2014] [Indexed: 12/11/2022] Open
Abstract
Aging is the principal demographic risk factor for Alzheimer disease (AD), the most common neurodegenerative disorder. Klotho is a key modulator of the aging process and, when overexpressed, extends mammalian lifespan, increases synaptic plasticity, and enhances cognition. Whether klotho can counteract deficits related to neurodegenerative diseases, such as AD, is unknown. Here we show that elevating klotho expression decreases premature mortality and network dysfunction in human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Increasing klotho levels prevented depletion of NMDA receptor (NMDAR) subunits in the hippocampus and enhanced spatial learning and memory in hAPP mice. Klotho elevation in hAPP mice increased the abundance of the GluN2B subunit of NMDAR in postsynaptic densities and NMDAR-dependent long-term potentiation, which is critical for learning and memory. Thus, increasing wild-type klotho levels or activities improves synaptic and cognitive functions, and may be of therapeutic benefit in AD and other cognitive disorders.
Collapse
Affiliation(s)
- Dena B Dubal
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158,
| | - Lei Zhu
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Pascal E Sanchez
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Kurtresha Worden
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Lauren Broestl
- Department of Neurology, University of California, San Francisco, California 94158
| | - Erik Johnson
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
| | - Daniel Kim
- Gladstone Institute of Neurological Disease, San Francisco, California 94158
| | - Alexander Betourne
- Department of Neurology, University of California, San Francisco, California 94158
| | - Makoto Kuro-O
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Eliezer Masliah
- Departments of Neurosciences and Pathology, University of California, San Diego, San Diego, California 92093, and
| | - Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, California 94158, Department of Neurology, University of California, San Francisco, California 94158,
| |
Collapse
|
33
|
Paquet C, Amin J, Mouton-Liger F, Nasser M, Love S, Gray F, Pickering RM, Nicoll JAR, Holmes C, Hugon J, Boche D. Effect of active Aβ immunotherapy on neurons in human Alzheimer's disease. J Pathol 2015; 235:721-30. [PMID: 25430817 DOI: 10.1002/path.4491] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/29/2014] [Accepted: 11/26/2014] [Indexed: 12/26/2022]
Abstract
Amyloid β peptide (Aβ) immunization of Alzheimer's disease (AD) patients has been reported to induce amyloid plaque removal, but with little impact on cognitive decline. We have explored the consequences of Aβ immunotherapy on neurons in post mortem brain tissue. Eleven immunized (AN1792, Elan Pharmaceuticals) AD patients were compared to 28 non-immunized AD cases. Immunohistochemistry on sections of neocortex was performed for neuron-specific nuclear antigen (NeuN), neurofilament protein (NFP) and phosphorylated-(p)PKR (pro-apoptotic kinase detected in degenerating neurons). Quantification was performed for pPKR and status spongiosis (neuropil degeneration), NeuN-positive neurons/field, curvature of the neuronal processes and interneuronal distance. Data were corrected for age, gender, duration of dementia and APOE genotype and also assessed in relation to Aβ42 and tau pathology and key features of AD. In non-immunized patients, the degree of neuritic curvature correlated with spongiosis and pPKR, and overall the neurodegenerative markers correlated better with tau pathology than Aβ42 load. Following immunization, spongiosis increased, interneuronal distance increased, while the number of NeuN-positive neurons decreased, consistent with enhanced neuronal loss. However, neuritic curvature was reduced and pPKR was associated with Aβ removal in immunized patients. In AD, associations of spongiosis status, curvature ratio and pPKR load with microglial markers Iba1, CD68 and CD32 suggest a role for microglia in neurodegeneration. After immunization, correlations were detected between the number of NeuN-positive neurons and pPKR with Iba1, CD68 and CD64, suggesting that microglia are involved in the neuronal loss. Our findings suggest that in established AD this form of active Aβ immunization may predominantly accelerate loss of damaged degenerating neurons. This interpretation is consistent with in vivo imaging indicating an increased rate of cerebral atrophy in immunized AD patients.
