1
|
Haque MF, El-Nashar HAS, Akbor MS, Alfaifi M, Bappi MH, Chowdhury AK, Hossain MK, El-Shazly M, Albayouk T, Saleh N, Islam MT. Anti-inflammatory activity of d-pinitol possibly through inhibiting COX-2 enzyme: in vivo and in silico studies. Front Chem 2024; 12:1366844. [PMID: 38690012 PMCID: PMC11058972 DOI: 10.3389/fchem.2024.1366844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction: D-pinitol, a naturally occurring inositol, has diverse biological activities like antioxidant, antimicrobial and anticancer activities. This study aimed to evaluate anti-inflammatory effect of d-pinitol in a chick model. Additionally, in silico studies were performed to evaluate the molecular interactions with cyclooxygenase-2 (COX-2). Methods: The tested groups received d-pinitol (12.5, 25, and 50 mg/kg) and the standard drugs celecoxib and ketoprofen (42 mg/kg) via oral gavage prior to formalin injection. Then, the number of licks was counted for the first 10 min, and the paw edema diameter was measured at 60, 90, and 120 min. Results and Discussion: The d-pinitol groups significantly (p < 0.05) reduced the number of paw licks and paw edema diameters, compared to negative control. When d-pinitol was combined with celecoxib, it reduced inflammatory parameters more effectively than the individual groups. The in silico study showed a promising binding capacity of d-pinitol with COX-2. Taken together, d-pinitol exerted anti-inflammatory effects in a dose-dependent manner, possibly through COX-2 interaction pathway.
Collapse
Affiliation(s)
- Mst. Farjanamul Haque
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Heba A. S. El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Md. Showkoth Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Mohammed Alfaifi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mehedi Hasan Bappi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Muhammad Kamal Hossain
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Pharmacy, University of Science and Technology Chittagiong, Chittagong, Bangladesh
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Tala Albayouk
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Na’il Saleh
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
| |
Collapse
|
2
|
Ewieda SY, Ahmed EM, Hassan RA, Hassan MSA. Pyridazine derivatives as selective COX-2 inhibitors: A review on recent updates. Drug Dev Res 2023; 84:1595-1623. [PMID: 37751330 DOI: 10.1002/ddr.22118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Selective cyclooxygenase (COX)-2 inhibitors have several advantages over nonselective COX inhibitors (nonsteroidal anti-inflammatory drugs [NSAIDs]), including the absence of adverse effects (renal and hepatic disorders) associated with the long-term use of standard NSAIDs, as well as an improved gastrointestinal profile. The pyridazine nucleus is regarded as a promising scaffold for the development of powerful COX-2 inhibitors, particularly when selectively functionalized. This article summarizes some methods for the synthesis of pyridazine derivatives. Furthermore, it covers all of the pyridazine derivatives that have appeared as selective COX-2 inhibitors, making it useful as a reference for the rational design of novel selective COX-2 inhibitors.
