1
|
Bozkurt A, Karakoy Z, Aydin P, Ozdemir B, Toktay E, Halici Z, Cadirci E. Targeting Aquaporin-5 by Phosphodiesterase 4 Inhibition Offers New Therapeutic Opportunities for Ovarian Ischemia Reperfusion Injury in Rats. Reprod Sci 2024; 31:2021-2031. [PMID: 38453769 PMCID: PMC11217128 DOI: 10.1007/s43032-024-01496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
This study aimed to examine the effect of Phosphodiesterase 4 (PDE4) inhibition on Aquaporin-5 (AQP5) and its potential cell signaling pathway in the ovarian ischemia reperfusion (OIR) model. Thirty adult female rats were divided into five groups: Group 1; Control: Sham operation, Group 2; OIR that 3 hour ischemia followed by 3 hour reperfusion, Group 3; OIR + Rolipram 1 mg/kg, Group 4; OIR + Rolipram 3 mg/kg, Group 5; OIR + Rolipram 5 mg/kg. Rolipram was administered intraperitoneally to the rats in groups 3-4 and 5 at determined doses 30 minutes before reperfusion. From ovary tissue; Tumor necrosis factor-a (TNF-α), Cyclic adenosine monophosphate (cAMP), Nuclear factor kappa (NF-κB), Interleukin-6 (IL-6), Phosphodiesterase 4D (PDE4D), Mitogen-activated protein kinase (MAPK) and AQP5 levels were measured by ELISA. We also measured the level of AQP5 in ovary tissue by real-time reverse-transcription polymerase chain reaction (RT-PCR). In the OIR groups; TNF-α, NF-κB, IL-6, MAPK inflammatory levels increased, and cAMP and AQP5 levels decreased, which improved with the administration of rolipram doses. Also histopathological results showed damaged ovarian tissue after OIR, while rolipram administration decrased tissue damage in a dose dependent manner. We propose that the protective effect of PDE4 inhibition in OIR may be regulated by AQP5 and its potential cell signaling pathway and may be a new target in OIR therapy. However, clinical studies are needed to appraise these data in humans.
Collapse
Affiliation(s)
- Ayse Bozkurt
- Faculty of Pharmacy, Department of Pharmacology, Van Yuzuncu Yil University, Van, Turkey
| | - Zeynep Karakoy
- Faculty of Pharmacy, Department of Pharmacology, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Pelin Aydin
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, 25240, Turkey
- Department of Anesthesiology and Reanimation, Educational and Research Hospital, Erzurum, Turkey
| | - Bengul Ozdemir
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Erdem Toktay
- Faculty of Medicine, Department of Histology and Embryology, Kafkas University, Kars, Turkey
| | - Zekai Halici
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, 25240, Turkey
- Clinical Research, Development and Design Application and Research Center, Ataturk University, 25240, Erzurum, Turkey
| | - Elif Cadirci
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, 25240, Turkey.
- Clinical Research, Development and Design Application and Research Center, Ataturk University, 25240, Erzurum, Turkey.
| |
Collapse
|
2
|
Boosani CS, Burela L. The Exacerbating Effects of the Tumor Necrosis Factor in Cardiovascular Stenosis: Intimal Hyperplasia. Cancers (Basel) 2024; 16:1435. [PMID: 38611112 PMCID: PMC11010976 DOI: 10.3390/cancers16071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
TNF-α functions as a master regulator of inflammation, and it plays a prominent role in several immunological diseases. By promoting important cellular mechanisms, such as cell proliferation, migration, and phenotype switch, TNF-α induces its exacerbating effects, which are the underlying cause of many proliferative diseases such as cancer and cardiovascular disease. TNF-α primarily alters the immune component of the disease, which subsequently affects normal functioning of the cells. Monoclonal antibodies and synthetic drugs that can target TNF-α and impair its effects have been developed and are currently used in the treatment of a few select human diseases. Vascular restenosis is a proliferative disorder that is initiated by immunological mechanisms. In this review, the role of TNF-α in exacerbating restenosis resulting from neointimal hyperplasia, as well as molecular mechanisms and cellular processes affected or induced by TNF-α, are discussed. As TNF-α-targeting drugs are currently not approved for the treatment of restenosis, the summation of the topics discussed here is anticipated to provide information that can emphasize on the use of TNF-α-targeting drug candidates to prevent vascular restenosis.
Collapse
Affiliation(s)
- Chandra Shekhar Boosani
- Somatic Cell and Genome Editing Center, Division of Animal Science, College of Agriculture Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
- MU HealthCare, University of Missouri, Columbia, MO 65211, USA
- Technology and Platform Development, Soma Life Science Solutions, Winston-Salem, NC 27103, USA
| | | |
Collapse
|
3
|
Kodali M, Jankay T, Shetty AK, Reddy DS. Pathophysiological basis and promise of experimental therapies for Gulf War Illness, a chronic neuropsychiatric syndrome in veterans. Psychopharmacology (Berl) 2023; 240:673-697. [PMID: 36790443 DOI: 10.1007/s00213-023-06319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
This article describes the pathophysiology and potential treatments for Gulf War Illness (GWI), which is a chronic neuropsychiatric illness linked to a combination of chemical exposures experienced by service personnel during the first Gulf War in 1991. However, there is currently no effective treatment for veterans with GWI. The article focuses on the current status and efficacy of existing therapeutic interventions in preclinical models of GWI, as well as potential perspectives of promising therapies. GWI stems from changes in brain and peripheral systems in veterans, leading to neurocognitive deficits, as well as physiological and psychological effects resulting from multifaceted changes such as neuroinflammation, oxidative stress, and neuronal damage. Aging not only renders veterans more susceptible to GWI symptoms, but also attenuates their immune capabilities and response to therapies. A variety of experimental models are being used to investigate the pathophysiology and develop therapies that have the ability to alleviate devastating symptoms. Over two dozen therapeutic interventions targeting neuroinflammation, mitochondrial dysfunction, neuronal injury, and neurogenesis are being tested, including agents such as curcumin, curcumin nanoparticles, monosodium luminol, melatonin, resveratrol, fluoxetine, rolipram, oleoylethanolamide, ketamine, levetiracetam, nicotinamide riboside, minocycline, pyridazine derivatives, and neurosteroids. Preclinical outcomes show that some agents have promise, including curcumin, resveratrol, and ketamine, which are being tested in clinical trials in GWI veterans. Neuroprotectants and other compounds such as monosodium luminol, melatonin, levetiracetam, oleoylethanolamide, and nicotinamide riboside appear promising for future clinical trials. Neurosteroids have been shown to have neuroprotective and disease-modifying properties, which makes them a promising medicine for GWI. Therefore, accelerated clinical studies are urgently needed to evaluate and launch an effective therapy for veterans displaying GWI.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA
| | - Tanvi Jankay
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University School of Medicine, College Station, TX, USA.,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University School of Medicine, Bryan, TX, USA. .,Texas A&M Health Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, 8447 Riverside Pkwy, Bryan, TX, 77807, USA.
| |
Collapse
|
4
|
Antonova YA, Nelyubina YV, Ioffe SL, Tabolin AA. [3+3]-Annulation of Cyclic Nitronates with Vinyl Diazoacetates: Diastereoselective Synthesis of Partially Saturated [1,2]Oxazino[2,3- b][1,2]oxazines and Their Base-Promoted Ring Contraction to Pyrrolo[1,2- b][1,2]oxazine Derivatives. Molecules 2023; 28:molecules28073025. [PMID: 37049788 PMCID: PMC10096057 DOI: 10.3390/molecules28073025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
A rhodium(II)-catalyzed reaction of cyclic nitronates (5,6-dihydro-4H-1,2-oxazine N-oxides) with vinyl diazoacetates proceeds as a [3+3]-annulation producing bicyclic unsaturated nitroso acetals (4a,5,6,7-tetrahydro-2H-[1,2]oxazino[2,3-b][1,2]oxazines). Optimization of reaction conditions revealed the use of Rh(II) octanoate as the preferred catalyst in THF at room temperature, which allows the preparation of target products in good yields and excellent diastereoselectivity. Under basic conditions, namely, the combined action of DBU and alcohol, these nitroso acetals undergo ring contraction of an unsaturated oxazine ring into the corresponding pyrrole. Both transformations can be performed in a one-pot fashion, thus constituting a quick approach to oxazine-annulated pyrroles from available starting materials, such as nitroalkenes, olefins, and diazo compounds.
Collapse
Affiliation(s)
- Yulia A Antonova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russia
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Str. 28, Moscow 119991, Russia
| | - Sema L Ioffe
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russia
| | - Andrey A Tabolin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 47, Moscow 119991, Russia
| |
Collapse
|
5
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Liu W, Schiöth HB. Recent developments of phosphodiesterase inhibitors: Clinical trials, emerging indications and novel molecules. Front Pharmacol 2022; 13:1057083. [PMID: 36506513 PMCID: PMC9731127 DOI: 10.3389/fphar.2022.1057083] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
The phosphodiesterase (PDE) enzymes, key regulator of the cyclic nucleotide signal transduction system, are long-established as attractive therapeutic targets. During investigation of trends within clinical trials, we have identified a particularly high number of clinical trials involving PDE inhibitors, prompting us to further evaluate the current status of this class of therapeutic agents. In total, we have identified 87 agents with PDE-inhibiting capacity, of which 85 interact with PDE enzymes as primary target. We provide an overview of the clinical drug development with focus on the current clinical uses, novel molecules and indications, highlighting relevant clinical studies. We found that the bulk of current clinical uses for this class of therapeutic agents are chronic obstructive pulmonary disease (COPD), vascular and cardiovascular disorders and inflammatory skin conditions. In COPD, particularly, PDE inhibitors are characterised by the compliance-limiting adverse reactions. We discuss efforts directed to appropriately adjusting the dose regimens and conducting structure-activity relationship studies to determine the effect of structural features on safety profile. The ongoing development predominantly concentrates on central nervous system diseases, such as schizophrenia, Alzheimer's disease, Parkinson's disease and fragile X syndrome; notable advancements are being also made in mycobacterial infections, HIV and Duchenne muscular dystrophy. Our analysis predicts the diversification of PDE inhibitors' will continue to grow thanks to the molecules in preclinical development and the ongoing research involving drugs in clinical development.
