1
|
Zhang B, Hou J, Liu J, He J, Gao Y, Li G, Ma T, Lv X, Dong L, Yang W. Hydrogen decreases susceptibility to AngII-induced atrial fibrillation and atrial fibrosis via the NOX4/ROS/NLRP3 and TGF-β1/Smad2/3 signaling pathways. PLoS One 2025; 20:e0310852. [PMID: 39775356 PMCID: PMC11709313 DOI: 10.1371/journal.pone.0310852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/07/2024] [Indexed: 01/11/2025] Open
Abstract
Atrial fibrillation (AF) represents the commonly occurring cardiac arrhythmia and the main factor leading to stroke and heart failure. Hydrogen (H2) is a gaseous signaling molecule that has the effects of anti-inflammation and antioxidation. Our study provides evidence that hydrogen decreases susceptibility to AngII-mediated AF together with atrial fibrosis. Following continuous AngII administration for a 28-day period, AngII+H2 treated rats showed decreased susceptibility to AF, a decrease in atrial fibrosis, a decrease in ROS in atrial myocytes, an inhibition of NLRP3 inflammasome activation, an improvement in electrical remodeling, and an inhibition of proliferation and migration of cardiac fibroblasts. We further found that hydrogen regulates the activation of inflammasome and thus improves Ca2+ handling and IKAch and IKur by inhibiting the activity of NOX4 in vivo. In addition, hydrogen was involved in AngII-mediated atrial fibrosis through inhibiting TGF-β1/Smad2/3 pathway through suppressing TGF-β1 activation and secretion in vivo. Our findings suggest that hydrogen is important for preventing and treating AngII-mediated AF and atrial fibrosis, suggesting that hydrogen could be used as the candidate way to prevent and treat AF.
Collapse
Affiliation(s)
- Binmei Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingxiu Hou
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaren Liu
- Department of Clinical Lab, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junhui He
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunan Gao
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangnan Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Tianjiao Ma
- Department of Cardiology, Nangang Branch of Heilongjiang Provincial Hospital, Harbin, Heilongjiang, China
| | - Xin Lv
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Dong
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Yang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
2
|
Casado-Arroyo R, Bernardi M, Sabouret P, Franculli G, Tamargo J, Spadafora L, Lellouche N, Biondi-Zoccai G, Toth PP, Banach M. Investigative agents for atrial fibrillation: agonists and stimulants, progress and expectations. Expert Opin Investig Drugs 2024; 33:967-978. [PMID: 39096248 DOI: 10.1080/13543784.2024.2388583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Its prevalence has increased due to worldwide populations that are aging in combination with the growing incidence of risk factors associated. Recent advances in our understanding of AF pathophysiology and the identification of nodal players involved in AF-promoting atrial remodeling highlights potential opportunities for new therapeutic approaches. AREAS COVERED This detailed review summarizes recent developments in the field antiarrhythmic drugs in the field AF. EXPERT OPINION The current situation is far than optimal. Despite clear unmet needs in drug development in the field of AF treatment, the current development of new drugs is absent. The need for a molecule with absence of cardiac and non-cardiac toxicity in the short and long term is a limitation in the field. Improvement in the understanding of AF genetics, pathophysiology, molecular alterations, big data and artificial intelligence with the objective to provide a personalized AF treatment will be the cornerstone of AF treatment in the coming years.
Collapse
Affiliation(s)
- Ruben Casado-Arroyo
- Department of Cardiology, H.U.B.-Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Marco Bernardi
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Pierre Sabouret
- Heart Institute, ACTION Study Group-CHU Pitié-Salpétrière Paris, Paris, France
- Collège National des Cardiologues Français (CNCF), Paris, France
| | - Giuseppe Franculli
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto De Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Luigi Spadafora
- Department of Clinical, Internal Medicine, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Nicolas Lellouche
- Service de Cardiologie, AP-HP, University Hospital Henri Mondor, Créteil, France
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Peter P Toth
- CGH Medical Center, Sterling, IL, USA
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz Lodz Poland, Lodz, Poland
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother's Memorial Hospital Research Institute Lodz Poland, Lodz, Poland
| |
Collapse
|
3
|
Zaher A, Petronek MS, Allen BG, Mapuskar KA. Balanced Duality: H 2O 2-Based Therapy in Cancer and Its Protective Effects on Non-Malignant Tissues. Int J Mol Sci 2024; 25:8885. [PMID: 39201571 PMCID: PMC11354297 DOI: 10.3390/ijms25168885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/10/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Conventional cancer therapy strategies, although centered around killing tumor cells, often lead to severe side effects on surrounding normal tissues, thus compromising the chronic quality of life in cancer survivors. Hydrogen peroxide (H2O2) is a secondary signaling molecule that has an array of functions in both tumor and normal cells, including the promotion of cell survival pathways and immune cell modulation in the tumor microenvironment. H2O2 is a reactive oxygen species (ROS) crucial in cellular homeostasis and signaling (at concentrations maintained under nM levels), with increased steady-state levels in tumors relative to their normal tissue counterparts. Increased steady-state levels of H2O2 in tumor cells, make them vulnerable to oxidative stress and ultimately, cell death. Recently, H2O2-producing therapies-namely, pharmacological ascorbate and superoxide dismutase mimetics-have emerged as compelling complementary treatment strategies in cancer. Both pharmacological ascorbate and superoxide dismutase mimetics can generate excess H2O2 to overwhelm the impaired H2O2 removal capacity of cancer cells. This review presents an overview of H2O2 metabolism in the physiological and malignant states, in addition to discussing the anti-tumor and normal tissue-sparing mechanism(s) of, and clinical evidence for, two H2O2-based therapies, pharmacological ascorbate and superoxide dismutase mimetics.
Collapse
Affiliation(s)
| | | | | | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (M.S.P.); (B.G.A.)
| |
Collapse
|
4
|
Zhang Y, Lian Q, Nie Y, Zhao W. Identification of atrial fibrillation-related genes through transcriptome data analysis and Mendelian randomization. Front Cardiovasc Med 2024; 11:1414974. [PMID: 39055656 PMCID: PMC11269132 DOI: 10.3389/fcvm.2024.1414974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024] Open
Abstract
Background Atrial fibrillation (AF) is a common persistent arrhythmia characterized by rapid and chaotic atrial electrical activity, potentially leading to severe complications such as thromboembolism, heart failure, and stroke, significantly affecting patient quality of life and safety. As the global population ages, the prevalence of AF is on the rise, placing considerable strains on individuals and healthcare systems. This study utilizes bioinformatics and Mendelian Randomization (MR) to analyze transcriptome data and genome-wide association study (GWAS) summary statistics, aiming to identify biomarkers causally associated with AF and explore their potential pathogenic pathways. Methods We obtained AF microarray datasets GSE41177 and GSE79768 from the Gene Expression Omnibus (GEO) database, merged them, and corrected for batch effects to pinpoint differentially expressed genes (DEGs). We gathered exposure data from expression quantitative trait loci (eQTL) and outcome data from AF GWAS through the IEU Open GWAS database. We employed inverse variance weighting (IVW), MR-Egger, weighted median, and weighted model approaches for MR analysis to assess exposure-outcome causality. IVW was the primary method, supplemented by other techniques. The robustness of our results was evaluated using Cochran's Q test, MR-Egger intercept, MR-PRESSO, and leave-one-out sensitivity analysis. A "Veen" diagram visualized the overlap of DEGs with significant eQTL genes from MR analysis, referred to as common genes (CGs). Additional analyses, including Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and immune cell infiltration studies, were conducted on these intersecting genes to reveal their roles in AF pathogenesis. Results The combined dataset revealed 355 differentially expressed genes (DEGs), with 228 showing significant upregulation and 127 downregulated. Mendelian randomization (MR) analysis identified that the autocrine motility factor receptor (AMFR) [IVW: OR = 0.977; 95% CI, 0.956-0.998; P = 0.030], leucine aminopeptidase 3 (LAP3) [IVW: OR = 0.967; 95% CI, 0.934-0.997; P = 0.048], Rab acceptor 1 (RABAC1) [IVW: OR = 0.928; 95% CI, 0.875-0.985; P = 0.015], and tryptase beta 2 (TPSB2) [IVW: OR = 0.971; 95% CI, 0.943-0.999; P = 0.049] are associated with a reduced risk of atrial fibrillation (AF). Conversely, GTPase-activating SH3 domain-binding protein 2 (G3BP2) [IVW: OR = 1.030; 95% CI, 1.004-1.056; P = 0.024], integrin subunit beta 2 (ITGB2) [IVW: OR = 1.050; 95% CI, 1.017-1.084; P = 0.003], glutaminyl-peptide cyclotransferase (QPCT) [IVW: OR = 1.080; 95% CI, 1.010-0.997; P = 1.154], and tripartite motif containing 22 (TRIM22) [IVW: OR = 1.048; 95% CI, 1.003-1.095; P = 0.035] are positively associated with AF risk. Sensitivity analyses indicated a lack of heterogeneity or horizontal pleiotropy (P > 0.05), and leave-one-out analysis did not reveal any single nucleotide polymorphisms (SNPs) impacting the MR results significantly. GO and KEGG analyses showed that CG is involved in processes such as protein polyubiquitination, neutrophil degranulation, specific and tertiary granule formation, protein-macromolecule adaptor activity, molecular adaptor activity, and the SREBP signaling pathway, all significantly enriched. The analysis of immune cell infiltration demonstrated associations of CG with various immune cells, including plasma cells, CD8T cells, resting memory CD4T cells, regulatory T cells (Tregs), gamma delta T cells, activated NK cells, activated mast cells, and neutrophils. Conclusion By integrating bioinformatics and MR approaches, genes such as AMFR, G3BP2, ITGB2, LAP3, QPCT, RABAC1, TPSB2, and TRIM22 are identified as causally linked to AF, enhancing our understanding of its molecular foundations. This strategy may facilitate the development of more precise biomarkers and therapeutic targets for AF diagnosis and treatment.
Collapse
Affiliation(s)
- Yujun Zhang
- Data Management Center, Xianyang Hospital, Yan'an University, Xianyang, China
| | - Qiufang Lian
- Department of Cardiology, Xianyang Hospital, Yan'an University, Xianyang, China
| | - Yanwu Nie
- School of Public Health, Nanchang University, Nanchang, China
| | - Wei Zhao
- Department of Cardiology, Xianyang Hospital, Yan'an University, Xianyang, China
| |
Collapse
|
5
|
Al-Owais MM, Hettiarachchi NT, Dallas ML, Scragg JL, Lippiat JD, Holden AV, Steele DS, Peers C. Inhibition of the voltage-gated potassium channel Kv1.5 by hydrogen sulfide attenuates remodeling through S-nitrosylation-mediated signaling. Commun Biol 2023; 6:651. [PMID: 37336943 PMCID: PMC10279668 DOI: 10.1038/s42003-023-05016-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
The voltage-gated K+ channel plays a key role in atrial excitability, conducting the ultra-rapid rectifier K+ current (IKur) and contributing to the repolarization of the atrial action potential. In this study, we examine its regulation by hydrogen sulfide (H2S) in HL-1 cardiomyocytes and in HEK293 cells expressing human Kv1.5. Pacing induced remodeling resulted in shorting action potential duration, enhanced both Kv1.5 channel and H2S producing enzymes protein expression in HL-1 cardiomyocytes. H2S supplementation reduced these remodeling changes and restored action potential duration through inhibition of Kv1.5 channel. H2S also inhibited recombinant hKv1.5, lead to nitric oxide (NO) mediated S-nitrosylation and activated endothelial nitric oxide synthase (eNOS) by increased phosphorylation of Ser1177, prevention of NO formation precluded these effects. Regulation of Ikur by H2S has important cardiovascular implications and represents a novel and potential therapeutic target.