Collapse
Affiliation(s)
- Claire Paquet
- Alzheimer Clinical Centre, Lariboisiere FW Saint-Louis Hospital, AP-HP University of Paris Diderot, France; Department of Histology and Biology of Ageing, Lariboisiere FW Saint-Louis Hospital, AP-HP University of Paris Diderot, France; INSERM U942, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hasel P, Mckay S, Qiu J, Hardingham GE. Selective dendritic susceptibility to bioenergetic, excitotoxic and redox perturbations in cortical neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:2066-76. [PMID: 25541281 PMCID: PMC4547083 DOI: 10.1016/j.bbamcr.2014.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/12/2014] [Accepted: 12/13/2014] [Indexed: 11/19/2022]
Abstract
Neurodegenerative and neurological disorders are often characterised by pathological changes to dendrites, in advance of neuronal death. Oxidative stress, energy deficits and excitotoxicity are implicated in many such disorders, suggesting a potential vulnerability of dendrites to these situations. Here we have studied dendritic vs. somatic responses of primary cortical neurons to these types of challenges in real-time. Using a genetically encoded indicator of intracellular redox potential (Grx1-roGFP2) we found that, compared to the soma, dendritic regions exhibited more dramatic fluctuations in redox potential in response to sub-lethal ROS exposure, and existed in a basally more oxidised state. We also studied the responses of dendritic and somatic regions to excitotoxic NMDA receptor activity. Both dendritic and somatic regions experienced similar increases in cytoplasmic Ca2+. Interestingly, while mitochondrial Ca2+ uptake and initial mitochondrial depolarisation were similar in both regions, secondary delayed mitochondrial depolarisation was far weaker in dendrites, potentially as a result of less NADH depletion. Despite this, ATP levels were found to fall faster in dendritic regions. Finally we studied the responses of dendritic and somatic regions to energetically demanding action potential burst activity. Burst activity triggered PDH dephosphorylation, increases in oxygen consumption and cellular NADH:NAD ratio. Compared to somatic regions, dendritic regions exhibited a smaller degree of mitochondrial Ca2+ uptake, lower fold-induction of NADH and larger reduction in ATP levels. Collectively, these data reveal that dendritic regions of primary neurons are vulnerable to greater energetic and redox fluctuations than the cell body, which may contribute to disease-associated dendritic damage. This article is part of a Special Issue entitled: 13th European Symposium on Calcium. Dendrites exhibit a greater shift in redox potential than the soma, following an oxidative insult. Dendritic mitochondria depolarise less than somatic ones during excitotoxicity. Nevertheless ATP falls faster in dendritic regions during excitotoxicity. Energetically demanding AP bursting induces adaptive metabolic responses. These responses are weaker in dendrites, and ATP levels are suppressed more strongly.
Collapse
Affiliation(s)
- Philip Hasel
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Sean Mckay
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Jing Qiu
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Giles E Hardingham
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
35
|
Šišková Z, Justus D, Kaneko H, Friedrichs D, Henneberg N, Beutel T, Pitsch J, Schoch S, Becker A, von der Kammer H, Remy S. Dendritic Structural Degeneration Is Functionally Linked to Cellular Hyperexcitability in a Mouse Model of Alzheimer’s Disease. Neuron 2014; 84:1023-33. [DOI: 10.1016/j.neuron.2014.10.024] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2014] [Indexed: 12/25/2022]
|
36
|
Anaya-Martínez V, Gutierrez-Valdez AL, Ordoñez-Librado JL, Montiel-Flores E, Sánchez-Betancourt J, Sánchez Vázquez del Mercado C, Reynoso-Erazo L, Tron-Alvarez R, Avila-Costa MR. The presence of perforated synapses in the striatum after dopamine depletion, is this a sign of maladaptive brain plasticity? Microscopy (Oxf) 2014; 63:427-35. [PMID: 25246608 DOI: 10.1093/jmicro/dfu032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Synaptic plasticity is the process by which long-lasting changes take place at synaptic connections. The phenomenon itself is complex and can involve many levels of organization. Some authors separate forms into adaptations that have positive or negative consequences for the individual. It has been hypothesized that an increase in the number of synapses may represent a structural basis for the enduring expression of synaptic plasticity during some events that involve memory and learning; also, it has been suggested that perforated synapses increase in number after some diseases and experimental situations. The aim of this study was to analyze whether dopamine depletion induces changes in the synaptology of the corpus striatum of rats after the unilateral injection of 6-OHDA. The findings suggest that after the lesion, both contralateral and ipsilateral striata exhibit an increased length of the synaptic ending in ipsilateral (since third day) and contralateral striatum (since Day 20), loss of axospinous synapses in ipsilateral striatum and a significant increment in the number of perforated synapses, suggesting brain plasticity that might be deleterious for the spines, because this type of synaptic contacts are presumably excitatory, and in the absence of the modulatory effects of dopamine, the neuron could die through excitotoxic mechanisms. Thus, we can conclude that the presence of perforated synapses after striatal dopamine depletion might be a form of maladaptive synaptic plasticity.