Collapse
Affiliation(s)
- Andrey D. Bondarev
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Misty M. Attwood
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden,*Correspondence: Helgi B. Schiöth,
| |
Collapse
|
6
|
Phosphodiesterase 4D contributes to angiotensin II-induced abdominal aortic aneurysm through smooth muscle cell apoptosis. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1201-1213. [PMID: 35999453 PMCID: PMC9440214 DOI: 10.1038/s12276-022-00815-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a permanent expansion of the abdominal aorta that has a high mortality but limited treatment options. Phosphodiesterase (PDE) 4 family members are cAMP-specific hydrolyzing enzymes and have four isoforms (PDE4A-PDE4D). Several pan-PDE4 inhibitors are used clinically. However, the regulation and function of PDE4 in AAA remain largely unknown. Herein, we showed that PDE4D expression is upregulated in human and angiotensin II-induced mouse AAA tissues using RT-PCR, western blotting, and immunohistochemical staining. Furthermore, smooth muscle cell (SMC)-specific Pde4d knockout mice showed significantly reduced vascular destabilization and AAA development in an experimental AAA model. The PDE4 inhibitor rolipram also suppressed vascular pathogenesis and AAA formation in mice. In addition, PDE4D deficiency inhibited caspase 3 cleavage and SMC apoptosis in vivo and in vitro, as shown by bulk RNA-seq, western blotting, flow cytometry and TUNEL staining. Mechanistic studies revealed that PDE4D promotes apoptosis by suppressing the activation of cAMP-activated protein kinase A (PKA) instead of the exchange protein directly activated by cAMP (Epac). Additionally, the phosphorylation of BCL2-antagonist of cell death (Bad) was reversed by PDE4D siRNA in vitro, which indicates that PDE4D regulates SMC apoptosis via the cAMP-PKA-pBad axis. Overall, these findings indicate that PDE4D upregulation in SMCs plays a causative role in AAA development and suggest that pharmacological inhibition of PDE4 may represent a potential therapeutic strategy.
Collapse
|
7
|
Viswanath V, Joshi P, Lawate P, Tare D, Dhoot D, Mahadkar N, Barkate H. An Open-Label, Randomized, Prospective, Comparative, Three-Arm Clinical Trial to Evaluate the Safety and Effectiveness of Apremilast with Three Different Titration Methods in Patients with Chronic Plaque Psoriasis in India. Psoriasis (Auckl) 2022; 12:53-61. [PMID: 35496380 PMCID: PMC9041601 DOI: 10.2147/ptt.s357184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/17/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose To minimize adverse effects (AEs), apremilast is recommended to titrate at the initiation of therapy. But still, many patients experience AEs, resulting in discontinuation of therapy. As a result, many dermatologists have adapted to further titrate apremilast in different ways. The present study was planned to evaluate the safety and effectiveness of apremilast in different dose titration methods as initiation therapy in the treatment of plaque psoriasis. Patients and Methods In this open-label, randomized, prospective, comparative, three-arm, single center study, 128 plaque psoriasis patients were included. Patients were randomized into three groups. Group I received standard titration for the first 6 days; Group II received all tablets in a starter pack as once a day (OD) total for 13 days; and Group III received two starter packs as 8 tablets each of apremilast 10 mg and 20 mg as OD and 10 tablets of 30 mg as OD, in total for 26 days. All groups received apremilast 30 mg as twice a day after initial titration. The total duration of apremilast therapy in all groups was 16 weeks. Results In safety assessment, AEs were reported in 50%, 41.3% and 25% in Groups I, II and III, respectively (p <0.05) with nausea being the most common AE. In Group I, 10.53% of patients discontinued apremilast whereas 6.52% and 2.27% discontinued in Groups II and III respectively. Maximum number of AEs were seen in Group I in first week only (74.19%) compared with other groups. At week 16, on the Psoriasis Area and Severity Index, PASI 75 was achieved in 31.43%, 42.4% and 33.3% of patients in Groups I, II and III, respectively with no statistical difference between any groups. Conclusion It can be concluded that slower titration is a useful strategy for minimizing AEs while at the same time maintaining effectiveness of apremilast.
Collapse
Affiliation(s)
| | - Pradnya Joshi
- Department of Dermatology, Rajiv Gandhi Medical College, Thane, Mumbai, India
| | - Prakash Lawate
- Department of Dermatology, Rajiv Gandhi Medical College, Thane, Mumbai, India
| | - Dakshata Tare
- Department of Dermatology, Rajiv Gandhi Medical College, Thane, Mumbai, India
| | - Dhiraj Dhoot
- Department of Global Medical Affairs, Glenmark Pharmaceuticals Ltd, Mumbai, Maharashtra, India
- Correspondence: Dhiraj Dhoot, Department of Global Medical Affairs, Glenmark Pharmaceuticals Ltd, B D Sawant Marg, Andheri (E), Mumbai, Maharashtra, 400099, India, Tel +91 9619811219, Email
| | - Namrata Mahadkar
- Department of Global Medical Affairs, Glenmark Pharmaceuticals Ltd, Mumbai, Maharashtra, India
| | - Hanmant Barkate
- Department of Global Medical Affairs, Glenmark Pharmaceuticals Ltd, Mumbai, Maharashtra, India
| |
Collapse
|
8
|
Rathi A, Kumar V, Sundar D. Insights into the potential of withanolides as Phosphodiesterase-4 (PDE4D) inhibitors. J Biomol Struct Dyn 2022; 41:2108-2117. [PMID: 35060432 DOI: 10.1080/07391102.2022.2028679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Medicinal herbs have been used as traditional medicines for centuries. The molecular mechanism of action of their bioactive molecules against various diseases or therapeutic targets is still being explored. Here, the active compounds (withanolides) of a well-known Indian medicinal herb, Ashwagandha (Withania somnifera), have been studied for their most potential therapeutic targets and their mechanism of action using ligand-based screening and receptor-based approaches. Ligand-based screening predicted the six top therapeutic targets, namely, Protein kinase C alpha (PRKCA), Protein kinase C delta (PRKCD), Protein kinase C epsilon (PRKCE), Androgenic Receptor (AR), Cycloxygenase-2 (PTGS-2) and Phosphodiesterase-4D (PDE4D). Further, when these predictions were validated using receptor-based studies, i.e. molecular docking, molecular dynamics simulation and free energy calculations, it was found that PDE4D was the most potent target for four withanolides, namely, Withaferin-A, 17-Hydroxywithaferin-A, 27-Hydroxywithanone and Withanolide-R. These compounds had a better binding affinity and similar interactions as that of an already known inhibitor (Zardaverine) of PDE4D. These results warrant further in-vitro and in-vivo investigations to examine their therapeutic potential as an inhibitor of PDE4D.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Rathi
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Vipul Kumar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
9
|
Thapa K, Singh TG, Kaur A. Cyclic nucleotide phosphodiesterase inhibition as a potential therapeutic target in renal ischemia reperfusion injury. Life Sci 2021; 282:119843. [PMID: 34298037 DOI: 10.1016/j.lfs.2021.119843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/19/2022]
Abstract
AIMS Ischemia/reperfusion (I/R) occurs in renal artery stenosis, partial nephrectomy and most commonly during kidney transplantation. It brings serious consequences such as DGF (Delayed Graft Function) or organ dysfunction leading to renal failure and ultimate death. There is no effective therapy to handle the consequences of Renal Ischemia/Reperfusion (I/R) injury. Cyclic nucleotides, cAMP and cGMP are the important second messengers that stimulate intracellular signal transduction for cell survival in response to growth factors and peptide hormones in normal tissues and in kidneys plays significant role that involves vascular tone regulation, inflammation and proliferation of parenchymal cells. Renal ischemia and subsequent reperfusion injury stimulate signal transduction pathways involved in oxidative stress, inflammation, alteration in renal blood flow leading to necrosis and apoptosis of renal cell. MATERIALS AND METHODS An extensive literature review of various search engines like PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out. To understand the functioning of Phosphodiesterases (PDEs) and its pharmacological modulation in Renal Ischemia-Reperfusion Injury. KEY FINDINGS Current therapeutic options may not be enough to treat renal I/R injury in group of patients and therefore, the current review has discussed the general characteristics and physiology of PDEs and preclinical-studies defining the relationship between PDEs expression in renal injury due to I/R and its outcome on renal function. SIGNIFICANCE The role of PDE inhibitors in renal I/R injury and the clinical status of drugs for various renal diseases have been summarized in this review.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India; School of Pharmacy, Himachal Pradesh, India
| | | | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| |
Collapse
|
10
|
Kim NS, Wen Z, Liu J, Zhou Y, Guo Z, Xu C, Lin YT, Yoon KJ, Park J, Cho M, Kim M, Wang X, Yu H, Sakamuru S, Christian KM, Hsu KS, Xia M, Li W, Ross CA, Margolis RL, Lu XY, Song H, Ming GL. Pharmacological rescue in patient iPSC and mouse models with a rare DISC1 mutation. Nat Commun 2021; 12:1398. [PMID: 33658519 PMCID: PMC7930023 DOI: 10.1038/s41467-021-21713-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
We previously identified a causal link between a rare patient mutation in DISC1 (disrupted-in-schizophrenia 1) and synaptic deficits in cortical neurons differentiated from isogenic patient-derived induced pluripotent stem cells (iPSCs). Here we find that transcripts related to phosphodiesterase 4 (PDE4) signaling are significantly elevated in human cortical neurons differentiated from iPSCs with the DISC1 mutation and that inhibition of PDE4 or activation of the cAMP signaling pathway functionally rescues synaptic deficits. We further generated a knock-in mouse line harboring the same patient mutation in the Disc1 gene. Heterozygous Disc1 mutant mice exhibit elevated levels of PDE4s and synaptic abnormalities in the brain, and social and cognitive behavioral deficits. Pharmacological inhibition of the PDE4 signaling pathway rescues these synaptic, social and cognitive behavioral abnormalities. Our study shows that patient-derived isogenic iPSC and humanized mouse disease models are integral and complementary for translational studies with a better understanding of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Nam-Shik Kim
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jing Liu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ying Zhou
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyuan Guo
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chongchong Xu
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yu-Ting Lin
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ki-Jun Yoon
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Junhyun Park
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michelle Cho
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Minji Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xinyuan Wang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Huimei Yu
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kuei-Sen Hsu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD, USA
| | - Weidong Li
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell L Margolis
- Division of Neurobiology, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xin-Yun Lu
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Weiss A, Porter S, Rozenberg D, O'Connor E, Lee T, Balter M, Wentlandt K. Chronic Obstructive Pulmonary Disease: A Palliative Medicine Review of the Disease, Its Therapies, and Drug Interactions. J Pain Symptom Manage 2020; 60:135-150. [PMID: 32004618 DOI: 10.1016/j.jpainsymman.2020.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Despite significant advances in treatment, chronic obstructive pulmonary disease (COPD) remains a chronic and progressive disease that frequently leads to premature mortality. COPD is associated with a constellation of significant symptoms, including dyspnea, cough, wheezing, pain, fatigue, anxiety, depression, and insomnia, and is associated with increased morbidity. Palliative care is appropriate to support these patients. However, historically, palliative care has focused on supporting patients with malignant disease, rather than progressive chronic diseases such as COPD. Therapies for COPD often result in functional and symptomatic improvements, including health-related quality of life (HRQL), and palliative care may further improve symptoms and HRQL. Provision of usual palliative care therapies for this patient population requires understanding the pathogenesis of COPD and common disease-targeted pharmacotherapies, as well as an approach to balancing life-prolonging and HRQL care strategies. This review describes COPD and current targeted therapies and their effects on symptoms, exercise tolerance, HRQL, and survival. It is important to note that medications commonly used for symptom management in palliative care can interact with COPD medications resulting in increased risk of adverse effects, enhanced toxicity, or changes in clearance of medications. To address this, we review pharmacologic interactions with and precautions related to use of COPD therapies in conjunction with commonly used palliative care medications.