Collapse
Affiliation(s)
- Moza M Al-Owais
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Nishani T Hettiarachchi
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
| | - Jason L Scragg
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Jonathan D Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Arun V Holden
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Derek S Steele
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Chris Peers
- Division of Cardiovascular and Diabetes Research, LICAMM, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
6
|
Richter-Laskowska M, Trybek P, Delfino DV, Wawrzkiewicz-Jałowiecka A. Flavonoids as Modulators of Potassium Channels. Int J Mol Sci 2023; 24:1311. [PMID: 36674825 PMCID: PMC9861088 DOI: 10.3390/ijms24021311] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Potassium channels are widely distributed integral proteins responsible for the effective and selective transport of K+ ions through the biological membranes. According to the existing structural and mechanistic differences, they are divided into several groups. All of them are considered important molecular drug targets due to their physiological roles, including the regulation of membrane potential or cell signaling. One of the recent trends in molecular pharmacology is the evaluation of the therapeutic potential of natural compounds and their derivatives, which can exhibit high specificity and effectiveness. Among the pharmaceuticals of plant origin, which are potassium channel modulators, flavonoids appear as a powerful group of biologically active substances. It is caused by their well-documented anti-oxidative, anti-inflammatory, anti-mutagenic, anti-carcinogenic, and antidiabetic effects on human health. Here, we focus on presenting the current state of knowledge about the possibilities of modulation of particular types of potassium channels by different flavonoids. Additionally, the biological meaning of the flavonoid-mediated changes in the activity of K+ channels will be outlined. Finally, novel promising directions for further research in this area will be proposed.
Collapse
Affiliation(s)
- Monika Richter-Laskowska
- The Centre for Biomedical Engineering, Łukasiewicz Research Network—Krakow Institute of Technology, 30-418 Krakow, Poland
| | - Paulina Trybek
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzów, Poland
| | | | - Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
7
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
8
|
Acacetin as a Potential Protective Compound against Cardiovascular Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6265198. [PMID: 35280514 PMCID: PMC8906942 DOI: 10.1155/2022/6265198] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
Acacetin (5,7-dihydroxy-4′-methoxyflavone) is the major bioactive component of the traditional Chinese medicine “Snow lotus”. As a natural flavonoid compound, it has been shown to have good pharmacological effects such as anti-inflammatory, anticancer, and anti-obesity. Among them, its prominent role in cardiovascular diseases (CVD) has received extensive attention from scholars in recent years. In this review, the protective effects of acacetin on a variety of cardiovascular diseases, as well as the existing problems and prospects, are discussed and summarized. This review also highlights the great potential of acacetin, a natural-derived Chinese medicine, as a cardiovascular agent candidate.
Collapse
|
9
|
Qin W, Li YH, Tong J, Wu J, Zhao D, Li HJ, Xing L, He CX, Zhou X, Li PQ, Meng G, Wu SP, Cao HL. Rational Design and Synthesis of 3-Morpholine Linked Aromatic-Imino-1H-Indoles as Novel Kv1.5 Channel Inhibitors Sharing Vasodilation Effects. Front Mol Biosci 2022; 8:805594. [PMID: 35141279 PMCID: PMC8819089 DOI: 10.3389/fmolb.2021.805594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation (AF) is the most common clinical sustained arrhythmia; clinical therapeutic drugs have low atrial selectivity and might cause more severe ventricle arrhythmias while stopping AF. As an anti-AF drug target with high selectivity on the atrial muscle cells, the undetermined crystal structure of Kv1.5 potassium channel impeded further new drug development. Herein, with the simulated 3D structure of Kv1.5 as the drug target, a series of 3-morpholine linked aromatic amino substituted 1H-indoles as novel Kv1.5 channel inhibitors were designed and synthesized based on target–ligand interaction analysis. The synthesis route was practical, starting from commercially available material, and the chemical structures of target compounds were characterized. It was indicated that compounds T16 and T5 (100 μM) exhibited favorable inhibitory activity against the Kv1.5 channel with an inhibition rate of 70.8 and 57.5% using a patch clamp technique. All compounds did not exhibit off-target effects against other drug targets, which denoted some selectivity on the Kv1.5 channel. Interestingly, twelve compounds exhibited favorable vasodilation activity on pre-contracted arterial rings in vitro using KCl or phenylephrine (PE) by a Myograph. The vasodilation rates of compounds T16 and T4 (100 μM) even reached over 90%, which would provide potential lead compounds for both anti-AF and anti-hypertension new drug development.
Collapse
Affiliation(s)
- Wei Qin
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yi-Heng Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Jing Tong
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jie Wu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Dong Zhao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hui-Jin Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Lu Xing
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Chun-Xia He
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xin Zhou
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Peng-Quan Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ge Meng
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| | - Shao-Ping Wu
- College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| | - Hui-Ling Cao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| |
Collapse
|
10
|
Zhao L, Yang Q, Tang Y, You Q, Guo X. Design, synthesis, and biological evaluation of arylmethylpiperidines as Kv1.5 potassium channel inhibitors. J Enzyme Inhib Med Chem 2022; 37:462-471. [PMID: 35012386 PMCID: PMC8757610 DOI: 10.1080/14756366.2021.2018683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Kv1.5 potassium channel, encoded by KCNA5, is a promising target for the treatment of atrial fibrillation, one of the common arrhythmia. A new series of arylmethylpiperidines derivatives based on DDO-02001 were synthesised and evaluated for their ability to inhibit Kv1.5 channel. Among them, compound DDO-02005 showed good inhibitory activity (IC50 = 0.72 μM), preferable anti-arrhythmic effects and favoured safety. These results indicate that DDO-02005 can be a promising Kv1.5 inhibitor for further studies.
Collapse
Affiliation(s)
- Lingyue Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qian Yang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaoke Guo
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Soepriatna AH, Kim TY, Daley MC, Song E, Choi BR, Coulombe KLK. Human Atrial Cardiac Microtissues for Chamber-Specific Arrhythmic Risk Assessment. Cell Mol Bioeng 2021; 14:441-457. [PMID: 34777603 DOI: 10.1007/s12195-021-00703-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/02/2021] [Indexed: 01/10/2023] Open
Abstract
Introduction Although atrial fibrillation is the most prevalent disorder of electrical conduction, the mechanisms behind atrial arrhythmias remain elusive. To address this challenge, we developed a robust in vitro model of 3D atrial microtissue from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes and evaluated chamber-specific chemical responses experimentally and computationally. Methods We differentiated atrial and ventricular cardiomyocytes (aCMs/vCMs) from GCaMP6f-expressing hiPSCs and assessed spontaneous AP activity using fluorescence imaging. Self-assembling 3D microtissues were formed with lactate purified CMs and 5% human cardiac fibroblasts and electrically stimulated for one week before high resolution action potential (AP) optical mapping. AP responses to the atrial-specific potassium repolarizing current I Kur-blocker 4-Aminopyridine (4-AP) and funny current I f-blocker Ivabradine were characterized within their therapeutic window. Finally, we expanded upon a published hiPSC-CM computational model by incorporating the atrial-specific I Kur current, modifying ion channel conductances to match the AP waveforms of our microtissues, and employing the updated model to reinforce our experimental findings. Results High purity CMs (> 75% cTnT+) demonstrated subtype specification by MLC2v expression. Spontaneous beating rates significantly decreased following 3D microtissue formation, with atrial microtissues characterized by their faster spontaneous beating rate, slower AP rise time, and shorter AP duration (APD) compared to ventricular microtissues. We measured atrial-specific responses, including dose-dependent APD prolongation with 4-AP treatment and dose-dependent reduction in spontaneous activity post-Ivabradine treatment. Conclusion The presented in vitro platform for screening atrial-specific responses is both robust and sensitive, with high throughput, enabling studies focused at elucidating the mechanisms underlying atrial arrhythmias. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00703-x.
Collapse
Affiliation(s)
- Arvin H Soepriatna
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Tae Yun Kim
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI USA
| | - Mark C Daley
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Elena Song
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| | - Bum-Rak Choi
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI USA
| | - Kareen L K Coulombe
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI USA
| |
Collapse
|
12
|
Lévy S. Cardioversion of recent-onset atrial fibrillation using intravenous antiarrhythmics: A European perspective. J Cardiovasc Electrophysiol 2021; 32:3259-3269. [PMID: 34662471 DOI: 10.1111/jce.15264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/13/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022]
Abstract
Pharmacological cardioversion using intravenous antiarrhythmic agents is commonly indicated in symptomatic patients with recent-onset atrial fibrillation (AF). Except in hemodynamically unstable patients who require emergency direct current electrical cardioversion, for the majority of hemodynamically stable patients, pharmacological cardioversion represents a valid option and requires the clinician to be familiar with the properties and use of antiarrhythmic agents. The main characteristics of selected intravenous antiarrhythmic agents for conversion of recent-onset AF, the reported success rates, and possible adverse events are discussed. Among intravenous antiarrhythmics, flecainide, propafenone, amiodarone, sotalol, dofetilide, ibutilide, and vernakalant are commonly used. Antazoline, an old antihistaminic agent with antiarrhythmic properties was also reported to give encouraging results in Poland. Intravenous flecainide and propafenone are the only Class I agents still recommended by recent guidelines. Intravenous new Class III agents as dofetilide and ibutilide have high and rapid efficacy in converting AF to sinus rhythm but require strict surveillance with electrocardiogram (ECG) monitoring during and after intravenous administration because of the potential risk of QT prolongation and Torsades de Pointes, which can be prevented and properly managed. Vernakalant, a partial atrial selective was shown to have a high success rate and to be safe in real-life use.
Collapse
Affiliation(s)
- Samuel Lévy
- Marseille School of Medicine, Aix-Marseille University, Marseille, France
| |
Collapse
|
13
|
Quinazolinone dimers as a potential new class of safer Kv1 inhibitors: Overcoming hERG, sodium and calcium channel affinities. Bioorg Chem 2021; 115:105264. [PMID: 34416509 DOI: 10.1016/j.bioorg.2021.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/11/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022]
Abstract
The discovery of more selective and safer voltage-gated potassium channel blockers is an extremely demanding approach. Designing selective Kv1.5 inhibitors is very challenging as only limited data is available on this target due to a lacking crystal structure for this ion channel receptor. Herein, we synthesized a series of 21 novel quinazolinone dimers 3a-i, 5a-i and 10a-c. We tried to avoid structural features responsible for non-selectivity and for most potassium channel blockers' side effects in our design. In contrast to other works, which lack investigation over wide ranges of potassium and sodium channels, we screened the inhibitory activity of our synthesized compounds over multiple voltage-gated potassium channels, including six different human Kv1 channel subtypes Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5 and Kv1.6 channels as well as Kv2.1, Kv3.1, Kv4.3, Kv7.2, Kv7.3, Kv10.1, hERG, and Shaker IR. Moreover, these compounds' selectivity was investigated on sodium channels Nav1.2, Nav1.4 and Nav1.5 and calcium channels Cav3.1-Cav3.3. The results revealed two compounds (3a and 3e) with low micromolar Kv1.5 inhibition activity with EC50 values of 5.1 ± 0.9 µM and 12.5 ± 1.1 µM, respectively. However, at higher concentrations, they also showed inhibitory activity on Kv1.3 and Kv1.1 channels. This might be due to structural similarities between these three Kv1 channel isoforms. Compound 3a shows a slight preference for Kv1.5. Interestingly, they lack any activity on other potassium channels (including hERG), sodium channels, and calcium channels. Our findings recommend quinazolinone dimers with ethylene linker as a potential new class of safer Kv1 inhibitors and a good start for designing more selective and potent Kv1.5 inhibitors.
