1
|
Islam MMM, Islam MA, Neela FA, Hasanuzzaman AFM. Occurrence of Antibiotic-Resistant Bacteria in Urban Surface Water Sources in Bangladesh. Curr Microbiol 2025; 82:96. [PMID: 39833477 DOI: 10.1007/s00284-025-04082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Infections caused by antibiotic-resistant bacteria (ARB) result in an estimated 1.27 million human deaths annually worldwide. Surface waters are impacted by anthropogenic factors, which contribute to the emergence and spread of ARB in the aquatic environment. While research on antibiotic resistance in surface waters has increased recently in developing nations, including Bangladesh, especially in aquaculture, such studies are still limited in Bangladesh compared to developed nations. In this study, bacteria strains isolated from three rivers and two lakes in Khulna city, Bangladesh were characterized for their antibiotic resistance using disk diffusion method. Of the 106 bacterial isolates from 180 surface water samples, the majority exhibited resistance to Ciprofloxacin (75.0-87.5%) and Ceftriaxone (65.6-78.1%), while resistance to Ampicillin was comparatively lower (9.4-18.8%). Notably, the prevalence of ARB was observed to be higher during the wet seasons compared to the dry seasons. The 16S rRNA gene analysis showed that Shigella flexneri was the most dominant (17.9%) bacterium among the ARB cultured from surface waters, followed by Escherichia fergusonii (12.5%), Proteus mirabilis (10.7%), and Enterobacter quasiroggenkampii (8.9%). At the genus level, Enterobacter (23.5%), Shigella (20.6%), and Escherichia spp. (14.7%) were the most abundant among the ARB in both river and lake samples. The findings of this study highlight the prevalence of antimicrobial resistance in surface water sources and suggest the need for enhanced monitoring and improved disposal practices to mitigate potential public health risks.
Collapse
Affiliation(s)
- M M Majedul Islam
- Ministry of Public Administration, Government of Bangladesh, Abdul Gani Road, Dhaka, 1000, Bangladesh.
- Fisheries and Marine Resources Technology Discipline, Khulna University, Khulna, 9208, Bangladesh.
| | - Md Atikul Islam
- Environmental Sciences Discipline, Khulna University, Khulna, 9208, Bangladesh
- Center for Societal Risk Research (CSR), Karlstad University, SE-651 88, Karlstad, Sweden
| | | | | |
Collapse
|
2
|
Zhu X, Tang Q, Zhou X, Momeni MR. Antibiotic resistance and nanotechnology: A narrative review. Microb Pathog 2024; 193:106741. [PMID: 38871198 DOI: 10.1016/j.micpath.2024.106741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The rise of antibiotic resistance poses a significant threat to public health worldwide, leading researchers to explore novel solutions to combat this growing problem. Nanotechnology, which involves manipulating materials at the nanoscale, has emerged as a promising avenue for developing novel strategies to combat antibiotic resistance. This cutting-edge technology has gained momentum in the medical field by offering a new approach to combating infectious diseases. Nanomaterial-based therapies hold significant potential in treating difficult bacterial infections by circumventing established drug resistance mechanisms. Moreover, their small size and unique physical properties enable them to effectively target biofilms, which are commonly linked to resistance development. By leveraging these advantages, nanomaterials present a viable solution to enhance the effectiveness of existing antibiotics or even create entirely new antibacterial mechanisms. This review article explores the current landscape of antibiotic resistance and underscores the pivotal role that nanotechnology plays in augmenting the efficacy of traditional antibiotics. Furthermore, it addresses the challenges and opportunities within the realm of nanotechnology for combating antibiotic resistance, while also outlining future research directions in this critical area. Overall, this comprehensive review articulates the potential of nanotechnology in addressing the urgent public health concern of antibiotic resistance, highlighting its transformative capabilities in healthcare.
Collapse
Affiliation(s)
- Xunxian Zhu
- Huaqiao University Hospital, Quanzhou, Fujian, 362021, China.
| | - Qiuhua Tang
- Quanzhou First Hospital, Quanzhou, Fujian, 362000, China
| | - Xiaohang Zhou
- Mudanjiang Medical University, Mu Danjiang, Hei Longjiang, 157012, China
| | | |
Collapse
|
3
|
Zuberi A, Ahmad N, Ahmad H, Saeed M, Ahmad I. Beyond antibiotics: CRISPR/Cas9 triumph over biofilm-associated antibiotic resistance infections. Front Cell Infect Microbiol 2024; 14:1408569. [PMID: 39035353 PMCID: PMC11257871 DOI: 10.3389/fcimb.2024.1408569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 07/23/2024] Open
Abstract
A complex structure known as a biofilm is formed when a variety of bacterial colonies or a single type of cell in a group sticks to a surface. The extracellular polymeric compounds that encase these cells, often consisting of proteins, eDNA, and polysaccharides, exhibit strong antibiotic resistance. Concerns about biofilm in the pharmaceutical industry, public health, and medical fields have sparked a lot of interest, as antibiotic resistance is a unique capacity exhibited by these biofilm-producing bacteria, which increases morbidity and death. Biofilm formation is a complicated process that is controlled by several variables. Insights into the processes to target for the therapy have been gained from multiple attempts to dissect the biofilm formation process. Targeting pathogens within a biofilm is profitable because the bacterial pathogens become considerably more resistant to drugs in the biofilm state. Although biofilm-mediated infections can be lessened using the currently available medications, there has been a lot of focus on the development of new approaches, such as bioinformatics tools, for both treating and preventing the production of biofilms. Technologies such as transcriptomics, metabolomics, nanotherapeutics and proteomics are also used to develop novel anti-biofilm agents. These techniques help to identify small compounds that can be used to inhibit important biofilm regulators. The field of appropriate control strategies to avoid biofilm formation is expanding quickly because of this spurred study. As a result, the current article addresses our current knowledge of how biofilms form, the mechanisms by which bacteria in biofilms resist antibiotics, and cutting-edge treatment approaches for infections caused by biofilms. Furthermore, we have showcased current ongoing research utilizing the CRISPR/Cas9 gene editing system to combat bacterial biofilm infections, particularly those brought on by lethal drug-resistant pathogens, concluded the article with a novel hypothesis and aspirations, and acknowledged certain limitations.
Collapse
Affiliation(s)
- Azna Zuberi
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
- Department of Obs & Gynae, Northwestern University, Chicago, IL, United States
| | - Nayeem Ahmad
- Department of Biophysics, All India Institute of Medical Science, New Delhi, India
- Department of Microbiology, Immunology, and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Hafiz Ahmad
- Department of Medical Microbiology & Immunology, Ras Al Khaimah (RAK) College of Medical Sciences, Ras Al Khaimah (RAK) Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mohd Saeed
- Department of Biology, College of Science University of Hail, Hail, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Matope G, Chaima K, Bande B, Bare W, Kadzviti F, Jinjika F, Tivapasi M. Isolation of multi-drug-resistant strains of Escherichia coli from faecal samples of dogs and cats from Harare, Zimbabwe. Vet Med Sci 2024; 10:e1472. [PMID: 39031748 PMCID: PMC11190846 DOI: 10.1002/vms3.1472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND The escalation of antimicrobial resistance (AMR) in recent years has been of major public health concern globally. Escherichia coli are amongst the bacteria that have been targeted for AMR surveillance due to their ability to cause infection in both animals and humans. Their propensity to produce extended spectrum beta-lactamases further complicates the choices of treatment regimens. OBJECTIVES To investigate the prevalence of antimicrobial-resistance in E. coli strains isolated from faecal samples of dogs and cats from selected veterinary surgeries and animal shelters from Harare, Zimbabwe. MATERIALS AND METHODS A cross-sectional study was carried out to select animals by a systematic random procedure. Faecal samples were collected for culture and isolation of E. coli. Their susceptibility to antimicrobial drugs was assessed using the disc diffusion method. RESULTS A total of 95% (133/140) of the samples from cats (n = 40) and dogs (n = 93) yielded E. coli. Resistance was recorded for ampicillin (45.9%), trimethoprim-sulphamethoxazole (44.4%), nalidixic acid (29.3%), ceftazidime (15.8%) and azithromycin (12.8%), but not for gentamicin and imipenem. A total of 18% of the isolates were multi-drug-resistant where resistance to nalidixic acid, ampicillin and trimethoprim-sulphamethoxazole predominated. CONCLUSION We observed relatively high AMR of E. coli strains against ampicillin. The isolation of multi-drug-resistant strains of E. coli may signal the dissemination of resistance genes in the ecosystem of these bacteria which may have a public health impact.
Collapse
Affiliation(s)
- Gift Matope
- Department of Veterinary Pathobiology, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Kudzai Chaima
- Department of Clinical Veterinary Sciences, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Beauty Bande
- Department of Clinical Veterinary Sciences, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Winnet Bare
- Department of Veterinary Pathobiology, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Faith Kadzviti
- Department of Veterinary Pathobiology, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| | - Farai Jinjika
- Department of Veterinary ServicesUniversity of ZimbabweHarareZimbabwe
| | - Musavenga Tivapasi
- Department of Clinical Veterinary Sciences, Faculty of Veterinary ScienceUniversity of ZimbabweHarareZimbabwe
| |
Collapse
|
5
|
Beyene AM, Gizachew M, Yousef AE, Haileyesus H, Abdelhamid AG, Berju A, Tebeje MM, Feleke T, Gelaw B. Multidrug-resistance and extended-spectrum beta-lactamase-producing lactose-fermenting enterobacteriaceae in the human-dairy interface in northwest Ethiopia. PLoS One 2024; 19:e0303872. [PMID: 38771780 PMCID: PMC11108214 DOI: 10.1371/journal.pone.0303872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is among the top public health concerns in the globe. Estimating the prevalence of multidrug resistance (MDR), MDR index (MDR-I) and extended-spectrum beta-lactamase (ESBL)-producing lactose fermenting Enterobacteriaceae (LFE) is important in designing strategies to combat AMR. Thus, this study was designed to determine the status of MDR, MDR-I and ESBL-producing LFE isolated from the human-dairy interface in the northwestern part of Ethiopia, where such information is lacking. METHODOLOGY A cross-sectional study was conducted from June 2022 to August 2023 by analyzing 362 samples consisting of raw pooled milk (58), milk container swabs (58), milker's hand swabs (58), farm sewage (57), milker's stool (47), and cow's feces (84). The samples were analyzed using standard bacteriological methods. The antimicrobial susceptibility patterns and ESBL production ability of the LFE isolates were screened using the Kirby-Bauer disk diffusion method, and candidate isolates passing the screening criteria were phenotypically confirmed by using cefotaxime (30 μg) and cefotaxime /clavulanic acid (30 μg/10 μg) combined-disk diffusion test. The isolates were further characterized genotypically using multiplex polymerase chain reaction targeting the three ESBL-encoding- genes namely blaTEM, blaSHV, and blaCTX-M. RESULTS A total of 375 bacterial isolates were identified and the proportion of MDR and ESBL-producing bacterial isolates were 70.7 and 21.3%, respectively. The MDR-I varied from 0.0 to 0.81 with an average of 0.30. The ESBL production was detected in all sample types. Genotypically, the majority of the isolates (97.5%), which were positive on the phenotypic test, were carrying one or more of the three genes. CONCLUSION A high proportion of the bacterial isolates were MDR; had high MDR-I and were positive for ESBL production. The findings provide evidence that the human-dairy interface is one of the important reservoirs of AMR traits. Therefore, the implementation of AMR mitigation strategies is highly needed in the area.
Collapse
Affiliation(s)
- Achenef Melaku Beyene
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mucheye Gizachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ahmed E. Yousef
- Department of Food Science and Technology, Ohio State; University, Ohio, Columbus, United States of America
| | - Hana Haileyesus
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Ahmed G. Abdelhamid
- Department of Food Science and Technology, Ohio State; University, Ohio, Columbus, United States of America
| | - Adugna Berju
- College of Veterinary Medicine and Animal Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Molu Tebeje
- Clinical Bacteriology Unit, Comprehensive Specialized Teaching Hospital, University of Gondar, Gondar, Ethiopia
| | - Tigest Feleke
- Clinical Bacteriology Unit, Comprehensive Specialized Teaching Hospital, University of Gondar, Gondar, Ethiopia
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
Sintondji K, Fabiyi K, Hougbenou J, Koudokpon H, Lègba B, Amoussou H, Haukka K, Dougnon V. Prevalence and characterization of ESBL-producing Escherichia coli in healthy pregnant women and hospital environments in Benin: an approach based on Tricycle. Front Public Health 2023; 11:1227000. [PMID: 37841745 PMCID: PMC10569593 DOI: 10.3389/fpubh.2023.1227000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Extended-Spectrum Beta-Lactamase (ESBL)-producing Enterobacterales are recognized as significant pathogens due to their resistance to multiple antibiotics. This study aimed to determine the prevalence of ESBL-producing Escherichia coli (E. coli) in different settings, including healthy pregnant women, the food chain, and the environment of tertiary hospitals in Benin. Methods Samples were collected from various sources, including fecal samples from healthy pregnant women, food samples from hospital canteens, and hospital effluents from four tertiary hospitals in southern Benin. Fecal samples were plated on MacConkey agar supplemented with cefotaxime (4 μg/mL), while food and water samples were plated on Tryptone Bile X agar supplemented with cefotaxime (4 μg/mL). Urea indole tests were used for preliminary identification of E. coli colonies, followed by confirmation of ESBL production using the double disk synergy technique. Antibiotic susceptibility testing of ESBL-producing E. coli strains was conducted using the disk diffusion method on MH agar. Polymerase Chain Reaction (PCR) was used to investigate the presence of ESBL-encoding genes. Results Among the 296 fecal samples collected from four tertiary hospitals, ESBL-producing E. coli was isolated from 22.30% (66) of the samples. All E. coli isolates from hospital effluents exhibited ESBL production, while ESBL-producing E. coli was not detected in food and drinking water samples. The analysis of variable associations showed no significant associations (p > 0.05) for the studied factors. Antibiotic susceptibility testing revealed high resistance rates among the ESBL-Ec isolates against several tested antibiotics, including amoxicillin, aztreonam, ceftriaxone, ciprofloxacin, and trimethoprim-sulfamethoxazole. However, most isolates remained susceptible to ertapenem, amoxicillin-clavulanate, and imipenem. The most prevalent ESBL-encoding genes were blaTEM (37.50%), blaOXA-1 (19.44%), and blaSHV (11.11%), while a smaller proportion of isolates carried blaCTXM-1/blaCTXM-15 (5.55%) and blaCTXM-9. Discussion This study provides insights into the prevalence of ESBL-producing E. coli carriage in the feces of healthy pregnant women in southern Benin. Additionally, it highlights hospital wastewater as a potential reservoir of ESBL-producing bacteria in the environment. The detection of ESBL-producing E. coli in hospital effluents raises concerns about the dissemination of antibiotic resistance genes into the environment. The high resistance rates observed among ESBL-Ec isolates against commonly used antibiotics emphasize the urgent need for antimicrobial stewardship and infection control measures. The identification of prevalent ESBL-encoding genes contributes to understanding the genetic basis of ESBL resistance in the studied population. Further research is warranted to explore the mechanisms of transmission and potential interventions to mitigate the spread of ESBL-producing Enterobacterales.