Collapse
Affiliation(s)
- Verónica Anaya-Martínez
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex. 54090, Mexico
| | - Ana Luisa Gutierrez-Valdez
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex. 54090, Mexico
| | - Jose Luis Ordoñez-Librado
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex. 54090, Mexico
| | - Enrique Montiel-Flores
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex. 54090, Mexico
| | - Javier Sánchez-Betancourt
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex. 54090, Mexico
| | - César Sánchez Vázquez del Mercado
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex. 54090, Mexico
| | - Leonardo Reynoso-Erazo
- Health Education Project, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex. 54090, Mexico
| | - Rocío Tron-Alvarez
- Health Education Project, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex. 54090, Mexico
| | - Maria Rosa Avila-Costa
- Neuromorphology Lab, Facultad de Estudios Superiores Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex. 54090, Mexico
| |
Collapse
|
37
|
Brocca M, Pietranera L, Roig P, Lima A, De Nicola A. Effects of 17β-estradiol on the cytoarchitecture of pyramidal CA1 neurons in normoglycemic and diabetic male spontaneously hypertensive rats. Neuroscience 2014; 280:243-53. [DOI: 10.1016/j.neuroscience.2014.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/25/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022]
|
38
|
Ostrovskaya RU, Vakhitova YV, Kuzmina US, Salimgareeva MK, Zainullina LF, Gudasheva TA, Vakhitov VA, Seredenin SB. Neuroprotective effect of novel cognitive enhancer noopept on AD-related cellular model involves the attenuation of apoptosis and tau hyperphosphorylation. J Biomed Sci 2014; 21:74. [PMID: 25096780 PMCID: PMC4422191 DOI: 10.1186/s12929-014-0074-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/28/2014] [Indexed: 11/25/2022] Open
Abstract
Background Noopept (N-phenyl-acetyl-L-prolylglycine ethyl ester) was constructed as a dipeptide analog of the standard cognition enhancer, piracetam. Our previous experiments have demonstrated the cognition restoring effect of noopept in several animal models of Alzheimer disease (AD). Noopept was also shown to prevent ionic disbalance, excitotoxicity, free radicals and pro-inflammatory cytokines accumulation, and neurotrophine deficit typical for different kinds of brain damages, including AD. In this study, we investigated the neuroprotective action of noopept on cellular model of AD, Aβ25–35-induced toxicity in PC12 cells and revealed the underlying mechanisms. Results The neuroprotective effect of noopept (added to the medium at 10 μM concentration, 72 hours before Аβ25–35) was studied on Аβ25–35-induced injury (5 μM for 24 h) in PC12 cells. The ability of drug to protect the impairments of cell viability, calcium homeostasis, ROS level, mitochondrial function, tau phosphorylation and neurite outgrowth caused by Аβ25–35 were evaluated. Following the exposure of PC12 cells to Аβ25–35 an increase of the level of ROS, intracellular calcium, and tau phosphorylation at Ser396 were observed; these changes were accompanied by a decrease in cell viability and an increase of apoptosis. Noopept treatment before the amyloid-beta exposure improved PC12 cells viability, reduced the number of early and late apoptotic cells, the levels of intracellular reactive oxygen species and calcium and enhanced the mitochondrial membrane potential. In addition, pretreatment of PC12 cell with noopept significantly attenuated tau hyperphosphorylation at Ser396 and ameliorated the alterations of neurite outgrowth evoked by Аβ25–35. Conclusions Taken together, these data provide evidence that novel cognitive enhancer noopept protects PC12 cell against deleterious actions of Aβ through inhibiting the oxidative damage and calcium overload as well as suppressing the mitochondrial apoptotic pathway. Moreover, neuroprotective properties of noopept likely include its ability to decrease tau phosphorylation and to restore the altered morphology of PC12 cells. Therefore, this nootropic dipeptide is able to positively affect not only common pathogenic pathways but also disease-specific mechanisms underlying Aβ-related pathology.