Collapse
|
14
|
Oláh A, Barta BA, Sayour AA, Ruppert M, Virág-Tulassay E, Novák J, Varga ZV, Ferdinandy P, Merkely B, Radovits T. Balanced Intense Exercise Training Induces Atrial Oxidative Stress Counterbalanced by the Antioxidant System and Atrial Hypertrophy That Is Not Associated with Pathological Remodeling or Arrhythmogenicity. Antioxidants (Basel) 2021; 10:antiox10030452. [PMID: 33803975 PMCID: PMC7999710 DOI: 10.3390/antiox10030452] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/16/2022] Open
Abstract
Although regular exercise training is associated with cardiovascular benefits, the increased risk of atrial arrhythmias has been observed after vigorous exercise and has been related to oxidative stress. We aimed at investigating exercise-induced atrial remodeling in a rat model of an athlete’s heart and determining sex-specific differences. Age-matched young adult rats were divided into female exercised, female control, male exercised, and male control groups. After exercised animals completed a 12-week-long swim training protocol, echocardiography and in vivo cardiac electrophysiologic investigation were performed. Additionally, atrial histological and gene expression analyses were carried out. Post-mortem atrial weight data and histological examination confirmed marked atrial hypertrophy. We found increased atrial gene expression of antioxidant enzymes along with increased nitro-oxidative stress. No gene expression alteration was found regarding markers of pathological remodeling, apoptotic, proinflammatoric, and profibrotic processes. Exercise training was associated with a prolonged right atrial effective refractory period. We could not induce arrhythmias by programmed stimulation in any groups. We found decreased expression of potassium channels. Female gender was associated with lower profibrotic expression and collagen density. Long-term, balanced exercise training-induced atrial hypertrophy is not associated with harmful electrical remodeling, and no inflammatory or profibrotic response was observed in the atrium of exercised rats.
Collapse
Affiliation(s)
- Attila Oláh
- Heart and Vascular Center, Semmelweis University; Városmajor str. 68, 1122 Budapest, Hungary; (B.A.B.); (A.A.S.); (M.R.); (E.V.-T.); (B.M.); (T.R.)
- Correspondence: ; Tel.: +36-1-458-6810; Fax: +36-1-458-6842
| | - Bálint András Barta
- Heart and Vascular Center, Semmelweis University; Városmajor str. 68, 1122 Budapest, Hungary; (B.A.B.); (A.A.S.); (M.R.); (E.V.-T.); (B.M.); (T.R.)
| | - Alex Ali Sayour
- Heart and Vascular Center, Semmelweis University; Városmajor str. 68, 1122 Budapest, Hungary; (B.A.B.); (A.A.S.); (M.R.); (E.V.-T.); (B.M.); (T.R.)
| | - Mihály Ruppert
- Heart and Vascular Center, Semmelweis University; Városmajor str. 68, 1122 Budapest, Hungary; (B.A.B.); (A.A.S.); (M.R.); (E.V.-T.); (B.M.); (T.R.)
| | - Eszter Virág-Tulassay
- Heart and Vascular Center, Semmelweis University; Városmajor str. 68, 1122 Budapest, Hungary; (B.A.B.); (A.A.S.); (M.R.); (E.V.-T.); (B.M.); (T.R.)
| | - Julianna Novák
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University; Nagyvárad tér 4, 1089 Budapest, Hungary; (J.N.); (Z.V.V.)
| | - Zoltán V. Varga
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University; Nagyvárad tér 4, 1089 Budapest, Hungary; (J.N.); (Z.V.V.)
- Department of Pharmacology and Pharmacotherapy, Semmelweis University; Nagyvárad tér 4, 1089 Budapest, Hungary;
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University; Nagyvárad tér 4, 1089 Budapest, Hungary;
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University; Városmajor str. 68, 1122 Budapest, Hungary; (B.A.B.); (A.A.S.); (M.R.); (E.V.-T.); (B.M.); (T.R.)
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University; Városmajor str. 68, 1122 Budapest, Hungary; (B.A.B.); (A.A.S.); (M.R.); (E.V.-T.); (B.M.); (T.R.)
| |
Collapse
|
15
|
Wang Z, Tapa S, Francis Stuart SD, Wang L, Bossuyt J, Delisle BP, Ripplinger CM. Aging Disrupts Normal Time-of-Day Variation in Cardiac Electrophysiology. Circ Arrhythm Electrophysiol 2020; 13:e008093. [PMID: 32706628 DOI: 10.1161/circep.119.008093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac gene expression and arrhythmia occurrence have time-of-day variation; however, daily changes in cardiac electrophysiology, arrhythmia susceptibility, and Ca2+ handling have not been characterized. Furthermore, how these patterns change with age is unknown. METHODS Hearts were isolated during the light (zeitgeber time [ZT] 4 and ZT9) and dark cycle (ZT14 and ZT21) from adult (12-18 weeks) male mice. Hearts from aged (18-20 months) male mice were isolated at ZT4 and ZT14. All hearts were Langendorff-perfused for optical mapping with voltage- and Ca2+-sensitive dyes (n=4-7/group). Cardiac gene and protein expression were assessed with real-time polymerase chain reaction (n=4-6/group) and Western blot (n=3-4/group). RESULTS Adult hearts had the shortest action potential duration (APD) and Ca2+ transient duration (CaTD) at ZT14 (APD80: ZT4: 45.4±4.1 ms; ZT9: 45.1±8.6 ms; ZT14: 34.7±4.2 ms; ZT21: 49.2±7.6 ms, P<0.05 versus ZT4 and ZT21; and CaTD80: ZT4: 70.1±3.3 ms; ZT9: 72.7±2.7 ms; ZT14: 64.3±3.3 ms; ZT21: 74.4±1.2 ms, P<0.05 versus other time points). The pacing frequency at which CaT alternans emerged was faster, and average CaT alternans magnitude was significantly reduced at ZT14 compared with the other time points. There was a trend for decreased spontaneous premature ventricular complexes and pacing-induced ventricular arrhythmias at ZT14, and the hearts at ZT14 had diminished responses to isoproterenol compared with ZT4 (ZT4: 49.5.0±5.6% versus ZT14: 22.7±9.5% decrease in APD, P<0.01). In contrast, aged hearts exhibited no difference between ZT14 and ZT4 in nearly every parameter assessed (except APD80: ZT4: 39.7±1.9 ms versus ZT14: 33.8±3.1 ms, P<0.01). Gene expression of KCNA5 (potassium voltage-gated channel subfamily A member 5; encoding Kv1.5) was increased, whereas gene expression of ADRB1 (encoding β1-adrenergic receptors) was decreased at ZT14 versus ZT4 in adult hearts. No time-of-day changes in expression or phosphorylation of Ca2+ handling proteins (SERCA2 [sarco/endoplasmic reticulum Ca2+-ATPase], RyR2 [ryanodine receptor 2], and PLB [phospholamban]) was found in ex vivo perfused adult isolated hearts. CONCLUSIONS Isolated adult hearts have strong time-of-day variation in cardiac electrophysiology, Ca2+ handling, and adrenergic responsiveness, which is disrupted with age.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Srinivas Tapa
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Samantha D Francis Stuart
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Lianguo Wang
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Julie Bossuyt
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| | - Brian P Delisle
- Department of Physiology, University of Kentucky College of Medicine, Lexington (B.P.D.)
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California Davis (Z.W., S.T., S.D.F.S., L.W., J.B., C.M.R.)
| |
Collapse
|
16
|
Munger MA, Olğar Y, Koleske ML, Struckman HL, Mandrioli J, Lou Q, Bonila I, Kim K, Ramos Mondragon R, Priori SG, Volpe P, Valdivia HH, Biskupiak J, Carnes CA, Veeraraghavan R, Györke S, Radwański PB. Tetrodotoxin-Sensitive Neuronal-Type Na + Channels: A Novel and Druggable Target for Prevention of Atrial Fibrillation. J Am Heart Assoc 2020; 9:e015119. [PMID: 32468902 PMCID: PMC7429002 DOI: 10.1161/jaha.119.015119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Atrial fibrillation (AF) is a comorbidity associated with heart failure and catecholaminergic polymorphic ventricular tachycardia. Despite the Ca2+‐dependent nature of both of these pathologies, AF often responds to Na+ channel blockers. We investigated how targeting interdependent Na+/Ca2+ dysregulation might prevent focal activity and control AF. Methods and Results We studied AF in 2 models of Ca2+‐dependent disorders, a murine model of catecholaminergic polymorphic ventricular tachycardia and a canine model of chronic tachypacing‐induced heart failure. Imaging studies revealed close association of neuronal‐type Na+ channels (nNav) with ryanodine receptors and Na+/Ca2+ exchanger. Catecholamine stimulation induced cellular and in vivo atrial arrhythmias in wild‐type mice only during pharmacological augmentation of nNav activity. In contrast, catecholamine stimulation alone was sufficient to elicit atrial arrhythmias in catecholaminergic polymorphic ventricular tachycardia mice and failing canine atria. Importantly, these were abolished by acute nNav inhibition (tetrodotoxin or riluzole) implicating Na+/Ca2+ dysregulation in AF. These findings were then tested in 2 nonrandomized retrospective cohorts: an amyotrophic lateral sclerosis clinic and an academic medical center. Riluzole‐treated patients adjusted for baseline characteristics evidenced significantly lower incidence of arrhythmias including new‐onset AF, supporting the preclinical results. Conclusions These data suggest that nNaVs mediate Na+‐Ca2+ crosstalk within nanodomains containing Ca2+ release machinery and, thereby, contribute to AF triggers. Disruption of this mechanism by nNav inhibition can effectively prevent AF arising from diverse causes.