Collapse
Affiliation(s)
- Andrea Weiss
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada; Division of Palliative Care, Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Porter
- Department of Pharmacy, University Health Network, Toronto, Ontario, Canada
| | - Dmitry Rozenberg
- Division of Respirology and Lung Transplantation, Department of Medicine, University Health Network, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erin O'Connor
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada; Division of Emergency Medicine, Department of Medicine, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Tiffany Lee
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada
| | - Meyer Balter
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Respirology, Department of Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kirsten Wentlandt
- Division of Palliative Care, Department of Supportive Care, University Health Network, Toronto, Ontario, Canada; Division of Palliative Care, Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part II - Modulation of angiogenesis. Clin Hemorheol Microcirc 2020; 73:409-438. [PMID: 31177206 DOI: 10.3233/ch-199103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The treatment of critical-size bone defects following complicated fractures, infections or tumor resections is a major challenge. The same applies to fractures in patients with impaired bone healing due to systemic inflammatory and metabolic diseases. Despite considerable progress in development and establishment of new surgical techniques, design of bone graft substitutes and imaging techniques, these scenarios still represent unresolved clinical problems. However, the development of new active substances offers novel potential solutions for these issues. This work discusses therapeutic approaches that influence angiogenesis or hypoxic situations in healing bone and surrounding tissue. In particular, literature on sphingosine-1-phosphate receptor modulators and nitric oxide (NO•) donors, including bi-functional (hybrid) compounds like NO•-releasing cyclooxygenase-2 inhibitors, was critically reviewed with regard to their local and systemic mode of action.
Collapse
Affiliation(s)
- Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Tatzberg 4, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany.,Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
13
|
Zhong J, Dong W, Qin Y, Xie J, Xiao J, Xu J, Wang H. Roflupram exerts neuroprotection via activation of CREB/PGC-1α signalling in experimental models of Parkinson's disease. Br J Pharmacol 2020; 177:2333-2350. [PMID: 31972868 DOI: 10.1111/bph.14983] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/30/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Roflupram improves cognition and limits neuroinflammation in the brain. However, the beneficial effects of roflupram on Parkinson's disease (PD) remain unknown. Therefore, we aimed to elucidate the pharmacological effects and mechanisms of action of ROF in experimental models of PD. EXPERIMENTAL APPROACH We used an in vitro PD model of SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium iodide (MPP+ ). Cell viability and apoptosis were analysed via the MTT assay and flow cytometry. Mitochondrial morphology, mitochondrial respiratory capacity, and ROS were measured by a mitochondrial tracker, Seahorse Analyzer, and a MitoSOX-Red dye. For in vivo PD model, behavioural tests, Nissl staining, and immunohistochemistry were used to evaluate protection by roflupram. The levels of TH, cAMP response element-binding protein (CREB), and PPARγ coactivator-1α (PGC-1α) were analysed by western blotting. KEY RESULTS Roflupram decreased MPP+ -induced apoptosis in SH-SY5Y cells and human dopaminergic neurons. Roflupram also increased mitochondrial respiratory capacity, decreased ROS production, and restored mitochondrial morphology. Roflupram reversed the MPP+ -induced reductions of phosphorylated CREB, PGC-1α and TH. These protective effects were blocked by the PKA inhibitor H-89 or by PGC-1α siRNA. In mice treated with MPTP, roflupram significantly improved motor functions. Roflupram prevented both dopaminergic neuronal loss and the reduction of phosphorylated CREB and PGC-1α in the substantia nigra and striatum. CONCLUSION AND IMPLICATIONS Roflupram protected dopaminergic neurons from apoptosis via the CREB/PGC-1α pathway in PD models. Hence, roflupram has potential as a protective drug in the treatment of PD.
Collapse
Affiliation(s)
- Jiahong Zhong
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenli Dong
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Yunyun Qin
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinfeng Xie
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiao Xiao
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Central Laboratory, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Southern Medical University, Guangzhou, China
| | - Haitao Wang
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.,Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Morales-Garcia JA, Alonso-Gil S, Santos Á, Perez-Castillo A. Phosphodiesterase 7 Regulation in Cellular and Rodent Models of Parkinson's Disease. Mol Neurobiol 2019; 57:806-822. [PMID: 31473904 DOI: 10.1007/s12035-019-01745-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
Abstract
Parkinson's disease is characterized by a loss of dopaminergic neurons in the ventral midbrain. This disease is diagnosed when around 50% of these neurons have already died; consequently, therapeutic treatments start too late. Therefore, an urgent need exists to find new targets involved in the onset and progression of the disease. Phosphodiesterase 7 (PDE7) is a key enzyme involved in the degradation of intracellular levels of cyclic adenosine 3', 5'-monophosphate in different cell types; however, little is known regarding its role in neurodegenerative diseases, and specifically in Parkinson's disease. We have previously shown that chemical as well as genetic inhibition of this enzyme results in neuroprotection and anti-inflammatory activity in different models of neurodegenerative disorders, including Parkinson's disease. Here, we have used in vitro and in vivo models of Parkinson's disease to study the regulation of PDE7 protein levels. Our results show that PDE7 is upregulated after an injury both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures and after lipopolysaccharide or 6-hidroxydopamine injection in the Substantia nigra pars compacta of adult mice. PDE7 increase takes place mainly in degenerating dopaminergic neurons and in microglia cells. This enhanced expression appears to be direct since 6-hydroxydopamine and lipopolysaccharide increase the expression of a 962-bp fragment of its promoter. Taking together, these results reveal an essential function for PDE7 in the pathways leading to neurodegeneration and inflammatory-mediated brain damage and suggest novel roles for PDE7 in neurodegenerative diseases, specifically in PD, opening the door for new therapeutic interventions.
Collapse
Affiliation(s)
- Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo, 5, 28031, Madrid, Spain.
- Departamento de Biología Celular, Facultad de Medicina, UCM, Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo, 5, 28031, Madrid, Spain
| | - Ángel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo, 5, 28031, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, UCM, Avda. Complutense s/n, 28040, Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo, 5, 28031, Madrid, Spain.
| |
Collapse
|
15
|
Vagena E, Ryu JK, Baeza-Raja B, Walsh NM, Syme C, Day JP, Houslay MD, Baillie GS. A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl Psychiatry 2019; 9:141. [PMID: 31076569 PMCID: PMC6510753 DOI: 10.1038/s41398-019-0470-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/24/2019] [Indexed: 01/06/2023] Open
Abstract
Obesity is associated with an increased risk of depression. The aim of the present study was to investigate whether obesity is a causative factor for the development of depression and what is the molecular pathway(s) that link these two disorders. Using lipidomic and transcriptomic methods, we identified a mechanism that links exposure to a high-fat diet (HFD) in mice with alterations in hypothalamic function that lead to depression. Consumption of an HFD selectively induced accumulation of palmitic acid in the hypothalamus, suppressed the 3', 5'-cyclic AMP (cAMP)/protein kinase A (PKA) signaling pathway, and increased the concentration of free fatty acid receptor 1 (FFAR1). Deficiency of phosphodiesterase 4A (PDE4A), an enzyme that degrades cAMP and modulates stimulatory regulative G protein (Gs)-coupled G protein-coupled receptor signaling, protected animals either from genetic- or dietary-induced depression phenotype. These findings suggest that dietary intake of saturated fats disrupts hypothalamic functions by suppressing cAMP/PKA signaling through activation of PDE4A. FFAR1 inhibition and/or an increase of cAMP signaling in the hypothalamus could offer potential therapeutic targets to counteract the effects of dietary or genetically induced obesity on depression.