Collapse
Affiliation(s)
- Rita U Ostrovskaya
- Zakusov Institute of Pharmacology RAS, Baltiyskaya 8, 125315, Moscow, Russia.
| | - Yulia V Vakhitova
- Institute of Biochemistry and Genetics Ufa Scientific Centre RAS, Prospect Oktyabrya, 71, 450054, Ufa, Russia.
| | - Uliyana Sh Kuzmina
- Institute of Biochemistry and Genetics Ufa Scientific Centre RAS, Prospect Oktyabrya, 71, 450054, Ufa, Russia.
| | - Milyausha Kh Salimgareeva
- Institute of Biochemistry and Genetics Ufa Scientific Centre RAS, Prospect Oktyabrya, 71, 450054, Ufa, Russia.
| | - Liana F Zainullina
- Institute of Biochemistry and Genetics Ufa Scientific Centre RAS, Prospect Oktyabrya, 71, 450054, Ufa, Russia.
| | - Tatiana A Gudasheva
- Zakusov Institute of Pharmacology RAS, Baltiyskaya 8, 125315, Moscow, Russia.
| | - Vener A Vakhitov
- Institute of Biochemistry and Genetics Ufa Scientific Centre RAS, Prospect Oktyabrya, 71, 450054, Ufa, Russia.
| | - Sergey B Seredenin
- Zakusov Institute of Pharmacology RAS, Baltiyskaya 8, 125315, Moscow, Russia.
| |
Collapse
|
39
|
Lipoprotein-associated lysolipids are differentially involved in high-density lipoprotein- and its oxidized form-induced neurite remodeling in PC12 cells. Neurochem Int 2014; 68:38-47. [DOI: 10.1016/j.neuint.2014.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 01/23/2014] [Accepted: 02/24/2014] [Indexed: 02/03/2023]
|
40
|
Drachman DA. The amyloid hypothesis, time to move on: Amyloid is the downstream result, not cause, of Alzheimer's disease. Alzheimers Dement 2014; 10:372-80. [PMID: 24589433 DOI: 10.1016/j.jalz.2013.11.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/07/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022]
Abstract
The "amyloid hypothesis" has dominated Alzheimer research for more than 20 years, and proposes that amyloid is the toxic cause of neural/synaptic damage and dementia. If correct, decreasing the formation or removing amyloid should be therapeutic. Despite discrepancies in the proposed mechanism, and failed clinical trials, amyloid continues to be considered the cause of a degenerative cascade. Alternative hypotheses must explain three features: (i) why amyloid toxicity is not the etiology of Alzheimer's disease (AD), (ii) what alternative mechanisms cause the degeneration and dementia of AD, and (iii) why increased amyloid accumulates in the brain in AD. We propose that AD, which occurs in elderly, already vulnerable brains, with multiple age-related changes, is precipitated by impaired microvascular function, resulting primarily from decreased Notch-related angiogenesis. With impaired microvasculature, a lack of vascular endothelial-derived trophic factors and decreased cerebral blood flow cause the atrophy of neural structures. Therapeutic strategies should focus on supporting normal angiogenesis.