Collapse
Affiliation(s)
- Sara Y Ewieda
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman M Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa S A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Hannam JA, Murto KT, Anderson BJ, Dembo G, Kharasch ED. Modeling adult COX-2 cerebrospinal fluid pharmacokinetics to inform pediatric investigation. Paediatr Anaesth 2023; 33:291-302. [PMID: 36318604 DOI: 10.1111/pan.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
AIM Hysteresis is reported between plasma concentration and analgesic effect from nonsteroidal anti-inflammatory drugs. It is possible that the temporal delay between plasma and CSF nonsteroidal anti-inflammatory drugs mirrors this hysteresis. The temporal relationship between plasma and CSF concentrations of COX-inhibitors (celecoxib, rofecoxib, valdecoxib) has been described. The purpose of this secondary data analysis was to develop a compartmental model for plasma and CSF disposition of these COX-2 inhibitors. METHODS Plasma and CSF concentration-time profiles and protein binding data in 10 adult volunteers given oral celecoxib 200 mg, valdecoxib 40 mg and rofecoxib 50 mg were available for study. Nonlinear mixed effects models with a single plasma compartment were used to link a single CSF compartment with a transfer factor and an equilibration rate constant (Keq). To enable predictive modeling in pediatrics, celecoxib pharmacokinetics were standardized using allometry. RESULTS Movement of all three unbound plasma COX-2 drugs into CSF was characterized by a common equilibration half-time (T1/2 keq) of 0.84 h. Influx was faster than efflux and a transfer scaling factor of 2.01 was required to describe conditions at steady-state. Estimated celecoxib clearance was 49 (95% CI 34-80) L/h/70 kg and the volume of distribution was 346 (95% CI 237-468) L/70 kg. The celecoxib absorption half-time was 0.35 h with a lag time of 0.62 h. Simulations predicted a 70-kg adult given oral celecoxib 200 mg with maintenance 100 mg twice daily would have a mean steady-state total (bound and unbound) plasma concentration of 174 μg L-1 and CSF concentration of 1.1 μg L-1 . A child (e.g., 25 kg, typically 7 years) given oral celecoxib 6 mg kg-1 with maintenance of 3 mg kg-1 twice daily would have 282 and 1.7 μg L-1 mean plasma and CSF concentrations, respectively. CONCLUSIONS Transfer of unbound COX-2 inhibitors from plasma to CSF compartment can be described with a delayed effect model using an equilibration rate constant to collapse observed hysteresis. An additional transfer factor was required to account for passage across the blood-brain barrier. Use of a target concentration strategy for dose and consequent plasma (total and unbound) and CSF concentration prediction could be used to inform pediatric clinical studies.
Collapse
Affiliation(s)
- Jacqueline A Hannam
- Department Pharmacology & Clinical Pharmacology, Faculty Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Kimmo T Murto
- Department Anesthesiology and Pain Medicine, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Brian J Anderson
- Department Anaesthesiology, Faculty Medicine and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Gregory Dembo
- Department of Anesthesiology, University of Washington, Seattle, Washington, USA
| | - Evan D Kharasch
- Department of Anesthesiology and Clinical Chemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
4
|
Significance of Pulmonary Endothelial Injury and the Role of Cyclooxygenase-2 and Prostanoid Signaling. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010117. [PMID: 36671689 PMCID: PMC9855370 DOI: 10.3390/bioengineering10010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The endothelium plays a key role in the dynamic balance of hemodynamic, humoral and inflammatory processes in the human body. Its central importance and the resulting therapeutic concepts are the subject of ongoing research efforts and form the basis for the treatment of numerous diseases. The pulmonary endothelium is an essential component for the gas exchange in humans. Pulmonary endothelial dysfunction has serious consequences for the oxygenation and the gas exchange in humans with the potential of consecutive multiple organ failure. Therefore, in this review, the dysfunction of the pulmonary endothel due to viral, bacterial, and fungal infections, ventilator-related injury, and aspiration is presented in a medical context. Selected aspects of the interaction of endothelial cells with primarily alveolar macrophages are reviewed in more detail. Elucidation of underlying causes and mechanisms of damage and repair may lead to new therapeutic approaches. Specific emphasis is placed on the processes leading to the induction of cyclooxygenase-2 and downstream prostanoid-based signaling pathways associated with this enzyme.