Collapse
Affiliation(s)
- Kevin Sintondji
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Kafayath Fabiyi
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Jules Hougbenou
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Hornel Koudokpon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Boris Lègba
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Hornella Amoussou
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| | - Kaisa Haukka
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Victorien Dougnon
- Research Unit in Applied Microbiology and Pharmacology of Natural Substances, Research Laboratory in Applied Biology, Polytechnic School of Abomey-Calavi, University of Abomey-Calavi, Cotonou, Benin
| |
Collapse
|
7
|
Han H, Xing L, Chen BT, Liu Y, Zhou TJ, Wang Y, Zhang LF, Li L, Cho CS, Jiang HL. Progress on the pathological tissue microenvironment barrier-modulated nanomedicine. Adv Drug Deliv Rev 2023; 200:115051. [PMID: 37549848 DOI: 10.1016/j.addr.2023.115051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling-Feng Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
8
|
Lopez-Garcia AV, AbuOun M, Nunez-Garcia J, Nale JY, Gaylov EE, Phothaworn P, Sukjoi C, Thiennimitr P, Malik DJ, Korbsrisate S, Clokie MRJ, Anjum MF. Pathogen genomics and phage-based solutions for accurately identifying and controlling Salmonella pathogens. Front Microbiol 2023; 14:1166615. [PMID: 37234523 PMCID: PMC10206635 DOI: 10.3389/fmicb.2023.1166615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/03/2023] [Indexed: 05/28/2023] Open
Abstract
Salmonella is a food-borne pathogen often linked to poultry sources, causing gastrointestinal infections in humans, with the numbers of multidrug resistant (MDR) isolates increasing globally. To gain insight into the genomic diversity of common serovars and their potential contribution to disease, we characterized antimicrobial resistance genes, and virulence factors encoded in 88 UK and 55 Thai isolates from poultry; the presence of virulence genes was detected through an extensive virulence determinants database compiled in this study. Long-read sequencing of three MDR isolates, each from a different serovar, was used to explore the links between virulence and resistance. To augment current control methods, we determined the sensitivity of isolates to 22 previously characterized Salmonella bacteriophages. Of the 17 serovars included, Salmonella Typhimurium and its monophasic variants were the most common, followed by S. Enteritidis, S. Mbandaka, and S. Virchow. Phylogenetic analysis of Typhumurium and monophasic variants showed poultry isolates were generally distinct from pigs. Resistance to sulfamethoxazole and ciprofloxacin was highest in isolates from the UK and Thailand, respectively, with 14-15% of all isolates being MDR. We noted that >90% of MDR isolates were likely to carry virulence genes as diverse as the srjF, lpfD, fhuA, and stc operons. Long-read sequencing revealed the presence of global epidemic MDR clones in our dataset, indicating they are possibly widespread in poultry. The clones included MDR ST198 S. Kentucky, harboring a Salmonella Genomic Island-1 (SGI)-K, European ST34 S. 1,4,[5],12:i:-, harboring SGI-4 and mercury-resistance genes, and a S. 1,4,12:i:- isolate from the Spanish clone harboring an MDR-plasmid. Testing of all isolates against a panel of bacteriophages showed variable sensitivity to phages, with STW-77 found to be the most effective. STW-77 lysed 37.76% of the isolates, including serovars important for human clinical infections: S. Enteritidis (80.95%), S. Typhimurium (66.67%), S. 1,4,[5],12:i:- (83.3%), and S. 1,4,12: i:- (71.43%). Therefore, our study revealed that combining genomics and phage sensitivity assays is promising for accurately identifying and providing biocontrols for Salmonella to prevent its dissemination in poultry flocks and through the food chain to cause infections in humans.
Collapse
Affiliation(s)
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Javier Nunez-Garcia
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Janet Y. Nale
- Department of Veterinary and Animal Science, Scotland's Rural College, Inverness, United Kingdom
| | - Edouard E. Gaylov
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutikarn Sukjoi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parameth Thiennimitr
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Danish J. Malik
- Department of Chemical Engineering, Loughborough University, Loughborough, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Muna F. Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| |
Collapse
|
9
|
Oliveira-Tintino CDDM, Tintino SR, Justino de Araújo AC, dos Santos Barbosa CR, Ramos Freitas P, de Araújo Neto JB, Begnini IM, Rebelo RA, da Silva LE, Mireski SL, Nasato MC, Krautler MIL, Barreto HM, Ribeiro-Filho J, de Menezes IRA, Coutinho HDM. Efflux Pump (QacA, QacB, and QacC) and β-Lactamase Inhibitors? An Evaluation of 1,8-Naphthyridines against Staphylococcus aureus Strains. Molecules 2023; 28:molecules28041819. [PMID: 36838807 PMCID: PMC9961278 DOI: 10.3390/molecules28041819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The bacterial species Staphylococcus aureus presents a variety of resistance mechanisms, among which the expression of β-lactamases and efflux pumps stand out for providing a significant degree of resistance to clinically relevant antibiotics. The 1,8-naphthyridines are nitrogen heterocycles with a broad spectrum of biological activities and, as such, are promising research targets. However, the potential roles of these compounds on bacterial resistance management remain to be better investigated. Therefore, the present study evaluated the antibacterial activity of 1,8-naphthyridine sulfonamides, addressing their ability to act as inhibitors of β-lactamases and efflux pump (QacA/B and QacC) against the strains SA-K4414 and SA-K4100 of S. aureus. All substances were prepared at an initial concentration of 1024 μg/mL, and their minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. Subsequently, their effects on β-lactamase- and efflux pump-mediated antibiotic resistance was evaluated from the reduction of the MIC of ethidium bromide (EtBr) and β-lactam antibiotics, respectively. The 1,8-naphthyridines did not present direct antibacterial activity against the strains SA-K4414 and SA-K4100 of S. aureus. On the other hand, when associated with antibiotics against both strains, the compounds reduced the MIC of EtBr and β-lactam antibiotics, suggesting that they may act by inhibiting β-lactamases and efflux pumps such as QacC and QacA/B. However, further research is required to elucidate the molecular mechanisms underlying these observed effects.
Collapse
Affiliation(s)
| | - Saulo Relison Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
- Correspondence: (S.R.T.); (I.R.A.d.M.)
| | - Ana Carolina Justino de Araújo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
| | - Cristina Rodrigues dos Santos Barbosa
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
| | - Priscilla Ramos Freitas
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
| | - José Bezerra de Araújo Neto
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
| | - Iêda Maria Begnini
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau 89030-903, SC, Brazil
| | - Ricardo Andrade Rebelo
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau 89030-903, SC, Brazil
| | - Luiz Everson da Silva
- Postgraduate Program in Sustainable Territorial Development, Coastal Sector, Federal University of Paraná (UFPR), Curitiba 81531-990, PR, Brazil
| | - Sandro Lucio Mireski
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau 89030-903, SC, Brazil
| | - Michele Caroline Nasato
- Department of Chemistry, Regional University of Blumenau (FURB), Itoupava Seca, Blumenau 89030-903, SC, Brazil
| | | | | | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (Fiocruz), Fiocruz Ceará, Eusébio 60180-900, CE, Brazil
| | - Irwin Rose Alencar de Menezes
- Laboratory of Pharmacology and Molecular Chemistry (LFQM), Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
- Correspondence: (S.R.T.); (I.R.A.d.M.)
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
| |
Collapse
|
10
|
Mirza HC, Güçlü AÜ, İnce Ceviz G, Başustaoğlu A. Comparative in vitro activities of omadacycline, eravacycline and tigecycline against non-ESBL-producing, ESBL-producing and carbapenem-resistant isolates of K. pneumoniae. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Extended-spectrum β-lactamase (ESBL)-producing
Enterobacteriaceae
and carbapenem-resistant
Enterobacteriaceae
are characterized by the World Health Organization as pathogens for which new antibiotics are urgently needed. Omadacycline and eravacycline are two novel antibacterials within the tetracycline class.
Gap Statement. There are limited data regarding the comparison of the activities of omadacycline, eravacycline and tigecycline against K. pneumoniae isolates with different antimicrobial susceptibility profiles.
Aim. Our objective was to compare the in vitro activities of omadacycline, eravacycline and tigecycline against a collection of K. pneumoniae isolates, including non-ESBL-producing, ESBL-producing and carbapenem-resistant strains.
Methodology. Ninety-four K. pneumoniae isolates, including 30 non-ESBL-producing, 30 ESBL-producing and 34 carbapenem-resistant (22 carrying bla
OXA-48, 12 carrying bla
NDM) strains were included in the study. ESBL and carbapenemase genes were detected by conventional PCR. Omadacycline, eravacycline and tigecycline MICs were determined by the gradient diffusion method and interpreted using US Food and Drug Administration (FDA)-defined breakpoints.
Results. Overall, the percentage of tigecycline-susceptible strains (97.9 %) was higher than the percentage of omadacyline-susceptible (75.5 %) and eravacycline-susceptible (72.3 %) strains. The omadacycline and eravacycline susceptibility rates were 83.3 % among non-ESBL-producing isolates and 66.7 % among ESBL-producing isolates. The most common ESBL gene detected was blaCTX
-M (90 %), followed by bla
TEM (50 %) and bla
SHV (50 %). The omadacycline and eravacycline susceptibility rate among isolates carrying bla
TEM was 33.3 %, whereas it was 100 % among isolates that do not carry bla
TEM. The omadacycline and eravacycline susceptibility rates among carbapenem-resistant isolates were 76.5 and 67.6 %, respectively. The omadacycline susceptibility rates among bla
OXA-48-positive and bla
NDM-positive isolates were 77.3 and 75.0 %, respectively. The eravacycline susceptibility rates among bla
OXA-48-positive and bla
NDM-positive isolates were 68.2 and 66.7 %, respectively. One carbapenem-resistant isolate was intermediate and one ESBL-producing isolate was resistant to tigecycline.
Conclusion. Overall, tigecycline was the most active tetracycline against isolates. Omadacycline and eravacycline showed excellent activity against ESBL-producing K. pneumoniae isolates that do not carry bla
TEM. Omadacycline showed reasonable activity against carbapenem-resistant K. pneumoniae isolates carrying bla
OXA-48 or bla
NDM.
Collapse
Affiliation(s)
- Hasan Cenk Mirza
- Department of Medical Microbiology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Aylin Üsküdar Güçlü
- Department of Medical Microbiology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Gizem İnce Ceviz
- Department of Medical Microbiology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Ahmet Başustaoğlu
- Department of Medical Microbiology, Başkent University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
11
|
Dutt Y, Dhiman R, Singh T, Vibhuti A, Gupta A, Pandey RP, Raj VS, Chang CM, Priyadarshini A. The Association between Biofilm Formation and Antimicrobial Resistance with Possible Ingenious Bio-Remedial Approaches. Antibiotics (Basel) 2022; 11:930. [PMID: 35884186 PMCID: PMC9312340 DOI: 10.3390/antibiotics11070930] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Biofilm has garnered a lot of interest due to concerns in various sectors such as public health, medicine, and the pharmaceutical industry. Biofilm-producing bacteria show a remarkable drug resistance capability, leading to an increase in morbidity and mortality. This results in enormous economic pressure on the healthcare sector. The development of biofilms is a complex phenomenon governed by multiple factors. Several attempts have been made to unravel the events of biofilm formation; and, such efforts have provided insights into the mechanisms to target for the therapy. Owing to the fact that the biofilm-state makes the bacterial pathogens significantly resistant to antibiotics, targeting pathogens within biofilm is indeed a lucrative prospect. The available drugs can be repurposed to eradicate the pathogen, and as a result, ease the antimicrobial treatment burden. Biofilm formers and their infections have also been found in plants, livestock, and humans. The advent of novel strategies such as bioinformatics tools in treating, as well as preventing, biofilm formation has gained a great deal of attention. Development of newfangled anti-biofilm agents, such as silver nanoparticles, may be accomplished through omics approaches such as transcriptomics, metabolomics, and proteomics. Nanoparticles' anti-biofilm properties could help to reduce antimicrobial resistance (AMR). This approach may also be integrated for a better understanding of biofilm biology, guided by mechanistic understanding, virtual screening, and machine learning in silico techniques for discovering small molecules in order to inhibit key biofilm regulators. This stimulated research is a rapidly growing field for applicable control measures to prevent biofilm formation. Therefore, the current article discusses the current understanding of biofilm formation, antibiotic resistance mechanisms in bacterial biofilm, and the novel therapeutic strategies to combat biofilm-mediated infections.
