1
|
Pyka P, Haberek W, Więcek M, Szymanska E, Ali W, Cios A, Jastrzębska-Więsek M, Satała G, Podlewska S, Di Giacomo S, Di Sotto A, Garbo S, Karcz T, Lambona C, Marocco F, Latacz G, Sudoł-Tałaj S, Mordyl B, Głuch-Lutwin M, Siwek A, Czarnota-Łydka K, Gogola D, Olejarz-Maciej A, Wilczyńska-Zawal N, Honkisz-Orzechowska E, Starek M, Dąbrowska M, Kucwaj-Brysz K, Fioravanti R, Nasim MJ, Hittinger M, Partyka A, Wesołowska A, Battistelli C, Zwergel C, Handzlik J. First-in-Class Selenium-Containing Potent Serotonin Receptor 5-HT 6 Agents with a Beneficial Neuroprotective Profile against Alzheimer's Disease. J Med Chem 2024; 67:1580-1610. [PMID: 38190615 PMCID: PMC10823479 DOI: 10.1021/acs.jmedchem.3c02148] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024]
Abstract
Alzheimer's disease (AD) has a complex and not-fully-understood etiology. Recently, the serotonin receptor 5-HT6 emerged as a promising target for AD treatment; thus, here a new series of 5-HT6R ligands with a 1,3,5-triazine core and selenoether linkers was explored. Among them, the 2-naphthyl derivatives exhibited strong 5-HT6R affinity and selectivity over 5-HT1AR (13-15), 5-HT7R (14 and 15), and 5-HT2AR (13). Compound 15 displayed high selectivity for 5-HT6R over other central nervous system receptors and exhibited low risk of cardio-, hepato-, and nephrotoxicity and no mutagenicity, indicating its "drug-like" potential. Compound 15 also demonstrated neuroprotection against rotenone-induced neurotoxicity as well as antioxidant and glutathione peroxidase (GPx)-like activity and regulated antioxidant and pro-inflammatory genes and NRF2 nuclear translocation. In rats, 15 showed satisfying pharmacokinetics, penetrated the blood-brain barrier, reversed MK-801-induced memory impairment, and exhibited anxiolytic-like properties. 15's neuroprotective and procognitive-like effects, stronger than those of the approved drug donepezil, may pave the way for the use of selenotriazines to inhibit both causes and symptoms in AD therapy.
Collapse
Affiliation(s)
- Patryk Pyka
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Wawrzyniec Haberek
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Małgorzata Więcek
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewa Szymanska
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Wesam Ali
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Agnieszka Cios
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Grzegorz Satała
- Department
of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Sabina Podlewska
- Department
of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Silvia Di Giacomo
- Department
of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Italian
National Institute of Health (ISS), Viale Regina Elena 299, 00161 Rome, Italy
| | - Antonella Di Sotto
- Department
of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sabrina Garbo
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Tadeusz Karcz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesco Marocco
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Gniewomir Latacz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Sylwia Sudoł-Tałaj
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Barbara Mordyl
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agata Siwek
- Department
of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Kinga Czarnota-Łydka
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Dawid Gogola
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
- Doctoral
School of Medical and Health Sciences, Jagiellonian
University Medical College, św. Łazarza 15, 31-530 Kraków, Poland
| | - Agnieszka Olejarz-Maciej
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Natalia Wilczyńska-Zawal
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Starek
- Department
of Inorganic and Analytical Chemistry, Jagiellonian
University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Dąbrowska
- Department
of Inorganic and Analytical Chemistry, Jagiellonian
University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Rossella Fioravanti
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Muhammad Jawad Nasim
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Marius Hittinger
- Department
of Drug Discovery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
- Department
of Drug Delivery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Anna Partyka
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Wesołowska
- Department
of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Cecilia Battistelli
- Department
of Molecular Medicine, Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Clemens Zwergel
- Division
of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Department
of Drug Discovery, Pharmbiotec gGmbH, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Jadwiga Handzlik
- Department
of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
2
|
Gałęzowski M, Fabritius CH, Pesonen U, Salo H, Olszak-Płachta M, Czerwińska K, Adamczyk J, Król M, Prusis P, Sieprawska-Lupa M, Mikulski M, Kuokkanen K, Obuchowicz R, Korjamo T, Jalava N, Nikiforuk A, Nowak M. 5-HT 6 receptor antagonists. Design, synthesis, and structure-activity relationship of substituted 2-(1-methyl-4-piperazinyl)pyridines. Bioorg Med Chem Lett 2023; 96:129497. [PMID: 37806499 DOI: 10.1016/j.bmcl.2023.129497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
In this study, we present the discovery and pharmacological characterization of a new series of 6-piperazinyl-7-azaindoles. These compounds demonstrate potent antagonism and selectivity against the 5-HT6 receptor. Our research primarily focuses on optimizing the lead structure and investigating the structure-activity relationship (SAR) of these compounds. Our main objective is to improve their activity and selectivity against off-target receptors. Overall, our findings contribute to the advancement of novel compounds targeting the 5-HT6 receptor. Compound 29 exhibits significant promise in terms of pharmacological, physicochemical, and ADME (Absorption, Distribution, Metabolism, and Excretion) properties. Consequently, it merits thorough exploration as a potential drug candidate due to its favorable activity profile and successful outcomes in a range of in vivo experiments.
Collapse
Affiliation(s)
| | | | - Ullamari Pesonen
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | - Harri Salo
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | | | | | - Justyna Adamczyk
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| | - Marcin Król
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| | - Peteris Prusis
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | | | - Maciej Mikulski
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| | - Katja Kuokkanen
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | | | - Timo Korjamo
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | - Niina Jalava
- Orion Corporation, Orion Pharma, Orionintie 1A, 02200 Espoo, Finland
| | - Agnieszka Nikiforuk
- Department of Behavioral Neuroscience and Drug Development, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Mateusz Nowak
- Ryvu Therapeutics S.A., Sternbacha Street 2, 30-394 Kraków, Poland
| |
Collapse
|
3
|
Asproni B, Catto M, Loriga G, Murineddu G, Corona P, Purgatorio R, Cichero E, Fossa P, Scarano N, Martínez AL, Brea J, Pinna GA. Novel thienocycloalkylpyridazinones as useful scaffolds for acetylcholinesterase inhibition and serotonin 5-HT6 receptor interaction. Bioorg Med Chem 2023; 84:117256. [PMID: 37003157 DOI: 10.1016/j.bmc.2023.117256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023]
Abstract
A library of eighteen thienocycloalkylpyridazinones was synthesized for human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE) inhibition and serotonin 5-HT6 receptor subtype interaction by following a multitarget-directed ligand approach (MTDL), as a suitable strategy for treatment of Alzheimer's disease (AD). The novel compounds featured a tricyclic scaffold, namely thieno[3,2-h]cinnolinone, thienocyclopentapyridazinone and thienocycloheptapyridazinone, connected through alkyl chains of variable length to proper amine moieties, most often represented by N-benzylpiperazine or 1-(phenylsulfonyl)-4-(piperazin-1-ylmethyl)-1H-indole as structural elements addressing AChE and 5-HT6 interaction, respectively. Our study highlighted the versatility of thienocycloalkylpyridazinones as useful architectures for AChE interaction, with several N-benzylpiperazine-based analogues emerging as potent and selective hAChE inhibitors with IC50 in the 0.17-1.23 μM range, exhibiting low to poor activity for hBChE (IC50 = 4.13-9.70 μM). The introduction of 5-HT6 structural moiety phenylsulfonylindole in place of N-benzylpiperazine, in tandem with a pentamethylene linker, gave potent 5-HT6 thieno[3,2-h]cinnolinone and thienocyclopentapyridazinone-based ligands both displaying hAChE inhibition in the low micromolar range and unappreciable activity towards hBChE. While docking studies provided a rational structural explanation for AChE/BChE enzyme and 5-HT6 receptor interaction, in silico prediction of ADME properties of tested compounds suggested further optimization for development of such compounds in the field of MTDL for AD.