Collapse
|
5
|
Jiang L, Chen S, Wu Y, Zhou D, Duan L. Prediction of coronary heart disease in gout patients using machine learning models. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4574-4591. [PMID: 36896513 DOI: 10.3934/mbe.2023212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Growing evidence shows that there is an increased risk of cardiovascular diseases among gout patients, especially coronary heart disease (CHD). Screening for CHD in gout patients based on simple clinical factors is still challenging. Here we aim to build a diagnostic model based on machine learning so as to avoid missed diagnoses or over exaggerated examinations as much as possible. Over 300 patient samples collected from Jiangxi Provincial People's Hospital were divided into two groups (gout and gout+CHD). The prediction of CHD in gout patients has thus been modeled as a binary classification problem. A total of eight clinical indicators were selected as features for machine learning classifiers. A combined sampling technique was used to overcome the imbalanced problem in the training dataset. Eight machine learning models were used including logistic regression, decision tree, ensemble learning models (random forest, XGBoost, LightGBM, GBDT), support vector machine (SVM) and neural networks. Our results showed that stepwise logistic regression and SVM achieved more excellent AUC values, while the random forest and XGBoost models achieved more excellent performances in terms of recall and accuracy. Furthermore, several high-risk factors were found to be effective indices in predicting CHD in gout patients, which provide insights into the clinical diagnosis.
Collapse
Affiliation(s)
- Lili Jiang
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Sirong Chen
- School of Mathematical Sciences, Soochow University, Suzhou, China
| | - Yuanhui Wu
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Lihua Duan
- Department of Rheumatology and Clinical Immunology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
6
|
Bishop RC, McCoy AM, Kemper AM, Stewart RM, Wilkins PA. Short-term administration of flunixin meglumine or firocoxib does not alter viscoelastic coagulation profiles in healthy horses. J Am Vet Med Assoc 2022; 260:1963-1966. [PMID: 36198050 DOI: 10.2460/javma.22.08.0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effect of the cyclooxygenase-2-selective NSAID firocoxib, compared to the nonselective NSAID flunixin meglumine on viscoelastic coagulation parameters in healthy horses. ANIMALS 12 healthy adult mixed-breed horses. PROCEDURES Following a crossover protocol, horses were administered flunixin meglumine (1.1 mg/kg, IV, q 12 h for 5 days), allowed a 6-month washout period, and then administered firocoxib (0.3 mg/kg, PO, once, then 0.1 mg/kg, PO, q 24 h for 4 days). Omeprazole (1 mg/kg, PO, q 24 h) was administered concurrently with each NSAID. Viscoelastic coagulation profiles and traditional coagulation parameters (prothrombin time, partial thromboplastin time, and fibrinogen) were measured before and after each treatment. RESULTS Viscoelastic coagulation parameters were within reference intervals before and after both treatments. There was a statistically significant difference between treatments for amplitude at 10 minutes after clot time (P = .02) and maximum clot formation (P = .02); however, the magnitude of change was not clinically significant. CLINICAL RELEVANCE Short-term administration of flunixin meglumine and firocoxib did not result in significant alteration of viscoelastic coagulation profiles in healthy horses. However, clinicians should be aware of possible coagulopathy secondary to NSAID administration with long-term use or critical illness, and further study is indicated.
Collapse
|
7
|