Collapse
Affiliation(s)
- Yogesh Dutt
- Department of Microbiology, SRM University, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat 131029, Haryana, India; (Y.D.); (R.D.); (A.V.); (A.G.); (R.P.P.); (V.S.R.)
| | - Ruby Dhiman
- Department of Microbiology, SRM University, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat 131029, Haryana, India; (Y.D.); (R.D.); (A.V.); (A.G.); (R.P.P.); (V.S.R.)
| | - Tanya Singh
- Department of Botany, TPS College, Patliputra University, Patna 800020, Bihar, India;
| | - Arpana Vibhuti
- Department of Microbiology, SRM University, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat 131029, Haryana, India; (Y.D.); (R.D.); (A.V.); (A.G.); (R.P.P.); (V.S.R.)
| | - Archana Gupta
- Department of Microbiology, SRM University, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat 131029, Haryana, India; (Y.D.); (R.D.); (A.V.); (A.G.); (R.P.P.); (V.S.R.)
| | - Ramendra Pati Pandey
- Department of Microbiology, SRM University, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat 131029, Haryana, India; (Y.D.); (R.D.); (A.V.); (A.G.); (R.P.P.); (V.S.R.)
| | - V. Samuel Raj
- Department of Microbiology, SRM University, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat 131029, Haryana, India; (Y.D.); (R.D.); (A.V.); (A.G.); (R.P.P.); (V.S.R.)
| | - Chung-Ming Chang
- Master & Ph.D. Program in Biotechnology Industry, Chang Gung University, No.259, Wenhua 1st Rd., Guishan Dist., Taoyuan City 33302, Taiwan
| | - Anjali Priyadarshini
- Department of Microbiology, SRM University, Rajiv Gandhi Education City, Post Office P.S. Rai, Sonepat 131029, Haryana, India; (Y.D.); (R.D.); (A.V.); (A.G.); (R.P.P.); (V.S.R.)
| |
Collapse
|
12
|
Gabashvili E, Kobakhidze S, Chkhikvishvili T, Tabatadze L, Tsiklauri R, Dadiani K, Kotetishvili M. Bacteriophage-Mediated Risk Pathways Underlying the Emergence of Antimicrobial Resistance via Intrageneric and Intergeneric Recombination of Antibiotic Efflux Genes Across Natural populations of Human Pathogenic Bacteria. MICROBIAL ECOLOGY 2022; 84:213-226. [PMID: 34467445 DOI: 10.1007/s00248-021-01846-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Antimicrobial resistance continues to be a significant and growing threat to global public health, being driven by the emerging drug-resistant and multidrug-resistant strains of human and animal bacterial pathogens. While bacteriophages are generally known to be one of the vehicles of antibiotic resistance genes (ARGs), it remains largely unclear how these organisms contribute to the dissemination of the genetic loci encoding for antibiotic efflux pumps, especially those that confer multidrug resistance, in bacteria. In this study, the in-silico recombination analyses provided strong statistical evidence for bacteriophage-mediated intra-species recombination of ARGs, encoding mainly for the antibiotic efflux proteins from the MF superfamily, as well as from the ABC and RND families, in Salmonella enterica, Staphylococcus aureus, Staphylococcus suis, Pseudomonas aeruginosa, and Burkholderia pseudomallei. Events of bacteriophage-driven intrageneric recombination of some of these genes could be also elucidated among Bacillus thuringiensis, Bacillus cereus and Bacillus tropicus natural populations. Moreover, we could also reveal the patterns of intergeneric recombination, involving the MF superfamily transporter-encoding genetic loci, induced by a Mycobacterium smegmatis phage, in natural populations of Streptomyces harbinensis and Streptomyces chartreusis. The SplitsTree- (fit: 100; bootstrap values: 92.7-100; Phi p ≤ 0.2414), RDP4- (p ≤ 0.0361), and GARD-generated data strongly supported the above genetic recombination inferences in these in-silico analyses. Thus, based on this pilot study, it can be suggested that the above mode of bacteriophage-mediated recombination plays at least some role in the emergence and transmission of multidrug resistance across a fairly broad spectrum of bacterial species and genera including human pathogens.
Collapse
Affiliation(s)
- Ekaterine Gabashvili
- School of Natural Sciences and Medicine, Ilia State University, 1 Giorgi Tsereteli exit, 0162, Tbilisi, Georgia
- Bioinformatics Core, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave, 0159, Tbilisi, Georgia
| | - Saba Kobakhidze
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave, 0159, Tbilisi, Georgia
| | - Tamar Chkhikvishvili
- Bioinformatics Core, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave, 0159, Tbilisi, Georgia
| | - Leila Tabatadze
- Bioinformatics Core, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave, 0159, Tbilisi, Georgia
| | - Rusudan Tsiklauri
- Faculty of Medicine, Iv. Javakhishvili Tbilisi State University, 1 Ilia Chavchavadze Ave, 0179, Tbilisi, Georgia
- Quality Investment in Livestock (SQIL), Land O'Lakes Venture37 Inc. - Safety &, 0179, Tbilisi, Georgia
| | - Ketevan Dadiani
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave, 0159, Tbilisi, Georgia
| | - Mamuka Kotetishvili
- Division of Risk Assessment, Scientific-Research Center of Agriculture, 6 Marshal Gelovani ave, 0159, Tbilisi, Georgia.
- Hygiene and Medical Ecology, G. Natadze Scientific-Research Institute of Sanitation, 78 D. Uznadze St, 0102, Tbilisi, Georgia.
| |
Collapse
|
13
|
Suganya T, Packiavathy IASV, Aseervatham GSB, Carmona A, Rashmi V, Mariappan S, Devi NR, Ananth DA. Tackling Multiple-Drug-Resistant Bacteria With Conventional and Complex Phytochemicals. Front Cell Infect Microbiol 2022; 12:883839. [PMID: 35846771 PMCID: PMC9280687 DOI: 10.3389/fcimb.2022.883839] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Emerging antibiotic resistance in bacteria endorses the failure of existing drugs with chronic illness, complicated treatment, and ever-increasing expenditures. Bacteria acquire the nature to adapt to starving conditions, abiotic stress, antibiotics, and our immune defense mechanism due to its swift evolution. The intense and inappropriate use of antibiotics has led to the development of multidrug-resistant (MDR) strains of bacteria. Phytochemicals can be used as an alternative for complementing antibiotics due to their variation in metabolic, genetic, and physiological fronts as well as the rapid evolution of resistant microbes and lack of tactile management. Several phytochemicals from diverse groups, including alkaloids, phenols, coumarins, and terpenes, have effectively proved their inhibitory potential against MDR pathogens through their counter-action towards bacterial membrane proteins, efflux pumps, biofilms, and bacterial cell-to-cell communications, which are important factors in promoting the emergence of drug resistance. Plant extracts consist of a complex assortment of phytochemical elements, against which the development of bacterial resistance is quite deliberate. This review emphasizes the antibiotic resistance mechanisms of bacteria, the reversal mechanism of antibiotic resistance by phytochemicals, the bioactive potential of phytochemicals against MDR, and the scientific evidence on molecular, biochemical, and clinical aspects to treat bacterial pathogenesis in humans. Moreover, clinical efficacy, trial, safety, toxicity, and affordability investigations, current status and developments, related demands, and future prospects are also highlighted.
Collapse
Affiliation(s)
- Thangaiyan Suganya
- Department of Microbiology, Karpagam Academy of Higher Education, Coimbatore, India
| | | | - G. Smilin Bell Aseervatham
- Post Graduate Research Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, India
| | - Areanna Carmona
- Francis Graduate School of Biomedical Sciences, Texas Tech University Health Science Center of El Paso, Texas, TX, United States
| | - Vijayaragavan Rashmi
- National Repository for Microalgae and Cyanobacteria (NRMC)- Marine, National Facility for Marine Cyanobacteria, (Sponsored by Department of Biotechnology (DBT), Government of India), Bharathidasan University, Tiruchirappalli, India
| | | | | | - Devanesan Arul Ananth
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
14
|
Shenkute D, Legese MH, Yitayew B, Mitiku A, Engidaye G, Gebremichael S, Asrat D, Woldeamanuel Y. High Magnitude of Fecal Carriage of Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae at Debre Berhan Comprehensive Specialized Hospital, Ethiopia. Infect Drug Resist 2022; 15:2445-2458. [PMID: 35586558 PMCID: PMC9109895 DOI: 10.2147/idr.s356807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Gastrointestinal colonization rate of extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-PE) is the major risk factor for infection and dissemination of resistance clones in healthcare facilities. This study aimed to investigate the magnitude of the fecal carriage of ESBL-PE and associated factors among hospitalized patients at Debre Berhan Comprehensive Specialized Hospital, North Shoa, Amhara Regional State, Ethiopia. Methods A hospital-based cross-sectional study was conducted among 383 hospitalized patients from November 2020 to March 2021. Stool sample or rectal swab was aseptically collected and cultured on different culture media for isolation of Enterobacteriaceae. Identification was done by conventional biochemical tests. Screening of extended-spectrum beta-lactamase (ESBL) production was done by using cefotaxime and ceftazidime and confirmed by the combination disk method. Data analysis was performed by Statistical Package for Social Sciences software version 25 and a P-value ≤0.05 was considered as statistically significant. Results From the total of 383 hospitalized patients, a total of 347 Enterobacteriaceae were isolated. The overall gastrointestinal colonization rate of ESBL-PE was 47.3% (164/347). The predominant ESBL-PE were E. coli 54.9% (90/164) and K. pneumoniae 33.5% (55/164). The overall multi-drug resistance rate (MDR) was 87.8% (305/347). The highest resistance was observed to ampicillin (98.3%), followed by gentamicin (80.7%), and tetracycline (73.3%), respectively. ESBL-PE were highly susceptible to meropenem (90.2%) and imipenem (89.0%). History of antibiotic use in the past 3 months (p<0.001), admission in the neonatal intensive care unit (p=0.023), and presence of chronic disease (p<0.001) were independently associated with fecal carriage of ESBL-PE. Conclusion The magnitude of ESBL-PE and MDR was high in the study area. Meropenem and imipenem were active against ESBL-PE. Therefore, strict infection control measure is needed in the study area to limit the infection and dissemination of ESBL-PE.
Collapse
Affiliation(s)
- Demissew Shenkute
- Department of Medical Laboratory Science, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
- Correspondence: Demissew Shenkute, Email
| | - Melese Hailu Legese
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Berhanu Yitayew
- Department of Medical Laboratory Science, College of Health Sciences, Debre Berhan University, Debre Berhan, Ethiopia
| | - Asaye Mitiku
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Dilla University, Dilla, Ethiopia
| | - Getabalew Engidaye
- Department of Medical Laboratory Science, Debre Berhan Health Science College, Debre Berhan, Ethiopia
| | - Saba Gebremichael
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia
| | - Daniel Asrat
- Department of Microbiology, Immunology, and Parasitology, College of Health Sciences Addis Ababa University, Addis Ababa, Ethiopia
| | - Yimtubezinash Woldeamanuel
- Department of Microbiology, Immunology, and Parasitology, College of Health Sciences Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Lynch JP, Clark NM, Zhanel GG. Infections Due to Acinetobacter baumannii-calcoaceticus Complex: Escalation of Antimicrobial Resistance and Evolving Treatment Options. Semin Respir Crit Care Med 2022; 43:97-124. [PMID: 35172361 DOI: 10.1055/s-0041-1741019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bacteria within the genus Acinetobacter (principally A. baumannii-calcoaceticus complex [ABC]) are gram-negative coccobacilli that most often cause infections in nosocomial settings. Community-acquired infections are rare, but may occur in patients with comorbidities, advanced age, diabetes mellitus, chronic lung or renal disease, malignancy, or impaired immunity. Most common sites of infections include blood stream, skin/soft-tissue/surgical wounds, ventilator-associated pneumonia, orthopaedic or neurosurgical procedures, and urinary tract. Acinetobacter species are intrinsically resistant to multiple antimicrobials, and have a remarkable ability to acquire new resistance determinants via plasmids, transposons, integrons, and resistance islands. Since the 1990s, antimicrobial resistance (AMR) has escalated dramatically among ABC. Global spread of multidrug-resistant (MDR)-ABC strains reflects dissemination of a few clones between hospitals, geographic regions, and continents; excessive antibiotic use amplifies this spread. Many isolates are resistant to all antimicrobials except colistimethate sodium and tetracyclines (minocycline or tigecycline); some infections are untreatable with existing antimicrobial agents. AMR poses a serious threat to effectively treat or prevent ABC infections. Strategies to curtail environmental colonization with MDR-ABC require aggressive infection-control efforts and cohorting of infected patients. Thoughtful antibiotic strategies are essential to limit the spread of MDR-ABC. Optimal therapy will likely require combination antimicrobial therapy with existing antibiotics as well as development of novel antibiotic classes.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology; Department of Medicine; The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Nina M Clark
- Division of Infectious Diseases, Department of Medicine, Loyola University Medical Center, Maywood, Illinois
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Lynch JP, Zhanel GG. Pseudomonas aeruginosa Pneumonia: Evolution of Antimicrobial Resistance and Implications for Therapy. Semin Respir Crit Care Med 2022; 43:191-218. [PMID: 35062038 DOI: 10.1055/s-0041-1740109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Pseudomonas aeruginosa (PA), a non-lactose-fermenting gram-negative bacillus, is a common cause of nosocomial infections in critically ill or debilitated patients, particularly ventilator-associated pneumonia (VAP), and infections of urinary tract, intra-abdominal, wounds, skin/soft tissue, and bloodstream. PA rarely affects healthy individuals, but may cause serious infections in patients with chronic structural lung disease, comorbidities, advanced age, impaired immune defenses, or with medical devices (e.g., urinary or intravascular catheters, foreign bodies). Treatment of pseudomonal infections is difficult, as PA is intrinsically resistant to multiple antimicrobials, and may acquire new resistance determinants even while on antimicrobial therapy. Mortality associated with pseudomonal VAP or bacteremias is high (> 35%) and optimal therapy is controversial. Over the past three decades, antimicrobial resistance (AMR) among PA has escalated globally, via dissemination of several international multidrug resistant "epidemic" clones. We discuss the importance of PA as a cause of pneumonia including health care-associated pneumonia, hospital-acquired pneumonia, VAP, the emergence of AMR to this pathogen, and approaches to therapy (both empirical and definitive).