Collapse
|
4
|
Khatun S, Singh A, Bader GN, Sofi FA. Imidazopyridine, a promising scaffold with potential medicinal applications and structural activity relationship (SAR): recent advances. J Biomol Struct Dyn 2022; 40:14279-14302. [PMID: 34779710 DOI: 10.1080/07391102.2021.1997818] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Imidazopyridine scaffold has gained tremendous importance over the past few decades. Imidazopyridines have been expeditiously used for the rationale design and development of novel synthetic analogs for various therapeutic disorders. A wide variety of imidazopyridine derivatives have been developed as potential anti-cancer, anti-diabetic, anti-tubercular, anti-microbial, anti-viral, anti-inflammatory, central nervous system (CNS) agents besides other chemotherapeutic agents. Imidazopyridine heterocyclic system acts as a key pharmacophore motif for the identification and optimization of lead structures to increase medicinal chemistry toolbox. The present review highlights the medicinal significances of imidazopyridines for their rationale development as lead molecules with improved therapeutic efficacies. This review further emphasis on the structure-activity relationships (SARs) of the various designed imidazopyridines to establish a relationship between the key structural features versus the biological activities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samima Khatun
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Abhinav Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Punjab, India
| | - Ghulam N Bader
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, J & K, India
| | - Firdoos Ahmad Sofi
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, J & K, India
| |
Collapse
|
5
|
Serotonin 5-HT 6 Receptor Ligands and Butyrylcholinesterase Inhibitors Displaying Antioxidant Activity-Design, Synthesis and Biological Evaluation of Multifunctional Agents against Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23169443. [PMID: 36012707 PMCID: PMC9409043 DOI: 10.3390/ijms23169443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegeneration leading to Alzheimer’s disease results from a complex interplay of a variety of processes including misfolding and aggregation of amyloid beta and tau proteins, neuroinflammation or oxidative stress. Therefore, to address more than one of these, drug discovery programmes focus on the development of multifunctional ligands, preferably with disease-modifying and symptoms-reducing potential. Following this idea, herein we present the design and synthesis of multifunctional ligands and biological evaluation of their 5-HT6 receptor affinity (radioligand binding assay), cholinesterase inhibitory activity (spectroscopic Ellman’s assay), antioxidant activity (ABTS assay) and metal-chelating properties, as well as a preliminary ADMET properties evaluation. Based on the results we selected compound 14 as a well-balanced and potent 5-HT6 receptor ligand (Ki = 22 nM) and human BuChE inhibitor (IC50 = 16 nM) with antioxidant potential expressed as a reduction of ABTS radicals by 35% (150 μM). The study also revealed additional metal-chelating properties of compounds 15 and 18. The presented compounds modulating Alzheimer’s disease-related processes might be further developed as multifunctional ligands against the disease.
Collapse
|
6
|
Vera G, Mangeant R, Stiebing S, Berhault Y, Fabis F, Cailly T, Collot V. Thiofunctionalization of Electron‐Rich Heteroarenes through Magnesiation and Trapping with Octasulfur. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gonzalo Vera
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Reynald Mangeant
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Silvia Stiebing
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Yohann Berhault
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Frédéric Fabis
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| | - Thomas Cailly
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
- Normandie Univ UNICAEN IMOGERE 14000 Caen France
- CHU Côte de Nacre Department of Nuclear Medicine 14000 Caen France
- Institut Blood and Brain@Caen-Normandie (BB@C) Boulevard Henri Becquerel 14074 Caen France
| | - Valérie Collot
- Normandie Univ UNICAEN Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN) 14000 Caen France
| |
Collapse
|
7
|
The Phenoxyalkyltriazine Antagonists for 5-HT 6 Receptor with Promising Procognitive and Pharmacokinetic Properties In Vivo in Search for a Novel Therapeutic Approach to Dementia Diseases. Int J Mol Sci 2021; 22:ijms221910773. [PMID: 34639113 PMCID: PMC8509428 DOI: 10.3390/ijms221910773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Among the serotonin receptors, one of the most recently discovered 5-HT6 subtype is an important protein target and its ligands may play a key role in the innovative treatment of cognitive disorders. However, none of its selective ligands have reached the pharmaceutical market yet. Recently, a new chemical class of potent 5-HT6 receptor agents, the 1,3,5-triazine-piperazine derivatives, has been synthesized. Three members, the ortho and meta dichloro- (1,2) and the unsubstituted phenyl (3) derivatives, proved to be of special interest due to their high affinities (1,2) and selectivity (3) toward 5-HT6 receptor. Thus, a broader pharmacological profile for 1–3, including comprehensive screening of the receptor selectivity and drug-like parameters in vitro as well as both, pharmacokinetic and pharmacodynamic properties in vivo, have been investigated within this study. A comprehensive analysis of the obtained results indicated significant procognitive-like activity together with beneficial drug-likeness in vitro and pharmacokinetics in vivo profiles for both, (RS)-4-[1-(2,3-dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (2) and (RS)-4-(4-methylpiperazin-1-yl)-6-(1-phenoxypropyl)-1,3,5-triazin-2-amine (3), but insensibly predominant for compound 2. Nevertheless, both compounds (2 and 3) seem to be good Central Nervous System drug candidates in search for novel therapeutic approach to dementia diseases, based on the 5-HT6 receptor target.
Collapse
|
8
|
Li X, Gao L, Liu J, Zhang H, Chen H, Yang L, Wu M, Li C, Zhu X, Ding Y, Sun L. Safety, Tolerability and Pharmacokinetics of the Serotonin 5-HT6 Receptor Antagonist, HEC30654, in Healthy Chinese Subjects. Front Pharmacol 2021; 12:726536. [PMID: 34489712 PMCID: PMC8416768 DOI: 10.3389/fphar.2021.726536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background and Objective: HEC30654 is a selective 5-HT6 receptor antagonist that was safe and well-tolerated in preclinical models of Alzheimer’s disease. The objective of this double-blind, randomized, placebo-controlled clinical trial was to evaluate the safety, tolerability, and pharmacokinetic profile of HEC30654 after single ascending doses in healthy Chinese subjects. Methods: Healthy volunteers received a single oral dose of HEC30654 (5, 10, 15, 30, 60 mg). Safety and tolerability assessments included adverse events, vital signs, and findings on electrocardiograms, electroencephalograms, physical examination, and clinical laboratory tests. Pharmacokinetic analysis of HEC30654 and its major metabolite HEC93263 were conducted in blood, urine, and fecal samples. Results: Single doses of HEC30654 up to 30 mg were generally safe and well tolerated, but dose escalation was terminated early as the 60 mg HEC30654 treatment group met the pre-defined stopping rules specified in the protocol. Median tmax of HEC30654 was 6 h (range, 4–12 h), t1/2 of 10–60 mg HEC30654 ranged from 52.1 to 63.8 h. Exposure to HEC30654 across the dose range explored in this study increased more than in proportion to dose. Metabolism of HEC30654 to HEC93263 was slow (<10%), and HEC30654 was mainly eliminated unchanged through feces. Conclusion: Single doses of HEC30654 up to 30 mg were generally safe and well tolerated. Based on preclinical efficacy in various models of cognition, HEC30654 may represent a therapeutic option for symptomatic treatment of cognitive disorders.