Collapse
|
41
|
Sanphui P, Pramanik SK, Chatterjee N, Moorthi P, Banerji B, Biswas SC. Efficacy of cyclin dependent kinase 4 inhibitors as potent neuroprotective agents against insults relevant to Alzheimer's disease. PLoS One 2013; 8:e78842. [PMID: 24244372 PMCID: PMC3823981 DOI: 10.1371/journal.pone.0078842] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 09/16/2013] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no cure till today. Aberrant activation of cell cycle regulatory proteins is implicated in neurodegenerative diseases including AD. We and others have shown that Cyclin dependent kinase 4 (Cdk4) is activated in AD brain and is required for neuron death. In this study, we tested the efficiency of commercially available Cdk4 specific inhibitors as well as a small library of synthetic molecule inhibitors targeting Cdk4 as neuroprotective agents in cellular models of neuron death. We found that several of these inhibitors significantly protected neuronal cells against death induced by nerve growth factor (NGF) deprivation and oligomeric beta amyloid (Aβ) that are implicated in AD. These neuroprotective agents inhibit specifically Cdk4 kinase activity, loss of mitochondrial integrity, induction of pro-apoptotic protein Bim and caspase3 activation in response to NGF deprivation. The efficacies of commercial and synthesized inhibitors are comparable. The synthesized molecules are either phenanthrene based or naphthalene based and they are synthesized by using Pschorr reaction and Buchwald coupling respectively as one of the key steps. A number of molecules of both kinds block neurodegeneration effectively. Therefore, we propose that Cdk4 inhibition would be a therapeutic choice for ameliorating neurodegeneration in AD and these synthetic Cdk4 inhibitors could lead to development of effective drugs for AD.
Collapse
Affiliation(s)
- Priyankar Sanphui
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | | | - Nandini Chatterjee
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ponnusamy Moorthi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Biswadip Banerji
- Chemistry Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (SCB); (BB)
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail: (SCB); (BB)
| |
Collapse
|
42
|
Sivilia S, Lorenzini L, Giuliani A, Gusciglio M, Fernandez M, Baldassarro VA, Mangano C, Ferraro L, Pietrini V, Baroc MF, Viscomi AR, Ottonello S, Villetti G, Imbimbo BP, Calzà L, Giardino L. Multi-target action of the novel anti-Alzheimer compound CHF5074: in vivo study of long term treatment in Tg2576 mice. BMC Neurosci 2013. [PMID: 23560952 DOI: 10.1186/1471-2202-14.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Alzheimer disease is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The pathological hallmarks includes extracellular amyloid plaques and intraneuronal neurofibrillary tangles, but the primary cause is only partially understood. Thus, there is growing interest in developing agents that might target multiple mechanisms leading to neuronal degeneration. CHF5074 is a nonsteroidal anti-inflammatory derivative that has been shown to behave as a γ-secretase modulator in vitro and to inhibit plaque deposition and to reverse memory deficit in vivo in transgenic mouse models of Alzheimer's disease (AD). In the present study, the effects of a long-term (13-month) treatment with CHF5074 on indicators of brain functionality and neurodegeneration in transgenic AD mice (Tg2576) have been assessed and compared with those induced by a prototypical γ-secretase inhibitor (DAPT). RESULTS To this end, plaque-free, 6-month-old Tg2576 mice and wild-type littermates were fed with a diet containing CHF5074 (125 and 375 ppm/day), DAPT (375 ppm/day) or vehicle for 13 months. The measured indicators included object recognition memory, amyloid burden, brain oligomeric and plasma Aβ levels, intraneuronal Aβ, dendritic spine density/morphology, neuronal cyclin A positivity and activated microglia. Tg2576 mice fed with standard diet displayed an impairment of recognition memory. This deficit was completely reverted by the higher dose of CHF5074, while no effects were observed in DAPT-treated mice. Similarly, amyloid plaque burden, microglia activation and aberrant cell cycle events were significantly affected by CHF5074, but not DAPT, treatment. Both CHF5074 and DAPT reduced intraneuronal Aβ content, also increasing Aβ40 and Aβ42 plasma levels. CONCLUSIONS This comparative analysis revealed a profoundly diverse range of clinically relevant effects differentiating the multifunctional anti-inflammatory derivative CHF5074 from the γ-secretase inhibitor DAPT and highlighted unique mechanisms and potential targets that may be crucial for neuroprotection in mouse models of AD.