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, California
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada
| |
Collapse
|
17
|
Louge Uriarte EL, González Pasayo RA, Massó M, Carrera Paez L, Domínguez Moncla M, Donis N, Malena R, Méndez A, Morrell E, Giannitti F, Armendano JI, Faverin C, Centrón D, Parreño V, Odeón AC, Quiroga MP, Moreira AR. Molecular characterization of multidrug-resistant Escherichia coli of the phylogroups A and C in dairy calves with meningitis and septicemia. Microb Pathog 2022; 163:105378. [PMID: 34982979 DOI: 10.1016/j.micpath.2021.105378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/21/2021] [Accepted: 12/28/2021] [Indexed: 11/19/2022]
Abstract
Escherichia coli is an important cause of septicemia (SEPEC) and neonatal meningitis (NMEC) in dairy calves. However, the diversity of virulence profiles, phylogroups, antimicrobial resistance patterns, carriage of integron structures, and fluoroquinolone (FQ) resistance mechanisms have not been fully investigated. Also, there is a paucity of knowledge about the virulence profiles and frequency of potential SEPEC in feces from calves with or without diarrhea. This study aimed to characterize the virulence potential, phylogroups, antimicrobial susceptibility, integron content, and FQ-resistance mechanisms in Escherichia coli isolated from calves with meningitis and septicemia. Additionally, the virulence genes (VGs) and profiles of E. coli isolated from diarrheic and non-diarrheic calves were compared between them and together with NMEC and SEPEC in order to identify shared profiles. Tissue and fluid samples from eight dairy calves with septicemia, four of which had concurrent meningitis, were processed for bacteriology and histopathology. Typing of VGs was assessed in 166 isolates from diverse samples of each calf. Selected isolates were evaluated for antimicrobial susceptibility by the disk diffusion test. Phylogroups, integron gene cassettes cartography, and FQ-resistance determinants were analyzed by PCR, sequencing, and bioinformatic tools. Furthermore, 109 fecal samples and 700 fecal isolates from dairy calves with or without diarrhea were evaluated to detect 19 VGs by uniplex PCR. Highly diverse VG profiles were characterized among NMEC and SEPEC isolates, but iucD was the predominant virulence marker. Histologic lesions in all calves supported their pathogenicity. Selected isolates mainly belonged to phylogroups A and C and showed multidrug resistance. Classic (dfrA17 and arr3-dfrA27) and complex (dfrA17-aadA5::ISCR1::blaCTX-M-2) class 1 integrons were identified. Target-site mutations in GyrA (S83L and D87N) and ParC (S80I) encoding genes were associated with FQ resistance. The VGs detected more frequently in fecal samples included f17G (50%), papC (30%), iucD (20%), clpG (19%), eae (16%), and afaE-8 (13%). Fecal isolates displaying the profiles of f17 or potential SEPEC were found in 25% of calves with and without diarrhea. The frequency of E. coli VGs and profiles did not differ between both groups (p > 0.05) and were identical or similar to those found in NMEC and SEPEC. Overall, multidrug-resistant E. coli isolates with diverse VG profiles and belonging to phylogroups A and C can be implicated in natural cases of meningitis and septicemia. Their resistance phenotypes can be partially explained by class 1 integron gene cassettes and target-site mutations in gyrA and parC. These results highlight the value of antimicrobial resistance surveillance in pathogenic bacteria isolated from food-producing animals. Besides, calves frequently shed potential SEPEC in their feces as commensals ("Trojan horse"). Thus, these bacteria may be disseminated in the farm environment, causing septicemia and meningitis under predisposing factors.
Collapse
Affiliation(s)
- Enrique L Louge Uriarte
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina.
| | - Ramón A González Pasayo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Mariana Massó
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Laura Carrera Paez
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Manuel Domínguez Moncla
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Nicolás Donis
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Rosana Malena
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Alejandra Méndez
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Eleonora Morrell
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Federico Giannitti
- Instituto Nacional de Investigación Agropecuaria (INIA), Ruta 50 km 11, Estación Experimental La Estanzuela, Semillero, 70006, Colonia, Uruguay
| | - Joaquín I Armendano
- Departamento de Fisiopatología, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco s/n, Tandil, 7000, Argentina
| | - Claudia Faverin
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Daniela Centrón
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina
| | - Viviana Parreño
- Incuinta, Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Virología e Innovaciones Tecnológicas, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IVIT, INTA-CONICET), Castelar, 1712, Buenos Aires, Argentina
| | - Anselmo C Odeón
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - María Paula Quiroga
- Instituto de Investigaciones en Microbiología y Parasitología Médica, Facultad de Medicina, Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (IMPaM, UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Argentina.
| | - Ana Rita Moreira
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Innovación para la Producción Agropecuaria y Desarrollo Sostenible, INTA-Consejo Nacional de Investigaciones Científicas y Técnicas (IPADS, INTA-CONICET), Ruta 226 km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| |
Collapse
|
18
|
Milenkov M, Rasoanandrasana S, Rahajamanana LV, Rakotomalala RS, Razafindrakoto CA, Rafalimanana C, Ravelomandranto E, Ravaoarisaina Z, Westeel E, Petitjean M, Mullaert J, Clermont O, Raskine L, Samison LH, Endtz H, Andremont A, Denamur E, Komurian-Pradel F, Armand-Lefevre L. Prevalence, Risk Factors, and Genetic Characterization of Extended-Spectrum Beta-Lactamase Escherichia coli Isolated From Healthy Pregnant Women in Madagascar. Front Microbiol 2021; 12:786146. [PMID: 35003019 PMCID: PMC8740230 DOI: 10.3389/fmicb.2021.786146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Antimicrobial resistance is a major public health concern worldwide affecting humans, animals and the environment. However, data is lacking especially in developing countries. Thus, the World Health Organization developed a One-Health surveillance project called Tricycle focusing on the prevalence of ESBL-producing Escherichia coli in humans, animals, and the environment. Here we present the first results of the human community component of Tricycle in Madagascar. From July 2018 to April 2019, rectal swabs from 492 pregnant women from Antananarivo, Mahajanga, Ambatondrazaka, and Toamasina were tested for ESBL-E. coli carriage. Demographic, sociological and environmental risk factors were investigated, and E. coli isolates were characterized (antibiotic susceptibility, resistance and virulence genes, plasmids, and genomic diversity). ESBL-E. coli prevalence carriage in pregnant women was 34% varying from 12% (Toamasina) to 65% (Ambatondrazaka). The main risk factor associated with ESBL-E. coli carriage was the rainy season (OR = 2.9, 95% CI 1.3-5.6, p = 0.009). Whole genome sequencing was performed on 168 isolates from 144 participants. bla CTX-M-15 was the most frequent ESBL gene (86%). One isolate was resistant to carbapenems and carried the bla NDM-5 gene. Most isolates belonged to commensalism associated phylogenetic groups A, B1, and C (90%) and marginally to extra-intestinal virulence associated phylogenetic groups B2, D and F (10%). Multi locus sequence typing showed 67 different sequence types gathered in 17 clonal complexes (STc), the most frequent being STc10/phylogroup A (35%), followed distantly by the emerging STc155/phylogroup B1 (7%), STc38/phylogroup D (4%) and STc131/phylogroup B2 (3%). While a wide diversity of clones has been observed, SNP analysis revealed several genetically close isolates (n = 34/168) which suggests human-to-human transmissions. IncY plasmids were found with an unusual prevalence (23%), all carrying a bla CTX-M-15. Most of them (85%) showed substantial homology (≥85%) suggesting a dissemination of IncY ESBL plasmids in Madagascar. This large-scale study reveals a high prevalence of ESBL-E. coli among pregnant women in four cities in Madagascar associated with warmth and rainfall. It shows the great diversity of E. coli disseminating throughout the country but also transmission of specific clones and spread of plasmids. This highlights the urgent need of public-health interventions to control antibiotic resistance in the country.
Collapse
Affiliation(s)
- Milen Milenkov
- Fondation Mérieux, Lyon, France
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
| | - Saida Rasoanandrasana
- Laboratoire de Bactériologie, CHU Joseph Raseta Befelatanana, RESAMAD Network, Antananarivo, Madagascar
| | | | | | | | - Christian Rafalimanana
- Laboratoire de Bactériologie, CHU Joseph Ravoahangy Andrianavalona, RESAMAD Network, Antananarivo, Madagascar
| | - Emile Ravelomandranto
- Laboratoire de Bactériologie, CHRR Alaotra Mangoro, RESAMAD Network, Ambatondrazaka, Madagascar
| | | | | | | | - Jimmy Mullaert
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
| | | | | | - Luc Hervé Samison
- Centre d’Infectiologie Charles Mérieux, University of Antananarivo, Antananarivo, Madagascar
| | - Hubert Endtz
- Fondation Mérieux, Lyon, France
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, Netherlands
| | | | - Erick Denamur
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, Paris, France
| | | | - Laurence Armand-Lefevre
- Université de Paris, IAME, INSERM UMR 1137, Paris, France
- Laboratoire de Bactériologie, Hôpital Bichat-Claude Bernard, AP-HP Nord-Université de Paris, Paris, France
| |
Collapse
|
19
|
Screening of Epidemiologically Significant Mechanisms of Antibiotics to β-Lactams in Enterobacteriaceae - Pathogens of Zoonoses. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the acquired mechanisms of resistance to antibiotics of microorganisms, the production of beta-lactamases, enzymes that inactivate penicillins, cephalosporins, carbapenems, and monobactams, is widespread. Most often, such beta-lactamases, in particular ESBL (extended-spectrum beta-lactamases), are capable of destroying III and IV generations of cephalosporins. One of the important ESBL producers is Escherichia coli and, to a lesser extent, Salmonella enteritidis, which are clinically significant in animals and humans. The purpose of the study was to screen ESBL DDM using cephalosporin markers and screening of mobile extrachromosomal factors of bacterial heredity – plasmids (potentially dangerous factors of genetic transport) in isolates of E. coli and S. enteritidis, polyresistant to aminoderms, from environmental objects, patho- and biological material, raw materials and products of animal origin. Results of our studies have shown the level of their distribution among animals, poultry, since from 13 field isolates of E. coli isolated from the milk of cows with mastitis and pathological material from pigs, ESBL production was found in 3 strains (23.1%) and from 18 field isolates of S. enteritidis isolated from pathological material from poultry, ESBL production was found in 2 strains (11.1%). Based on the results of molecular genetics studies, the presence of resistance plasmids (R-plasmids) in 9 field E. coli isolates was confirmed, 4 of which produced acquired beta-lactamases, incl. ESBL and 8 field isolates of S. enteritidis, 7 of which confirmed the presence of acquired carbapenemases.
Collapse
|
20
|
Hussain HI, Aqib AI, Seleem MN, Shabbir MA, Hao H, Iqbal Z, Kulyar MFEA, Zaheer T, Li K. Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microb Pathog 2021; 158:105040. [PMID: 34119627 PMCID: PMC8445154 DOI: 10.1016/j.micpath.2021.105040] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Antibiotic-resistant bacteria are considered one of the major global threats to human and animal health. The most harmful among the resistant bacteria are β-lactamase producing Gram-negative species (β-lactamases). β-lactamases constitute a paradigm shift in the evolution of antibiotic resistance. Therefore, it is imperative to present a comprehensive review of the mechanisms responsible for developing antimicrobial resistance. Resistance due to β-lactamases develops through a variety of mechanisms, and the number of resistant genes are involved that can be transferred between bacteria, mostly via plasmids. Over time, these new molecular-based resistance mechanisms have been progressively disclosed. The present review article provides information on the recent findings regarding the molecular mechanisms of resistance to β-lactams in Gram-negative bacteria, including CTX-M-type ESBLs with methylase activity, plasmids harbouring phages with β-lactam resistance genes, the co-presence of β-lactam resistant genes of unique combinations and the presence of β-lactam and non-β-lactam antibiotic-resistant genes in the same bacteria. Keeping in view, the molecular level resistance development, multifactorial and coordinated measures may be taken to counter the challenge of rapidly increasing β-lactam resistance.
Collapse
Affiliation(s)
- Hafiz Iftikhar Hussain
- Department of Pathology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Mohamed N Seleem
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, USA
| | | | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zahid Iqbal
- Department of Pharmacology, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055, China.
| | | | - Tean Zaheer
- Department of Parasitology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Antibiotic Resistance Pattern and Plasmid Profile of Bacteria Isolates from Household Water Distribution Tanks in Ado-Ekiti. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Water is essential to life. The existence of all forms of life is dependent on an adequate water supply. The exigent need for water supply in homes prompted the construction of water sources and water storage devices in the homes. This however does not guarantee that the water is safe to drink. If the water is safe at the source, it may be contaminated during transportation storage and drawing at home. This study was carried out to determine the microbial counts, antibiotics susceptibility and plasmid profile of bacteria isolates from household water distribution tanks in the Ado-Ekiti metropolis. The total bacteria and coliform counts were determined using the pour plating technique. The antibiotic susceptibility pattern of the isolates was determined using the disc diffusion technique while the plasmid profile of the isolates was determined using the alkaline lysis method and agar gel electrophoresis. The mean total bacteria count of the water sample was 6.96 log10 CFU/ml, while the mean total of coliform count is 5.50 log10CFU/ml. The isolates with multiple antibiotics resistance belonged to five bacteria genera namely: Escherichia, Pseudomonas, Klebsiella, Enterobacter and Proteus. The plasmid analysis showed that four of the resistant strains had multiple plasmids, Enterobacter aerogens had 3 plasmids (1kb, 1.5kb and 2kb), Pseudomonas aeruginosa and Klebsiella aerogens had two plasmids (1kb, 1.5kb) respectively while Proteus vulgaris and Escherichia coli had no plasmid.