Collapse
Affiliation(s)
- Xiaojiao Li
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Lei Gao
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Jingrui Liu
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Hong Zhang
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Hong Chen
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Lizi Yang
- Nanguan District Maternal and Child Health and Family Planning Service Center of Changchun, Changchun, China
| | - Min Wu
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Cuiyun Li
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Xiaoxue Zhu
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Yanhua Ding
- Phase I Clinical Trial Unit, The First Hospital of Jilin University, Changchun, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Sun Z, Wang B, Chen C, Li C, Zhang Y. 5-HT6R null mutatrion induces synaptic and cognitive defects. Aging Cell 2021; 20:e13369. [PMID: 33960602 PMCID: PMC8208783 DOI: 10.1111/acel.13369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Serotonin 6 receptor (5-HT6R) is a promising target for a variety of human diseases, such as Alzheimer's disease (AD) and schizophrenia. However, the detailed mechanism underlying 5-HT6R activity in the central nervous system (CNS) is not fully understood. In the present study, 5-HT6R null mutant (5-HT6R-/- ) mice were found to exhibit cognitive deficiencies and abnormal anxiety levels. 5-HT6R is considered to be specifically localized on the primary cilia. We found that the loss of 5-HT6R affected the Sonic Hedgehog signaling pathway in the primary cilia. 5-HT6R-/- mice showed remarkable alterations in neuronal morphology, including dendrite complexity and axon initial segment morphology. Neurons lacking 5-HT6R exhibited increased neuronal excitability. Our findings highlight the complexity of 5-HT6R functions in the primary ciliary and neuronal physiology, supporting the theory that this receptor modulates neuronal morphology and transmission, and contributes to cognitive deficits in a variety of human diseases, such as AD, schizophrenia, and ciliopathies.
Collapse
Affiliation(s)
- Zehui Sun
- State Key Laboratory of Membrane BiologyCollege of Life SciencesPeking UniversityBeijingChina
| | - Bingjie Wang
- State Key Laboratory of Membrane BiologyCollege of Life SciencesPeking UniversityBeijingChina
| | - Chen Chen
- School of Life SciencesLanzhou UniversityLanzhouChina
| | - Chenjian Li
- State Key Laboratory of Membrane BiologyCollege of Life SciencesPeking UniversityBeijingChina
| | - Yan Zhang
- State Key Laboratory of Membrane BiologyCollege of Life SciencesPeking UniversityBeijingChina,PKU/IDG McGovern Institute for Brain ResearchBeijingChina
| |
Collapse
|
10
|
Drug design of new 5-HT 6R antagonists aided by artificial neural networks. J Mol Graph Model 2021; 104:107844. [PMID: 33529936 DOI: 10.1016/j.jmgm.2021.107844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 11/23/2022]
Abstract
Alzheimer's Disease (AD) is the most frequent illness and cause of death amongst the age related-neurodegenerative disorders. The Alzheimer's Disease International (ADI) reported in 2019 that over 50 million people were living with dementia in the world and this number could potentially be around 152 million by 2050.5-hydroxtryptamine subtype 6 receptor (5-HT6R) has been identified as a potential anti-amnesic drug target and therefore, the administration of 5-HT6R antagonists can likely mitigate the memory loss and intellectual deterioration associated with AD. Herein, computational tools were applied to design new 5-HT6 antagonists and their biological activity values were predicted by our QSAR model obtained from Artificial Neural Networks (ANN). The proposed compounds here from the QSAR-ANN model presented significant biological activity values and some of them have achieved pKi above 9.00. Furthermore, our results suggest that the presence of halogen atoms (especially bromine) linked to the aromatic ring at para-position (HYD) contribute considerably to the increase of the biological activity values while bulky groups in the PI position do not culminate with the increase antagonist activity of compounds here analyzed. Finally, the ADME/Tox profile as well as the synthetic accessibility of new proposed compounds qualify them to go on further with experimental procedures and thenceforward their antagonist effects can be confirmed.
Collapse
|
11
|
Gyertyán I, Kassai F, Kozma K, Kitka T, Ernyey AJ. Procognitive profiling of a serotonin 5-HT 6 receptor antagonist in a complex model system in rats: A novel translational approach for clinical prediction. Brain Res Bull 2020; 165:238-245. [PMID: 33086133 DOI: 10.1016/j.brainresbull.2020.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The serial clinical failures of novel cognitive enhancer candidates point out the lack of predictive power in the preceding animal experimentation. For a more predictive profiling of putative procognitive drugs in rodents, we recently elaborated a methodical approach which consists of three fundamental steps: 1. teaching various learning tasks representing different cognitive domains to the same cohort of animals with the aim to create a population with 'widespread knowledge'. 2. Applying a cognitive deficit-inducing intervention to transform this cohort of animals to a 'patient population'. 3. Testing putative procognitive drugs with a 'clinical trial-like' design on the wide spectrum of cognitive (dys)functions in the actual 'patient population'. The present study has been the first trial to test the feasibility and utility of the proposed system. METHODS The population with 'widespread knowledge' consisted of 2 year old male Long-Evans rats with a learning history in five-choice serial reaction time task (5-CSRTT, attentional paradigm), Morris water maze (MWM, spatial learning), a cooperative task carried out in pairs (social learning), and a skill-learning task, "pot-jumping". For inducing cognitive deficit, thus creating a 'patient population' we increased the difficulty of the tasks. For the cognitive enhancer mechanism to test in the system we chose a serotonin 5-HT6 receptor antagonist compound, RO4368554. Animals were randomly assigned to vehicle- and drug treated groups based on their baseline learning performance and their response in a pilot test of increase in task difficulty. During the 13-day long treatment with 3 mg/kg ip. RO4368554 all the learning paradigms were repeatedly run with increased difficulty supplemented with a novel object recognition test (NOR, episodic memory). RESULTS In the 5-CSRTT, reducing the stimulus duration from 1 s to 0.25 s caused a significant decrease in the percentage of correct responses (from 52 % to 31 % in the control group) which was not affected by the 5-HT6 receptor antagonist treatment (correct responses decreased from 58 % to 31 %). In the MWM, replacing the escape platform to a new location did not mean a hard challenge for the rats. Members of both groups could find it within a relatively short time: mean escape latencies were 83 s and 65 s at the first replacement trial and 58 s and 74 s at the second one in the control and drug-treated groups, respectively. In the cooperation paradigm, where the rats had to perform simultaneous nose-pokes to get a reward, task difficulty was increased by requiring two consecutive simultaneous nose-poking from the animals. This caused a fall in the percentage of successful trials in both groups (from 48 % to 12 % and from 50 % to 20 % in the saline - and drug-treated group, respectively), however, by the end of the treatment RO4368554-treated animals showed significantly higher performance (29 %) than saline treated rats (2%). The NOR test, carried out with a 5 -h delay, revealed poor recognition memory in both groups (discrimination index (DI) values were 0.13 and 0.06 for saline and RO4368554, respectively). Performance in the pot jumping test was also not improved by the drug-treatment. CONCLUSIONS The applied study design allowed parallel measurements of the action of the test compound on several cognitive functions and to follow its time course. RO4368554 did not show notable effects on impaired attention and visual recognition; nor did it affect spatial and procedural learning, but it exerted beneficial effect on cooperative behaviour. The revealed activity pattern highlight the cognitive domain most sensitive to the particular drug effect and may give hints for further target validating and clinical studies.
Collapse
Affiliation(s)
- István Gyertyán
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Semmelweis University, Department of Pharmacology and Pharmacotherapy, Hungary; Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences, Hungary.