Collapse
Affiliation(s)
- Eirini Vagena
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Jae Kyu Ryu
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
| | - Bernat Baeza-Raja
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
| | - Nicola M Walsh
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Catriona Syme
- Gladstone Institute of Neurological Disease, University of California, San Francisco, CA, 94158, USA
| | - Jonathan P Day
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK
| | - Miles D Houslay
- Institute of Pharmaceutical Science, King's College London, London, England, SE1 9NH, UK
| | - George S Baillie
- College of Veterinary, Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, G12 8QQ, UK.
| |
Collapse
|
16
|
Moussa BA, El‐Zaher AA, El‐Ashrey MK, Fouad MA. Roflumilast analogs with improved metabolic stability, plasma protein binding, and pharmacokinetic profile. Drug Test Anal 2019; 11:886-897. [DOI: 10.1002/dta.2562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/02/2018] [Accepted: 12/17/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Bahia A. Moussa
- Pharmaceutical Chemistry Department, Faculty of PharmacyCairo University Kasr El‐Eini Street Cairo Egypt
| | - Asmaa A. El‐Zaher
- Pharmaceutical Chemistry Department, Faculty of PharmacyCairo University Kasr El‐Eini Street Cairo Egypt
| | - Mohamed K. El‐Ashrey
- Pharmaceutical Chemistry Department, Faculty of PharmacyCairo University Kasr El‐Eini Street Cairo Egypt
| | - Marwa A. Fouad
- Pharmaceutical Chemistry Department, Faculty of PharmacyCairo University Kasr El‐Eini Street Cairo Egypt
| |
Collapse
|
17
|
Wahlang B, McClain C, Barve S, Gobejishvili L. Role of cAMP and phosphodiesterase signaling in liver health and disease. Cell Signal 2018; 49:105-115. [PMID: 29902522 PMCID: PMC6445381 DOI: 10.1016/j.cellsig.2018.06.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
Liver disease is a significant health problem worldwide with mortality reaching around 2 million deaths a year. Non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) are the major causes of chronic liver disease. Pathologically, NAFLD and ALD share similar patterns of hepatic disorders ranging from simple steatosis to steatohepatitis, fibrosis and cirrhosis. It is becoming increasingly important to identify new pharmacological targets, given that there is no FDA-approved therapy yet for either NAFLD or ALD. Since the evolution of liver diseases is a multifactorial process, several mechanisms involving parenchymal and non-parenchymal hepatic cells contribute to the initiation and progression of liver pathologies. Moreover, certain protective molecular pathways become repressed during liver injury including signaling pathways such as the cyclic adenosine monophosphate (cAMP) pathway. cAMP, a key second messenger molecule, regulates various cellular functions including lipid metabolism, inflammation, cell differentiation and injury by affecting gene/protein expression and function. This review addresses the current understanding of the role of cAMP metabolism and consequent cAMP signaling pathway(s) in the context of liver health and disease. The cAMP pathway is extremely sophisticated and complex with specific cellular functions dictated by numerous factors such abundance, localization and degradation by phosphodiesterases (PDEs). Furthermore, because of the distinct yet divergent roles of both of its effector molecules, the cAMP pathway is extensively targeted in liver injury to modify its role from physiological to therapeutic, depending on the hepatic condition. This review also examines the behavior of the cAMP-dependent pathway in NAFLD, ALD and in other liver diseases and focuses on PDE inhibition as an excellent therapeutic target in these conditions.
Collapse
Affiliation(s)
- Banrida Wahlang
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA
| | - Craig McClain
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA; Robley Rex Louisville VAMC, Louisville, KY, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, School of Medicine, University of Louisville, KY, USA; Department of Medicine, School of Medicine, University of Louisville, KY, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, KY, USA; Hepatobiology & Toxicology Center, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
18
|
Torgutalp M, Poddubnyy D. Emerging treatment options for spondyloarthritis. Best Pract Res Clin Rheumatol 2018; 32:472-484. [DOI: 10.1016/j.berh.2019.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Phosphodiesterase-4 inhibition confers a neuroprotective efficacy against early brain injury following experimental subarachnoid hemorrhage in rats by attenuating neuronal apoptosis through the SIRT1/Akt pathway. Biomed Pharmacother 2018; 99:947-955. [DOI: 10.1016/j.biopha.2018.01.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
|
20
|
Peng Y, Jin J, Fan L, Xu H, He P, Li J, Chen T, Ruan W, Chen G. Rolipram Attenuates Early Brain Injury Following Experimental Subarachnoid Hemorrhage in Rats: Possibly via Regulating the SIRT1/NF-κB Pathway. Neurochem Res 2018; 43:785-795. [PMID: 29397536 DOI: 10.1007/s11064-018-2480-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/26/2022]
Abstract
Early brain injury (EBI) is the primary cause of poor outcome in subarachnoid hemorrhage (SAH) patients. Rolipram, a specific phosphodiesterase-4 inhibitor which is traditionally used as an anti-depressant drug, has been recently proven to exert neuroprotective effects in several central nervous system insults. However, the role of rolipram in SAH remains uncertain. The current study was aimed to investigate the role of rolipram in EBI after SAH and explore the potential mechanism. Adult male Sprague-Dawley rats were subjected to an endovascular perforation process to produce an SAH model. Rolipram was injected intraperitoneally at 2 h after SAH with a dose of 10 mg/kg. We found that rolipram significantly ameliorated brain edema and alleviated neurological dysfunction after SAH. Rolipram treatment remarkably promoted the expression of Sirtuin 1 (SIRT1) while inhibited NF-κB activation. Moreover, rolipram significantly inhibited the activation of microglia as well as down-regulated the expression of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6. In addition, rolipram increased the expression of protective cytokine IL-10. Furthermore, rolipram significantly alleviated neuronal death after SAH. In conclusion, these data suggested that rolipram exerts neuroprotective effects against EBI after SAH via suppressing neuroinflammation and reducing neuronal loss. The neuroprotective effects of rolipram were associated with regulating the SIRT1/NF-κB pathway. Rolipram could be a novel and promising therapeutic agent for SAH treatment.
Collapse
Affiliation(s)
- Yucong Peng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Jianxiang Jin
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Linfeng Fan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Hangzhe Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Pingyou He
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Ting Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Wu Ruan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Jiefang Road 88th, Hangzhou, 310016, China.
| |
Collapse
|
21
|
Clavel G, Boissier MC, Sigaux J, Semerano L. Developments with experimental and investigational drugs for axial spondyloarthritis. Expert Opin Investig Drugs 2017; 26:833-842. [DOI: 10.1080/13543784.2017.1337744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gaëlle Clavel
- UMR 1125, Inserm, Bobigny, France
- Department of Internal Medicine, Fondation Rothschild, Paris, France
| | - Marie-Christophe Boissier
- UMR 1125, Inserm, Bobigny, France
- Sorbonne Paris Cité - Université Paris 13, Bobigny, France
- Service de Rhumatologie, Assistance Publique–Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne - Jean Verdier - René Muret, Bobigny, France
| | - Johanna Sigaux
- UMR 1125, Inserm, Bobigny, France
- Department of Rheumatology, Nice University Hospital, Nice, France
| | - Luca Semerano
- UMR 1125, Inserm, Bobigny, France
- Sorbonne Paris Cité - Université Paris 13, Bobigny, France
- Service de Rhumatologie, Assistance Publique–Hôpitaux de Paris (AP-HP) Groupe hospitalier Avicenne - Jean Verdier - René Muret, Bobigny, France
| |
Collapse
|
22
|
Sakai M, Suzuki T, Tomita K, Yamashita S, Palikhe S, Hattori K, Yoshimura N, Matsuda N, Hattori Y. Diminished responsiveness to dobutamine as an inotrope in mice with cecal ligation and puncture-induced sepsis: attribution to phosphodiesterase 4 upregulation. Am J Physiol Heart Circ Physiol 2017; 312:H1224-H1237. [PMID: 28455289 DOI: 10.1152/ajpheart.00828.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023]
Abstract
Dobutamine has been used in septic shock for many years as an only inotrope, but its benefit has been questioned. We weighed the effects of dobutamine and milrinone as inotropes in mice with cecal ligation and puncture (CLP)-induced polymicrobial sepsis. CLP-induced septic mice exhibited significant cardiac inflammation, as indicated by greatly increased mRNAs of proinflammatory cytokines and robust infiltration of inflammatory cells in the ventricular myocardium. Elevations of plasma cardiac troponin-I showed cardiac injury in CLP mice. Noninvasive echocardiographic assessment of cardiac function revealed that despite preserved left ventricular function in the presence of fluid replacement, the dobutamine inotropic response was significantly impaired in CLP mice compared with sham-operated controls. By contrast, milrinone exerted inotropic effects in sham-operated and CLP mice in an equally effective manner. Surface expression levels of β1-adrenoceptors and α-subunits of three main G protein families in the myocardium were unaffected by CLP-induced sepsis. Plasma cAMP levels were significantly elevated in both sham-operated and CLP mice in response to milrinone but only in sham-operated controls in response to dobutamine. Of phosphodiesterase (PDE) isoforms, PDE4D, but not PDE3A, both of which are responsible for cardiac cAMP hydrolysis, was significantly upregulated in CLP mouse myocardium. We define a novel mechanism for the impaired responsiveness to dobutamine as an inotrope in sepsis, and understanding the role of PDE4D in modulating cardiac functional responsiveness in sepsis may open the potential of a PDE4D-targeted therapeutic option in septic patients with low cardiac output who have a need for inotropic support.NEW & NOTEWORTHY Advisability of the usefulness of dobutamine in septic shock management is limited. Here, we reveal that the effect of dobutamine as a positive inotrope is impaired in mice with cecal ligation and puncture-induced sepsis without changes in cardiac β1-adrenoceptor signaling as a result of cAMP breakdown achieved by upregulated phosphodiesterase 4D.
Collapse
Affiliation(s)
- Mari Sakai
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Tokiko Suzuki
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kengo Tomita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shigeyuki Yamashita
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Sailesh Palikhe
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kohshi Hattori
- Department of Anesthesiology and Pain Relief Center, The University of Tokyo Hospital, Tokyo, Japan; and
| | - Naoki Yoshimura
- Department of Thoracic and Cardiovascular Surgery, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Naoyuki Matsuda
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Hattori
- Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan;
| |
Collapse
|
23
|
Infante JR, Cassier PA, Gerecitano JF, Witteveen PO, Chugh R, Ribrag V, Chakraborty A, Matano A, Dobson JR, Crystal AS, Parasuraman S, Shapiro GI. A Phase I Study of the Cyclin-Dependent Kinase 4/6 Inhibitor Ribociclib (LEE011) in Patients with Advanced Solid Tumors and Lymphomas. Clin Cancer Res 2016; 22:5696-5705. [PMID: 27542767 DOI: 10.1158/1078-0432.ccr-16-1248] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/15/2016] [Accepted: 07/22/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE Ribociclib (an oral, highly specific cyclin-dependent kinase 4/6 inhibitor) inhibits tumor growth in preclinical models with intact retinoblastoma protein (Rb+). This first-in-human study investigated the MTD, recommended dose for expansion (RDE), safety, preliminary activity, pharmacokinetics, and pharmacodynamics of ribociclib in patients with Rb+ advanced solid tumors or lymphomas. EXPERIMENTAL DESIGN Patients received escalating doses of ribociclib (3-weeks-on/1-week-off or continuous). Dose escalation was guided by a Bayesian Logistic Regression Model with overdose control principle. RESULTS Among 132 patients, 125 received ribociclib 3-weeks-on/1-week-off and 7 were dosed continuously. Nine dose-limiting toxicities were observed among 70 MTD/RDE evaluable patients during cycle 1, most commonly neutropenia (n = 3) and thrombocytopenia (n = 2). The MTD and RDE were established as 900 and 600 mg/day 3-weeks-on/1-week-off, respectively. Common treatment-related adverse events were (all-grade; grade 3/4) neutropenia (46%; 27%), leukopenia (43%; 17%), fatigue (45%; 2%), and nausea (42%; 2%). Asymptomatic Fridericia's corrected QT prolongation was specific to doses ≥600 mg/day (9% of patients at 600 mg/day; 33% at doses >600 mg/day). Plasma exposure increases were slightly higher than dose proportional; mean half-life at the RDE was 32.6 hours. Reduced Ki67 was observed in paired skin and tumor biopsies, consistent with ribociclib-mediated antiproliferative activity. There were 3 partial responses and 43 patients achieved a best response of stable disease; 8 patients were progression-free for >6 months. CONCLUSIONS Ribociclib demonstrated an acceptable safety profile, dose-dependent plasma exposure, and preliminary signs of clinical activity. Phase I-III studies of ribociclib are under way in various indications. Clin Cancer Res; 22(23); 5696-705. ©2016 AACR.