Wang Y, Zhou M, Wang J, Lin C, Gao X, Zhang L, Yao W, Zhang L. Developmental Cardiotoxicity and Hepatotoxicity of Flurbiprofen Axetil to Zebrafish Embryo. Assay Drug Dev Technol 2022; 20:125-135. [PMID: 35442757 DOI: 10.1089/adt.2021.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Flurbiprofen axetil (FA) is a nonsteroidal targeted analgesic and widely used for postoperative analgesia and cancer analgesia. Extensive works have been done in the evaluation of FA's clinical analgesic effect on adults. Along with the increase of FA usage, the potential toxicity and molecular mechanism in embryo development need to be better understood. In this article, multiple embryonic development indexes of zebrafish were introduced to evaluate the FA toxicity to provide clinical guidance for gravidas medicine. We performed a zebrafish embryo toxicity (ZFET) test by exposing embryos to a series of concentration gradients of FA medium starting from 24 hours postfertilization (hpf). The mortality rate, hatching rate, and malformation rate of drug-treated zebrafish were assessed at 72, 96, and 120 hpf. Effects of ≤10% lethal concentration (LC10) of FA on embryogenesis were evaluated by eye area, body length, and yolk sac area. A 0.5 μg/mL or fewer FA treatment did not show any adverse effects, but the LC10 FA significantly caused zebrafish malformation. Organ disorders, including slow heart rate, enlarged pericardium, and liver atrophy, were found in the dysplasia individuals when compared with control. TUNEL assay suggested that apoptotic cells in malformation embryos were produced by FA and the increasing dosage exacerbated apoptosis. Quantitative real-time polymerase chain reaction revealed that expressions of cardiac development-associated transcription factors, liver development-related genes, and apoptosis regulating genes were aberrant. These results indicate that the ZFET can be applied in the FA toxicity test, and a low lethal dose of FA is harmful to zebrafish embryogenesis, especially in embryo carcinogenesis and hepatogenesis.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Min Zhou
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Jing Wang
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Chuantao Lin
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Xiang Gao
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Li Zhang
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Wenshui Yao
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| | - Longxin Zhang
- Department of Anesthesiology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Cheng BR, Chen JQ, Zhang XW, Gao QY, Li WH, Yan LJ, Zhang YQ, Wu CJ, Xing JL, Liu JP. Cardiovascular safety of celecoxib in rheumatoid arthritis and osteoarthritis patients: A systematic review and meta-analysis. PLoS One 2021; 16:e0261239. [PMID: 34932581 PMCID: PMC8691614 DOI: 10.1371/journal.pone.0261239] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/25/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To assess the cardiovascular safety of celecoxib compared to non-selective non-steroid anti-inflammatory drugs or placebo. METHODS We included randomized controlled trials of oral celecoxib compared with a non-selective NSAID or placebo in rheumatoid arthritis and osteoarthritis patients. We conducted searches in EMBASE, Cochrane CENTRAL, MEDLINE, China National Knowledge Infrastructure, VIP, Wanfang, and Chinese Biomedical Literature Database. Study selection and data extraction were done by two authors independently. The risk of bias was assessed using Cochrane's risk-of-bias Tool for Randomized Trials. The effect size was presented as a risk ratio with their 95% confidence interval. RESULTS Until July 22nd, 2021, our search identified 6279 records from which, after exclusions, 21 trials were included in the meta-analysis. The overall pooled risk ratio for Antiplatelet Trialists Collaboration cardiovascular events for celecoxib compared with any non-selective non-steroid anti-inflammatory drugs was 0.89 (95% confidence interval: 0.80-1.00). The pooled risk ratio for all-cause mortality for celecoxib compared with non-selective non-steroid anti-inflammatory drugs was 0.81 (95% confidence interval: 0.66-0.98). The cardiovascular mortality rate of celecoxib was lower than non-selective non-steroid anti-inflammatory drugs (risk ratio: 0.75, 95% confidence interval: 0.57-0.99). There was no significant difference between celecoxib and non-selective non-steroid anti-inflammatory drugs or placebo in the risk of other cardiovascular events. CONCLUSION Celecoxib is relatively safe in rheumatoid arthritis and osteoarthritis patients, independent of dose or duration. But it remains uncertain whether this would remain the same in patients treated with aspirin and patients with established cardiovascular diseases.