| | - Ferenc Kassai
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Semmelweis University, Department of Pharmacology and Pharmacotherapy, Hungary; Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences, Hungary
| | - Kata Kozma
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Semmelweis University, Department of Pharmacology and Pharmacotherapy, Hungary; Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences, Hungary
| | - Tamás Kitka
- ATRC Aurigon Toxicological Research Center Ltd., Hungary
| | - Aliz Judit Ernyey
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Semmelweis University, Department of Pharmacology and Pharmacotherapy, Hungary; Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Sciences, Hungary
| |
Collapse
|
12
|
Sudoł S, Kucwaj-Brysz K, Kurczab R, Wilczyńska N, Jastrzębska-Więsek M, Satała G, Latacz G, Głuch-Lutwin M, Mordyl B, Żesławska E, Nitek W, Partyka A, Buzun K, Doroz-Płonka A, Wesołowska A, Bielawska A, Handzlik J. Chlorine substituents and linker topology as factors of 5-HT 6R activity for novel highly active 1,3,5-triazine derivatives with procognitive properties in vivo. Eur J Med Chem 2020; 203:112529. [PMID: 32693296 DOI: 10.1016/j.ejmech.2020.112529] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 11/26/2022]
Abstract
In the light of recent lines of evidence, 5-HT6R ligands are a promising tool for future treatment of memory impairment. Hence, this study has supplied highly potent 5-HT6R agents with procognitive effects, which represent an original chemical class of 1,3,5-triazines, different from widely studied sulfone and indole-like 5-HT6R ligands. The new compounds were rationally designed as modifications of lead, 4-(1-(2-chlorophenoxy)ethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (1), involving an introduction of: (i) two chlorines at benzene ring and (ii) varied linkers joining the triazine ring to aromatic ethers. Synthesis, in vitro and in vivo biological tests and computer-aided SAR analysis for 19 new compounds were carried out. Most of the new triazines displayed high affinity (Ki < 100 nM) and selectivity towards 5-HT6R, with respect to 5-HT2AR, 5-HT7R and D2R. The crystallography-supported docking studies, including quantum-polarized ligand docking (QPLD), indicated that chlorine atoms may be involved in different type of halogen bonding, however, the linker properties seem to predominately affect the 5-HT6R affinity. 4-[1-(2,5-Dichlorophenoxy)propyl]-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (9), which displayed: the highest affinity (Ki = 6 nM), very strong 5-HT6R antagonistic action (KB = 27 pM), procognitive effects in vivo in novel object recognition (NOR) test in rats, a very good permeability in PAMPA model and satisfying safety in vitro, was identified as the most potent 1,3,5-triazine agent so far, useful as a new lead for further research.
Collapse
Affiliation(s)
- Sylwia Sudoł
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland; Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Natalia Wilczyńska
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Ewa Żesławska
- Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, PL 30-084, Kraków, Poland
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, PL 30-387, Kraków, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Kamila Buzun
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland; Deparmtent of Biotechnology, Medical University of Białystok, PL 15-222, Białystok, Poland
| | - Agata Doroz-Płonka
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland
| | - Anna Bielawska
- Deparmtent of Biotechnology, Medical University of Białystok, PL 15-222, Białystok, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL 30-688, Kraków, Poland.
| |
Collapse
|
13
|
Millan MJ, Dekeyne A, Gobert A, Brocco M, Mannoury la Cour C, Ortuno JC, Watson D, Fone KCF. Dual-acting agents for improving cognition and real-world function in Alzheimer's disease: Focus on 5-HT6 and D3 receptors as hubs. Neuropharmacology 2020; 177:108099. [PMID: 32525060 DOI: 10.1016/j.neuropharm.2020.108099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023]
Abstract
To date, there are no interventions that impede the inexorable progression of Alzheimer's disease (AD), and currently-available drugs cholinesterase (AChE) inhibitors and the N-Methyl-d-Aspartate receptor antagonist, memantine, offer only modest symptomatic benefit. Moreover, a range of mechanistically-diverse agents (glutamatergic, histaminergic, monoaminergic, cholinergic) have disappointed in clinical trials, alone and/or in association with AChE inhibitors. This includes serotonin (5-HT) receptor-6 antagonists, despite compelling preclinical observations in rodents and primates suggesting a positive influence on cognition. The emphasis has so far been on high selectivity. However, for a multi-factorial disorder like idiopathic AD, 5-HT6 antagonists possessing additional pharmacological actions might be more effective, by analogy to "multi-target" antipsychotics. Based on this notion, drug discovery programmes have coupled 5-HT6 blockade to 5-HT4 agonism and inhibition of AchE. Further, combined 5-HT6/dopamine D3 receptor (D3) antagonists are of especial interest since D3 blockade mirrors 5-HT6 antagonism in exerting broad-based pro-cognitive properties in animals. Moreover, 5-HT6 and dopamine D3 antagonists promote neurocognition and social cognition via both distinctive and convergent actions expressed mainly in frontal cortex, including suppression of mTOR over-activation and reinforcement of cholinergic and glutamatergic transmission. In addition, 5-HT6 blockade affords potential anti-anxiety, anti-depressive and anti-epileptic properties, and antagonising 5-HT6 receptors may be associated with neuroprotective ("disease-modifying") properties. Finally D3 antagonism may counter psychotic episodes and D3 receptors themselves offer a promising hub for multi-target agents. The present article reviews the status of "R and D" into multi-target 5-HT6 and D3 ligands for improved treatment of AD and other neurodegenerative disorders of aging. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Mark J Millan
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, 78290, Croissy sur Seine, France.
| | - Anne Dekeyne
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Alain Gobert
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Mauricette Brocco
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Clotilde Mannoury la Cour
- Centre for Therapeutic Innovation in Neuropsychiatry, Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Jean-Claude Ortuno
- Centre for Excellence in Chemistry, Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - David Watson
- School of Life Sciences, Queen's Medical Centre, The University of Nottingham, NG7 2UH, England, UK
| | - Kevin C F Fone
- School of Life Sciences, Queen's Medical Centre, The University of Nottingham, NG7 2UH, England, UK
| |
Collapse
|
14
|
da Silva AP, de Angelo RM, de Paula H, Honório KM, da Silva ABF. Drug design of new 5-HT6 antagonists: a QSAR study of arylsulfonamide derivatives. Struct Chem 2020. [DOI: 10.1007/s11224-020-01513-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
El-Hussieny M, El-Sayed NF, Ewies EF, Ibrahim NM, Mahran MRH, Fouad MA. Synthesis, molecular docking and biological evaluation of 2-(thiophen-2-yl)-1H-indoles as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Chem 2019; 95:103521. [PMID: 31884145 DOI: 10.1016/j.bioorg.2019.103521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 10/25/2022]
Abstract
New 2-(thiophen-2-yl)-1H-indole derivatives bearing hydrophobic substituents at the 3-position were designed, synthesized and evaluated for their inhibition of HIV-1 reverse transcriptase (RT) enzyme. Dialkylphosphites (2a-c) or trialkylphosphites (3a-c) were reacted with 2-(thiophen-2-yl)-1H-indole-3-carbaldehyde (1) yielding the corresponding α-hydroxyphosphonate adducts (7a-7c). The reaction of compound 1 with the ylidenetriphenylphosphoranes (4a-4c) proceeds via Wittig mechanism giving the corresponding ethylenes (E, 8a-c). Compounds 8b,c were equally obtained upon reacting aldehyde 1 with the appropriate dialkylphosphonates 5a,b under the Horner-Wittig reaction conditions. On the other hand, the reaction of aldehyde 1 with diethyl cyanomethylene phosphonate (5c) yielded a mixture of the E-ethylene 10 and the cyanovinyl phosphonate 11. The thioaldehyde 12 was obtained upon refluxing aldehyde 1 with the Lawesson's reagent (LR, 6a) or with the Japanese reagent (JR, 6b) in dry toluene. Upon evaluation of HIV-1 Reverse Transcriptase enzyme inhibition, compound 8b (IC50 = 2.93 nM) exhibited the superior HIV-1 RT inhibition and its potency was about 3-folds that of Efavirenz (IC50 = 6.03 nM). Also, compounds 9a (IC50 = 4.09 nM) and 12 (IC50 = 3.54 nM) showed significantly higher inhibition potency. Moreover, compounds 7b (IC50 = 7.48 nM), and 8a (IC50 = 4.55 nM) showed potency not significantly different from that of Efavirenz. Molecular docking experiments on these potent compounds was in accordance with the in vitro data and confirmed binding of these compounds to the enzyme through ring-stacking and hydrogen bond interactions. According to these results, the new molecules would serve as potent HIV-1 NNRTIs inhibitors.