Collapse
Affiliation(s)
- Mark A Munger
- Departments of Pharmacotherapy and Internal Medicine University of Utah Health Sciences Center Salt Lake City UT
| | - Yusuf Olğar
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Division of Pharmacy Practice and Sciences College of Pharmacy The Ohio State University Columbus OH
| | - Megan L Koleske
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Division of Pharmacy Practice and Sciences College of Pharmacy The Ohio State University Columbus OH
| | - Heather L Struckman
- Department of Biomedical Engineering College of Engineering The Ohio State University Columbus OH
| | - Jessica Mandrioli
- Department of Neuroscience St. Agostino Estense Hospital Azienda Ospedaliero Universitaria di Modena Italy
| | - Qing Lou
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Department of Physiology and Cell Biology College of Medicine The Ohio State University Columbus OH
| | - Ingrid Bonila
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Department of Physiology and Cell Biology College of Medicine The Ohio State University Columbus OH
| | - Kibum Kim
- Department of Pharmacotherapy University of Utah Health Sciences Center Salt Lake City UT
| | - Roberto Ramos Mondragon
- Department of Internal Medicine and of Molecular & Integrative Physiology University of Michigan Ann Arbor MI
| | - Silvia G Priori
- Molecular Cardiology Istituti Clinici Scientifici Maugeri IRCCS University of Pavia Italy.,Department of Molecular Medicine University of Pavia Italy
| | - Pompeo Volpe
- Department of Biomedical Sciences University of Padova Italy
| | - Héctor H Valdivia
- Department of Internal Medicine and of Molecular & Integrative Physiology University of Michigan Ann Arbor MI
| | - Joseph Biskupiak
- Department of Pharmacotherapy University of Utah Health Sciences Center Salt Lake City UT
| | - Cynthia A Carnes
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Division of Pharmacy Practice and Sciences College of Pharmacy The Ohio State University Columbus OH
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering College of Engineering The Ohio State University Columbus OH.,Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH
| | - Sándor Györke
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Department of Physiology and Cell Biology College of Medicine The Ohio State University Columbus OH
| | - Przemysław B Radwański
- Dorothy M. Davis Heart and Lung Research Institute College of Medicine The Ohio State University Wexner Medical Center Columbus OH.,Division of Pharmacy Practice and Sciences College of Pharmacy The Ohio State University Columbus OH.,Department of Physiology and Cell Biology College of Medicine The Ohio State University Columbus OH
| |
Collapse
|
17
|
Fusi F, Trezza A, Tramaglino M, Sgaragli G, Saponara S, Spiga O. The beneficial health effects of flavonoids on the cardiovascular system: Focus on K+ channels. Pharmacol Res 2020; 152:104625. [DOI: 10.1016/j.phrs.2019.104625] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/14/2019] [Accepted: 12/31/2019] [Indexed: 01/17/2023]
|
18
|
Zhao Z, Ruan S, Ma X, Feng Q, Xie Z, Nie Z, Fan P, Qian M, He X, Wu S, Zhang Y, Zheng X. Challenges Faced with Small Molecular Modulators of Potassium Current Channel Isoform Kv1.5. Biomolecules 2019; 10:E10. [PMID: 31861703 PMCID: PMC7022446 DOI: 10.3390/biom10010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
The voltage-gated potassium channel Kv1.5, which mediates the cardiac ultra-rapid delayed-rectifier (IKur) current in human cells, has a crucial role in atrial fibrillation. Therefore, the design of selective Kv1.5 modulators is essential for the treatment of pathophysiological conditions involving Kv1.5 activity. This review summarizes the progress of molecular structures and the functionality of different types of Kv1.5 modulators, with a focus on clinical cardiovascular drugs and a number of active natural products, through a summarization of 96 compounds currently widely used. Furthermore, we also discuss the contributions of Kv1.5 and the regulation of the structure-activity relationship (SAR) of synthetic Kv1.5 inhibitors in human pathophysiology. SAR analysis is regarded as a useful strategy in structural elucidation, as it relates to the characteristics that improve compounds targeting Kv1.5. Herein, we present previous studies regarding the structural, pharmacological, and SAR information of the Kv1.5 modulator, through which we can assist in identifying and designing potent and specific Kv1.5 inhibitors in the treatment of diseases involving Kv1.5 activity.
Collapse
Affiliation(s)
- Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Songsong Ruan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Xiaoming Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Qian Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Zhuosong Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Zhuang Nie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Peinan Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Mingcheng Qian
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, China;
- Laboratory for Medicinal Chemistry, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Xirui He
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China;
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai Road, Xi’an 710069, China; (Z.Z.); (S.R.); (X.M.); (Q.F.); (Z.X.); (Z.N.); (P.F.); (Y.Z.); (X.Z.)
- Biomedicine Key Laboratory of Shaanxi Province, School of Pharmacy, Northwest University, 229 Taibai Road, Xi’an 710069, China
| |
Collapse
|
19
|
Fan TT, Zhang HH, Tang YH, Zhang FZ, Han BN. Two New Neo-debromoaplysiatoxins-A Pair of Stereoisomers Exhibiting Potent Kv1.5 Ion Channel Inhibition Activities. Mar Drugs 2019; 17:E652. [PMID: 31766406 PMCID: PMC6950415 DOI: 10.3390/md17120652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 11/17/2022] Open
Abstract
A pair of stereoisomers possessing novel structures with 6/6/5 fused-ring systems, neo-debromoaplysiatoxin E (1) and neo-debromoaplysiatoxin F (2), were isolated from the marine cyanobacterium Lyngbya sp. Their structures were elucidated using various spectroscopic techniques including high resolution electrospray ionization mass spectroscopy (HRESIMS) and nuclear magnetic resonance (NMR). The absolute stereochemistry was determined by calculated electronic circular dichroism (ECD) and gauge-independent atomic orbital (GIAO) NMR shift calculation followed by DP4+ analysis. Significantly, this is the first report on aplysiatoxin derivatives with different absolute configurations at C9-C12 (1: 9S, 10R, 11S, 12S; 2: 9R, 10S, 11R, 12R). Compounds 1 and 2 exhibited potent blocking activities against Kv1.5 with IC50 values of 1.22 ± 0.22 μM and 2.85 ± 0.29 μM, respectively.
Collapse
Affiliation(s)
- Ting-Ting Fan
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (T.-T.F.); (H.-H.Z.); (F.-Z.Z.)
| | - Hui-Hui Zhang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (T.-T.F.); (H.-H.Z.); (F.-Z.Z.)
| | - Yang-Hua Tang
- Department of Pharmacy, Graduate School, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Fan-Zhong Zhang
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (T.-T.F.); (H.-H.Z.); (F.-Z.Z.)
| | - Bing-Nan Han
- Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (T.-T.F.); (H.-H.Z.); (F.-Z.Z.)
| |
Collapse
|
20
|
Mechanism of electrical remodeling of atrial myocytes and its influence on susceptibility to atrial fibrillation in diabetic rats. Life Sci 2019; 239:116903. [PMID: 31639397 DOI: 10.1016/j.lfs.2019.116903] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/14/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023]
Abstract
AIMS To explore the atrial electrical remodeling and the susceptibility of atrial fibrillation (AF) in diabetic rats. MATERIALS AND METHODS Zucker diabetic fatty (ZDF) rats were chosen as diabetic animal model, and age-matched non-diabetic littermate Zucker lean (ZL) rats as control. AF susceptibility was determined by electrophysiological examination. The current density of Ito, IKur and ICa-L were detected by whole-cell patch-clamp technique, and ion channel protein expression in atrial tissue and HL-1 cells treated with advanced glycation end products (AGE) was analyzed by western blotting. KEY FINDINGS Diabetic rats had significantly enlarged left atria and evenly thickened ventricular walls, hypertrophied cells and interstitial fibrosis in atrial myocardium, increased AF susceptibility, and prolonged AF duration after atrial burst stimulation. Compared with atrial myocytes isolated from ZL controls, atrial myocytes isolated from ZDF rats had prolonged action potential duration, decreased absolute value of resting membrane potential level and current densities of Ito, IKur and ICa-L. The ion channel protein (Kv4.3, Kv1.5 and Cav1.2) expression in atrium tissue of ZDF rats and HL-1 cells treated with high concentration AGE were significantly down-regulated, compared with controls. SIGNIFICANCE The atrial electrical remodeling induced by hyperglycemia contributed to the increased AF susceptibility in diabetic rats.
Collapse
|
21
|
Geng L, Wang S, Zhang F, Xiong K, Huang J, Zhao T, Shi D, Lv F, Li L, Liang D, Cui Y, Liu Y, Xie D, Chen YH. SNX17 (Sorting Nexin 17) Mediates Atrial Fibrillation Onset Through Endocytic Trafficking of the Kv1.5 (Potassium Voltage-Gated Channel Subfamily A Member 5) Channel. Circ Arrhythm Electrophysiol 2019; 12:e007097. [PMID: 30939909 DOI: 10.1161/circep.118.007097] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/22/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Kv1.5 (Potassium voltage-gated channel subfamily A member 5) has been regarded as a promising target of interventions for atrial fibrillation (AF). SNX17 (sorting nexin 17), a member of the SNXs (sorting nexin family), regulates the intracellular trafficking of membrane proteins through its FERM (four-point-one, ezrin, radixin, moesin) domain. However, whether SNX17 regulates the trafficking process of Kv1.5 remains unknown. METHODS A SNX17 knockout rat line was generated to test the role of SNX17 in atrial electrophysiology. The protein expression of SNX17 and membrane ion channels was detected by Western blotting. Electrophysiology changes in the atrial tissue and myocytes were analyzed by optical mapping and patch clamp, respectively. Acetylcholine and electrical stimulation were used to induce AF, and ECG recording was adopted to assess the influence of SNX17 deficiency on AF susceptibility. The spatial relationship between Kv1.5 and SNX17 was evaluated by immunostaining and confocal scanning, and the functional region of SNX17 regulating Kv1.5 trafficking was identified using plasmids with truncated SNX17 domains. RESULTS Embryonic death occurred in homozygous SNX17 knockout rats. SNX17 heterozygous rats survived, and the level of the SNX17 protein in the atrium was decreased by ≈50%. SNX17 deficiency increased the membrane expression of Kv1.5 and atria-specific ultrarapid delayed rectifier outward potassium current ( IKur) density, resulting in a shortened action potential duration, and eventually contributing to AF susceptibility. Mechanistically, SNX17 facilitated the endocytic sorting of Kv1.5 from the plasma membrane to early endosomes via the FERM domain. CONCLUSIONS SNX17 mediates susceptibility to AF by regulating endocytic sorting of the Kv1.5 channel through the FERM domain. SNX17 could be a potential target for the development of new drugs for AF.