Collapse
Affiliation(s)
- Sandra Sivilia
- Department of Veterinary Medicine, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sivilia S, Lorenzini L, Giuliani A, Gusciglio M, Fernandez M, Baldassarro VA, Mangano C, Ferraro L, Pietrini V, Baroc MF, Viscomi AR, Ottonello S, Villetti G, Imbimbo BP, Calzà L, Giardino L. Multi-target action of the novel anti-Alzheimer compound CHF5074: in vivo study of long term treatment in Tg2576 mice. BMC Neurosci 2013; 14:44. [PMID: 23560952 PMCID: PMC3626610 DOI: 10.1186/1471-2202-14-44] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 03/14/2013] [Indexed: 02/08/2023] Open
Abstract
Background Alzheimer disease is a multifactorial disorder characterized by the progressive deterioration of neuronal networks. The pathological hallmarks includes extracellular amyloid plaques and intraneuronal neurofibrillary tangles, but the primary cause is only partially understood. Thus, there is growing interest in developing agents that might target multiple mechanisms leading to neuronal degeneration. CHF5074 is a nonsteroidal anti-inflammatory derivative that has been shown to behave as a γ-secretase modulator in vitro and to inhibit plaque deposition and to reverse memory deficit in vivo in transgenic mouse models of Alzheimer’s disease (AD). In the present study, the effects of a long-term (13-month) treatment with CHF5074 on indicators of brain functionality and neurodegeneration in transgenic AD mice (Tg2576) have been assessed and compared with those induced by a prototypical γ-secretase inhibitor (DAPT). Results To this end, plaque-free, 6-month-old Tg2576 mice and wild-type littermates were fed with a diet containing CHF5074 (125 and 375 ppm/day), DAPT (375 ppm/day) or vehicle for 13 months. The measured indicators included object recognition memory, amyloid burden, brain oligomeric and plasma Aβ levels, intraneuronal Aβ, dendritic spine density/morphology, neuronal cyclin A positivity and activated microglia. Tg2576 mice fed with standard diet displayed an impairment of recognition memory. This deficit was completely reverted by the higher dose of CHF5074, while no effects were observed in DAPT-treated mice. Similarly, amyloid plaque burden, microglia activation and aberrant cell cycle events were significantly affected by CHF5074, but not DAPT, treatment. Both CHF5074 and DAPT reduced intraneuronal Aβ content, also increasing Aβ40 and Aβ42 plasma levels. Conclusions This comparative analysis revealed a profoundly diverse range of clinically relevant effects differentiating the multifunctional anti-inflammatory derivative CHF5074 from the γ-secretase inhibitor DAPT and highlighted unique mechanisms and potential targets that may be crucial for neuroprotection in mouse models of AD.
Collapse
Affiliation(s)
- Sandra Sivilia
- Department of Veterinary Medicine, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder characterized by the aggregation of two proteins, amyloid-β and hyperphosphorylated tau, and by neuronal and synaptic loss. Although some drugs have been shown to slow the progression of the disease, at present no treatment has been developed that can stop or reverse the progression of the pathology. Recently, new therapeutic strategies have been proposed for the treatment of the disease. Among these, the development of stem cells and gene-modified cells is an especially promising therapeutic approach for AD. In this review we highlight the experimental and preclinical studies that have been focused on stem cell-based and gene-modified cell-based uses as potential therapies for AD. The potential clinical applications are also discussed.