Collapse
Affiliation(s)
- Marwa El-Hussieny
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 El-Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Naglaa F El-Sayed
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 El-Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Ewies F Ewies
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 El-Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt.
| | - Nabila M Ibrahim
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 El-Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Mohamed R H Mahran
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 El-Bohouth St. (former El Tahrir St.), P.O. 12622, Dokki, Giza, Egypt
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo 11562, Egypt.
| |
Collapse
|
16
|
Ali W, Więcek M, Łażewska D, Kurczab R, Jastrzębska-Więsek M, Satała G, Kucwaj-Brysz K, Lubelska A, Głuch-Lutwin M, Mordyl B, Siwek A, Nasim MJ, Partyka A, Sudoł S, Latacz G, Wesołowska A, Kieć-Kononowicz K, Handzlik J. Synthesis and computer-aided SAR studies for derivatives of phenoxyalkyl-1,3,5-triazine as the new potent ligands for serotonin receptors 5-HT 6. Eur J Med Chem 2019; 178:740-751. [PMID: 31229876 DOI: 10.1016/j.ejmech.2019.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 11/19/2022]
Abstract
This research has provided the most active 5-HT6R agents among 1,3,5-triazine derivatives investigated to date and has also identified the world's first selenium-containing 5-HT6R ligands. The studies are focused on design, synthesis, biological evaluation and docking-supported SAR analysis for novel 5-HT6R agents as derivatives of lead structure 4-(4-methylpiperazin-1-yl)-6-(phenoxymethyl)-1,3,5-triazin-2-amine (7). The lead modifications included an introduction of: (i) various small substituents at benzene ring, (ii) a branched ether linker or (iii) the ether oxygen replacement with other chalcogen (S, Se) or sulfonyl moiety. Hence, a series of new compounds (7-24) was synthesized and examined on their affinities for 5-HT6R and selectivity, in respect to the 5-HT1AR, 5-HT2AR, 5-HT7R and dopamine D2 receptor, in the radioligand binding assays. For representative most active compounds functional bioassays and toxicity profile in vitro and antidepressant-like activity in vivo were examined. The 2-isopropyl-5-methylphenyl derivative (10) was found as the most active triazine 5-HT6R antagonist (Ki = 11 nM). SAR analysis indicated, that an exchange of oxygen to selenium (7 vs. 22), and especially, to sulfur (7 vs. 19) was beneficial to increase both affinity and antagonistic action for 5-HT6R. Surprisingly, an introduction of SO2 caused a drastic decrease of the 5-HT6R affinity, which was explained at a molecular level based on docking studies. All in vivo tested compounds (10, 18 and 21) did not show any risk of toxicity in the safety studies in vitro.
Collapse
Affiliation(s)
- Wesam Ali
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland; Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland, Campus B2 1, D-66123, Saarbruecken, Germany
| | - Małgorzata Więcek
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Rafał Kurczab
- Department of Medicinal Chemistry Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL, 31-343, Kraków, Poland
| | - Magdalena Jastrzębska-Więsek
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL, 31-343, Kraków, Poland
| | - Katarzyna Kucwaj-Brysz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Annamaria Lubelska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Muhammad Jawad Nasim
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland; Division of Bioorganic Chemistry, School of Pharmacy, University of Saarland, Campus B2 1, D-66123, Saarbruecken, Germany
| | - Anna Partyka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Sylwia Sudoł
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University, Medical College, Medyczna 9, PL, 30-688, Kraków, Poland.
| |
Collapse
|
17
|
Marco-Contelles J. Facts, Results, and Perspectives of the Current Alzheimer's Disease Research. ACS Chem Neurosci 2019; 10:1127-1128. [PMID: 30707547 DOI: 10.1021/acschemneuro.9b00034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Credit should be granted to medicinal chemists with a solid background in organic chemistry and computational chemistry, able to read, understand, and discuss the biological data, in order to design new and more efficient therapeutic approaches for Alzheimer's disease.
Collapse
Affiliation(s)
- José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, Spanish National Research Council, Juan de la Cierva, 3, 28006-Madrid, Spain
| |
Collapse
|
18
|
SUVN-502, a novel, potent, pure, and orally active 5-HT6 receptor antagonist: pharmacological, behavioral, and neurochemical characterization. Behav Pharmacol 2019; 30:16-35. [DOI: 10.1097/fbp.0000000000000414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Farfán-García ED, Márquez-Gómez R, Barrón-González M, Pérez-Capistran T, Rosales-Hernández MC, Pinto-Almazán R, Soriano-Ursúa MA. Monoamines and their Derivatives on GPCRs: Potential Therapy for Alzheimer's Disease. Curr Alzheimer Res 2019; 16:871-894. [PMID: 30963972 DOI: 10.2174/1570159x17666190409144558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Albeit cholinergic depletion remains the key event in Alzheimer's Disease (AD), recent information describes stronger links between monoamines (trace amines, catecholamines, histamine, serotonin, and melatonin) and AD than those known in the past century. Therefore, new drug design strategies focus efforts to translate the scope on these topics and to offer new drugs which can be applied as therapeutic tools in AD. In the present work, we reviewed the state-of-art regarding genetic, neuropathology and neurochemistry of AD involving monoamine systems. Then, we compiled the effects of monoamines found in the brain of mammals as well as the reported effects of their derivatives and some structure-activity relationships. Recent derivatives have triggered exciting effects and pharmacokinetic properties in both murine models and humans. In some cases, the mechanism of action is clear, essentially through the interaction on G-protein-coupled receptors as revised in this manuscript. Additional mechanisms are inhibition of enzymes for their biotransformation, regulation of free-radicals in the central nervous system and others for the effects on Tau phosphorylation or amyloid-beta accumulation. All these data make the monoamines and their derivatives attractive potential elements for AD therapy.
Collapse
Affiliation(s)
- Eunice D Farfán-García
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Ricardo Márquez-Gómez
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, OX1 3TH, Oxford, United Kingdom
| | - Mónica Barrón-González
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Teresa Pérez-Capistran
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Martha C Rosales-Hernández
- Laboratorio de Biofisica y Biocatalisis, Seccion de Estudios de Posgrado e Investigacion Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigacion Hospital Regional de Alta Especialidad Ixtapaluca, Carretera Federal Mexico-Puebla km 34.5, C.P. 56530. Ixtapaluca, State of Mexico, Mexico
| | - Marvin A Soriano-Ursúa
- Departamento de Fisiologia y Bioquimica. Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Diaz Miron s/n, 11340, Mexico City, Mexico
| |
Collapse
|
20
|
Grychowska K, Kurczab R, Śliwa P, Satała G, Dubiel K, Matłoka M, Moszczyński-Pętkowski R, Pieczykolan J, Bojarski AJ, Zajdel P. Pyrroloquinoline scaffold-based 5-HT 6R ligands: Synthesis, quantum chemical and molecular dynamic studies, and influence of nitrogen atom position in the scaffold on affinity. Bioorg Med Chem 2018; 26:3588-3595. [PMID: 29853337 DOI: 10.1016/j.bmc.2018.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/17/2018] [Accepted: 05/22/2018] [Indexed: 01/02/2023]
Abstract
Based on pyrroloquinoline scaffold bearing 5-HT2C agonists, a series of arylsulfonamide derivatives of 1H-pyrrolo[2,3-f]quinoline and 1H-pyrrolo[3,2-h]quinoline, substituted at position 3 with tetrahydropyridine, were synthesized and evaluated in vitro for their affinity for 5-HT6 receptors. A structure-activity relationship study showed that the 1H-pyrrolo[3,2-h]quinoline scaffold was more favorable for 5-HT6R binding than the 1H-pyrrolo[2,3-f]quinoline one, suggesting dependence upon the type of condensation of the pyrrole and quinoline rings. As revealed by quantum-chemical calculations and molecular dynamic studies, position of the quinoline nitrogen atom in the planar pyrroloquinoline skeleton might affect the spatial orientation of the arylsulfonyl fragment, as a result of structure stabilization by internal hydrogen bonds.