Collapse
Affiliation(s)
- Li Geng
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Shuo Wang
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Fulei Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Ke Xiong
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Jian Huang
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Tingting Zhao
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Dan Shi
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Fei Lv
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Li Li
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Dandan Liang
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Yingyu Cui
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Yi Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| | - Duanyang Xie
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- School of Life Science and Technology (D.X.), Tongji University, Shanghai, China
| | - Yi-Han Chen
- Key Laboratory of Arrhythmias of the Ministry of Education of East Hospital (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
- Institute of Medical Genetics (L.G., S.W., F.Z., K.X., J.H., T.Z., D.S., F.L., L.L., D.L., Y.C., Y.L., D.X., Y.-H.C.), Tongji University, Shanghai, China
| |
Collapse
|
22
|
Camm AJ, Dorian P, Hohnloser SH, Kowey PR, Tyl B, Ni Y, Vandzhura V, Maison-Blanche P, de Melis M, Sanders P. A randomized, double-blind, placebo-controlled trial assessing the efficacy of S66913 in patients with paroxysmal atrial fibrillation. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2018; 5:21-28. [DOI: 10.1093/ehjcvp/pvy022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/21/2018] [Indexed: 11/14/2022]
Affiliation(s)
- A John Camm
- Molecular and Clinical Sciences Research Institute, Cardiology Clinical Academic Group, St George's University of London, London, UK
| | - Paul Dorian
- Department of Medicine, University of Toronto, and Division of Cardiology, St. Michael's Hospital, Toronto, ON, Canada
| | - Stefan H Hohnloser
- Division of Clinical Electrophysiology, Department of Cardiology, J. W. Goethe University, Frankfurt, Germany
| | - Peter R Kowey
- Lankenau Medical Center, Lankenau Institute of Medical Research, Wynnewood, PA, USA
| | - Benoît Tyl
- Cardiovascular Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Yongbin Ni
- Cardiovascular Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | - Victoria Vandzhura
- Cardiovascular Center for Therapeutic Innovation, Institut de Recherches Internationales Servier, Suresnes, France
| | | | - Mirko de Melis
- Medtronic Bakken Research Center, Endepolsdomein 5, Maastricht, Netherlands
| | - Prashanthan Sanders
- Department of Cardiology, Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| |
Collapse
|
23
|
Interactions of Propofol With Human Voltage-gated Kv1.5 Channel Determined by Docking Simulation and Mutagenesis Analyses. J Cardiovasc Pharmacol 2018; 71:10-18. [DOI: 10.1097/fjc.0000000000000538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Ni H, Whittaker DG, Wang W, Giles WR, Narayan SM, Zhang H. Synergistic Anti-arrhythmic Effects in Human Atria with Combined Use of Sodium Blockers and Acacetin. Front Physiol 2017; 8:946. [PMID: 29218016 PMCID: PMC5703742 DOI: 10.3389/fphys.2017.00946] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/08/2017] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Developing effective and safe anti-AF drugs remains an unmet challenge. Simultaneous block of both atrial-specific ultra-rapid delayed rectifier potassium (K+) current (IKur) and the Na+ current (INa) has been hypothesized to be anti-AF, without inducing significant QT prolongation and ventricular side effects. However, the antiarrhythmic advantage of simultaneously blocking these two channels vs. individual block in the setting of AF-induced electrical remodeling remains to be documented. Furthermore, many IKur blockers such as acacetin and AVE0118, partially inhibit other K+ currents in the atria. Whether this multi-K+-block produces greater anti-AF effects compared with selective IKur-block has not been fully understood. The aim of this study was to use computer models to (i) assess the impact of multi-K+-block as exhibited by many IKur blokers, and (ii) evaluate the antiarrhythmic effect of blocking IKur and INa, either alone or in combination, on atrial and ventricular electrical excitation and recovery in the setting of AF-induced electrical-remodeling. Contemporary mathematical models of human atrial and ventricular cells were modified to incorporate dose-dependent actions of acacetin (a multichannel blocker primarily inhibiting IKur while less potently blocking Ito, IKr, and IKs). Rate- and atrial-selective inhibition of INa was also incorporated into the models. These single myocyte models were then incorporated into multicellular two-dimensional (2D) and three-dimensional (3D) anatomical models of the human atria. As expected, application of IKur blocker produced pronounced action potential duration (APD) prolongation in atrial myocytes. Furthermore, combined multiple K+-channel block that mimicked the effects of acacetin exhibited synergistic APD prolongations. Synergistically anti-AF effects following inhibition of INa and combined IKur/K+-channels were also observed. The attainable maximal AF-selectivity of INa inhibition was greatly augmented by blocking IKur or multiple K+-currents in the atrial myocytes. This enhanced anti-arrhythmic effects of combined block of Na+- and K+-channels were also seen in 2D and 3D simulations; specially, there was an enhanced efficacy in terminating re-entrant excitation waves, exerting improved antiarrhythmic effects in the human atria as compared to a single-channel block. However, in the human ventricular myocytes and tissue, cellular repolarization and computed QT intervals were modestly affected in the presence of actions of acacetin and INa blockers (either alone or in combination). In conclusion, this study demonstrates synergistic antiarrhythmic benefits of combined block of IKur and INa, as well as those of INa and combined multi K+-current block of acacetin, without significant alterations of ventricular repolarization and QT intervals. This approach may be a valuable strategy for the treatment of AF.
Collapse
Affiliation(s)
- Haibo Ni
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
- Space Institute of Southern China, Shenzhen, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | | | - Wei Wang
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
| | - Wayne R. Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, AB, Canada
| | - Sanjiv M. Narayan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Henggui Zhang
- Biological Physics Group, University of Manchester, Manchester, United Kingdom
- Space Institute of Southern China, Shenzhen, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease/Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
25
|
Zidar N, Žula A, Tomašič T, Rogers M, Kirby RW, Tytgat J, Peigneur S, Kikelj D, Ilaš J, Mašič LP. Clathrodin, hymenidin and oroidin, and their synthetic analogues as inhibitors of the voltage-gated potassium channels. Eur J Med Chem 2017; 139:232-241. [PMID: 28802123 DOI: 10.1016/j.ejmech.2017.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 11/25/2022]
Abstract
We have prepared three alkaloids from the Agelas sponges, clathrodin, hymenidin and oroidin, and a series of their synthetic analogues, and evaluated their inhibitory effect against six isoforms of the Kv1 subfamily of voltage-gated potassium channels, Kv1.1-Kv1.6, expressed in Chinese Hamster ovary (CHO) cells using automated patch clamp electrophysiology assay. The most potent inhibitor was the (E)-N-(3-(2-amino-1H-imidazol-4-yl)allyl)-4,5-dichloro-1H-pyrrole-2-carboxamide (6g) with IC50 values between 1.4 and 6.1 μM against Kv1.3, Kv1.4, Kv1.5 and Kv1.6 channels. All compounds tested displayed selectivity against Kv1.1 and Kv1.2 channels. For confirmation of their activity and selectivity, compounds were additionally evaluated in the second independent system against Kv1.1-Kv1.6 and Kv10.1 channels expressed in Xenopus laevis oocytes under voltage clamp conditions where IC50 values against Kv1.3-Kv1.6 channels for the most active analogues (e.g. 6g) were lower than 1 μM. Because of the observed low sub-micromolar IC50 values and fairly low molecular weights, the prepared compounds represent good starting points for further optimisation towards more potent and selective voltage-gated potassium channel inhibitors.
Collapse
Affiliation(s)
- Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Aleš Žula
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Marc Rogers
- Xention Limited, Iconix Park, London Road, Pampisford, Cambridge CB22 3EG, UK
| | - Robert W Kirby
- Xention Limited, Iconix Park, London Road, Pampisford, Cambridge CB22 3EG, UK
| | - Jan Tytgat
- University of Leuven (KU Leuven), Toxicology & Pharmacology, O&N2, PO Box 922, Herestraat 49, 3000 Leuven, Belgium
| | - Steve Peigneur
- University of Leuven (KU Leuven), Toxicology & Pharmacology, O&N2, PO Box 922, Herestraat 49, 3000 Leuven, Belgium
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| | - Lucija Peterlin Mašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
26
|
Colman MA, Ni H, Liang B, Schmitt N, Zhang H. In silico assessment of genetic variation in KCNA5 reveals multiple mechanisms of human atrial arrhythmogenesis. PLoS Comput Biol 2017; 13:e1005587. [PMID: 28622331 PMCID: PMC5493429 DOI: 10.1371/journal.pcbi.1005587] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/30/2017] [Accepted: 05/22/2017] [Indexed: 12/19/2022] Open
Abstract
A recent experimental study investigating patients with lone atrial fibrillation identified six novel mutations in the KCNA5 gene. The mutants exhibited both gain- and loss-of-function of the atrial specific ultra-rapid delayed rectifier K+ current, IKur. The aim of this study is to elucidate and quantify the functional impact of these KCNA5 mutations on atrial electrical activity. A multi-scale model of the human atria was updated to incorporate detailed experimental data on IKur from both wild-type and mutants. The effects of the mutations on human atrial action potential and rate dependence were investigated at the cellular level. In tissue, we assessed the effects of the mutations on the vulnerability to unidirectional conduction patterns and dynamics of re-entrant excitation waves. Gain-of-function mutations shortened the action potential duration in single cells, and stabilised and accelerated re-entrant excitation in tissue. Loss-of-function mutations had heterogeneous effects on action potential duration and promoted early-after-depolarisations following beta-adrenergic stimulation. In the tissue model, loss-of-function mutations facilitated breakdown of excitation waves at more physiological excitation rates than the wild-type, and the generation of early-after-depolarisations promoted unidirectional patterns of excitation. Gain- and loss-of-function IKur mutations produced multiple mechanisms of atrial arrhythmogenesis, with significant differences between the two groups of mutations. This study provides new insights into understanding the mechanisms by which mutant IKur contributes to atrial arrhythmias. In addition, as IKur is an atrial-specific channel and a number of IKur-selective blockers have been developed as anti-AF agents, this study also helps to understand some contradictory results on both pro- and anti-arrhythmic effects of blocking IKur.
Collapse
Affiliation(s)
- Michael A. Colman
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Haibo Ni
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Bo Liang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicole Schmitt
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
27
|
Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation. Toxicol Appl Pharmacol 2017; 322:89-96. [DOI: 10.1016/j.taap.2017.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/01/2017] [Accepted: 03/07/2017] [Indexed: 12/27/2022]
|
28
|
Gunaga P, Lloyd J, Mummadi S, Banerjee A, Dhondi NK, Hennan J, Subray V, Jayaram R, Rajugowda N, Umamaheshwar Reddy K, Kumaraguru D, Mandal U, Beldona D, Adisechen AK, Yadav N, Warrier J, Johnson JA, Sale H, Putlur SP, Saxena A, Chimalakonda A, Mandlekar S, Conder M, Xing D, Gupta AK, Gupta A, Rampulla R, Mathur A, Levesque P, Wexler RR, Finlay HJ. Selective I Kur Inhibitors for the Potential Treatment of Atrial Fibrillation: Optimization of the Phenyl Quinazoline Series Leading to Clinical Candidate 5-[5-Phenyl-4-(pyridin-2-ylmethylamino)quinazolin-2-yl]pyridine-3-sulfonamide. J Med Chem 2017; 60:3795-3803. [PMID: 28418664 DOI: 10.1021/acs.jmedchem.6b01889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have recently disclosed 5-phenyl-N-(pyridin-2-ylmethyl)-2-(pyrimidin-5-yl)quinazolin-4-amine 1 as a potent IKur current blocker with selectivity versus hERG, Na and Ca channels, and an acceptable preclinical PK profile. Upon further characterization in vivo, compound 1 demonstrated an unacceptable level of brain penetration. In an effort to reduce the level of brain penetration while maintaining the overall profile, SAR was developed at the C2' position for a series of close analogues by employing hydrogen bond donors. As a result, 5-[5-phenyl-4-(pyridin-2-ylmethylamino)quinazolin-2-yl]pyridine-3-sulfonamide (25) was identified as the lead compound in this series. Compound 25 showed robust effects in rabbit and canine pharmacodynamic models and an acceptable cross-species pharmacokinetic profile and was advanced as the clinical candidate. Further optimization of 25 to mitigate pH-dependent absorption resulted in identification of the corresponding phosphoramide prodrug (29) with an improved solubility and pharmacokinetic profile.