Collapse
Affiliation(s)
- Bai-Ru Cheng
- The First School of Clinical Medicine (Dongzhimen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Qi Chen
- Clinical College (China-Japan Friendship Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Wen Zhang
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qin-Yang Gao
- The First School of Clinical Medicine (Dongzhimen Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Hong Li
- School of Nursing, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Jiao Yan
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Qiao Zhang
- Clinical College (China-Japan Friendship Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Chang-Jiang Wu
- The Second School of Clinical Medicine (Dongfang Hospital), Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Li Xing
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-Ping Liu
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
9
|
Jeyamogan S, Khan NA, Sagathevan K, Siddiqui R. Anticancer Properties of Asian Water Monitor Lizard (Varanus salvator), Python (Malayopython reticulatus) and Tortoise (Cuora kamaroma amboinensis). Anticancer Agents Med Chem 2021; 20:1558-1570. [PMID: 32364082 DOI: 10.2174/1871520620666200504103056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/26/2020] [Accepted: 02/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer contributes to significant morbidity and mortality despite advances in treatment and supportive care. There is a need for the identification of effective anticancer agents. Reptiles such as tortoise, python, and water monitor lizards are exposed to heavy metals, tolerate high levels of radiation, feed on rotten/germ-infested feed, thrive in unsanitary habitat and yet have prolonged lifespans. Such species are rarely reported to develop cancer, suggesting the presence of anticancer molecules/mechanisms. METHODS Here, we tested effects from sera of Asian water monitor lizard (Varanus salvator), python (Malayopython reticulatus) and tortoise (Cuora kamaroma amboinensis) against cancer cells. Sera were collected and cytotoxicity assays were performed using prostate cancer cells (PC3), Henrietta Lacks cervical adenocarcinoma cells (HeLa) and human breast adenocarcinoma cells (MCF7), as well as human keratinized skin cells (Hacat), by measuring lactate dehydrogenase release as an indicator for cell death. Growth inhibition assays were performed to determine the effects on cancer cell proliferation. Liquid chromatography mass spectrometry was performed for molecular identification. RESULTS The findings revealed that reptilian sera, but not bovine serum, abolished viability of Hela, PC3 and MCF7 cells. Samples were subjected to liquid chromatography mass spectrometry, which detected 57 molecules from V. salvator, 81 molecules from Malayopython reticulatus and 33 molecules from C. kamaroma amboinensis and putatively identified 9 molecules from V. salvator, 20 molecules from Malayopython reticulatus and 9 molecules from C. kamaroma amboinensis when matched against METLIN database. Based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition, 123 potential Anticancer Peptides (ACPs) were identified from 883 peptides from V. salvator, 306 potential ACPs from 1074 peptides from Malayopython reticulatus and 235 potential ACPs from 885 peptides from C. kamaroma amboinensis. CONCLUSION To our knowledge, for the first time, we reported comprehensive analyses of selected reptiles' sera using liquid chromatography mass spectrometry, leading to the identification of potentially novel anticancer agents. We hope that the discovery of molecules from these animals will pave the way for the rational development of new anticancer agents.
Collapse
Affiliation(s)
- Shareni Jeyamogan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Naveed A Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Kuppusamy Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
10
|
Microwave-assisted synthesis of (3,5-disubstituted isoxazole)-linked benzimidazolone derivatives: DFT calculations and biological activities. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02764-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Gholizadeh E, Karbalaei R, Khaleghian A, Salimi M, Gilany K, Soliymani R, Tanoli Z, Rezadoost H, Baumann M, Jafari M, Tang J. Identification of Celecoxib-Targeted Proteins Using Label-Free Thermal Proteome Profiling on Rat Hippocampus. Mol Pharmacol 2021; 99:308-318. [PMID: 33632781 DOI: 10.1124/molpharm.120.000210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
Celecoxib, or Celebrex, a nonsteroidal anti-inflammatory drug, is one of the most common medicines for treating inflammatory diseases. Recently, it has been shown that celecoxib is associated with implications in complex diseases, such as Alzheimer disease and cancer as well as with cardiovascular risk assessment and toxicity, suggesting that celecoxib may affect multiple unknown targets. In this project, we detected targets of celecoxib within the nervous system using a label-free thermal proteome profiling method. First, proteins of the rat hippocampus were treated with multiple drug concentrations and temperatures. Next, we separated the soluble proteins from the denatured and sedimented total protein load by ultracentrifugation. Subsequently, the soluble proteins were analyzed by nano-liquid chromatography tandem mass spectrometry to determine the identity of the celecoxib-targeted proteins based on structural changes by thermal stability variation of targeted proteins toward higher solubility in the higher temperatures. In the analysis of the soluble protein extract at 67°C, 44 proteins were uniquely detected in drug-treated samples out of all 478 identified proteins at this temperature. Ras-associated binding protein 4a, 1 out of these 44 proteins, has previously been reported as one of the celecoxib off targets in the rat central nervous system. Furthermore, we provide more molecular details through biomedical enrichment analysis to explore the potential role of all detected proteins in the biologic systems. We show that the determined proteins play a role in the signaling pathways related to neurodegenerative disease-and cancer pathways. Finally, we fill out molecular supporting evidence for using celecoxib toward the drug-repurposing approach by exploring drug targets. SIGNIFICANCE STATEMENT: This study determined 44 off-target proteins of celecoxib, a nonsteroidal anti-inflammatory and one of the most common medicines for treating inflammatory diseases. It shows that these proteins play a role in the signaling pathways related to neurodegenerative disease and cancer pathways. Finally, the study provides molecular supporting evidence for using celecoxib toward the drug-repurposing approach by exploring drug targets.