Collapse
Affiliation(s)
- Katarzyna Grychowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Rafał Kurczab
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Paweł Śliwa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, 24 Warszawska Str., 31-155 Kraków, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Krzysztof Dubiel
- Research & Development Centre, Celon Pharma S.A., 41A Mokra Str., Kiełpin, 05-092 Łomianki, Poland
| | - Mikołaj Matłoka
- Research & Development Centre, Celon Pharma S.A., 41A Mokra Str., Kiełpin, 05-092 Łomianki, Poland
| | | | - Jerzy Pieczykolan
- Research & Development Centre, Celon Pharma S.A., 41A Mokra Str., Kiełpin, 05-092 Łomianki, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343 Kraków, Poland
| | - Paweł Zajdel
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Str., 30-688 Kraków, Poland.
| |
Collapse
|
21
|
Hampel H, Vergallo A, Aguilar LF, Benda N, Broich K, Cuello AC, Cummings J, Dubois B, Federoff HJ, Fiandaca M, Genthon R, Haberkamp M, Karran E, Mapstone M, Perry G, Schneider LS, Welikovitch LA, Woodcock J, Baldacci F, Lista S. Precision pharmacology for Alzheimer’s disease. Pharmacol Res 2018; 130:331-365. [DOI: 10.1016/j.phrs.2018.02.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 12/12/2022]
|
22
|
Novel non-sulfonamide 5-HT 6 receptor partial inverse agonist in a group of imidazo[4,5- b ]pyridines with cognition enhancing properties. Eur J Med Chem 2018; 144:716-729. [DOI: 10.1016/j.ejmech.2017.12.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022]
|
23
|
Serotonin 5-HT6 receptors affect cognition in a mouse model of Alzheimer's disease by regulating cilia function. ALZHEIMERS RESEARCH & THERAPY 2017; 9:76. [PMID: 28931427 PMCID: PMC5607612 DOI: 10.1186/s13195-017-0304-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Serotonin receptor 5-HT6 is involved in cognition and Alzheimer's disease (AD) development. However, the mechanism of 5-HT6 in AD pathology is not clear. METHODS Since 5-HT6 is almost exclusively expressed in the primary cilia, using immunostaining we examined the number of cilia in the hippocampus of AD animal model APP/PS1 mice. By overexpressing and knocking down 5-HT6 in the primary cultured hippocampal neurons, we investigated the roles of 5-HT6 in alternating ciliary morphology. Furthermore, 5-HT6 antagonist was applied to confirm its roles in cognition using the Morris water maze test, Y maze, and fear conditioning. RESULTS In the present study, we found that the primary cilia were elongated in the hippocampus of APP/PS1 mice compared with WT mice. 5-HT6 regulated cilia length, influenced cilia and axon initial segment (AIS) morphology, and affected localization of ARL13B and AnkG. We also found that, by changing cilia morphology, the AIS was elongated, branched, and more proximal to the cell body in both WT and APP/PS1 mouse neurons. Alterations of cilia also decreased the axonal length in WT and APP/PS1 neurons. Furthermore, in the water maze test, Y maze, and fear conditioning test, 5-HT6 antagonist SB271046 recovered the cognitive impairment of APP/PS1 mice. CONCLUSION We suggest that 5-HT6 plays a critical role in AD development through regulating the morphology and function of neuronal primary cilia, which is possibly related to the AIS and axon alterations in AD development.
Collapse
|
24
|
Bucki A, Marcinkowska M, Śniecikowska J, Więckowski K, Pawłowski M, Głuch-Lutwin M, Gryboś A, Siwek A, Pytka K, Jastrzębska-Więsek M, Partyka A, Wesołowska A, Mierzejewski P, Kołaczkowski M. Novel 3-(1,2,3,6-Tetrahydropyridin-4-yl)-1H-indole-Based Multifunctional Ligands with Antipsychotic-Like, Mood-Modulating, and Procognitive Activity. J Med Chem 2017; 60:7483-7501. [PMID: 28763213 DOI: 10.1021/acs.jmedchem.7b00839] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The most troublesome aspects of behavioral and psychological symptoms of dementia (BPSD) are nowadays addressed by antidepressant, anxiolytic, and antipsychotic drugs, often administered off-label. Considering their modest effectiveness in dementia patients, the increased risk of adverse events and cognitive decline, there is an unmet need for well-tolerated and effective therapy of BPSD. We designed and synthesized multifunctional ligands characterized in vitro as high-affinity partial agonists of D2R, antagonists of 5-HT6R, and blockers of SERT. Moreover, the molecules activated 5-HT1AR and blocked 5-HT7R while having no relevant affinity for off-target M1R and hERG channel. Compound 16 (N-{2-[4-(5-chloro-1H-indol-3-yl)-1,2,3,6-tetrahydropyridin-1-yl]ethyl}-3-methylbenzene-1-sulfonamide) exhibited a broad antipsychotic-, antidepressant-, and anxiolytic-like activity, not eliciting motor impairments in mice. Most importantly, 16 showed memory-enhancing properties and it ameliorated memory deficits induced by scopolamine. The molecule outperformed most important comparators in selected tests, indicating its potential in the treatment of both cognitive and noncognitive (behavioral and psychological) symptoms of dementia.
Collapse
Affiliation(s)
- Adam Bucki
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Monika Marcinkowska
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Joanna Śniecikowska
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Krzysztof Więckowski
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Maciej Pawłowski
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Gryboś
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Agata Siwek
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Karolina Pytka
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | | | - Anna Partyka
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Wesołowska
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland
| | - Paweł Mierzejewski
- Institute of Psychiatry and Neurology , 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Marcin Kołaczkowski
- Faculty of Pharmacy, Jagiellonian University Medical College , 9 Medyczna Street, 30-688 Kraków, Poland.,Adamed Ltd. , Pieńków 149, 05-152 Czosnów, Poland
| |
Collapse
|
25
|
Frameworking memory and serotonergic markers. Rev Neurosci 2017; 28:455-497. [DOI: 10.1515/revneuro-2016-0079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 12/29/2022]
Abstract
Abstract:The evidence for neural markers and memory is continuously being revised, and as evidence continues to accumulate, herein, we frame earlier and new evidence. Hence, in this work, the aim is to provide an appropriate conceptual framework of serotonergic markers associated with neural activity and memory. Serotonin (5-hydroxytryptamine [5-HT]) has multiple pharmacological tools, well-characterized downstream signaling in mammals’ species, and established 5-HT neural markers showing new insights about memory functions and dysfunctions, including receptors (5-HT1A/1B/1D, 5-HT2A/2B/2C, and 5-HT3-7), transporter (serotonin transporter [SERT]) and volume transmission present in brain areas involved in memory. Bidirectional influence occurs between 5-HT markers and memory/amnesia. A growing number of researchers report that memory, amnesia, or forgetting modifies neural markers. Diverse approaches support the translatability of using neural markers and cerebral functions/dysfunctions, including memory formation and amnesia. At least, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7receptors and SERT seem to be useful neural markers and therapeutic targets. Hence, several mechanisms cooperate to achieve synaptic plasticity or memory, including changes in the expression of neurotransmitter receptors and transporters.
Collapse
|
26
|
Khan A, Corbett A, Ballard C. Emerging amyloid and tau targeting treatments for Alzheimer’s disease. Expert Rev Neurother 2017; 17:697-711. [DOI: 10.1080/14737175.2017.1326819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ayesha Khan
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Anne Corbett
- King’s College London, Wolfson Centre for Age-Related Diseases, London, UK
| | - Clive Ballard
- King’s College London, Wolfson Centre for Age-Related Diseases, London, UK
| |
Collapse
|
27
|
Khan A, Corbett A, Ballard C. Emerging treatments for Alzheimer's disease for non-amyloid and non-tau targets. Expert Rev Neurother 2017; 17:683-695. [PMID: 28490260 DOI: 10.1080/14737175.2017.1326818] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The number of people with dementia, including Alzheimer's disease, is growing as a result of an ageing global population. Treatments available for AD only alleviate the symptoms of the disease, and are effective in some people with AD for a limited time. There is no disease-modifying treatment available, and despite research efforts, the underlying mechanisms of AD and optimal treatment targets have not been fully elucidated. Amyloid and tau are key pathological markers of AD with ongoing trials targeting both. However, there are also many trials at various stages of development that primarily target other markers and processes implicated in the disease, which are now being investigated. Areas covered: This review summarizes current treatment approaches for AD and explores both repositioned and novel therapies that target non amyloid and non tau mechanisms that are in the clinical trials pipeline. This includes treatments for cognitive and neuropsychiatric symptoms and potentially disease modifying therapies. The studies included in this review have been obtained from searches of PubMed and clinical trials databases. Expert commentary: There is a renewed energy in identifying better treatments for behavioural symptoms of AD using both novel drugs and repositioning existing drugs. Lack of success in clinical trials of drugs targeting amyloid and tau have led to a surge in targeting alternative mechanisms. Progress in the development of biomarkers will provide further tools for clinical trials of potential therapeutics for both symptomatic treatment and disease modification in AD.