Collapse
Affiliation(s)
- Prashantha Gunaga
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - John Lloyd
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Somanadham Mummadi
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Abhisek Banerjee
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Naveen Kumar Dhondi
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - James Hennan
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Veena Subray
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ramya Jayaram
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Nagendra Rajugowda
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Kommuri Umamaheshwar Reddy
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Duraimurugan Kumaraguru
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Umasankar Mandal
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Dasthagiri Beldona
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ashok Kumar Adisechen
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Navnath Yadav
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Jayakumar Warrier
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - James A Johnson
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Harinath Sale
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Siva Prasad Putlur
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ajay Saxena
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Anjaneya Chimalakonda
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Sandhya Mandlekar
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - MaryLee Conder
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Dezhi Xing
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Arun Kumar Gupta
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Anuradha Gupta
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Richard Rampulla
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Arvind Mathur
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Paul Levesque
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Ruth R Wexler
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| | - Heather J Finlay
- Department of Discovery Chemistry, ‡Department of Biology, and §Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Research and Development , P.O. Box 5400, Princeton, New Jersey 08543-5400, United States.,Department of Discovery Chemistry, Department of Biology, @Department of Biopharmaceutics, #Department of Pharmaceutical Candidate Optimization, and ∇Biocon BMS R&D Center, Syngene International Limited, BMS India Pvt. Limited , Biocon Park, Jigani Link Road, Bommasandra IV, Bangalore 560099, India
| |
Collapse
|
29
|
Xiao GS, Zhang YH, Wu W, Sun HY, Wang Y, Li GR. Genistein and tyrphostin AG556 decrease ultra-rapidly activating delayed rectifier K + current of human atria by inhibiting EGF receptor tyrosine kinase. Br J Pharmacol 2017; 174:454-467. [PMID: 28072464 DOI: 10.1111/bph.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 12/16/2016] [Accepted: 01/05/2017] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE The ultra-rapidly activating delayed rectifier K+ current IKur (encoded by Kv 1.5 or KCNA5) plays an important role in human atrial repolarization. The present study investigates the regulation of this current by protein tyrosine kinases (PTKs). EXPERIMENTAL APPROACH Whole-cell patch voltage clamp technique and immunoprecipitation and Western blotting analysis were used to investigate whether the PTK inhibitors genistein, tyrphostin AG556 (AG556) and PP2 regulate human atrial IKur and hKv1.5 channels stably expressed in HEK 293 cells. KEY RESULTS Human atrial IKur was decreased by genistein (a broad-spectrum PTK inhibitor) and AG556 (a highly selective EGFR TK inhibitor) in a concentration-dependent manner. Inhibition of IKur induced by 30 μM genistein or 10 μM AG556 was significantly reversed by 1 mM orthovanadate (a protein tyrosine phosphatase inhibitor). Similar results were observed in HEK 293 cells stably expressing hKv 1.5 channels. On the other hand, the Src family kinase inhibitor PP2 (1 μM) slightly enhanced IKur and hKv 1.5 current, and the current increase was also reversed by orthovanadate. Immunoprecipitation and Western blotting analysis showed that genistein, AG556, and PP2 decreased tyrosine phosphorylation of hKv 1.5 channels and that the decrease was countered by orthovanadate. CONCLUSION AND IMPLICATIONS The PTK inhibitors genistein and AG556 decrease human atrial IKur and cloned hKv 1.5 channels by inhibiting EGFR TK, whereas the Src kinase inhibitor PP2 increases IKur and hKv 1.5 current. These results imply that EGFR TK and the soluble Src kinases may have opposite effects on human atrial IKur .
Collapse
Affiliation(s)
- Guo-Sheng Xiao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Yan-Hui Zhang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wei Wu
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hai-Ying Sun
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China.,Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
30
|
Kojima A, Bai JY, Ito Y, Ding WG, Kitagawa H, Matsuura H. Serum albumin attenuates the open-channel blocking effects of propofol on the human Kv1.5 channel. Eur J Pharmacol 2016; 783:117-26. [DOI: 10.1016/j.ejphar.2016.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/26/2016] [Accepted: 04/28/2016] [Indexed: 11/29/2022]
|
31
|
Kojima A, Ito Y, Ding WG, Kitagawa H, Matsuura H. Interaction of propofol with voltage-gated human Kv1.5 channel through specific amino acids within the pore region. Eur J Pharmacol 2015; 764:622-632. [PMID: 26256861 DOI: 10.1016/j.ejphar.2015.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022]
Abstract
The intravenous anesthetic propofol affects the function of a diversity of ligand-gated and voltage-gated ion channels. However, there is little information as to whether propofol directly interacts with voltage-gated ion channel proteins to modulate their functions. The Kv1.5 channel is activated by membrane depolarization during action potentials and contributes to atrial repolarization in the human heart. This study was undertaken to examine the effect of propofol on voltage-gated human Kv1.5 (hKv1.5) channel and to elucidate the underlying molecular determinants. Site-directed mutagenesis was carried out through six amino acids that reside within the pore domain of hKv1.5 channel. Whole-cell patch-clamp technique was used to record membrane currents through the wild type and mutant hKv1.5 channels heterologously expressed in Chinese hamster ovary cells. Propofol (≥5 μM) reversibly and concentration-dependently (IC50 of 49.3±9.4 μM; n=6) blocked hKv1.5 current. Propofol-induced block of hKv1.5 current gradually progressed during depolarizing voltage-clamp steps and was enhanced by higher frequency of activation, consistent with a preferential block of the channels in their open state. The degree of current block by propofol was significantly attenuated in T480A, I502A, I508A and V516A, but not in H463C and L510A mutants of hKv1.5 channel. Thus, several amino acids near the selectivity filter (Thr480) or within S6 (Ile502, Ile508 and Val516) are found to be critically involved in the blocking action of propofol. This study provides the first evidence suggesting that direct interaction with specific amino acids underlies the blocking action of propofol on voltage-gated hKv1.5 channel.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Yuki Ito
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hirotoshi Kitagawa
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| |
Collapse
|
32
|
Warsi J, Elvira B, Bissinger R, Hosseinzadeh Z, Lang F. Regulation of Voltage-Gated K+ Channel Kv1.5 by the Janus Kinase JAK3. J Membr Biol 2015; 248:1061-70. [PMID: 26100849 DOI: 10.1007/s00232-015-9817-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/08/2015] [Indexed: 01/30/2023]
Abstract
The tyrosine kinase Janus kinase 3 (JAK3) participates in the regulation of cell proliferation and apoptosis. The kinase further influences ion channels and transport proteins. The present study explored whether JAK3 contributes to the regulation of the voltage-gated K(+) channel Kv1.5, which participates in the regulation of diverse functions including atrial cardiac action potential and tumor cell proliferation. To this end, cRNA encoding Kv1.5 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type JAK3, constitutively active (A568V)JAK3, or inactive (K851A)JAK3. Voltage-gated K(+) channel activity was measured utilizing dual electrode voltage clamp, and Kv1.5 channel protein abundance in the cell membrane was quantified utilizing chemiluminescence of Kv1.5 containing an extracellular hemagglutinin epitope (Kv1.5-HA). As a result, Kv1.5 activity and Kv1.5-HA protein abundance were significantly decreased by wild-type JAK3 and (A568V)JAK3, but not by (K851A)JAK3. Inhibition of Kv1.5 protein insertion into the cell membrane by brefeldin A (5 μM) resulted in a decline of the voltage-gated current, which was similar in the absence and presence of (A568V)JAK3, suggesting that (A568V)JAK3 did not accelerate Kv1.5 protein retrieval from the cell membrane. A 24 h treatment with ouabain (100 µM) significantly decreased the voltage-gated current in oocytes expressing Kv1.5 without or with (A568V)JAK3 and dissipated the difference between oocytes expressing Kv1.5 alone and oocytes expressing Kv1.5 with (A568V)JAK3. In conclusion, JAK3 contributes to the regulation of membrane Kv1.5 protein abundance and activity, an effect sensitive to ouabain and thus possibly involving Na(+)/K(+) ATPase activity.
Collapse
Affiliation(s)
- Jamshed Warsi
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Bernat Elvira
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Rosi Bissinger
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Zohreh Hosseinzadeh
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | - Florian Lang
- Department of Physiology I, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany.
| |
Collapse
|
33
|
Lee S, Choi E, Cha MJ, Hwang KC. Looking into a conceptual framework of ROS-miRNA-atrial fibrillation. Int J Mol Sci 2014; 15:21754-76. [PMID: 25431922 PMCID: PMC4284676 DOI: 10.3390/ijms151221754] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) has been recognized as a major cause of cardiovascular-related morbidity and mortality. MicroRNAs (miRNAs) represent recent additions to the collection of biomolecules involved in arrhythmogenesis. Reactive oxygen species (ROS) have been independently linked to both AF and miRNA regulation. However, no attempts have been made to investigate the possibility of a framework composed of ROS–miRNA–AF that is related to arrhythmia development. Therefore, this review was designed as an attempt to offer a new approach to understanding AF pathogenesis. The aim of this review was to find and to summarize possible connections that exist among AF, miRNAs and ROS to understand the interactions among the molecular entities underlying arrhythmia development in the hopes of finding unappreciated mechanisms of AF. These findings may lead us to innovative therapies for AF, which can be a life-threatening heart condition. A systemic literature review indicated that miRNAs associated with AF might be regulated by ROS, suggesting the possibility that miRNAs translate cellular stressors, such as ROS, into AF pathogenesis. Further studies with a more appropriate experimental design to either prove or disprove the existence of an ROS–miRNA–AF framework are strongly encouraged.
Collapse
Affiliation(s)
- Seahyoung Lee
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Eunhyun Choi
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Min-Ji Cha
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangneung-si, Gangwon-do 210-701, Korea.
| |
Collapse
|
34
|
Yu J, Park MH, Jo SH. Inhibitory effects of cortisone and hydrocortisone on human Kv1.5 channel currents. Eur J Pharmacol 2014; 746:158-66. [PMID: 25449034 DOI: 10.1016/j.ejphar.2014.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/31/2014] [Accepted: 11/07/2014] [Indexed: 01/23/2023]
Abstract
Glucocorticoids are the primary hormones that respond to stress and protect organisms from dangerous situations. The glucocorticoids hydrocortisone and its dormant form, cortisone, affect the cardiovascular system with changes such as increased blood pressure and cardioprotection. Kv1.5 channels play a critical role in the maintenance of cellular membrane potential and are widely expressed in pancreatic β-cells, neurons, myocytes, and smooth muscle cells of the pulmonary vasculature. We examined the electrophysiological effects of both cortisone and hydrocortisone on human Kv1.5 channels expressed in Xenopus oocytes using a two-microelectrode voltage clamp technique. Both cortisone and hydrocortisone rapidly and irreversibly suppressed the amplitude of Kv1.5 channel current with IC50 values of 50.2±4.2μM and 33.4±3.2μM, respectively, while sustained the current trace shape of Kv1.5 current. The inhibitory effect of cortisone on Kv1.5 decreased progressively from -10mV to +30mV, while hydrocortisone׳s inhibition of the channel did not change across the same voltage range. Both cortisone and hydrocortisone blocked Kv1.5 channel currents in a non-use-dependent manner and neither altered the channel׳s steady-state activation or inactivation curves. These results show that cortisone and hydrocortisone inhibited Kv1.5 channel currents differently, and that Kv1.5 channels were more sensitive to hydrocortisone than to cortisone.