Collapse
Affiliation(s)
- Jeffrey R Infante
- Sarah Cannon Research Institute/Tennessee Oncology, PLLC, Nashville, Tennessee.
| | | | | | | | | | | | | | | | - Jason R Dobson
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Adam S Crystal
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | - Sudha Parasuraman
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts
| | | |
Collapse
|
24
|
Soares LM, De Vry J, Steinbusch HW, Milani H, Prickaerts J, Weffort de Oliveira RM. Rolipram improves cognition, reduces anxiety- and despair-like behaviors and impacts hippocampal neuroplasticity after transient global cerebral ischemia. Neuroscience 2016; 326:69-83. [DOI: 10.1016/j.neuroscience.2016.03.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/11/2022]
|
25
|
Novel Radioligands for Cyclic Nucleotide Phosphodiesterase Imaging with Positron Emission Tomography: An Update on Developments Since 2012. Molecules 2016; 21:molecules21050650. [PMID: 27213312 PMCID: PMC6273803 DOI: 10.3390/molecules21050650] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/19/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a class of intracellular enzymes that inactivate the secondary messenger molecules, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Thus, PDEs regulate the signaling cascades mediated by these cyclic nucleotides and affect fundamental intracellular processes. Pharmacological inhibition of PDE activity is a promising strategy for treatment of several diseases. However, the role of the different PDEs in related pathologies is not completely clarified yet. PDE-specific radioligands enable non-invasive visualization and quantification of these enzymes by positron emission tomography (PET) in vivo and provide an important translational tool for elucidation of the relationship between altered expression of PDEs and pathophysiological effects as well as (pre-)clinical evaluation of novel PDE inhibitors developed as therapeutics. Herein we present an overview of novel PDE radioligands for PET published since 2012.
Collapse
|
26
|
Vickers SP, Hackett D, Murray F, Hutson PH, Heal DJ. Effects of lisdexamfetamine in a rat model of binge-eating. J Psychopharmacol 2015; 29:1290-307. [PMID: 26589243 DOI: 10.1177/0269881115615107] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Binge-eating disorder is a common psychiatric disorder affecting ~2% of adults. Binge-eating was initiated in freely-fed, lean, adult, female rats by giving unpredictable, intermittent access to ground, milk chocolate over four weeks. The rats avidly consumed chocolate during 2 hr binge sessions, with compensatory reductions of normal chow intake in these sessions and the days thereafter. Bodyweights of binge-eating rats were normal. The model's predictive validity was explored using nalmefene (0.1-1.0mg/kg), R-baclofen (1.0-10mg/kg) and SB-334867 (3.0-30 mg/kg) (orexin-1 antagonist), which all selectively decreased chocolate bingeing without reducing chow intake. Sibutramine (0.3-5.0mg/kg) non-selectively reduced chocolate and chow consumption. Olanzapine (0.3-3.0mg/kg) was without effect and rolipram (1.0-10mg/kg) abolished all ingestive behaviour. The pro-drug, lisdexamfetamine (LDX; 0.1-1.5mg/kg), dose-dependently reduced chocolate bingeing by ⩽ 71% without significantly decreasing normal chow intake. Its metabolite, D-amphetamine (0.1-1.0mg/kg), dose-dependently and preferentially decreased chocolate bingeing ⩽ 56%. Using selective antagonists to characterize LDX's actions revealed the reduction of chocolate bingeing was partially blocked by prazosin (α1-adrenoceptor; 0.3 and 1.0mg/kg) and possibly by SCH-23390 (D1; 0.1mg/kg). RX821002 (α2-adrenoceptor; 0.1 and 0.3mg/kg) and raclopride (D2; 0.3 and 0.5mg/kg) were without effect. The results indicate that LDX, via its metabolite, d-amphetamine, reduces chocolate bingeing, partly by indirect activation of α1-adrenoceptors and perhaps D1 receptors.
Collapse
|
27
|
Le Roux J, Leriche C, Chamiot-Clerc P, Feutrill J, Halley F, Papin D, Derimay N, Mugler C, Grépin C, Schio L. Preparation and optimization of pyrazolo[1,5-a]pyrimidines as new potent PDE4 inhibitors. Bioorg Med Chem Lett 2015; 26:454-459. [PMID: 26681511 DOI: 10.1016/j.bmcl.2015.11.093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 01/22/2023]
Abstract
A new series of pyrazolo[1,5-a]pyrimidines exemplified by compound 1, has been identified with moderate activity (IC50=165nM), following GSK256066 rescaffolding. Compound 1 optimization at positions 2, 3, 6 and 7 gave compound 10 with high in vitro activity (IC50=0.7nM). Modeling studies based on the PDB structure 3GWT with compound 5 showed the expected overlay with the carboxamide, the aryl moiety and the sulfone. Cyclisation of the primary amide to the 5 position of the pyrazolo[1,5-a]pyrimidines scaffold afforded compounds 15 and 16 with 200-fold enhancement in activity and cellular potency.
Collapse
Affiliation(s)
- Jacques Le Roux
- Sanofi Research Center, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | | | | | - John Feutrill
- SYN
- thesis Med Chem, 399 Royal Parade, Parkville, VIC 3052, Australia
| | - Frank Halley
- Sanofi Research Center, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France.
| | - David Papin
- Sanofi Research Center, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| | - Nathalie Derimay
- Sanofi Open innovation Access Plateform, 16 Rue d'Ankara, 67000 Strasbourg, France
| | - Christelle Mugler
- Sanofi Open innovation Access Plateform, 16 Rue d'Ankara, 67000 Strasbourg, France
| | | | - Laurent Schio
- Sanofi Research Center, 13 Quai Jules Guesde, 94400 Vitry-sur-Seine, France
| |
Collapse
|
28
|
Perez-Aso M, Montesinos MC, Mediero A, Wilder T, Schafer PH, Cronstein B. Apremilast, a novel phosphodiesterase 4 (PDE4) inhibitor, regulates inflammation through multiple cAMP downstream effectors. Arthritis Res Ther 2015; 17:249. [PMID: 26370839 PMCID: PMC4570588 DOI: 10.1186/s13075-015-0771-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023] Open
Abstract
Introduction This work was undertaken to delineate intracellular signaling pathways for the PDE4 inhibitor apremilast and to examine interactions between apremilast, methotrexate and adenosine A2A receptors (A2AR). Methods After apremilast and LPS incubation, intracellular cAMP, TNF-α, IL-10, IL-6 and IL-1α were measured in the Raw264.7 monocytic murine cell line. PKA, Epac1/2 (signaling intermediates for cAMP) and A2AR knockdowns were performed by shRNA transfection and interactions with A2AR and A2BR, as well as with methotrexate were tested in vitro and in the murine air pouch model. Statistical differences were determined using one or two-way ANOVA or Student’s t test. The alpha nominal level was set at 0.05 in all cases. A P value of < 0.05 was considered significant. Results In vitro, apremilast increased intracellular cAMP and inhibited TNF-α release (IC50=104nM) and the specific A2AR-agonist CGS21680 (1μM) increased apremilast potency (IC50=25nM). In this cell line, apremilast increased IL-10 production. PKA, Epac1 and Epac2 knockdowns prevented TNF-α inhibition and IL-10 stimulation by apremilast. In the murine air pouch model, both apremilast and MTX significantly inhibited leukocyte infiltration, while apremilast, but not MTX, significantly inhibited TNF-α release. The addition of MTX (1 mg/kg) to apremilast (5 mg/kg) yielded no more inhibition of leukocyte infiltration or TNF-α release than with apremilast alone. Conclusions The immunoregulatory effects of apremilast appear to be mediated by cAMP through the downstream effectors PKA, Epac1, and Epac2. A2AR agonism potentiated TNF-α inhibition by apremilast, consistent with the cAMP-elevating effects of that receptor. Because the A2AR is also involved in the anti-inflammatory effects of MTX, the mechanism of action of both drugs involves cAMP-dependent pathways and is therefore partially overlapping in nature. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0771-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miguel Perez-Aso
- Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA.
| | - M Carmen Montesinos
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València, 46100, Burjassot, Spain.
| | - Aránzazu Mediero
- Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA.
| | - Tuere Wilder
- Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA
| | - Peter H Schafer
- Department of Translational Development, Celgene Corporation, Summit, NJ, USA.
| | - Bruce Cronstein
- Department of Medicine, New York University School of Medicine, 550 First Ave., New York, NY, 10016, USA. .,Division of Translational Medicine, Department of Medicine, New York University School of Medicine, 550 First Avenue, MSB251, New York, NY, 10016, USA.
| |
Collapse
|
29
|
Mitra A, Leyes A, Manser K, Roadcap B, Mestre C, Tatosian D, Jin L, Uemura N. Use of minipig skin biopsy model as an innovative tool to design topical formulation to achieve desired pharmacokinetics in humans. J Pharm Sci 2015; 104:1701-8. [PMID: 25691117 DOI: 10.1002/jps.24383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 01/06/2023]
Abstract
In vitro cadaver skin permeation studies are often conducted to characterize the permeation profile of compounds for dermal delivery. However, its utility could be limited in the case of topical products because of lack of reliable prediction of in vivo skin kinetics. In this paper, the use of in vivo skin biopsy data to guide topical formulation development is described. A formulation was developed by compounding MK-0873, a phosphodiesterase 4 (PDE4) inhibitor, into a commercially available cream base. The cream was characterized by skin pharmacokinetic studies in minipigs, which demonstrated that MK-0873 concentrations in the epidermis and dermis were substantially higher than the IC80 for human whole blood PDE4 inhibition of ∼200 nM, suggesting that cream should provide sufficient skin exposure to assess clinical efficacy. In toxicological studies, after 1 month repeat application in minipigs minor dermal irritation and minimal systemic exposure were observed. Based on these preclinical data, the cream formulation was chosen for single rising dose clinical studies, where plasma levels of MK-0873 were mostly below the LOQ, whereas skin biopsy concentrations ranged from 6.5 to 25.1 μM. These data suggested that minipig skin biopsy model can be a valuable tool to assess performance of topical formulations and guide formulation development.