Collapse
Affiliation(s)
- Ayesha Khan
- a Institute for NanoBiotechnology , Johns Hopkins University , Baltimore , Maryland , USA
| | - Anne Corbett
- b King's College London , Wolfson Centre for Age-Related Diseases , London , UK
| | - Clive Ballard
- b King's College London , Wolfson Centre for Age-Related Diseases , London , UK
| |
Collapse
|
28
|
Nirogi R, Ajjala DR, Aleti R, Rayapati L, Pantangi HR, Boggavarapu RK, Padala NSP. Development and validation of sensitive LC-MS/MS method for the quantification of SUVN-502 and its metabolite and its application for first in human pharmacokinetic study. J Pharm Biomed Anal 2017; 145:423-430. [PMID: 28734271 DOI: 10.1016/j.jpba.2017.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 12/31/2022]
Abstract
A sensitive and rapid LC-MS/MS method was developed and validated for the quantification of SUVN-502 and M1 of SUVN-502, a 5-HT6 receptor antagonist for the treatment of dementia associated with Alzheimer's disease. Following solid-phase extraction, SUVN-502 and M1 of SUVN-502 and IS were eluted with 10mM ammonium acetate (pH 4.0) and acetonitrile using a rapid gradient program on reverse phase column. Multiple reaction monitoring mode was used to monitor the respective transitions of m/z 478.2→377.7 for SUVN-502 and m/z 464.1→377.7 for M1 of SUVN-502. The assay exhibited a linear dynamic range of 10-10000pg/mL for SUVN-502 and 20-20000pg/mL for M1 of SUVN-502 in human plasma. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The within batch accuracy and precision were within acceptable limits. All the other validation parameters were within the acceptable limits. The validated method was applied to analyze human plasma samples obtained from a human pharmacokinetic study consisting single and multiple ascending doses.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Biopharmaceutical Research, Suven Life Sciences Ltd., Serene Chambers, Road - 5, Avenue - 7, Banjara Hills, Hyderabad 500034, India.
| | - Devender Reddy Ajjala
- Biopharmaceutical Research, Suven Life Sciences Ltd., Serene Chambers, Road - 5, Avenue - 7, Banjara Hills, Hyderabad 500034, India
| | - Raghupathi Aleti
- Biopharmaceutical Research, Suven Life Sciences Ltd., Serene Chambers, Road - 5, Avenue - 7, Banjara Hills, Hyderabad 500034, India
| | - Lakshmiprasanna Rayapati
- Biopharmaceutical Research, Suven Life Sciences Ltd., Serene Chambers, Road - 5, Avenue - 7, Banjara Hills, Hyderabad 500034, India
| | - Hanumanth Rao Pantangi
- Biopharmaceutical Research, Suven Life Sciences Ltd., Serene Chambers, Road - 5, Avenue - 7, Banjara Hills, Hyderabad 500034, India
| | - Rajesh Kumar Boggavarapu
- Biopharmaceutical Research, Suven Life Sciences Ltd., Serene Chambers, Road - 5, Avenue - 7, Banjara Hills, Hyderabad 500034, India
| | - Naga Surya Prakash Padala
- Biopharmaceutical Research, Suven Life Sciences Ltd., Serene Chambers, Road - 5, Avenue - 7, Banjara Hills, Hyderabad 500034, India
| |
Collapse
|
29
|
Effects of the 5-HT 6 receptor antagonist idalopirdine on extracellular levels of monoamines, glutamate and acetylcholine in the rat medial prefrontal cortex. Eur J Pharmacol 2017; 799:1-6. [DOI: 10.1016/j.ejphar.2017.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 02/03/2017] [Accepted: 02/07/2017] [Indexed: 11/21/2022]
|
30
|
Nirogi R, Shinde A, Kambhampati RS, Mohammed AR, Saraf SK, Badange RK, Bandyala TR, Bhatta V, Bojja K, Reballi V, Subramanian R, Benade V, Palacharla RC, Bhyrapuneni G, Jayarajan P, Goyal V, Jasti V. Discovery and Development of 1-[(2-Bromophenyl)sulfonyl]-5-methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole Dimesylate Monohydrate (SUVN-502): A Novel, Potent, Selective and Orally Active Serotonin 6 (5-HT 6) Receptor Antagonist for Potential Treatment of Alzheimer's Disease. J Med Chem 2017; 60:1843-1859. [PMID: 28212021 DOI: 10.1021/acs.jmedchem.6b01662] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Optimization of a novel series of 3-(piperazinylmethyl) indole derivatives as 5-hydroxytryptamine-6 receptor (5-HT6R) antagonists resulted in identification of 1-[(2-bromophenyl)sulfonyl]-5-methoxy-3-[(4-methyl-1-piperazinyl)methyl]-1H-indole dimesylate monohydrate (5al, SUVN-502) as a clinical candidate for potential treatment of cognitive disorders. It has high affinity at human 5-HT6R (Ki = 2.04 nM) and selectivity over 100 target sites which include receptors, enzymes, peptides, growth factors, ion channels, steroids, immunological factors, second messengers, and prostaglandins. It has high selectivity over 5-HT2A receptor. It is orally bioavailable and brain penetrant with robust preclinical efficacy. The combination of 5al, donepezil, and memantine (triple combination) produces synergistic effects in extracellular levels of acetylcholine in the ventral hippocampus. Preclinical efficacy in triple combination and high selectivity over 5-HT2A receptors are the differentiating features which culminated in selection of 5al for further development. The Phase-1 evaluation of safety and pharmacokinetics has been completed, allowing for the initiation of a Phase-2 proof of concept study.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Anil Shinde
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Rama Sastry Kambhampati
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Abdul Rasheed Mohammed
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Sangram Keshari Saraf
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Rajesh Kumar Badange
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Thrinath Reddy Bandyala
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Venugopalarao Bhatta
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Kumar Bojja
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Veena Reballi
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Ramkumar Subramanian
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Vijay Benade
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Raghava Choudary Palacharla
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Gopinadh Bhyrapuneni
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Pradeep Jayarajan
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Vinod Goyal
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| | - Venkat Jasti
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad 500 034, India
| |
Collapse
|
31
|
Gyertyán I. Cognitive ‘Omics’: Pattern-Based Validation of Potential Drug Targets. Trends Pharmacol Sci 2017; 38:113-126. [DOI: 10.1016/j.tips.2016.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 01/01/2023]
|
32
|
Design and synthesis of novel N-sulfonyl-2-indoles that behave as 5-HT6 receptor ligands with significant selectivity for D3 over D2 receptors. Bioorg Med Chem 2017; 25:38-52. [DOI: 10.1016/j.bmc.2016.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 11/30/2022]
|
33
|
Serotonin 5-HT 6 Receptor Antagonists in Alzheimer's Disease: Therapeutic Rationale and Current Development Status. CNS Drugs 2017; 31:19-32. [PMID: 27914038 DOI: 10.1007/s40263-016-0399-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in elderly people. Because of the lack of effective treatments for this illness, research focused on identifying compounds that restore cognition and functional impairments in patients with AD is a very active field. Since its discovery in 1993, the serotonin 5-HT6 receptor has received increasing attention, and a growing number of studies supported 5-HT6 receptor antagonism as a target for improving cognitive dysfunction in AD. This article reviews the rationale behind investigations into the targeting of 5-HT6 receptors as a symptomatic treatment for cognitive and/or behavioral symptoms of AD. In addition to describing the available clinical evidence, this article also describes the purported biochemical and neurochemical mechanisms of action by which 5-HT6 receptor antagonists could influence cognition, and the preclinical data supporting this therapeutic approach to AD. A large number of publications describing the development of ligands for this receptor have come to light and preclinical data indicate the procognitive efficacy of 5-HT6 receptor antagonists. Subsequently, the number of patents protecting 5-HT6 chemical entities has continuously grown. Some of these compounds have successfully undergone phase I clinical studies and have been further evaluated in clinical phase II trials with variable success. Phase II studies have also revealed the potential of combining 5-HT6 receptor antagonism and cholinesterase inhibition. Two of these antagonists, idalopirdine and RVT-101, have been further developed into ongoing phase III clinical trials. Overall, 5-HT6 receptor antagonists can reasonably be regarded as potential drug candidates for the treatment of AD.