Collapse
|
22
|
Lynch JP, Clark NM, Zhanel GG. Escalating antimicrobial resistance among Enterobacteriaceae: focus on carbapenemases. Expert Opin Pharmacother 2021; 22:1455-1473. [PMID: 33823714 DOI: 10.1080/14656566.2021.1904891] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction: Over the past few decades, antimicrobial resistance (AMR) has skyrocketed globally among bacteria within the Family Enterobacteriaceae (i.e. Enterobacter spp, Klebsiella spp, Escherichia coli, Proteus spp, Serratia marcescens, Citrobacter spp, and others). Enterobacteriaceae are intestinal flora and are important pathogens in nosocomial and community settings. Enterobacteriaceae spread easily between humans and may acquire AMR via plasmids or other mobile resistance elements. The emergence and spread of multidrug resistant (MDR) clones have greatly limited therapeutic options. Some infections are untreatable with existing antimicrobials.Areas covered: The authors discuss the escalation of CRE globally, the epidemiology and outcomes of CRE infections, the optimal therapy, and the potential role of several new antimicrobials to combat MDR organisms. An exhaustive search for literature related to Enterobacteriaceae was performed using PubMed, using the following key words: antimicrobial resistance; carbapenemases; Enterobacterales; Enterobacteriaceae; Klebsiella pneumoniae; Escherichia coli; global epidemiology; metallo-β-lactamases; multidrug resistance; New Delhi Metalloproteinase-1 (NDM-1); plasmidsExpert opinion: Innovation and development of new classes of antibacterial agents are critical to expand effective therapeutic options. The authors encourage the judicious use of antibiotics and aggressive infection-control measures are essential to minimize the spread of AMR.
Collapse
Affiliation(s)
- Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology;The David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Nina M Clark
- The Division of Infectious Diseases, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL
| | - George G Zhanel
- Department of Medical Microbiology/Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
23
|
Castellanos-Rozo J, Pérez Pulido R, Grande MJ, Lucas R, Gálvez A. Potentially pathogenic bacteria isolated from Paipa cheese and its susceptibility profiles to antibiotics and biocides. Braz J Microbiol 2021; 52:1535-1543. [PMID: 34050446 DOI: 10.1007/s42770-021-00522-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
The objective of this work was to evaluate the microbiological quality of cheese produced by formal and informal micro-enterprises in Paipa, Colombia, to isolate potentially pathogenic bacteria and to determine their prevalence and resistance to antimicrobials such as antibiotics and biocides. Sixteen micro-enterprises of the seventy existing in the region were sampled during 3 years. Viable concentrations of aerobic mesophiles, total and fecal coliforms, Salmonella sp., Listeria monocytogenes, Staphylococcus sp., yeasts, and molds were determined. Seventy-three bacterial isolates were identified by 16S rRNA gene sequencing. The susceptibility of the isolates to antibiotics and biocides was determined. The results indicated that between 98 and 100% of the cheese samples (n = 48 samples) of formal and informal micro-enterprises presented populations of total and fecal coliforms and Staphylococcus sp. above the limits established by Colombian regulations and varied according to the micro-enterprise. The results also indicated that 56% of Staphylococcus isolates were S. aureus. L. monocytogenes was positive in 38% of the samples. Salmonella sp. was not detected. The coliforms that prevailed were Escherichia coli (25%), Citrobacter freundii (14%), and Proteus mirabilis (8%). All L. monocytogenes were sensitive to ampicillin but resistant to erythromycin and trimethoprim-sulfamethoxazole. S. aureus isolates were susceptible to most antibiotics, except tetracycline and erythromycin (7% resistance). Likewise, 30% of coliforms (n = 36) were multidrug-resistant to antibiotics but susceptible to biocides.
Collapse
Affiliation(s)
- José Castellanos-Rozo
- Department of Biology and Microbiology, Faculty of Sciences and Engineering, Universidad de Boyacá, 150003, Tunja, Colombia
| | - Rubén Pérez Pulido
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain
| | - Mª José Grande
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain
| | - Rosario Lucas
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain
| | - Antonio Gálvez
- Microbiology Division, Department of Health Sciences, Faculty of Experimental Sciences, University of Jaén, 23071, Jaén, Spain.
| |
Collapse
|
24
|
Full pathogen characterisation: species identification including the detection of virulence factors and antibiotic resistance genes via multiplex DNA-assays. Sci Rep 2021; 11:6001. [PMID: 33727586 PMCID: PMC7966752 DOI: 10.1038/s41598-021-85438-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/19/2021] [Indexed: 11/08/2022] Open
Abstract
Antibiotic resistances progressively cause treatment failures, and their spreading dynamics reached an alarming level. Some strains have already been classified as highly critical, e.g. the ones summarised by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.). To restrain this trend and enable effective medication, as much information as possible must be obtained in the least possible time. Here, we present a DNA microarray-based assay that screens for the most important sepsis-relevant 44 pathogenic species, 360 virulence factors (mediate pathogenicity in otherwise non-pathogenic strains), and 409 antibiotic resistance genes in parallel. The assay was evaluated with 14 multidrug resistant strains, including all ESKAPE pathogens, mainly obtained from clinical isolates. We used a cost-efficient ligation-based detection platform designed to emulate the highly specific multiplex detection of padlock probes. Results could be obtained within one day, requiring approximately 4 h for amplification, application to the microarray, and detection.
Collapse
|
25
|
In Vivo Activity of QPX7728, an Ultrabroad-Spectrum Beta-Lactamase Inhibitor, in Combination with Beta-Lactams against Carbapenem-Resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.01267-20. [PMID: 32839224 DOI: 10.1128/aac.01267-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/18/2020] [Indexed: 12/26/2022] Open
Abstract
Resistance to beta-lactams has created a major clinical issue. QPX7728 is a novel ultrabroad-spectrum cyclic boronic acid beta-lactamase inhibitor with activity against both serine and metallo-beta-lactamases developed to address this resistance for use in combination with beta-lactam antibiotics. The objective of these studies was to evaluate the activity of QPX7728 in combination with multiple beta-lactams against carbapenem-resistant Klebsiella pneumoniae isolates in a neutropenic mouse thigh infection model. Neutropenic mice were infected with strains with potentiated beta-lactam MICs of ≤2 mg/liter in the presence of 8 mg/liter QPX7728. Two strains of carbapenem-resistant K. pneumoniae were tested with aztreonam, biapenem, cefepime, ceftazidime, ceftolozane, and meropenem alone or in combination with 12.5, 25, or 50 mg/kg of body weight of QPX7728 every 2 hours for 24 hours. Treatment with all beta-lactams alone either was bacteriostatic or allowed for bacterial growth. The combination of QPX7728 plus each of these beta-lactams produced bacterial killing at all QPX7728 doses tested. Overall, these data suggest that QPX7728 administered in combination with different partner beta-lactam antibiotics may have utility in the treatment of bacterial infections due to carbapenem-resistant K. pneumoniae.
Collapse
|
26
|
O’Neal L, Alvarez D, Mendizábal-Cabrera R, Ramay BM, Graham J. Community-Acquired Antimicrobial Resistant Enterobacteriaceae in Central America: A One Health Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207622. [PMID: 33086731 PMCID: PMC7589814 DOI: 10.3390/ijerph17207622] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022]
Abstract
Community-acquired antimicrobial resistant Enterobacteriaceae (CA-ARE) are an increasingly important issue around the world. Characterizing the distribution of regionally specific patterns of resistance is important to contextualize and develop locally relevant interventions. This systematic review adopts a One Health framework considering the health of humans, animals, and the environment to describe CA-ARE in Central America. Twenty studies were identified that focused on antimicrobial resistance (AMR) in Enterobacteriaceae. Studies on CA-ARE in Central America characterized resistance from diverse sources, including humans (n = 12), animals (n = 4), the environment (n = 2), and combinations of these categories (n = 2). A limited number of studies assessed prevalence of clinically important AMR, including carbapenem resistance (n = 3), third generation cephalosporin resistance (n = 7), colistin resistance (n = 2), extended spectrum beta-lactamase (ESBL) production (n = 4), or multidrug resistance (n = 4). This review highlights significant gaps in our current understanding of CA-ARE in Central America, most notably a general dearth of research, which requires increased investment and research on CA-ARE as well as AMR more broadly.
Collapse
Affiliation(s)
- Lauren O’Neal
- School of Public Health, University of California, Berkeley, CA 94720, USA;
| | - Danilo Alvarez
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala; (D.A.); (R.M.-C.); (B.M.R.)
| | - Renata Mendizábal-Cabrera
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala; (D.A.); (R.M.-C.); (B.M.R.)
| | - Brooke M. Ramay
- Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City 01015, Guatemala; (D.A.); (R.M.-C.); (B.M.R.)
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164, USA
| | - Jay Graham
- School of Public Health, University of California, Berkeley, CA 94720, USA;
- Correspondence:
| |
Collapse
|
27
|
Ouchar Mahamat O, Kempf M, Lounnas M, Tidjani A, Hide M, Benavides JA, Carrière C, Bañuls AL, Jean-Pierre H, Ouedraogo AS, Dumont Y, Godreuil S. Epidemiology and prevalence of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae in humans, animals and the environment in West and Central Africa. Int J Antimicrob Agents 2020; 57:106203. [PMID: 33075511 DOI: 10.1016/j.ijantimicag.2020.106203] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/17/2022]
Abstract
Extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-E) and carbapenemase-producing Enterobacteriaceae (CPE) are widespread. Here we used the 'One Health' approach to determine knowledge gaps on ESBL-E and CPE in West and Central Africa. We searched all articles on ESBL-E and CPE in these African regions published in PubMed, African Journals Online and Google Scholar from 2000 onwards. Among the 1201 articles retrieved, we selected 165 studies (West Africa, 118; Central Africa, 47) with data from 22 of the 26 West and Central Africa countries. Regarding the settings, 136 articles focused only on humans (carriage and/or infection), 6 articles on humans and animals, 13 on animals, 1 on humans and the environment, 8 on the environment and 1 on humans, animals and environments. ESBL-E prevalence ranged from 11-72% in humans and 7-79% in aquatic environments (wastewater). In animals, ESBL-E prevalence hugely varied: 0% in cattle, 11-36% in chickens, 20% in rats, 21-71% in pigs and 32-75% in dogs. The blaCTX-M-15 gene was the predominant ESBL-encoding gene and was associated with plasmids of incompatibility groups F, H, K, Y, N, I1 and R. CPE were studied only in humans. Class B metallo-β-lactamases (NDM) and class D oxacillinases (OXA-48 and OXA-181) were the most common carbapenemases. Our results show major knowledge gaps, particularly on ESBL and CPE in animals and the environment, that might limit antimicrobial resistance management in these regions. The results also emphasise the urgent need to improve active surveillance programmes in each country and to support antimicrobial stewardship.
Collapse
Affiliation(s)
- Oumar Ouchar Mahamat
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Service de laboratoire, Hôpital de la Mère et de l'Enfant, N'Djaména, Chad.
| | - Marie Kempf
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France, and Laboratoire de Bactériologie-Hygiène, Institut de Biologie en Santé - PBH, CHU Angers, Angers, France
| | - Manon Lounnas
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | | | - Mallorie Hide
- MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Julio A Benavides
- Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Christian Carrière
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Anne-Laure Bañuls
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboraoire Mixte International, DRISA, IRD, Montpellier, France
| | - Hélène Jean-Pierre
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | | | - Yann Dumont
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Sylvain Godreuil
- Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France; MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France; Laboraoire Mixte International, DRISA, IRD, Montpellier, France
| |
Collapse
|
28
|
Milite C. Patent evaluation of WO2019209182 (A1) 2019-10-31 (Conjugated Oligoelectrolytes as Antimicrobial Agents). Expert Opin Ther Pat 2020; 30:911-915. [PMID: 32930639 DOI: 10.1080/13543776.2020.1822818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The insurgence of antibiotic resistance represents one of the biggest public health challenges of our times. During the years, different compounds were developed to fight against resistant bacterial cells, exploiting different mechanisms of action. AREAS COVERED The patent application describes a set of antimicrobial compounds bearing to the class of the conjugated oligoelectrolytes (COEs). These are molecules characterized by hydrophobic conjugated backbone and terminal polar ionic pendants, able to intercalate into lipid bilayers of bacterial cells. The patent reports the preparation of 15 new compounds and the evaluation of their antimicrobial effect against ESKAPE pathogens ( E nterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.). EXPERT OPINION The preparation of the compounds claimed is simple and the preliminary activity data are very interesting. Among the claimed compounds, COE-D8, COE-T42, and COE-T62 have the ability to strongly inhibit the bacterial growth at doses similar to the ones of last resource antibiotics. Unfortunately, no in-vivo data are reported. Moreover, the presence of several quaternary amines limits the potential application of these compounds only to topical uses.
Collapse
Affiliation(s)
- Ciro Milite
- Department of Pharmacy, Epigenetic Medicinal Chemistry Laboratory, University of Salerno , Fisciano, Italy
| |
Collapse
|
29
|
Moo CL, Yang SK, Yusoff K, Ajat M, Thomas W, Abushelaibi A, Lim SHE, Lai KS. Mechanisms of Antimicrobial Resistance (AMR) and Alternative Approaches to Overcome AMR. Curr Drug Discov Technol 2020; 17:430-447. [PMID: 30836923 DOI: 10.2174/1570163816666190304122219] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 01/21/2023]
Abstract
Antimicrobials are useful compounds intended to eradicate or stop the growth of harmful microorganisms. The sustained increase in the rates of antimicrobial resistance (AMR) worldwide is worrying and poses a major public health threat. The development of new antimicrobial agents is one of the critical approaches to overcome AMR. However, in the race towards developing alternative approaches to combat AMR, it appears that the scientific community is falling behind when pitched against the evolutionary capacity of multi-drug resistant (MDR) bacteria. Although the "pioneering strategy" of discovering completely new drugs is a rational approach, the time and effort taken are considerable, the process of drug development could instead be expedited if efforts were concentrated on enhancing the efficacy of existing antimicrobials through: combination therapies; bacteriophage therapy; antimicrobial adjuvants therapy or the application of nanotechnology. This review will briefly detail the causes and mechanisms of AMR as background, and then provide insights into a novel, future emerging or evolving strategies that are currently being evaluated and which may be developed in the future to tackle the progression of AMR.