Collapse
Affiliation(s)
- Amitava Mitra
- Pharmaceutical Sciences and Clinical Supply, Merck & Co. Inc
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang C, Zhang J, Lu Y, Lin P, Pan T, Zhao X, Liu A, Wang Q, Zhou W, Zhang HT. Antidepressant-like effects of the phosphodiesterase-4 inhibitor etazolate and phosphodiesterase-5 inhibitor sildenafil via cyclic AMP or cyclic GMP signaling in mice. Metab Brain Dis 2014; 29:673-82. [PMID: 24705918 DOI: 10.1007/s11011-014-9533-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/18/2014] [Indexed: 12/25/2022]
Abstract
Inhibition of phosphodiesterase-4 or 5 (PDE4 or PDE5) increases cyclic adenosine monophosphate (cAMP)- or cyclic guanosine monophosphate (cGMP), respectively, which activates cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF)/neuropeptide VGF (non-acryonimic) signaling and produces antidepressant-like effects on behavior. However, causal links among these actions have not been established. In the present study, mice were evaluated for the effects of etazolate and sildenafil, the inhibitor of PDE4 or PDE5, respectively, on depressive-like behavior induced by chronic unpredictable mild stress (CUMS) in the forced-swimming test (FST) and tail suspension test (TST), in the presence or absence of the inhibitor of protein kinase A (PKA) or protein kinase G (PKG) via intracerebroventricular (i.c.v.) infusions. The levels of cAMP, cGMP and expression of pCREB, CREB, BDNF and VGF in both the hippocampus and prefrontal cortex were determined. The results showed that etazolate at 5.0 mg/kg or sildenafil at 30 mg/kg significantly reversed CUMS-induced depressive-like behavior; the effects were paralleled with the increased levels of cAMP/pCREB/BDNF/VGF or cGMP/pCREB/BDNF/VGF signaling, respectively. These effects were completely abolished following inhibition of PKA or PKG, respectively. The results suggest that inhibition of PDE4 by etazolate or PDE5 by sildenafil produced antidepressant-like effects in CUMS-treated animals via cAMP or cGMP signaling, which shares the common downstream signal pathway of CREB/BDNF/VGF.
Collapse
Affiliation(s)
- Chuang Wang
- Department of Pharmacology, Ningbo University School of Medicine, 818 Fenghua Road, Ningbo, Zhejiang, 315211, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hansen RT, Conti M, Zhang HT. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior. Psychopharmacology (Berl) 2014; 231:2941-54. [PMID: 24563185 DOI: 10.1007/s00213-014-3480-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/24/2014] [Indexed: 12/26/2022]
Abstract
RATIONALE Phosphodiesterases (PDEs) are a super family of enzymes responsible for the halting of intracellular cyclic nucleotide signaling and may represent novel therapeutic targets for treatment of cognitive disorders. PDE4 is of considerable interest to cognitive research because it is highly expressed in the brain, particularly in the cognition-related brain regions. Recently, the functional role of PDE4B and PDE4D, two of the four PDE4 subtypes (PDE4A, B, C, and D), in behavior has begun to be identified; however, the role of PDE4A in the regulation of behavior is still unknown. OBJECTIVES The purpose of this study was to characterize the functional role of PDE4A in behavior. METHODS The role of PDE4A in behavior was evaluated through a battery of behavioral tests using PDE4A knockout (KO) mice; urine corticosterone levels were also measured. RESULTS PDE4A KO mice exhibited improved memory in the step-through-passive-avoidance test. They also displayed anxiogenic-like behavior in elevated-plus maze, holeboard, light-dark transition, and novelty suppressed feeding tests. Consistent with the anxiety profile, PDE4A KO mice had elevated corticosterone levels compared with wild-type controls post-stress. Interestingly, PDE4A KO mice displayed no change in object recognition, Morris water maze, forced swim, tail suspension, and duration of anesthesia induced by co-administration of xylazine and ketamine (suggesting that PDE4A KO may not be emetic). CONCLUSIONS These results suggest that PDE4A may be important in the regulation of emotional memory and anxiety-like behavior, but not emesis. PDE4A could possibly represent a novel therapeutic target in the future for anxiety or disorders affecting memory.
Collapse
Affiliation(s)
- Rolf T Hansen
- Departments of Behavioral Medicine & Psychiatry and Physiology & Pharmacology, West Virginia University Health Sciences Center, 1 Medical Center Dr, Morgantown, WV, 26506-9137, USA
| | | | | |
Collapse
|
32
|
Resveratrol and aspirin eliminate tetraploid cells for anticancer chemoprevention. Proc Natl Acad Sci U S A 2014; 111:3020-5. [PMID: 24516128 DOI: 10.1073/pnas.1318440111] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tetraploidy constitutes a genomically metastable state that can lead to aneuploidy and genomic instability. Tetraploid cells are frequently found in preneoplastic lesions, including intestinal cancers arising due to the inactivation of the tumor suppressor adenomatous polyposis coli (APC). Using a phenotypic screen, we identified resveratrol as an agent that selectively reduces the fitness of tetraploid cells by slowing down their cell cycle progression and by stimulating the intrinsic pathway of apoptosis. Selective killing of tetraploid cells was observed for a series of additional agents that indirectly or directly stimulate AMP-activated protein kinase (AMPK) including salicylate, whose chemopreventive action has been established by epidemiological studies and clinical trials. Both resveratrol and salicylate reduced the formation of tetraploid or higher-order polyploid cells resulting from the culture of human colon carcinoma cell lines or primary mouse epithelial cells lacking tumor protein p53 (TP53, best known as p53) in the presence of antimitotic agents, as determined by cytofluorometric and videomicroscopic assays. Moreover, oral treatment with either resveratrol or aspirin, the prodrug of salicylate, repressed the accumulation of tetraploid intestinal epithelial cells in the Apc(Min/+) mouse model of colon cancer. Collectively, our results suggest that the chemopreventive action of resveratrol and aspirin involves the elimination of tetraploid cancer cell precursors.
Collapse
|
33
|
Flores JJ, Zhang Y, Klebe DW, Lekic T, Fu W, Zhang JH. Small molecule inhibitors in the treatment of cerebral ischemia. Expert Opin Pharmacother 2014; 15:659-80. [PMID: 24491068 DOI: 10.1517/14656566.2014.884560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Stroke is the world's second leading cause of death. Although recombinant tissue plasminogen activator is an effective treatment for cerebral ischemia, its limitations and ischemic stroke's complex pathophysiology dictate an increased need for the development of new therapeutic interventions. Small molecule inhibitors (SMIs) have the potential to be used as novel therapeutic modalities for stroke, since many preclinical and clinical trials have established their neuroprotective capabilities. AREAS COVERED This paper provides a summary of the pathophysiology of stroke as well as clinical and preclinical evaluations of SMIs as therapeutic interventions for cerebral ischemia. Cerebral ischemia is broken down into four mechanisms in this article: thrombosis, ischemic insult, mitochondrial injury and immune response. Insight is provided into preclinical and current clinical assessments of SMIs targeting each mechanism as well as a summary of reported results. EXPERT OPINION Many studies demonstrated that pre- or post-treatment with certain SMIs significantly ameliorated adverse effects from stroke. Although some of these promising SMIs moved on to clinical trials, they generally failed, possibly due to the poor translation of preclinical to clinical experiments. Yet, there are many steps being taken to improve the quality of experimental research and translation to clinical trials.
Collapse
Affiliation(s)
- Jerry J Flores
- Loma Linda University School of Medicine, Department of Physiology and Pharmacology , Risley Hall, Room 223, Loma Linda, CA 92354 , USA
| | | | | | | | | | | |
Collapse
|
34
|
Guo J, Lin P, Zhao X, Zhang J, Wei X, Wang Q, Wang C. Etazolate abrogates the lipopolysaccharide (LPS)-induced downregulation of the cAMP/pCREB/BDNF signaling, neuroinflammatory response and depressive-like behavior in mice. Neuroscience 2014; 263:1-14. [PMID: 24434771 DOI: 10.1016/j.neuroscience.2014.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/05/2014] [Accepted: 01/06/2014] [Indexed: 12/16/2022]
Abstract
Increasing evidence has indicated that immune challenge by bacterial lipopolysaccharide (LPS) induces depressive-like behavior, neuroinflammatory response and upregulates phosphodiesterase-4 (PDE4), an enzyme that specifically hydrolyzes cyclic adenosine monophosphate (cAMP). However, whether the potential PDE4 inhibitor etazolate prevents the LPS-induced depressive-like behavior remains unclear. Here using a model of depression induced by the repeated administration of LPS during 16days, and then investigated the influence of LPS on the expression of PDE4, interleukin-1β (IL-1β) and antidepressant action of etazolate in mice through forced swimming, novelty suppressed feeding, sucrose preference and open-field tests. Our results showed that etazolate pretreatment facilitated the recovery from weight loss and prevented the depressive-like behavior induced by repeated LPS administration. Moreover, the antidepressant action of etazolate was paralleled by significantly reducing the expression levels of PDE4A, PDE4B, PDE4D and IL-1β and up-regulating the cAMP/phosphorylated cAMP response-element binding protein (pCREB)/brain-derived neurotrophic factor (BDNF) signaling in the hippocampus and prefrontal cortex of mice. These results indicate that the effects of etazolate on the depressive-like behavior induced by repeated LPS treatment may partially depend on the inhibition of PDE4 subtypes, the activation of the cAMP/pCREB/BDNF signaling and the anti-inflammatory responses in the hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- J Guo
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - P Lin
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - X Zhao
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - J Zhang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - X Wei
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China
| | - Q Wang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China.