Collapse
Affiliation(s)
- Micaela Johanna Glat
- Laboratory of Neuroscience, Sackler Faculty of Medicine, Felsenstein Medical Research Center, Tel Aviv University, Petah-Tikva, Israel
| | | |
Collapse
|
45
|
Spine pruning in 5xFAD mice starts on basal dendrites of layer 5 pyramidal neurons. Brain Struct Funct 2013; 219:571-80. [PMID: 23417057 DOI: 10.1007/s00429-013-0518-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/01/2013] [Indexed: 12/19/2022]
Abstract
Transgenic mice with Alzheimer's disease (AD) mutations have been widely used to model changes in neuronal structure and function. While there are clear gross structural changes in post-mortem brains of AD patients, most mouse models of AD do not recapitulate the considerable loss of neurons. Furthermore, possible connections between early subtle structural changes and the loss of neurons are difficult to study. In an attempt to start unraveling how neurons are affected during the early stages of what becomes full neurodegeneration, we crossed a mouse model of familial AD, which displays massive neocortical neurodegeneration (the 5xFAD mouse), with the fluorescent H-line YFP mouse. This novel bigenic mouse model of AD, which we have named the 5XY mouse, expresses YFP in principal neurons in the cortex such that even fine details of cells are clearly visible. Such bright fluorescence allowed us to use high-resolution confocal microscopy to quantify changes in spine density in the somatosensory cortex, prefrontal cortex, and hippocampus at 2, 4, and 6 months of age. A significant loss of spines on basal dendrites in the somatosensory and prefrontal cortices of 6-month-old 5XY female mice was found. There was no observed spine loss at 6 months of age on the oblique dendrites of the hippocampus in the same mice. These data suggest that spine loss is an early event in the degeneration of the neocortical neurons in 5xFAD mice and a likely contributor to the cognitive impairments reported previously in this AD mouse model.
Collapse
|
46
|
Abstract
Amyloid-β plaques are one of the major neuropathological features in Alzheimer's disease (AD). Plaques are found in the extracellular space of telencephalic structures, and have been shown to disrupt neuronal connectivity. Since the disruption of connectivity may underlie a number of the symptoms of AD, understanding the distribution of plaques in the neuropil in relation to the connectivity pattern of the neuronal network is crucial. We measured the distribution and clustering patterns of plaques in the vibrissae-receptive primary sensory cortex (barrel cortex), in which the cortical columnar structure is anatomically demarcated by boundaries in Layer IV. We found that the plaques are not distributed randomly with respect to the barrel structures in Layer IV; rather, they are more concentrated in the septal areas than in the barrels. This difference was not preserved in the supragranular extensions of the functional columns. When comparing the degree of clustering of plaques between primary sensory cortices, we found that the degree of plaques clustering is significantly higher in somatosensory cortex than in visual cortex, and these differences are preserved in Layers II/III. The degree of areal discontinuity is therefore correlated with the patterns of neuropathological deposits. The discontinuous anatomical structure of this area allows us to make predictions about the functional effects of plaques on specific patterns of computational disruption in the AD brain.
Collapse
|
47
|
Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns NJ, Castellani RJ, Crain BJ, Davies P, Del Tredici K, Duyckaerts C, Frosch MP, Haroutunian V, Hof PR, Hulette CM, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kövari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee AC, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol 2012; 71:362-81. [PMID: 22487856 PMCID: PMC3560290 DOI: 10.1097/nen.0b013e31825018f7] [Citation(s) in RCA: 1473] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clinicopathologic correlation studies are critically important for the field of Alzheimer disease (AD) research. Studies on human subjects with autopsy confirmation entail numerous potential biases that affect both their general applicability and the validity of the correlations. Many sources of data variability can weaken the apparent correlation between cognitive status and AD neuropathologic changes. Indeed, most persons in advanced old age have significant non-AD brain lesions that may alter cognition independently of AD. Worldwide research efforts have evaluated thousands of human subjects to assess the causes of cognitive impairment in the elderly, and these studies have been interpreted in different ways. We review the literature focusing on the correlation of AD neuropathologic changes (i.e. β-amyloid plaques and neurofibrillary tangles) with cognitive impairment. We discuss the various patterns of brain changes that have been observed in elderly individuals to provide a perspective for understanding AD clinicopathologic correlation and conclude that evidence from many independent research centers strongly supports the existence of a specific disease, as defined by the presence of Aβ plaques and neurofibrillary tangles. Although Aβ plaques may play a key role in AD pathogenesis, the severity of cognitive impairment correlates best with the burden of neocortical neurofibrillary tangles.