Collapse
Affiliation(s)
- Chew-Li Moo
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Shun-Kai Yang
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Pre Clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Warren Thomas
- Perdana University-Royal College of Surgeons in Ireland School of Medicine, Perdana University, MAEPS Building, Serdang, Selangor, Malaysia
| | - Aisha Abushelaibi
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012 Abu Dhabi, United Arab Emirates
| | - Swee-Hua-Erin Lim
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, 41012 Abu Dhabi, United Arab Emirates
| | - Kok-Song Lai
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
30
|
Iwu CD, du Plessis EM, Korsten L, Nontongana N, Okoh AI. Antibiogram Signatures of Some Enterobacteria Recovered from Irrigation Water and Agricultural Soil in two District Municipalities of South Africa. Microorganisms 2020; 8:microorganisms8081206. [PMID: 32784678 PMCID: PMC7463487 DOI: 10.3390/microorganisms8081206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
This study was undertaken to evaluate the antibiogram fingerprints of some Enterobacteria recovered from irrigation water and agricultural soil in two District Municipalities of the Eastern Cape Province, South Africa using standard culture-based and molecular methods. The prevalent resistance patterns in the isolates follow the order: Salmonella enterica serovar Typhimurium [tetracycline (92.3%), ampicillin (69.2%)]; Enterobacter cloacae [amoxicillin/clavulanic acid (77.6%), ampicillin (84.5%), cefuroxime (81.0%), nitrofurantoin (81%), and tetracycline (80.3%)]; Klebsiella pneumoniae [amoxicillin/clavulanic acid (80.6%), ampicillin (88.9%), and cefuroxime (61.1%)]; and Klebsiella oxytoca [chloramphenicol (52.4%), amoxicillin/clavulanic acid (61.9%), ampicillin (61.9%), and nitrofurantoin (61.9%)]. Antibiotic resistance genes detected include tetC (86%), sulII (86%), and blaAmpC (29%) in Salmonella enterica serovar Typhimurium., tetA (23%), tetB (23%), tetC (12%), sulI (54%), sulII (54%), catII (71%), blaAmpC (86%), blaTEM (43%), and blaPER (17%) in Enterobacter cloacae., tetA (20%), tetC (20%), tetD (10%), sulI (9%), sulII (18%), FOX (11%) and CIT (11%)-type plasmid-mediated AmpC, blaTEM (11%), and blaSHV (5%) in Klebsiella pneumoniae and blaAmpC (18%) in Klebsiella oxytoca. Our findings document the occurrence of some antibiotic-resistant Enterobacteria in irrigation water and agricultural soil in Amathole and Chris Hani District Municipalities, Eastern Cape Province of South Africa, thus serving as a potential threat to food safety.
Collapse
Affiliation(s)
- Chidozie Declan Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
- Correspondence:
| | - Erika M du Plessis
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (E.M.d.P.); (L.K.)
| | - Lise Korsten
- Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa; (E.M.d.P.); (L.K.)
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; (N.N.); (A.I.O.)
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
31
|
Shitta G, Makanjuola O, Adefioye O, Olowe OA. Extended Spectrum Beta Lactamase (ESBL), bla TEM,bla SHV and bla CTX-M, Resistance Genes in Community and Healthcare Associated Gram Negative Bacteria from Osun State, Nigeria. Infect Disord Drug Targets 2020; 21:595-602. [PMID: 32729432 DOI: 10.2174/1871526520999200729181559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/23/2020] [Accepted: 05/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Extended Spectrum Beta Lactamase (ESBL) production in gram negative bacteria confers multiple antibiotic resistance, adversely affecting antimicrobial therapy in infected individuals. ESBLs result from mutations in β-lactamases encoded mainly by the blaTEM,blaSHV and blaCTX-M genes. The prevalence of ESBL producing bacteria has been on the increase globally, especially its upsurge among isolates from community-acquired infections has been observed. AIM To determine ESBL prevalence and identify ESBL genes among clinical isolates in Osun State, Nigeria. MATERIAL AND METHODS A cross-sectional study was carried out from August 2016 - July 2017 in Osun State, Nigeria. Three hundred and sixty Gram-negative bacteria recovered from clinical samples obtained from both community and healthcare-associated infections were tested. They included 147 Escherichia coli (40.8%), 116 Klebsiella spp (32.2%), 44 Pseudomonas aeruginosa (12.2%) and 23 Proteus vulgaris (6.4%) isolates. Others were Acinetobacter baumannii, Serratia rubidae, Citrobacter spp, Enterobacter spp and Salmonella typhi. Disk diffusion antibiotic susceptibility testing was carried out, isolates were screened for ESBL production and confirmed using standard laboratory procedures. ESBLs resistance genes were identified by Polymerase Chain Reaction (PCR). RESULTS All isolates demonstrated multiple antibiotic resistance. Resistance to ampicillin, amoxicillin with clavulanate and erythromycin was 100%, whereas resistance to Imipenem was very low (5.0%). The overall prevalence of ESBL producers was 41.4% with Klebsiella spp as the highest ESBL producing Enterobacteriacaea. ESBL producers were more prevalent among the hospital pathogens than community pathogens, 58% vs. 29.5% (p=0.003). ESBL genes were detected in all ESBL producers with the blaCTX-M gene predominating (47.0%) followed by blaTEM (30.9%) and blaSHV gene was the least, 22.1%. The blaCTX-M gene was also the most prevalent in the healthcare pathogens (62%) but it accounted for only 25% in those of community origin. CONCLUSION A high prevalence of ESBL producing gram-negative organisms occurs both in healthcare and in the community in our environment with the CTX-M variant predominating. Efforts to control the spread of these pathogens should be addressed.
Collapse
Affiliation(s)
- Ganiyat Shitta
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | | | - Olusolabomi Adefioye
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| | - Olugbenga Adekunle Olowe
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
| |
Collapse
|
32
|
Djamin RS, Talman S, Schrauwen EJA, von Wintersdorff CJH, Wolffs PF, Savelkoul PHM, Uzun S, Kerstens R, van der Eerden MM, Kluytmans JAJW. Prevalence and abundance of selected genes conferring macrolide resistance genes in COPD patients during maintenance treatment with azithromycin. Antimicrob Resist Infect Control 2020; 9:116. [PMID: 32723393 PMCID: PMC7389634 DOI: 10.1186/s13756-020-00783-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 11/16/2022] Open
Abstract
Objectives Maintenance treatment with macrolide antibiotics has shown to be effective in reducing exacerbations in COPD patients. A major concern with prolonged treatment with antibiotics is the development of bacterial resistance. In this study we determined the effect of azithromycin on the development and acquisition of resistance to macrolides in the nasopharyngeal flora in COPD patients. Methods This study was part of the COLUMBUS trial, a randomised, double-blind, placebo-controlled trial to measure the effect of maintenance treatment with azithromycin in 92 COPD patients on the exacerbation rates during a 12-month period. In order to determine resistance to macrolides, we used a targeted metagenomic approach to measure the presence and relative abundance of specific macrolide resistance genes ermB, ermF and mefA in throat samples collected at different time-points during this 12-month period. Results There was no increased risk for acquisition of macrolide resistance genes in the azithromycin group compared to the placebo group in COPD patients. However, loss of the macrolide resistance gene ermB was increased overtime in the placebo treated group compared to the azithromycin group (n = 5 for the placebo group versus n = 0 for the azithromycin group at 12 months; p = 0.012). The change in relative abundance of the three macrolide-resistance genes showed that all but one (ermF) increased during treatment with azithromycin. Conclusions The acquisition rate of macrolide resistance genes in COPD patients treated with azithromycin maintenance therapy was limited, but the relative abundance of macrolide resistance genes increased significantly over time compared to placebo. This study was part of the COLUMBUS trial (Clinicaltrials.gov, NCT00985244).
Collapse
Affiliation(s)
- Remco S Djamin
- Department t of Respiratory Medicine, Amphia Hospital, Molengracht 21, 4818 CK, Breda, The Netherlands
| | - Sander Talman
- Department t of Respiratory Medicine, Amphia Hospital, Molengracht 21, 4818 CK, Breda, The Netherlands.
| | - Eefje J A Schrauwen
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands.,Academy for Technology and Environmental Health, Avans University of Applied Sciences, Breda, the Netherlands
| | | | - Petra F Wolffs
- Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Paul H M Savelkoul
- Department of Medical Microbiology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Sevim Uzun
- Department t of Respiratory Medicine, Amphia Hospital, Molengracht 21, 4818 CK, Breda, The Netherlands
| | - René Kerstens
- Orion Statistical Consulting BV, Hilvarenbeek, The Netherlands
| | | | - Jan A J W Kluytmans
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands.,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
33
|
Ye H, Hong YM, Jing SX, Hui Y, Juan ZX, Wei ZY. Widespread use of anti-retroviral therapy elevated the prevalence of dyslipidemia in HIV-infected Chinese patients. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902020000318850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- He Ye
- Peking Union Medical College, China
| | | | | | - Yang Hui
- Peking Union Medical College, China
| | | | | |
Collapse
|
34
|
Carvalho I, Alonso CA, Silva V, Pimenta P, Cunha R, Martins C, Igrejas G, Torres C, Poeta P. Extended-Spectrum Beta-Lactamase-Producing Klebsiella pneumoniae Isolated from Healthy and Sick Dogs in Portugal. Microb Drug Resist 2019; 26:709-715. [PMID: 31895642 DOI: 10.1089/mdr.2019.0205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)- and carbapenemase (CP)-producing Klebsiella pneumoniae isolates are a public health concern at clinical level, mainly in Southern European countries. However, there are scarce data on the role of companion animals in the emergence of resistance to clinically relevant antibiotics. Therefore, our study aimed to determine the presence of K. pneumoniae with relevant beta-lactamases in fecal samples from healthy dogs (kennel and house dogs) and sick dogs in seven different hospitals in Portugal. Fecal samples from 125 healthy dogs and 231 sick dogs (one per animal) were collected during April-August 2017. Samples were screened on MacConkey agar supplemented with meropenem, and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) was used for K. pneumoniae identification. Genotypic detection of ESBLs or CPs was carried out by PCR/sequencing. Moreover, the presence of other antimicrobial resistance genes and multilocus sequence typing was tested by PCR/sequencing. K. pneumoniae isolates were obtained from 16 tested samples (4.4%), and 3 of them were ertapenem and/or meropenem intermediate/resistant (all of them imipenem susceptible and negative for CP genes). Fifteen K. pneumoniae isolates were ESBL producers, and they carried the following beta-lactamase genes: blaCTX-M-15+blaSHV-28 (four isolates, in three cases associated with blaTEM-1), blaCTX-M-15+blaSHV-1 (five isolates, associated with TEM-1 in three cases), and blaSHV-28+blaTEM-1 (six isolates). Three ESBL-producing K. pneumoniae isolates of different origins and beta-lactamase genotypes (CTX-M-15+SHV-28, CTX-M-15+SHV-28+TEM-1, or SHV-28+TEM-1) belonged to the lineage ST307, and one isolate was identified as ST15 (CTX-M-15+SHV-1). These findings highlight that dogs are frequent carriers of ESBL-producing K. pneumonia isolates, harboring mostly genes encoding CTX-M-15 or SHV-28, associated in some cases with the high-risk clones ST307 and ST15.
Collapse
Affiliation(s)
- Isabel Carvalho
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, UTAD, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Carla Andrea Alonso
- Area Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Vanessa Silva
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,Department of Genetics and Biotechnology, UTAD, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Paulo Pimenta
- Veterinary Hospital of Trás-os-Montes, Vila Real, Portugal
| | - Rita Cunha
- Veterinary Hospital of São Bento, Lisbon, Portugal
| | - Carla Martins
- Veterinary Clinic of Vouga, Sever do Vouga, Portugal
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, UTAD, Vila Real, Portugal.,Functional Genomics and Proteomics Unit, UTAD, Vila Real, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| | - Carmen Torres
- Area Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Patrícia Poeta
- MicroART-Antibiotic Resistance Team, Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal.,Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, Caparica, Portugal
| |
Collapse
|
35
|
Yu Z, Tang J, Khare T, Kumar V. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia 2019; 140:104433. [PMID: 31760066 DOI: 10.1016/j.fitote.2019.104433] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 01/23/2023]
Abstract
Antibiotics, considered as a backbone of modern clinical-medicines, are facing serious threats from emerging antimicrobial-resistance (AMR) in several bacteria from nosocomial and community origins and is posing a serious human-health concern. Recent commitment by the Heads of States at the United Nations General Assembly (UNGA, 2016) for coordinated efforts to curb such infections illustrates the scale of this problem. Amongst the drug-resistant microbes, major threat is posed by the group named as ESKAPEE, an acronym for Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli, comprising high to critical drug-resistant, World Health Organization Critical Priority I and II pathogens. The drying pipeline of effective and new antibiotics has worsened the situation with looming threat of heading to a 'post-antibiotic era'. This necessitates novel and effective approaches to combat this life-threatening issue. Medicinal and aromatic plants are hailed as the reservoir of bioactive compounds and can serve as a source of antimicrobial compounds, and some recent leads show that essential oils (EOs) may provide an effective solution for tackling AMR. EOs have shown wide-spectrum antimicrobial potentials via targeting the major determinants of pathogenicity, drug-resistance and its spread including cell membrane, drug efflux pumps, quorum sensing, biofilms and R-plasmids. Latest reports confirm the EOs having strong direct-killing or re-sensitizing potentials to replace or rejuvenate otherwise fading antibiotics arsenal. We discuss herein possibilities of using EOs directly for antimicrobial potentials or in combination with antibiotics to potentiate the later for combating AMR in ESKAPEE pathogens. The current understandings, success stories and challenges for translational success have also been discussed.