Collapse
Affiliation(s)
- Jing Yu
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Mi-Hyeong Park
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea
| | - Su-Hyun Jo
- Department of Physiology, Institute of Bioscience and Biotechnology, BK21 plus Graduate Program, Kangwon National University School of Medicine, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
35
|
Elvira B, Warsi J, Munoz C, Lang F. SPAK and OSR1 sensitivity of voltage-gated K+ channel Kv1.5. J Membr Biol 2014; 248:59-66. [PMID: 25315612 DOI: 10.1007/s00232-014-9741-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 09/30/2014] [Indexed: 12/11/2022]
Abstract
SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1) are potent regulators of several transporters and ion channels. The kinases are under regulation of with-no-K(Lys) (WNK) kinases. The present study explored whether SPAK and/or OSR1 modify the expression and/or activity of the voltage-gated K(+) channel Kv1.5, which participates in the regulation of diverse functions including atrial cardiac action potential and tumor cell proliferation. cRNA encoding Kv1.5 was injected into Xenopus oocytes with or without additional injection of cRNA encoding wild-type SPAK, constitutively active (T233E)SPAK, WNK insensitive (T233A)SPAK, catalytically inactive (D212A)SPAK, wild-type OSR1, constitutively active (T185E)OSR1, WNK insensitive (T185A)OSR1, and catalytically inactive (D164A)OSR1. Voltage-gated K(+) channel activity was quantified utilizing dual electrode voltage clamp and Kv1.5 channel protein abundance in the cell membrane utilizing chemiluminescence of Kv1.5 containing an extracellular hemagglutinin epitope (Kv1.5-HA). Kv1.5 activity and Kv1.5-HA protein abundance were significantly decreased by wild-type SPAK and (T233E)SPAK, but not by (T233A)SPAK and (D212A)SPAK. Similarly, Kv1.5 activity and Kv1.5-HA protein abundance were significantly down-regulated by wild-type OSR1 and (T185E)OSR1, but not by (T185A)OSR1 and (D164A)OSR1. Both, SPAK and OSR1 decrease cell membrane Kv1.5 protein abundance and activity.
Collapse
Affiliation(s)
- Bernat Elvira
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076, Tübingen, Germany
| | | | | | | |
Collapse
|
36
|
Baczko I, Liknes D, Yang W, Hamming KC, Searle G, Jaeger K, Husti Z, Juhasz V, Klausz G, Pap R, Saghy L, Varro A, Dolinsky V, Wang S, Rauniyar V, Hall D, Dyck JR, Light PE. Characterization of a novel multifunctional resveratrol derivative for the treatment of atrial fibrillation. Br J Pharmacol 2014; 171:92-106. [PMID: 24102184 DOI: 10.1111/bph.12409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/28/2013] [Accepted: 09/07/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with an increased risk for stroke, heart failure and cardiovascular-related mortality. Candidate targets for anti-AF drugs include a potassium channel K(v)1.5, and the ionic currents I(KACh) and late I(Na), along with increased oxidative stress and activation of NFAT-mediated gene transcription. As pharmacological management of AF is currently suboptimal, we have designed and characterized a multifunctional small molecule, compound 1 (C1), to target these ion channels and pathways. EXPERIMENTAL APPROACH We made whole-cell patch-clamp recordings of recombinant ion channels, human atrial I(Kur), rat atrial I(KACh), cellular recordings of contractility and calcium transient measurements in tsA201 cells, human atrial samples and rat myocytes. We also used a model of inducible AF in dogs. KEY RESULTS C1 inhibited human peak and late K(v)1.5 currents, frequency-dependently, with IC₅₀ of 0.36 and 0.11 μmol·L(-1) respectively. C1 inhibited I(KACh)(IC₅₀ of 1.9 μmol·L(-1)) and the Na(v)1.5 sodium channel current (IC₅₀s of 3 and 1 μmol·L(-1) for peak and late components respectively). C1 (1 μmol·L(-1)) significantly delayed contractile and calcium dysfunction in rat ventricular myocytes treated with 3 nmol·L(-1) sea anemone toxin (ATX-II). C1 weakly inhibited the hERG channel and maintained antioxidant and NFAT-inhibitory properties comparable to the parent molecule, resveratrol. In a model of inducible AF in conscious dogs, C1 (1 mg·kg(-1)) reduced the average and total AF duration. CONCLUSION AND IMPLICATIONS C1 behaved as a promising multifunctional small molecule targeting a number of key pathways involved in AF.
Collapse
Affiliation(s)
- Istvan Baczko
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wettwer E, Terlau H. Pharmacology of voltage-gated potassium channel Kv1.5--impact on cardiac excitability. Curr Opin Pharmacol 2014; 15:115-21. [PMID: 24632326 DOI: 10.1016/j.coph.2014.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 01/24/2023]
Abstract
Voltage activated potassium (Kv) channels are intensely investigated targets within the pharmacological strategies to treat cardiac arrhythmia. For atrial fibrillation (AF) substances inhibiting the ultra rapid outward rectifying Kv current (IKur) and its underlying Kv1.5 channel have been developed. Here we describe potential limitations of this approach with respect to critical parameters of Kv channel pharmacology. In healthy tissue IKur/Kv1.5 inhibition can unexpectedly lead to action potential shortening with corresponding arrhythmogenic effects. In tissue with chronic AF, electrical remodeling occurs which is accompanied with changes in ion channel expression and composition. As a consequence atrial tissue exhibits a different pharmacological fingerprint. New strategies to obtain more mechanistic insight into drug target interaction are needed for better understanding the pharmacological potential of IKur/Kv1.5 inhibition for AF treatment.
Collapse
Affiliation(s)
- Erich Wettwer
- Department of Pharmacology and Toxicology, Technische Universität Dresden, Medizinische Fakultät Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
| | - Heinrich Terlau
- Institute of Physiology, University of Kiel, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany.
| |
Collapse
|
38
|
Loose S, Mueller J, Wettwer E, Knaut M, Ford J, Milnes J, Ravens U. Effects of IKur blocker MK-0448 on human right atrial action potentials from patients in sinus rhythm and in permanent atrial fibrillation. Front Pharmacol 2014; 5:26. [PMID: 24624083 PMCID: PMC3940943 DOI: 10.3389/fphar.2014.00026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/12/2014] [Indexed: 11/30/2022] Open
Abstract
Selective blockers of the Kv1.5 channel have been developed for the treatment of atrial fibrillation (AF), but little is known how these atrial-selective drugs affect human action potentials (APs). Therefore we have investigated the Kv1.5 blocker MK-0448 (N-{6-[(1S)-1-(4-fluorophenyl)-2,2-di(pyridin-3-yl)ethyl]pyridin-2-yl}methanesulfon- amide) in right atrial trabeculae from patients in sinus rhythm (SR), permanent AF (>6 months), and intermittent AF. MK-0448 blocked Kv1.5 current in an expression system and concentration-dependently elevated the plateau phase of atrial APs. In SR preparations stimulated at 1 Hz, MK-0448 (3 μM) shortened action potential duration at 90% of repolarization (APD90) and effective refractory period (ERP), but in permanent AF preparations, MK-0448 prolonged APD90 and ERP. The effects of MK-0448 in intermittent AF resembled those in SR preparations. Block of IKs is probably more prominent in AF because of reduced repolarization reserve due to AF-induced remodeling.
Collapse
Affiliation(s)
- Simone Loose
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| | - Judith Mueller
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| | - Erich Wettwer
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| | - Michael Knaut
- Clinic for Cardiac Surgery, Heart Center Dresden Dresden, Germany
| | | | | | - Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology Dresden, Germany
| |
Collapse
|
39
|
Lactam sulfonamides as potent inhibitors of the Kv1.5 potassium ion channel. Bioorg Med Chem Lett 2014; 24:1269-73. [DOI: 10.1016/j.bmcl.2014.01.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 11/21/2022]
|
40
|
Tinker A, Harmer SC. K+channels in the heart: new insights and therapeutic implications. Expert Rev Clin Pharmacol 2014; 3:305-19. [DOI: 10.1586/ecp.10.14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Shear stress triggers insertion of voltage-gated potassium channels from intracellular compartments in atrial myocytes. Proc Natl Acad Sci U S A 2013; 110:E3955-64. [PMID: 24065831 DOI: 10.1073/pnas.1309896110] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Atrial myocytes are continuously exposed to mechanical forces including shear stress. However, in atrial myocytes, the effects of shear stress are poorly understood, particularly with respect to its effect on ion channel function. Here, we report that shear stress activated a large outward current from rat atrial myocytes, with a parallel decrease in action potential duration. The main ion channel underlying the increase in current was found to be Kv1.5, the recruitment of which could be directly observed by total internal reflection fluorescence microscopy, in response to shear stress. The effect was primarily attributable to recruitment of intracellular pools of Kv1.5 to the sarcolemma, as the response was prevented by the SNARE protein inhibitor N-ethylmaleimide and the calcium chelator BAPTA. The process required integrin signaling through focal adhesion kinase and relied on an intact microtubule system. Furthermore, in a rat model of chronic hemodynamic overload, myocytes showed an increase in basal current despite a decrease in Kv1.5 protein expression, with a reduced response to shear stress. Additionally, integrin beta1d expression and focal adhesion kinase activation were increased in this model. This data suggests that, under conditions of chronically increased mechanical stress, the integrin signaling pathway is overactivated, leading to increased functional Kv1.5 at the membrane and reducing the capacity of cells to further respond to mechanical challenge. Thus, pools of Kv1.5 may comprise an inducible reservoir that can facilitate the repolarization of the atrium under conditions of excessive mechanical stress.
Collapse
|
42
|
Abstract
A recent patent application from Bionomics/Merck Serono describes novel compounds as blockers of the voltage-gated Kv1.3 ion channel. The blockade of this channel shows great promise as a new therapeutic target for the treatment of autoimmune disorders such as multiple sclerosis, psoriasis, diabetes and rheumatoid arthritis. The generic claim of this patent refers to a new chemotype of Kv1.3 blockers based on an amide core with potent IC50's which are potentially within the nanomolar range. This article briefly reviews the chemistry and biology found in the patent and compares it with previous discoveries in the field.
Collapse
Affiliation(s)
- William Nguyen
- The Scripps Research Institute, Department of Molecular Therapeutics , 130 Scripps Way, Jupiter, FL , USA +1 561 228 2210 ; +1 561 228 3092 ;
| |
Collapse
|
43
|
Abstract
New antiarrhythmic drugs for treatment of atrial fibrillation should ideally be atrial selective in order to avoid pro-arrhythmic effects in the ventricles. Currently recognized atrial selective targets include atrial Nav1.5 channels, Kv1.5 channels and constitutively active Kir3.1/3.4 channels, each of which confers atrial selectivity by different mechanisms. Na(+) channel blockers with potential- and frequency-dependent action preferentially suppress atrial fibrillation because of the high excitation rate and less negative atrial resting potential, which promote drug binding in atria. Kv1.5 channels are truly atrial selective because they do not conduct repolarizing current IKur in ventricles. Constitutively active IK,ACh is predominantly observed in remodelled atria from patients in permanent atrial fibrillation (AF). A lot of effort has been invested to detect compounds which will selectively block Kir3.1/Kir3.4 in their remodelled constitutively active form. Novel drugs which have been and are being developed aim at atrial-selective targets. Vernakalant and ranolazine which mainly block atrial Na(+) channels are clinically effective. Newly designed selective IKur blockers and IK,ACh blockers are effective in animal models; however, clinical benefit in converting AF into sinus rhythm (SR) or reducing AF burden remains to be demonstrated. In conclusion, atrial-selective antiarrhythmic agents have a lot of potential, but a long way to go.