Collapse
Affiliation(s)
- Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington 40536-0230, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Spines, plasticity, and cognition in Alzheimer's model mice. Neural Plast 2011; 2012:319836. [PMID: 22203915 PMCID: PMC3238410 DOI: 10.1155/2012/319836] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 10/27/2011] [Indexed: 01/03/2023] Open
Abstract
The pathological hallmarks of Alzheimer's disease (AD)--widespread synaptic and neuronal loss and the pathological accumulation of amyloid-beta peptide (Aβ) in senile plaques, as well as hyperphosphorylated tau in neurofibrillary tangles--have been known for many decades, but the links between AD pathology and dementia and effective therapeutic strategies remain elusive. Transgenic mice have been developed based on rare familial forms of AD and frontotemporal dementia, allowing investigators to test in detail the structural, functional, and behavioral consequences of AD-associated pathology. Here, we review work on transgenic AD models that investigate the degeneration of dendritic spine structure, synaptic function, and cognition. Together, these data support a model of AD pathogenesis in which soluble Aβ initiates synaptic dysfunction and loss, as well as pathological changes in tau, which contribute to both synaptic and neuronal loss. These changes in synapse structure and function as well as frank synapse and neuronal loss contribute to the neural system dysfunction which causes cognitive deficits. Understanding the underpinnings of dementia in AD will be essential to develop and evaluate therapeutic approaches for this widespread and devastating disease.
Collapse
|
49
|
Abstract
Synapse loss correlates with cognitive decline in aging and most neurological pathologies. Sensory perception changes often represent subtle dysfunctions that precede the onset of a neurodegenerative disease. However, a cause-effect relationship between synapse loss and sensory perception deficits is difficult to prove and quantify due to functional and structural adaptation of neural systems. Here we modified a PI3K/AKT/GSK3 signaling pathway to reduce the number of synapses--without affecting the number of cells--in five subsets of local interneurons of the Drosophila olfactory glomeruli and measured the behavioral effects on olfactory perception. The neuron subsets were chosen under the criteria of GABA or ChAT expression. The reduction of one subset of synapses, mostly inhibitory, converted the responses to all odorants and concentrations tested as repulsive, while the reduction of another subset, mostly excitatory, led to a shift toward attraction. However, the simultaneous reduction of both synapse subsets restored normal perception. One group of local interneurons proved unaffected by the induced synapse loss in the perception of some odorants, indicating a functional specialization of these cells. Using genetic tools for space and temporal control of synapse number decrease, we show that the perception effects are specific to the local interneurons, rather than the mushroom bodies, and are not based on major structural changes elicited during development. These findings demonstrate that synapse loss cause sensory perception changes and suggest that normal perception is based on a balance between excitation and inhibition.
Collapse
|
50
|
Hundelt M, Fath T, Selle K, Oesterwind K, Jordan J, Schultz C, Götz J, von Engelhardt J, Monyer H, Lewejohann L, Sachser N, Bakota L, Brandt R. Altered phosphorylation but no neurodegeneration in a mouse model of tau hyperphosphorylation. Neurobiol Aging 2011; 32:991-1006. [DOI: 10.1016/j.neurobiolaging.2009.06.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/10/2009] [Accepted: 06/27/2009] [Indexed: 01/16/2023]
|