Collapse
Affiliation(s)
- Zhihui Yu
- Jilin Agricultural Science and Technology College, School of Agronomy, Jilin 132101, China; College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jie Tang
- College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune 411016, India; Department of Environmental Science, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
36
|
Ouchar Mahamat O, Tidjani A, Lounnas M, Hide M, Benavides J, Somasse C, Ouedraogo AS, Sanou S, Carrière C, Bañuls AL, Jean-Pierre H, Dumont Y, Godreuil S. Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae in hospital and community settings in Chad. Antimicrob Resist Infect Control 2019; 8:169. [PMID: 31695911 PMCID: PMC6824111 DOI: 10.1186/s13756-019-0626-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/15/2019] [Indexed: 11/29/2022] Open
Abstract
Background Fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-PE) remains poorly documented in Africa. The objective of this study was to determine the prevalence of ESBL-PE fecal carriage in Chad. Methods In total, 200 fresh stool samples were collected from 100 healthy community volunteers and 100 hospitalized patients from January to March 2017. After screening using ESBL-selective agar plates and species identification by MALDI-TOF mass spectrometry, antibiotic susceptibility was tested using the disk diffusion method, and ESBL production confirmed with the double-disc synergy test. The different ESBL genes in potential ESBL-producing isolates were detected by PCR and double stranded DNA sequencing. Escherichia coli phylogenetic groups were determined using a PCR-based method. Results ESBL-PE fecal carriage prevalence was 44.5% (51% among hospitalized patients vs 38% among healthy volunteers; p < 0.05). ESBL-producing isolates were mostly Escherichia coli (64/89) and Klebsiella pneumoniae (16/89). PCR and sequencing showed that 98.8% (87/89) of ESBL-PE harbored blaCTX-M genes: blaCTX-M-15 in 94.25% (82/87) and blaCTX-M-14 in 5.75% (5/87). Phylogroup determination by quadruplex PCR indicated that ESBL-producing E. coli isolates belonged to group A (n = 17; 27%), C (n = 17; 27%), B2 (n = 9; 14%), B1 (n = 8; 13%), D (n = 8; 13%), E (n = 1; 1.6%), and F (n = 1; 1.6%). The ST131 clone was identified in 100% (9/9) of E. coli B2 strains. Conclusions The high fecal carriage rate of ESBL-PE associated with CTX-M-15 in hospital and community settings of Chad highlights the risk for resistance transmission between non-pathogenic and pathogenic bacteria.
Collapse
Affiliation(s)
- Oumar Ouchar Mahamat
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France.,Service de laboratoire Hôpital de la Mère et de l'Enfant, N'Djaména, Chad
| | | | - Manon Lounnas
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Mallorie Hide
- 2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Julio Benavides
- 57 Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Calèbe Somasse
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Abdoul-Salam Ouedraogo
- Service de bactériologie-virologie, Département des laboratoires, Centre Hospitalier Universitaire Souro Sanou, Bobo Dioulasso, Burkina Faso
| | - Soufiane Sanou
- Service de bactériologie-virologie, Département des laboratoires, Centre Hospitalier Universitaire Souro Sanou, Bobo Dioulasso, Burkina Faso
| | - Christian Carrière
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Anne-Laure Bañuls
- 2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France.,7Laboraoire Mixte International, DRISA, IRD, Montpellier, France
| | - Hélène Jean-Pierre
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Yann Dumont
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Sylvain Godreuil
- 1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, France.,2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France.,7Laboraoire Mixte International, DRISA, IRD, Montpellier, France
| |
Collapse
|
37
|
Soman R, Veeraraghavan B, Hegde A, Jiandani P, Mehta Y, Nagavekar V, Rodrigues C, Singh RK, Swaminathan S, Todi S, Varma S, Patil S, Barkate H. Indian consensus on the management of CRE infection in critically ill patients (ICONIC) - India. Expert Rev Anti Infect Ther 2019; 17:647-660. [PMID: 31375039 DOI: 10.1080/14787210.2019.1647103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Background: The increasing burden of carbapenem-resistant Enterobacteriaceae (CRE) carriage and infection in different patient settings in India has created an acute need for guidance for clinicians regarding optimal strategies for the management of CRE infection in critically ill patients. Research design and methods: A multidisciplinary panel of 11 Indian experts in CRE infection assembled for comprehensive discussion and consensus development. The experts developed clinical statements through a systematic review of key literature. Main outcome measures: The panel voted anonymously on 60 clinically relevant questions, through a modified Delphi process. Results: Forty-six key clinical consensus statements (CCS) were proposed. The panel reached a consensus on several important issues, providing recommendations on surveillance, diagnosis, prevention, pharmacokinetic challenges, combination therapy, and cornerstone molecules in CRE infections. The panel also proposed a treatment algorithm for NDM-prevalent settings. Conclusion: These consensus statements may offer clinicians expert guidance on the management of CRE infections. There is a dearth of high-/moderate-level evidence on managing CRE infections; the recommendations presented herein are based on expert opinion.
Collapse
Affiliation(s)
- Rajeev Soman
- a Infectious Diseases, Jupiter Hospital , Pune , India
| | - Balaji Veeraraghavan
- b Department of Clinical Microbiology, Christian Medical College , Vellore , India
| | - Ashit Hegde
- c Critical Care, Hinduja Hospital , Mumbai , India
| | | | - Yatin Mehta
- e Institute of Critical Care and Anesthesiology, Medanta, The Medicity , Gurugram , India
| | | | | | - R K Singh
- h Department of Emergency Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences , Lucknow , India
| | | | - Subhash Todi
- j Critical Care, Critical Care AMRI Hospitals , Kolkata , India
| | - Subhash Varma
- k Internal Medicine/Hematology, Fortis Hospital , Mohali , India
| | - Saiprasad Patil
- l Medical Services, IF, Glenmark Pharmaceuticals Ltd ., Mumbai , India
| | - Hanmant Barkate
- m Medical Services, IF & MEA, Glenmark Pharmaceuticals Ltd ., Mumbai , India
| |
Collapse
|
38
|
Aruhomukama D, Sserwadda I, Mboowa G. Investigating colistin drug resistance: The role of high-throughput sequencing and bioinformatics. F1000Res 2019; 8:150. [PMID: 31354944 PMCID: PMC6635981 DOI: 10.12688/f1000research.18081.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Bacterial infections involving antibiotic-resistant gram-negative bacteria continue to increase and represent a major global public health concern. Resistance to antibiotics in these bacteria is mediated by chromosomal and/or acquired resistance mechanisms, these give rise to multi-drug resistant (MDR), extensive-drug resistant (XDR) or pan-drug resistant (PDR) bacterial strains. Most recently, plasmid-mediated resistance to colistin, an antibiotic that had been set apart as the last resort antibiotic in the treatment of infections involving MDR, XDR and PDR gram-negative bacteria has been reported. Plasmid-mediated colistin resistant gram-negative bacteria have been described to be PDR, implying a state devoid of alternative antibiotic therapeutic options. This review concisely describes the evolution of antibiotic resistance to plasmid-mediated colistin resistance and discusses the potential role of high-throughput sequencing technologies, genomics, and bioinformatics towards improving antibiotic resistance surveillance, the search for novel drug targets and precision antibiotic therapy focused at combating colistin resistance, and antibiotic resistance as a whole.
Collapse
Affiliation(s)
- Dickson Aruhomukama
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| | - Ivan Sserwadda
- Department of Immunology and Molecular Biology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| | - Gerald Mboowa
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| |
Collapse
|
39
|
Aruhomukama D, Sserwadda I, Mboowa G. Investigating colistin drug resistance: The role of high-throughput sequencing and bioinformatics. F1000Res 2019; 8:150. [PMID: 31354944 PMCID: PMC6635981 DOI: 10.12688/f1000research.18081.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 10/13/2023] Open
Abstract
Bacterial infections involving antibiotic resistant gram-negative bacteria continue to increase and represent a major global public health concern. Resistance to antibiotics in these bacteria is mediated by chromosomal and/or acquired resistance mechanisms, these give rise to multi-drug resistant (MDR) or extensive drug resistant (XDR) bacterial strains. Most recently, a novel acquired plasmid mediated resistance mechanism to colistin, an antibiotic that had been set apart as the last resort antibiotic in the treatment of infections involving MDR and XDR gram-negative bacteria, has been reported. Plasmid mediated colistin resistant gram-negative bacteria have been described to be pan-drug resistant, implying a state devoid of alternative antibiotic therapeutic options. This review describes the evolution of antibiotic resistance to plasmid mediated colistin resistance, and discusses the potential role of high-throughput sequencing technologies, genomics and bioinformatics towards improving antibiotic resistance surveillance, the search for novel drug targets and precision antibiotic therapy focused at combating colistin resistance, and antimicrobial resistance as a whole.
Collapse
Affiliation(s)
- Dickson Aruhomukama
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| | - Ivan Sserwadda
- Department of Immunology and Molecular Biology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| | - Gerald Mboowa
- Department of Medical Microbiology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
- Department of Immunology and Molecular Biology, College of Health Sciences, School of Biomedical Sciences, Makerere University, Kampala, 7072, Uganda
| |
Collapse
|
40
|
Molecules that Inhibit Bacterial Resistance Enzymes. Molecules 2018; 24:molecules24010043. [PMID: 30583527 PMCID: PMC6337270 DOI: 10.3390/molecules24010043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Antibiotic resistance mediated by bacterial enzymes constitutes an unmet clinical challenge for public health, particularly for those currently used antibiotics that are recognized as "last-resort" defense against multidrug-resistant (MDR) bacteria. Inhibitors of resistance enzymes offer an alternative strategy to counter this threat. The combination of inhibitors and antibiotics could effectively prolong the lifespan of clinically relevant antibiotics and minimize the impact and emergence of resistance. In this review, we first provide a brief overview of antibiotic resistance mechanism by bacterial secreted enzymes. Furthermore, we summarize the potential inhibitors that sabotage these resistance pathways and restore the bactericidal activity of inactive antibiotics. Finally, the faced challenges and an outlook for the development of more effective and safer resistance enzyme inhibitors are discussed.
Collapse
|
41
|
Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, Nisar MA, Alvi RF, Aslam MA, Qamar MU, Salamat MKF, Baloch Z. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 2018; 11:1645-1658. [PMID: 30349322 PMCID: PMC6188119 DOI: 10.2147/idr.s173867] [Citation(s) in RCA: 1313] [Impact Index Per Article: 187.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The advent of multidrug resistance among pathogenic bacteria is imperiling the worth of antibiotics, which have previously transformed medical sciences. The crisis of antimicrobial resistance has been ascribed to the misuse of these agents and due to unavailability of newer drugs attributable to exigent regulatory requirements and reduced financial inducements. Comprehensive efforts are needed to minimize the pace of resistance by studying emergent microorganisms, resistance mechanisms, and antimicrobial agents. Multidisciplinary approaches are required across health care settings as well as environment and agriculture sectors. Progressive alternate approaches including probiotics, antibodies, and vaccines have shown promising results in trials that suggest the role of these alternatives as preventive or adjunct therapies in future.
Collapse
Affiliation(s)
- Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wei Wang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Muhammad Atif Nisar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ruman Farooq Alvi
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Usman Qamar
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China,
| |
Collapse
|
42
|
Liu H, Zhu B, Liang B, Xu X, Qiu S, Jia L, Li P, Yang L, Li Y, Xiang Y, Xie J, Wang L, Yang C, Sun Y, Song H. A Novel mcr-1 Variant Carried by an IncI2-Type Plasmid Identified From a Multidrug Resistant Enterotoxigenic Escherichia coli. Front Microbiol 2018; 9:815. [PMID: 29922243 PMCID: PMC5996929 DOI: 10.3389/fmicb.2018.00815] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/10/2018] [Indexed: 01/09/2023] Open
Abstract
In this study, we discovered a novel mobilized colistin resistance (mcr-1) gene variant, named mcr-1.9, which was identified in a colistin-resistant enterotoxigenic Escherichia coli (ETEC) strain from a clinical diarrhea case. The mcr-1.9 gene differs from mcr-1 at position 1036 due to a single nucleotide polymorphism (G→A), which results in an aspartic acid residue being replaced by an asparagine residue (Asp346→Asn) in the MCR-1 protein sequence. Antimicrobial susceptibility testing showed that the mcr-1.9-harboring ETEC strain is resistant to colistin at a minimum inhibitory concentration of 4 μg/ml. Plasmid profiling and conjugation experiments also suggest that the mcr-1.9 variant can be successfully transferred into the E. coli strain J53, indicating that the gene is located on a transferable plasmid. Bioinformatics analysis of data obtained from genome sequencing indicates that the mcr-1.9 gene is located on a 64,005 bp plasmid which has been named pEC26. This plasmid was found to have high similarity to the mcr-1-bearing IncI2-type plasmids pWF-5-19C (99% identity and 99% coverage) and pmcr1-IncI2 (99% identity and 98% coverage). The mcr-1.9-harboring ETEC also shows multidrug resistance to nine classes of antibiotics, and contains several virulence and antimicrobial-resistance genes suggested by the genome sequence analysis. Our report is the first to identify a new mcr-1 variant in an ETEC isolated from a human fecal sample, raising concerns about the existence of more such variants in human intestinal flora. Therefore, we believe that an undertaking to identify new mcr-1 variants in the bacterial communities of human intestines is of utmost importance, and that measures need to be taken to control the spread of mcr-1 and its variants in human intestinal microflora.