| | - C Wang
- Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China; Zhejiang Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
35
|
The phosphodiesterase-4 inhibitor rolipram protects from ischemic stroke in mice by reducing blood–brain-barrier damage, inflammation and thrombosis. Exp Neurol 2013; 247:80-90. [DOI: 10.1016/j.expneurol.2013.03.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 01/06/2023]
|
36
|
Sloka S, Metz LM, Hader W, Starreveld Y, Yong VW. Reduction of microglial activity in a model of multiple sclerosis by dipyridamole. J Neuroinflammation 2013; 10:89. [PMID: 23866809 PMCID: PMC3724584 DOI: 10.1186/1742-2094-10-89] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/02/2013] [Indexed: 01/01/2023] Open
Abstract
Background Despite extensive and persistent activation of microglia in multiple sclerosis (MS), microglia inhibitors have not yet been identified for treatment of the disorder. We sought to identify medications already in clinical use that could inhibit the activation of microglia. On the basis of the reported inhibitory effects of dipyridamole on phosphodiesterase activity that result in the production of various anti-inflammatory outcomes, we selected it for study. Dipyridamole is used clinically for secondary prevention in stroke. In this study, dipyridamole was examined using microglia in culture and in the mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Results We found that dipyridamole attenuated the elevation of several cytokines and chemokines in human microglia caused by Toll-like receptor stimulation. Morphological characteristics of activated microglia in culture were also normalized by dipyridamole. In mice, dipyridamole decreased the clinical severity of EAE and reduced microglial activity and other histological indices of EAE in the spinal cord. Conclusions Dipyridamole is an inhibitor of microglia activation and may have a role in MS and other neurological conditions to attenuate microglial activity.
Collapse
Affiliation(s)
- Scott Sloka
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
37
|
Safavi M, Baeeri M, Abdollahi M. New methods for the discovery and synthesis of PDE7 inhibitors as new drugs for neurological and inflammatory disorders. Expert Opin Drug Discov 2013; 8:733-51. [DOI: 10.1517/17460441.2013.787986] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Kumar N, Goldminz AM, Kim N, Gottlieb AB. Phosphodiesterase 4-targeted treatments for autoimmune diseases. BMC Med 2013; 11:96. [PMID: 23557064 PMCID: PMC3616808 DOI: 10.1186/1741-7015-11-96] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/11/2013] [Indexed: 11/10/2022] Open
Abstract
Advancements in phosphodiesterase (PDE)-targeted therapies have shown promise in recent years for treating patients with a variety of autoimmune diseases. This review summarizes the development of PDE4 inhibitors and the associated literature with a focus on treatments for autoimmune diseases. After the initial investigations of the prototypic PDE inhibitor, rolipram, more selective inhibitors targeting the PDE4 isozyme have been developed. With phase II and phase III clinical trials currently underway to evaluate the safety and efficacy of the latest generation of PDE4 inhibitors, namely apremilast, a new class of treatments may be around the corner for patients suffering from chronic, autoimmune diseases.
Collapse
Affiliation(s)
- Neal Kumar
- Department of Dermatology, Tufts Medical Center, 800 Washington Street #114, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
39
|
Dyke HJ. Novel 5,6-dihydropyrazolo[3,4-E][1,4]diazepin-4 (1H)-one derivatives for the treatment of asthma and chronic obstructive pulmonary disease. Expert Opin Ther Pat 2012; 17:1183-9. [PMID: 20618064 DOI: 10.1517/13543776.17.9.1183] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This application claims dihydropyrazolodiazepinones as phospho-diesterase 4(PDE4) inhibitors for the treatment of asthma and chronic obstructive pulmonary disease. The compounds are shown to be potent inhibitors of PDE4B2, but no other biological data are provided. Thus, it is not clear whether these compounds provide any advantage over previously described PDE4 inhibitors or whether the issues frequently associated with PDE4 inhibitors have been addressed.
Collapse
Affiliation(s)
- Hazel J Dyke
- Argenta Discovery, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex, CM19 5TR, UK
| |
Collapse
|
40
|
Pérez DI, Pistolozzi M, Palomo V, Redondo M, Fortugno C, Gil C, Felix G, Martinez A, Bertucci C. 5-Imino-1,2-4-thiadiazoles and quinazolines derivatives as glycogen synthase kinase 3β (GSK-3β) and phosphodiesterase 7 (PDE7) inhibitors: Determination of blood–brain barrier penetration and binding to human serum albumin. Eur J Pharm Sci 2012; 45:677-84. [DOI: 10.1016/j.ejps.2012.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
|
41
|
Discovery of oxazole-based PDE4 inhibitors with picomolar potency. Bioorg Med Chem Lett 2012; 22:2594-7. [DOI: 10.1016/j.bmcl.2012.01.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 11/22/2022]
|
42
|
Abstract
Spinal cord injury (SCI) has multiple consequences, ranging from molecular imbalances to glial scar formation to functional impairments. It is logical to think that a combination of single treatments implemented in the right order and at the right time will be required to repair the spinal cord. However, the single treatments that compose the combination therapy will need to be chosen with caution as many have multiple outcomes that may or may not be synergistic. Single treatments may also elicit unwanted side-effects and/or effects that would decrease the repair potential of other components and/or the entire combination therapy. In this chapter a number of single treatments are discussed with respect to their multiplicity of action. These include strategies to boost growth and survival (such as neurotrophins and cyclic AMP) and strategies to reduce inhibitory factors (such as antimyelin-associated growth inhibitors and digestion of glial scar-associated inhibitors). We also present an overview of combination therapies that have successfully or unsuccessfully been tested in the laboratory using animal models. To effectively design a combination therapy a number of considerations need to be made such as the nature and timing of the treatments and the method for delivery. This chapter discusses these issues as well as considerations related to chronic SCI and the logistics of bringing combination therapies to the clinic.
Collapse
Affiliation(s)
- M Oudega
- Departments of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
43
|
Bland ND, Wang C, Tallman C, Gustafson AE, Wang Z, Ashton TD, Ochiana SO, McAllister G, Cotter K, Fang AP, Gechijian L, Garceau N, Gangurde R, Ortenberg R, Ondrechen MJ, Campbell RK, Pollastri MP. Pharmacological validation of Trypanosoma brucei phosphodiesterases B1 and B2 as druggable targets for African sleeping sickness. J Med Chem 2011; 54:8188-94. [PMID: 22023548 DOI: 10.1021/jm201148s] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neglected tropical disease drug discovery requires application of pragmatic and efficient methods for development of new therapeutic agents. In this report, we describe our target repurposing efforts for the essential phosphodiesterase (PDE) enzymes TbrPDEB1 and TbrPDEB2 of Trypanosoma brucei , the causative agent for human African trypanosomiasis (HAT). We describe protein expression and purification, assay development, and benchmark screening of a collection of 20 established human PDE inhibitors. We disclose that the human PDE4 inhibitor piclamilast, and some of its analogues, show modest inhibition of TbrPDEB1 and B2 and quickly kill the bloodstream form of the subspecies T. brucei brucei . We also report the development of a homology model of TbrPDEB1 that is useful for understanding the compound-enzyme interactions and for comparing the parasitic and human enzymes. Our profiling and early medicinal chemistry results strongly suggest that human PDE4 chemotypes represent a better starting point for optimization of TbrPDEB inhibitors than those that target any other human PDEs.
Collapse
Affiliation(s)
- Nicholas D Bland
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, Massachusetts 02543, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Szczypka M, Obmińska-Mrukowicz B. Modulating effects of nonselective and selective phosphodiesterase inhibitors on lymphocyte subsets and humoral immune response in mice. Pharmacol Rep 2011; 62:1148-58. [PMID: 21273672 DOI: 10.1016/s1734-1140(10)70377-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 06/29/2010] [Indexed: 11/25/2022]
Abstract
Phosphodiesterase (PDE) inhibitors can regulate the activity of immune cells by increasing intracellular levels of cyclic nucleotides. The aim of this study was to determine the effects of milrinone, a selective PDE3 inhibitor, sildenafil, a selective PDE5 inhibitor, and aminophylline, a nonselective PDE inhibitor, on lymphocyte subsets and humoral immune response in mice when administered in vivo. Aminophylline (20 mg/kg, i.m.), milrinone (1 mg/kg, i.m.) or sildenafil (1 mg/kg, p.o.) were administered to mice either once or five times at 24 h intervals. Some mice were immunized with a sheep red blood cell (SRBC) suspension administered i.p. either 2 h after the single dose or 2 h after the second of the five doses. In non-immunized mice treated five times with PDE inhibitors, the subsets of T lymphocytes in the thymus and T and B lymphocytes in the spleen and mesenteric lymph nodes were determined 12, 24 or 72 h after the last dose. The humoral immune response was determined on days 4, 7 and 14 after SRBC injection in SRBC-immunized mice treated with PDE inhibitors. A modulating effect of the drugs on lymphocyte subpopulations was observed. The greatest impact was observed in splenocyte subpopulations, and resulted in decreased percentages of B cells (CD19(+)) and increased percentages of T cells (CD3(+), CD4(+), CD8(+)). No effect or slight influence of the drugs on anti-SRBC hemagglutinins was observed, but the number of plaque-forming splenocytes was increased. The drugs under investigation did not show a significant immunosuppressive effect.