Collapse
|
34
|
Grychowska K, Satała G, Kos T, Partyka A, Colacino E, Chaumont-Dubel S, Bantreil X, Wesołowska A, Pawłowski M, Martinez J, Marin P, Subra G, Bojarski AJ, Lamaty F, Popik P, Zajdel P. Novel 1H-Pyrrolo[3,2-c]quinoline Based 5-HT6 Receptor Antagonists with Potential Application for the Treatment of Cognitive Disorders Associated with Alzheimer's Disease. ACS Chem Neurosci 2016; 7:972-83. [PMID: 27100049 DOI: 10.1021/acschemneuro.6b00090] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Modulators of the serotonin 5-HT6 receptor (5-HT6R) offer a promising strategy for the treatment of the cognitive deficits that are associated with dementia and Alzheimer's disease. Herein, we report the design, synthesis, and characterization of a novel class of 5-HT6R antagonists that is based on the 1H-pyrrolo[3,2-c]quinoline core. The most active compounds exhibited comparable binding affinity to the reference compound, SB-742457, and markedly improved selectivity. Lead optimization led to the identification of (S)-1-[(3-chlorophenyl)sulfonyl]-4-(pyrrolidine-3-yl-amino)-1H-pyrrolo[3,2-c]quinoline (14) (Ki = 3 nM and Kb = 0.41 nM). Pharmacological characterization of the 5-HT6R's constitutive activity at Gs signaling revealed that 14 behaved as a neutral antagonist, while SB-742457 was classified as an inverse agonist. Both compounds 14 and SB-742457 reversed phencyclidine-induced memory deficits and displayed distinct procognitive properties in cognitively unimpaired animals (3 mg/kg) in NOR tasks. Compounds 14 and SB-742457 were also active in the Vogel test, yet the anxiolytic effect of 14 was 2-fold higher (MED = 3 mg/kg). Moreover, 14 produced, in a 3-fold higher dose (MED = 10 mg/kg), antidepressant-like effects that were similar to those produced by SB-742457 (MED = 3 mg/kg). Together, these data suggest that the 4-(pyrrolidine-3-yl-amino)-1H-pyrrolo[3,2-c]quinoline scaffold is an attractive molecular framework for the development of procognitive agents. The results are promising enough to warrant further detailed mechanistic studies on the therapeutic potential of 5-HT6R antagonists and inverse agonists for the treatment of cognitive decline and depression/anxiety symptoms that are comorbidities of Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | | | - Evelina Colacino
- Institut des Biomolécules
Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier,
ENSCM, Université de Montpellier
Campus Triolet Place Eugène Bataillon, 34095 CEDEX 5 Montpellier, France
| | - Severine Chaumont-Dubel
- Institut de Génomique
Fonctionnelle, CNRS UMR 5203, INSERM U661, Université de Montpellier, Montpellier 34094, France
| | - Xavier Bantreil
- Institut des Biomolécules
Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier,
ENSCM, Université de Montpellier
Campus Triolet Place Eugène Bataillon, 34095 CEDEX 5 Montpellier, France
| | | | | | - Jean Martinez
- Institut des Biomolécules
Max Mousseron (IBMM) UMR 5247, CNRS, Université de Montpellier,
ENSCM, Faculté de Pharmacie
15, avenue Charles Flahault BP14491, 34093 CEDEX 5 Montpellier, France
| | - Philippe Marin
- Institut de Génomique
Fonctionnelle, CNRS UMR 5203, INSERM U661, Université de Montpellier, Montpellier 34094, France
| | - Gilles Subra
- Institut des Biomolécules
Max Mousseron (IBMM) UMR 5247, CNRS, Université de Montpellier,
ENSCM, Faculté de Pharmacie
15, avenue Charles Flahault BP14491, 34093 CEDEX 5 Montpellier, France
| | | | - Frédéric Lamaty
- Institut des Biomolécules
Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier,
ENSCM, Université de Montpellier
Campus Triolet Place Eugène Bataillon, 34095 CEDEX 5 Montpellier, France
| | | | | |
Collapse
|
35
|
Zajdel P, Marciniec K, Satała G, Canale V, Kos T, Partyka A, Jastrzębska-Więsek M, Wesołowska A, Basińska-Ziobroń A, Wójcikowski J, Daniel WA, Bojarski AJ, Popik P. N1-Azinylsulfonyl-1H-indoles: 5-HT6 Receptor Antagonists with Procognitive and Antidepressant-Like Properties. ACS Med Chem Lett 2016; 7:618-22. [PMID: 27326337 DOI: 10.1021/acsmedchemlett.6b00056] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/07/2016] [Indexed: 11/29/2022] Open
Abstract
A series of N1-azinylsulfonyl-3-(1,2,3,6,tetrahyrdopyridin-4-yl)-1H-indole derivatives was designed to obtain highly potent 5-HT6 receptor ligands. The study allowed for the identification of 25 (4-{[5-methoxy-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indol-1-yl]sulfonyl}isoquinoline), a potent and selective 5-HT6 receptor antagonist. The selected compound, was evaluated in vivo in a novel object recognition (NOR) and forced swim (FST) tests in rats, demonstrating distinct pro-cognitive and antidepressant-like properties (MED = 1 mg/kg and 0.1 mg/kg, i.p., respectively). Compound SB-742457, used as comparator, reversed memory deficits in NOR task in similar doses, while in FST it was active in 10-30-fold higher dose (3 mg/kg). In contrast to SB-742457, which was active in Vogel test (MED = 3 mg/kg), compound 25 displayed no anxiolytic activity.
Collapse
Affiliation(s)
| | - Krzysztof Marciniec
- Department
of Organic Chemistry, Medical University of Silesia, 4 Jagiellońska
Street, 41-200 Sosnowiec, Poland
| | | | | | | | | | | | | | | | | | | | | | - Piotr Popik
- Faculty
of Health Sciences, Jagiellonian University Medical College, Michalowskiego
20, 31-126 Krakow, Poland
| |
Collapse
|
36
|
Magierski R, Sobow T. Serotonergic drugs for the treatment of neuropsychiatric symptoms in dementia. Expert Rev Neurother 2016; 16:375-87. [PMID: 26886148 DOI: 10.1586/14737175.2016.1155453] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Behavioral and psychological symptoms of dementia (known also as neuropsychiatric symptoms) are essential features of Alzheimer's disease and related dementias. The near universal presence of neuropsychiatric symptoms in dementia (up to 90% of cases) has brought significant attention of clinicians and experts to the field. Non-pharmacological and pharmacological interventions are recommended for various types of neuropsychiatric symptoms. However, most pharmacological interventions for the treatment of behavioral and psychological symptoms of dementia are used off-label in many countries. Cognitive decline and neuropsychiatric symptoms can be linked to alterations in multiple neurotransmitter systems, so modification of abnormalities in specific systems may improve clinical status of patients with neuropsychiatric symptoms. Use of serotonergic compounds (novel particles acting on specific receptors and widely acting drugs) in the treatment of neuropsychiatric symptoms is reviewed.
Collapse
Affiliation(s)
- Radoslaw Magierski
- a Department of Old Age Psychiatry and Psychotic Disorders , Medical University of Lodz , Lodz , Poland
| | - Tomasz Sobow
- b Department of Medical Psychology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|