Collapse
Affiliation(s)
- Hongbo Liu
- College of Military Medicine, Academy of Military Medical Sciences, Beijing, China.,Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Binghua Zhu
- College of Military Medicine, Academy of Military Medical Sciences, Beijing, China.,Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Beibei Liang
- College of Military Medicine, Academy of Military Medical Sciences, Beijing, China.,Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Xuebin Xu
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Shaofu Qiu
- Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Leili Jia
- Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Peng Li
- Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Lang Yang
- College of Military Medicine, Academy of Military Medical Sciences, Beijing, China.,Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Yongrui Li
- Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Ying Xiang
- College of Military Medicine, Academy of Military Medical Sciences, Beijing, China.,Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Jing Xie
- Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Ligui Wang
- Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Chaojie Yang
- Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| | - Yansong Sun
- College of Military Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Hongbin Song
- College of Military Medicine, Academy of Military Medical Sciences, Beijing, China.,Institute of Disease Control and Prevention, People's Liberation Army, Beijing, China
| |
Collapse
|
43
|
Molecular Epidemiology of Dairy Cattle-Associated Escherichia coli Carrying blaCTX-M Genes in Washington State. Appl Environ Microbiol 2018; 84:AEM.02430-17. [PMID: 29305512 DOI: 10.1128/aem.02430-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/20/2017] [Indexed: 12/31/2022] Open
Abstract
An increase in the prevalence of commensal Escherichia coli carrying blaCTX-M genes among dairy cattle was observed between 2008 and 2012 in Washington State. To study the molecular epidemiology of this change, we selected 126 blaCTX-M-positive and 126 blaCTX-M-negative isolates for determinations of the multilocus sequence types (MLSTs) and antibiotic resistance phenotypes from E. coli obtained during a previous study. For 99 isolates, we also determined the blaCTX-M alleles using PCR and sequencing and identified the replicon types of blaCTX-M-carrying plasmids. The blaCTX-M-negative E. coli isolates comprised 76 sequence types (STs) compared with 32 STs in blaCTX-M-positive E. coli isolates. The blaCTX-M-positive E. coli isolates formed three MLST clonal complexes, accounting for 83% of these isolates; 52% of blaCTX-M-negative E. coli isolates clustered into 10 clonal complexes, and the remainder were singletons. Overall, blaCTX-M-negative E. coli isolates had more diverse genotypes that were distinct to farms, whereas blaCTX-M-positive E. coli isolates had a clonal population structure and were widely disseminated on farms in both regions included in the study. Plasmid replicon types included IncI1 which predominated, followed by IncFIB and IncFIA/FIB. blaCTX-M-15 was the predominant CTX-M gene allele, followed by blaCTX-M-27 and blaCTX-M-14 There was no significant association between plasmid replicon types and bacterial STs, and neither clonal complexes nor major plasmid groups were associated with two discrete dairy-farming regions of Washington State.IMPORTANCE Infections caused by extended-spectrum β-lactamase (ESBL)-producing Escherichia coli occur globally and present treatment challenges because of their resistance to multiple antimicrobial drugs. Cattle are potential reservoirs of ESBL-producing Enterobacteriaceae, and so understanding the causes of successful dissemination of blaCTX-M genes in commensal bacteria will inform future approaches for the prevention of antibiotic-resistant pathogen emergence.
Collapse
|
44
|
Activity of Simulated Human Dosage Regimens of Meropenem and Vaborbactam against Carbapenem-Resistant Enterobacteriaceae in an In Vitro Hollow-Fiber Model. Antimicrob Agents Chemother 2018; 62:AAC.01969-17. [PMID: 29133570 DOI: 10.1128/aac.01969-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/30/2017] [Indexed: 01/07/2023] Open
Abstract
The objective of these studies was to evaluate the exposures of meropenem and vaborbactam that would produce antibacterial activity and prevent resistance development in carbapenem-resistant Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae strains when tested at an inoculum of 108 CFU/ml. Thirteen K. pneumoniae isolates, three Enterobacter cloacae isolates, and one Escherichia coli isolate were examined in an in vitro hollow-fiber model over 32 h. Simulated dosage regimens of 1 to 2 g of meropenem with 1 to 2 g of vaborbactam, with meropenem administered every 8 h by a 3-h infusion based on phase 1 or phase 3 patient pharmacokinetic data, were studied in the model. A dosage of 2 g of meropenem in combination with 2 g of vaborbactam was bactericidal against K. pneumoniae, E. cloacae, and E. coli strains, with meropenem-vaborbactam MICs of up to 8 mg/liter. When the vaborbactam exposure was adjusted to the levels observed in patients enrolled in phase 3 trials (24-h free AUC, ∼550 mg · h/liter, versus 320 mg · h/liter in the phase 1 studies), 2 g of meropenem with 2 g of vaborbactam was also bactericidal against strains with meropenem-vaborbactam MICs of 16 mg/liter. In addition, this level of vaborbactam also suppressed the development of resistance observed using phase 1 exposures. In this pharmacodynamic model, exposures similar to 2 g of meropenem in combination with 2 g of vaborbactam administered every 8 h by a 3-h infusion in phase 3 trials produced antibacterial activity and suppressed the development of resistance against carbapenem-resistant KPC-producing strains of Enterobacteriaceae.
Collapse
|
45
|
Activity of Meropenem-Vaborbactam in Mouse Models of Infection Due to KPC-Producing Carbapenem-Resistant Enterobacteriaceae. Antimicrob Agents Chemother 2017; 62:AAC.01446-17. [PMID: 29109160 DOI: 10.1128/aac.01446-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/26/2017] [Indexed: 12/16/2022] Open
Abstract
Meropenem-vaborbactam (Vabomere) is highly active against Gram-negative pathogens, especially Klebsiella pneumoniae carbapenemase (KPC)-producing, carbapenem-resistant Enterobacteriaceae The objective of these studies was to evaluate the efficacy of meropenem alone and in combination with vaborbactam in mouse thigh and lung infection models. Thighs or lungs of neutropenic mice were infected with KPC-producing carbapenem-resistant Enterobacteriaceae, with meropenem MICs ranging from ≤0.06 to 8 mg/liter in the presence of 8 mg/liter vaborbactam. Mice were treated with meropenem alone or meropenem in combination with vaborbactam every 2 h for 24 h to provide exposures comparable to 2-g doses of each component in humans. Meropenem administered in combination with vaborbactam produced bacterial killing in all strains tested, while treatment with meropenem alone either produced less than 0.5 log CFU/tissue of bacterial killing or none at all. In the thigh model, 11 strains were treated with the combination of meropenem plus vaborbactam (300 plus 50 mg/kg of body weight). This combination produced from 0.8 to 2.89 logs of bacterial killing compared to untreated controls at the start of treatment. In the lung infection model, two strains were treated with the same dosage regimen of meropenem and vaborbactam. The combination produced more than 1.83 logs of bacterial killing against both strains tested compared to untreated controls at the start of treatment. Overall, these data suggest that meropenem-vaborbactam may have utility in the treatment of infections due to KPC-producing carbapenem-resistant Enterobacteriaceae.
Collapse
|
46
|
Candevir Ulu A, Güven Gökmen T, Kibar F, Kurtaran B, Önlen C, Kuşçu F, İnal AS, Kömür S, Yaman A, Aksu HSZ, Taşova Y. Molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae at a Turkish centre: Is the increase of resistance a threat for Europe? J Glob Antimicrob Resist 2017; 11:10-16. [DOI: 10.1016/j.jgar.2017.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/15/2017] [Accepted: 06/21/2017] [Indexed: 12/18/2022] Open
|
47
|
Mazuski JE, Tessier JM, May AK, Sawyer RG, Nadler EP, Rosengart MR, Chang PK, O'Neill PJ, Mollen KP, Huston JM, Diaz JJ, Prince JM. The Surgical Infection Society Revised Guidelines on the Management of Intra-Abdominal Infection. Surg Infect (Larchmt) 2017; 18:1-76. [PMID: 28085573 DOI: 10.1089/sur.2016.261] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous evidence-based guidelines on the management of intra-abdominal infection (IAI) were published by the Surgical Infection Society (SIS) in 1992, 2002, and 2010. At the time the most recent guideline was released, the plan was to update the guideline every five years to ensure the timeliness and appropriateness of the recommendations. METHODS Based on the previous guidelines, the task force outlined a number of topics related to the treatment of patients with IAI and then developed key questions on these various topics. All questions were approached using general and specific literature searches, focusing on articles and other information published since 2008. These publications and additional materials published before 2008 were reviewed by the task force as a whole or by individual subgroups as to relevance to individual questions. Recommendations were developed by a process of iterative consensus, with all task force members voting to accept or reject each recommendation. Grading was based on the GRADE (Grades of Recommendation Assessment, Development, and Evaluation) system; the quality of the evidence was graded as high, moderate, or weak, and the strength of the recommendation was graded as strong or weak. Review of the document was performed by members of the SIS who were not on the task force. After responses were made to all critiques, the document was approved as an official guideline of the SIS by the Executive Council. RESULTS This guideline summarizes the current recommendations developed by the task force on the treatment of patients who have IAI. Evidence-based recommendations have been made regarding risk assessment in individual patients; source control; the timing, selection, and duration of antimicrobial therapy; and suggested approaches to patients who fail initial therapy. Additional recommendations related to the treatment of pediatric patients with IAI have been included. SUMMARY The current recommendations of the SIS regarding the treatment of patients with IAI are provided in this guideline.
Collapse
Affiliation(s)
- John E Mazuski
- 1 Department of Surgery, Washington University School of Medicine , Saint Louis, Missouri
| | | | - Addison K May
- 3 Department of Surgery, Vanderbilt University , Nashville, Tennessee
| | - Robert G Sawyer
- 4 Department of Surgery, University of Virginia , Charlottesville, Virginia
| | - Evan P Nadler
- 5 Division of Pediatric Surgery, Children's National Medical Center , Washington, DC
| | - Matthew R Rosengart
- 6 Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Phillip K Chang
- 7 Department of Surgery, University of Kentucky , Lexington, Kentucky
| | | | - Kevin P Mollen
- 9 Division of Pediatric Surgery, Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Jared M Huston
- 10 Department of Surgery, Hofstra Northwell School of Medicine , Hempstead, New York
| | - Jose J Diaz
- 11 Department of Surgery, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jose M Prince
- 12 Departments of Surgery and Pediatrics, Hofstra-Northwell School of Medicine , Hempstead, New York
| |
Collapse
|
48
|
Nitzan O, Brodsky Y, Edelstein H, Hershko D, Saliba W, Keness Y, Peretz A, Chazan B. Microbiologic Data in Acute Cholecystitis: Ten Years' Experience from Bile Cultures Obtained during Percutaneous Cholecystostomy. Surg Infect (Larchmt) 2017; 18:345-349. [DOI: 10.1089/sur.2016.232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Affiliation(s)
- Orna Nitzan
- Infectious Disease Unit, Emek Medical Center, Afula, Israel
- Infectious Disease Unit, Baruch Padeh Medical Center, Poriya, Israel
- Faculty of Medicine in the Galilee, Bar Ilan University, Israel
| | - Yuri Brodsky
- Department of Surgery A, Emek Medical Center, Afula, Israel
| | - Hana Edelstein
- Infectious Disease Unit, Emek Medical Center, Afula, Israel
| | - Dan Hershko
- Department of Surgery A, Emek Medical Center, Afula, Israel
- Technion–Rappaport Faculty of Medicine, Haifa, Israel
| | - Walid Saliba
- Technion–Rappaport Faculty of Medicine, Haifa, Israel
- Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel
| | - Yoram Keness
- Clinical Microbiology Laboratory, Emek Medical Center, Afula, Israel
| | - Avi Peretz
- Faculty of Medicine in the Galilee, Bar Ilan University, Israel
- Clinical Microbiology Laboratory, Baruch Padeh Medical Center, Poriya, Israel
| | - Bibiana Chazan
- Infectious Disease Unit, Emek Medical Center, Afula, Israel
- Technion–Rappaport Faculty of Medicine, Haifa, Israel
| |
Collapse
|
49
|
Bolocan AS, Callanan J, Forde A, Ross P, Hill C. Phage therapy targeting Escherichia coli-a story with no end? FEMS Microbiol Lett 2016; 363:fnw256. [PMID: 27974392 DOI: 10.1093/femsle/fnw256] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/30/2016] [Accepted: 11/08/2016] [Indexed: 01/15/2023] Open
Abstract
Bacteriophages (phages) or bacterial viruses have long been proposed as an alternative therapy against antibiotic-resistant bacteria such as Escherichia coli Even though poorly documented in the scientific literature, a long clinical history of phage therapy in countries such as Russia and Georgia suggests potential value in the use of phages as antibacterial agents. Escherichia coli is responsible for a wide range of diseases, intestinal (diarrhoea) and extraintestinal (UTI, septicaemia, pneumoniae, meningitis), making it an ideal target for phage therapy. This review discusses the latest research focusing on the potential of phage therapy to tackle E. coli-related illnesses. No intact phages are approved in EU or USA for human therapeutic use, but many successful in vitro and in vivo studies have been reported. However, additional research focused on in vivo multispecies models and human trials are required if phage therapy targeting E. coli pathotypes can be a story with happy end.
Collapse
Affiliation(s)
| | - Julie Callanan
- APC Microbiome Institute, University College Cork, Cork T12 R229, Ireland
| | - Amanda Forde
- APC Microbiome Institute, University College Cork, Cork T12 R229, Ireland
| | - Paul Ross
- APC Microbiome Institute, University College Cork, Cork T12 R229, Ireland
| | - Colin Hill
- APC Microbiome Institute, University College Cork, Cork T12 R229, Ireland
| |
Collapse
|
50
|
Phase I Study Assessing the Pharmacokinetic Profile, Safety, and Tolerability of a Single Dose of Ceftazidime-Avibactam in Hospitalized Pediatric Patients. Antimicrob Agents Chemother 2016; 60:6252-9. [PMID: 27503642 PMCID: PMC5038276 DOI: 10.1128/aac.00862-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/31/2016] [Indexed: 11/20/2022] Open
Abstract
This study aimed to investigate the pharmacokinetics (PK), safety, and tolerability of a single dose of ceftazidime-avibactam in pediatric patients. A phase I, multicenter, open-label PK study was conducted in pediatric patients hospitalized with an infection and receiving systemic antibiotic therapy. Patients were enrolled into four age cohorts (cohort 1, ≥12 to <18 years; cohort 2, ≥6 to <12 years; cohort 3, ≥2 to <6 years; cohort 4, ≥3 months to <2 years). Patients received a single 2-h intravenous infusion of ceftazidime-avibactam (cohort 1, 2,000 to 500 mg; cohort 2, 2,000 to 500 mg [≥40 kg] or 50 to 12.5 mg/kg [<40 kg]; cohorts 3 and 4, 50 to 12.5 mg/kg). Blood samples were collected to describe individual PK characteristics for ceftazidime and avibactam. Population PK modeling was used to describe characteristics of ceftazidime and avibactam PK across all age groups. Safety and tolerability were assessed. Thirty-two patients received study drug. Mean plasma concentration-time curves, geometric mean maximum concentration (Cmax), and area under the concentration-time curve from time zero to infinity (AUC0-∞) were similar across all cohorts for both drugs. Six patients (18.8%) reported an adverse event, all mild or moderate in intensity. No deaths or serious adverse events occurred. The single-dose PK of ceftazidime and avibactam were comparable between each of the 4 age cohorts investigated and were broadly similar to those previously observed in adults. No new safety concerns were identified. (This study has been registered at ClinicalTrials.gov under registration no. NCT01893346.).
Collapse
|