Collapse
Affiliation(s)
- Ursula Ravens
- U. Ravens: Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Fetscherstraße 74, D-01307 Dresden, Germany.
| | | | | | | |
Collapse
|
44
|
Gray NW, Zhorov BS, Moczydlowski EG. Interaction of local anesthetics with the K (+) channel pore domain: KcsA as a model for drug-dependent tetramer stability. Channels (Austin) 2013; 7:182-93. [PMID: 23545989 DOI: 10.4161/chan.24455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Local anesthetics and related drugs block ionic currents of Na (+) , K (+) and Ca ( 2+) conducted across the cell membrane by voltage-dependent ion channels. Many of these drugs bind in the permeation pathway, occlude the pore and stop ion movement. However channel-blocking drugs have also been associated with decreased membrane stability of certain tetrameric K (+) channels, similar to the destabilization of channel function observed at low extracellular K (+) concentration. Such drug-dependent stability may result from electrostatic repulsion of K (+) from the selectivity filter by a cationic drug molecule bound in the central cavity of the channel. In this study we used the pore domain of the KcsA K (+) channel protein to test this hypothesis experimentally with a biochemical assay of tetramer stability and theoretically by computational simulation of local anesthetic docking to the central cavity. We find that two common local anesthetics, lidocaine and tetracaine, promote thermal dissociation of the KcsA tetramer in a K (+) -dependent fashion. Docking simulations of these drugs with open, open-inactivated and closed crystal structures of KcsA yield many energetically favorable drug-channel complexes characterized by nonbonded attraction to pore-lining residues and electrostatic repulsion of K (+) . The results suggest that binding of cationic drugs to the inner cavity can reduce tetramer stability of K (+) channels.
Collapse
Affiliation(s)
- Noel W Gray
- Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | |
Collapse
|
45
|
Synthesis and evaluation of diphenylphosphinic amides and diphenylphosphine oxides as inhibitors of Kv1.5. Bioorg Med Chem Lett 2013; 23:706-10. [DOI: 10.1016/j.bmcl.2012.11.098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/23/2012] [Accepted: 11/25/2012] [Indexed: 02/04/2023]
|
46
|
Electrophysiological Characterization and Antiarrhythmic Efficacy of the Mixed Potassium Channel-Blocking Antiarrhythmic Agent AZ13395438 In Vitro and In Vivo. J Cardiovasc Pharmacol Ther 2013; 18:290-300. [DOI: 10.1177/1074248412470512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Objective: To examine the electrophysiological, hemodynamic, and antiarrhythmic effects of the novel antiarrhythmic agent AZ13395438. Methods: The ion channel-blocking potency of AZ13395438 was assessed in Chinese hamster ovary cells stably expressing various human cardiac ion channels and in human atrial myocytes. The in vivo electrophysiological, hemodynamic, and antiarrhythmic effects of intravenously administered AZ13395438 were examined in anesthetized rabbits, in anesthetized naive dogs, and in dogs subjected to rapid atrial pacing (RAP) for 8 weeks. Pharmacokinetic/pharmacodynamic (PKPD) modeling was applied to predict the potency of AZ13395438 in increasing atrial and ventricular refractoriness. Results: AZ13395438 potently and predominantly blocked the atrial repolarizing potassium currents IKur, IAch, and Ito in vitro. In vivo, AZ13395438 caused a concentration-dependent and selective increase in atrial refractoriness with no or small effects on ventricular refractoriness and repolarization and on hemodynamics in both rabbits and dogs. The PKPD modeling predicted unbound plasma concentrations of AZ13395438 of 0.20 ± 0.039, 0.38 ± 0.084, and 0.34 ± 0.057 µmol/L to increase the right atrial effective refractory period by 20 milliseconds in the rabbit and in the naive and the RAP dogs, respectively. In the RAP dog with atrial fibrillation (AF), AZ13395438 significantly increased AF cycle length and successfully converted AF to sinus rhythm in 12 of the 12 occasions at an unbound plasma concentration of 0.48 ± 0.076 µmol/L. During saline infusion, conversion was seen only in 4 of the 10 occasions ( P = .003 vs AZ13395438). Furthermore, AZ13395438 reduced AF inducibility by burst pacing from 100% to 25% ( P < .001). Conclusion: AZ13395438 can be characterized as a mixed potassium ion channel-blocking agent that selectively prolongs atrial versus ventricular refractoriness and shows promising antiarrhythmic efficacy in a clinically relevant animal model of AF.
Collapse
|
47
|
Mia S, Munoz C, Pakladok T, Siraskar G, Voelkl J, Alesutan I, Lang F. Downregulation of Kv1.5 K channels by the AMP-activated protein kinase. Cell Physiol Biochem 2012; 30:1039-50. [PMID: 23221389 DOI: 10.1159/000341480] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The voltage gated K(+) channel Kv1.5 participates in the repolarization of a wide variety of cell types. Kv1.5 is downregulated during hypoxia, which is known to stimulate the energy-sensing AMP-activated serine/threonine protein kinase (AMPK). AMPK is a powerful regulator of nutrient transport and metabolism. Moreover, AMPK is known to downregulate several ion channels, an effect at least in part due to stimulation of the ubiquitin ligase Nedd4- 2. The present study explored whether AMPK regulates Kv1.5. METHODS cRNA encoding Kv1.5 was injected into Xenopus oocytes with and without additional injection of wild-type AMPK (α1 β 1γ1), of constitutively active (γR70Q)AMPK (α1 β 1γ1(R70Q)), of inactive mutant (αK45R)AMPK (α1(K45R)β1γ1), or of Nedd4-2. Kv1.5 activity was determined by two-electrode voltage-clamp. Moreover, Kv1.5 protein abundance in the cell membrane was determined by chemiluminescence and immunostaining with subsequent confocal microscopy. RESULTS Coexpression of wild-type AMPK(WT) and constitutively active AMPK(γR70Q), but not of inactive AMPK(αK45R) significantly reduced Kv1.5-mediated currents. Coexpression of constitutively active AMPKγR70Q further reduced Kv1.5 K(+) channel protein abundance in the cell membrane. Co-expression of Nedd4-2 similarly downregulated Kv1.5-mediated currents. CONCLUSION AMPK is a potent regulator of Kv1.5. AMPK inhibits Kv1.5 presumably in part by activation of Nedd4- 2 with subsequent clearance of channel protein from the cell membrane.
Collapse
Affiliation(s)
- Sobuj Mia
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Blomström-Lundqvist C, Blomström P. Safety and efficacy of pharmacological cardioversion of atrial fibrillation using intravenous vernakalant, a new antiarrhythmic drug with atrial selectivity. Expert Opin Drug Saf 2012; 11:671-9. [DOI: 10.1517/14740338.2012.679262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Per Blomström
- Uppsala University, Department of Cardiology, Department of Medical Sciences,
S 75185 Uppsala, Sweden
| |
Collapse
|
49
|
Liu Y, Xu XH, Liu Z, Du XL, Chen KH, Xin X, Jin ZD, Shen JZ, Hu Y, Li GR, Jin MW. Effects of the natural flavone trimethylapigenin on cardiac potassium currents. Biochem Pharmacol 2012; 84:498-506. [PMID: 22583923 DOI: 10.1016/j.bcp.2012.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/30/2012] [Accepted: 05/01/2012] [Indexed: 11/17/2022]
Abstract
The natural flavones and polymethylflavone have been reported to have cardiovascular protective effects. In the present study, we determined whether quecertin, apigenin and their methylated compounds (3,7,3',4'-tetramethylquecertin, 3,5,7,3',4'-pentamethylquecertin, 7,4'-dimethylapigenin, and 5,7,4'-trimethylapigenin) would block the atrial specific potassium channel hKv1.5 using a whole-cell patch voltage-clamp technique. We found that only trimethylapigenin showed a strong inhibitory effect on hKv1.5 channel current. This compound suppressed hKv1.5 current in HEK 293 cell line (IC₅₀=6.4 μM), and the ultra-rapid delayed rectify K⁺ current I(Kur) in human atrial myocytes (IC₅₀=8.0 μM) by binding to the open channels and showed a use- and frequency-dependent manner. In addition, trimethylapigenin decreased transient outward potassium current (I(to)) in human atrial myocytes, inhibited acetylcholine-activated K⁺ current (IC₅₀=6.8μM) in rat atrial myocytes. Interestingly, trimethylapigenin had a weak inhibition of hERG channel current. Our results indicate that trimethyapigenin significantly inhibits the atrial potassium currents hKv1.5/I(Kur) and I(KACh), which suggests that trimethylapigenin may be a potential candidate for anti-atrial fibrillation.
Collapse
Affiliation(s)
- Yi Liu
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jeong I, Choi BH, Yoon SH, Hahn SJ. Carvedilol blocks the cloned cardiac Kv1.5 channels in a β-adrenergic receptor-independent manner. Biochem Pharmacol 2012; 83:497-505. [PMID: 22146582 DOI: 10.1016/j.bcp.2011.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
Carvedilol, a non-selective β-adrenergic blocker, is widely used for the treatment of angina pectoris and hypertension. We examined the action of carvedilol on cloned Kv1.5 expressed in CHO cells, using the whole-cell patch clamp technique. Carvedilol reduced the peak amplitude of Kv1.5 and accelerated the inactivation rate in a concentration-dependent manner with an IC50 of 2.56 μM. Using a first-order kinetics analysis, we calculated k(+1) = 19.68 μM(-1)s(-1) for the association rate constant, and k(-1) = 44.89 s(-1) for the dissociation rate constant. The apparent K(D) (k(-1)/k(+1)) was 2.28 μM, which is similar to the IC50 value. Other β-adrenergic blockers (alprenolol, oxprenolol and carteolol) had little or no effect on Kv1.5 currents. Carvedilol slowed the deactivation time course, resulting in a tail crossover phenomenon. Carvedilol-induced block was voltage-dependent in the voltage range for channel activation, but voltage-independent in the voltage range for full activation. The voltage dependences for both steady-state activation and inactivation were unchanged by carvedilol. Carvedilol affected Kv1.5 in a use-dependent manner. When stimulation frequencies were increased to quantify a use-dependent block, however, the block by carvedilol was slightly increased with IC50 values of 2.56 μM at 0.1 Hz, 2.38 μM at 1 Hz and 2.03 μM at 2 Hz. Carvedilol also slowed the time course of recovery from inactivation of Kv1.5. These results indicate that carvedilol blocks Kv1.5 in a reversible, concentration-, voltage-, time-, and use-dependent manner, but only at concentrations slightly higher than therapeutic plasma concentrations in humans. These effects are probably relevant to an understanding of the ionic mechanism underlying the antiarrhythmic property of carvedilol.
Collapse
Affiliation(s)
- Imju Jeong
- Department of Physiology, Medical Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | |
Collapse
|