Collapse
Affiliation(s)
- Marianna Szczypka
- Department of Biochemistry, Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Norwida 31, PL 50-375 Wrocław, Poland.
| | | |
Collapse
|
45
|
Iannotti CA, Clark M, Horn KP, van Rooijen N, Silver J, Steinmetz MP. A combination immunomodulatory treatment promotes neuroprotection and locomotor recovery after contusion SCI. Exp Neurol 2011; 230:3-15. [DOI: 10.1016/j.expneurol.2010.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2009] [Revised: 03/04/2010] [Accepted: 03/10/2010] [Indexed: 10/19/2022]
|
46
|
Effects of dibutyryl cyclic-AMP on survival and neuronal differentiation of neural stem/progenitor cells transplanted into spinal cord injured rats. PLoS One 2011; 6:e21744. [PMID: 21738784 PMCID: PMC3128087 DOI: 10.1371/journal.pone.0021744] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 06/06/2011] [Indexed: 12/23/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) have great potential as a cell replacement therapy for spinal cord injury. However, poor control over transplant cell differentiation and survival remain major obstacles. In this study, we asked whether dibutyryl cyclic-AMP (dbcAMP), which was shown to induce up to 85% in vitro differentiation of NSPCs into neurons would enhance survival of transplanted NSPCs through prolonged exposure either in vitro or in vivo through the controlled release of dbcAMP encapsulated within poly(lactic-co-glycolic acid) (PLGA) microspheres and embedded within chitosan guidance channels. NSPCs, seeded in fibrin scaffolds within the channels, differentiated in vitro to betaIII-tubulin positive neurons by immunostaining and mRNA expression, in response to dbcAMP released from PLGA microspheres. After transplantation in spinal cord injured rats, the survival and differentiation of NSPCs was evaluated. Untreated NSPCs, NSPCs transplanted with dbcAMP-releasing microspheres, and NSPCs pre-differentiated with dbcAMP for 4 days in vitro were transplanted after rat spinal cord transection and assessed 2 and 6 weeks later. Interestingly, NSPC survival was highest in the dbcAMP pre-treated group, having approximately 80% survival at both time points, which is remarkable given that stem cell transplantation often results in less than 1% survival at similar times. Importantly, dbcAMP pre-treatment also resulted in the greatest number of in vivo NSPCs differentiated into neurons (37±4%), followed by dbcAMP-microsphere treated NSPCs (27±14%) and untreated NSPCs (15±7%). The reverse trend was observed for NSPC-derived oligodendrocytes and astrocytes, with these populations being highest in untreated NSPCs. This combination strategy of stem cell-loaded chitosan channels implanted in a fully transected spinal cord resulted in extensive axonal regeneration into the injury site, with improved functional recovery after 6 weeks in animals implanted with pre-differentiated stem cells in chitosan channels.
Collapse
|
47
|
Tralau-Stewart CJ, Williamson RA, Nials AT, Gascoigne M, Dawson J, Hart GJ, Angell ADR, Solanke YE, Lucas FS, Wiseman J, Ward P, Ranshaw LE, Knowles RG. GSK256066, an exceptionally high-affinity and selective inhibitor of phosphodiesterase 4 suitable for administration by inhalation: in vitro, kinetic, and in vivo characterization. J Pharmacol Exp Ther 2011; 337:145-54. [PMID: 21205923 DOI: 10.1124/jpet.110.173690] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oral phosphodiesterase (PDE) 4 inhibitors such as roflumilast have established the potential of PDE4 inhibition for the treatment of respiratory diseases. However, PDE4 inhibitor efficacy is limited by mechanism-related side effects such as emesis and nausea. Delivering the inhibitor by the inhaled route may improve therapeutic index, and we describe 6-({3-[(dimethylamino)carbonyl]phenyl}sulfonyl)-8-methyl-4-{[3-methyloxy) phenyl]amino}-3-quinolinecarboxamide (GSK256066), an exceptionally high-affinity inhibitor of PDE4 designed for inhaled administration. GSK256066 is a slow and tight binding inhibitor of PDE4B (apparent IC(50) 3.2 pM; steady-state IC(50) <0.5 pM), which is more potent than any previously documented compound, for example, roflumilast (IC(50) 390 pM), tofimilast (IC(50) 1.6 nM), and cilomilast (IC(50) 74 nM). Consistent with this, GSK256066 inhibited tumor necrosis factor α production by lipopolysaccharide (LPS)-stimulated human peripheral blood monocytes with 0.01 nM IC(50) (compared with IC(50) values of 5, 22, and 389 nM for roflumilast, tofimilast, and cilomilast, respectively) and by LPS-stimulated whole blood with 126 pM IC(50). GSK256066 was highly selective for PDE4 (>380,000-fold versus PDE1, PDE2, PDE3, PDE5, and PDE6 and >2500-fold against PDE7), inhibited PDE4 isoforms A-D with equal affinity, and had a substantial high-affinity rolipram binding site ratio (>17). When administered intratracheally to rats, GSK256066 inhibited LPS-induced pulmonary neutrophilia with ED(50) values of 1.1 μg/kg (aqueous suspension) and 2.9 μg/kg (dry powder formulation) and was more potent than an aqueous suspension of the corticosteroid fluticasone propionate (ED(50) 9.3 μg/kg). Thus, GSK256066 has been demonstrated to have exceptional potency in vitro and in vivo and is being clinically investigated as a treatment for chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Cathy J Tralau-Stewart
- Drug Discovery Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rutten K, Wallace TL, Works M, Prickaerts J, Blokland A, Novak TJ, Santarelli L, Misner DL. Enhanced long-term depression and impaired reversal learning in phosphodiesterase 4B-knockout (PDE4B-/-) mice. Neuropharmacology 2011; 61:138-47. [PMID: 21458469 DOI: 10.1016/j.neuropharm.2011.03.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 12/19/2022]
Abstract
3'-5'-Cyclic adenosine monophosphate (cAMP) is known to be an important regulator of synaptic plasticity. The effects of cAMP are mediated through downstream effectors such as protein kinase A (PKA), Ca(2+) and cAMP-response element binding protein (CREB). The phosphodiesterase 4 (PDE4) family of enzymes, which is comprised of four genes and at least 25 protein isoforms, mediates the hydrolysis of cAMP, yet little is presently known about the contribution of specific PDE4 isoforms to synaptic plasticity and cognitive behavior. The purpose of the present studies was to determine the contribution of the PDE4B gene in mediating synaptic plasticity and cognitive behavior. Electrophysiological recordings from hippocampal slice preparations of mice deficient in the PDE4B gene (PDE4B(-/-)) showed that knockout animals displayed markedly enhanced basal postsynaptic responses to stimulation and long-term depression as compared to wild-type littermates. Interestingly, no genotypic differences were noted in long-term potentiation experiments following several different induction protocols. On the behavioral level PDE4B(-/-) mice displayed impaired reversal learning in the Morris water maze compared to wild-type littermates, but no differences in acquisition and retention of spatial memory and fear conditioning. Taken together, these results suggest that the PDE4B gene may play a role in synaptic activity and long-term depression and is involved in spatial reversal memory. Our findings support the view that various PDE4 isoforms are non-redundant and have distinct neurological roles.
Collapse
Affiliation(s)
- Kris Rutten
- CNS Discovery Research, Roche Palo Alto, Palo Alto, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Ramachandran C, Patil RV, Sharif NA, Srinivas SP. Effect of elevated intracellular cAMP levels on actomyosin contraction in bovine trabecular meshwork cells. Invest Ophthalmol Vis Sci 2011; 52:1474-85. [PMID: 21071747 DOI: 10.1167/iovs.10-6241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Elevated cAMP in the trabecular meshwork (TM) cells increases the aqueous humor outflow facility. The authors investigated the mechanisms by which elevated cAMP opposes the RhoA-Rho kinase pathway, leading to the relaxation of the actomyosin system in bovine TM cells. METHODS Forskolin (Fsk) and rolipram were used to elevate cAMP levels. Changes in the phosphorylation of RhoA at Ser188 (a putative inhibitory site), the regulatory light chain of myosin (pMLC), and the regulatory subunit of myosin phosphatase (MYPT1) were determined by Western blot analysis. The actomyosin contraction was measured by collagen gel contraction (CGC) assay. The impact of cAMP on cell-matrix adhesion was followed by immunostaining of focal adhesion proteins and by electric cell-substrate impedance sensing. RESULTS Elevated cAMP led to an increase in the phosphorylation of RhoA at Ser188, to the inhibition of endothelin-1 (ET-1)-induced activation of RhoA, and to the formation of stress fibers. The loss of pMLC along the stress fibers was comparable to that induced by Y-27632 (Rho kinase inhibitor). A concomitant reduction in both MYPT1 phosphorylation and pMLC was observed. Elevated cAMP also reduced (ET-1)-induced CGC and the cell-substrate resistance by >50%. CONCLUSIONS In TM cells, elevated cAMP leads to the phosphorylation of RhoA at Ser188. Consequent inhibition of RhoA activity reduces the phosphorylation of MYPT1 at Thr853, leading to a reduction in MLC phosphorylation and actomyosin contraction. These actions, similar to those of the Rho kinase inhibitors, possibly underlie the reported increase in outflow facility in response to Fsk perfusion ex vivo.
Collapse
|
50
|
Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling. J Neurosci 2011; 31:172-83. [PMID: 21209202 DOI: 10.1523/jneurosci.5236-10.2011] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Phosphodiesterase-4 (PDE4) plays an important role in mediating memory via the control of intracellular cAMP signaling; inhibition of PDE4 enhances memory. However, development of PDE4 inhibitors as memory enhancers has been hampered by their major side effect of emesis. PDE4 has four subtypes (PDE4A-D) consisting of 25 splice variants. Mice deficient in PDE4D displayed memory enhancement in radial arm maze, water maze, and object recognition tests. These effects were mimicked by repeated treatment with rolipram in wild-type mice. In addition, similarly as rolipram-treated wild-type mice, PDE4D-deficient mice also displayed increased hippocampal neurogenesis and phosphorylated cAMP response element-binding protein (pCREB). Furthermore, microinfusion of lentiviral vectors that contained microRNAs (miRNAs) targeting long-form PDE4D isoforms into bilateral dentate gyri of the mouse hippocampus downregulated PDE4D4 and PDE4D5, enhanced memory, and increased hippocampal neurogenesis and pCREB. Finally, while rolipram and PDE4D deficiency shortened α2 adrenergic receptor-mediated anesthesia, a surrogate measure of emesis, miRNA-mediated PDE4D knock-down in the hippocampus did not. The present results suggest that PDE4D, in particular long-form PDE4D, plays a critical role in the mediation of memory and hippocampal neurogenesis, which are mediated by cAMP/CREB signaling; reduced expression of PDE4D, or at least PDE4D4 and PDE4D5, in the hippocampus enhances memory but appears not to cause emesis. These novel findings will aid in the development of PDE4 subtype- or variant-selective inhibitors for treatment of disorders involving impaired cognition, including Alzheimer's disease.
Collapse
|