Collapse
Affiliation(s)
- Elham Gholizadeh
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Reza Karbalaei
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Ali Khaleghian
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Mona Salimi
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Kambiz Gilany
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Rabah Soliymani
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Ziaurrehman Tanoli
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Hassan Rezadoost
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Marc Baumann
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Mohieddin Jafari
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| | - Jing Tang
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran (E.G., A.K.);Department of Psychology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania (R.K.); Physiology and Pharmacology Department, Pasteur Institute of Iran, Tehran, Iran (M.S.); Reproductive Immunology Research Center, Avicenna Research Institute, and Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran (K.G.); Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility (R.S., M.B.), and Research Program in Systems Oncology, Faculty of Medicine (Z.T., M.J., J.T.), University of Helsinki, Helsinki, Finland; and Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran (H.R.)
| |
Collapse
|
12
|
Kim TJ, Lee HJ, Pyun DH, Abd El-Aty AM, Jeong JH, Jung TW. Valdecoxib improves lipid-induced skeletal muscle insulin resistance via simultaneous suppression of inflammation and endoplasmic reticulum stress. Biochem Pharmacol 2021; 188:114557. [PMID: 33844985 DOI: 10.1016/j.bcp.2021.114557] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022]
Abstract
Valdecoxib (VAL), a non-steroidal anti-inflammatory drug, has been widely used for treatment of rheumatoid arthritis, osteoarthritis, and menstrual pain. It is a selective cyclooxygenase-2 inhibitor. The suppressive effects of VAL on cardiovascular diseases and neuroinflammation have been documented; however, its impact on insulin signaling in skeletal muscle has not been studied in detail. The aim of this study was to investigate the effects of VAL on insulin resistance in mouse skeletal muscle. Treatment of C2C12 myocytes with VAL reversed palmitate-induced aggravation of insulin signaling and glucose uptake. Further, VAL attenuated palmitate-induced inflammation and endoplasmic reticulum (ER) stress in a concentration-dependent manner. Treatment with VAL concentration-dependently upregulated AMP-activated protein kinase (AMPK) and heat shock protein beta 1 (HSPB1) expression. In line with in vitro experiments, treatment with VAL augmented AMPK phosphorylation and HSPB1 expression, thereby alleviating high-fat diet-induced insulin resistance along with inflammation and ER stress in mouse skeletal muscle. However, small interfering RNA-mediated inhibition of AMPK abolished the effects of VAL on insulin resistance, inflammation, and ER stress. These results suggest that VAL alleviates insulin resistance through AMPK/HSPB1-mediated inhibition of inflammation and ER stress in skeletal muscle under hyperlipidemic conditions. Hence, VAL could be used as an effective pharmacotherapeutic agent for management of insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Tae Jin Kim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Do Hyeon Pyun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Mondal M, Quispe C, Sarkar C, Bepari TC, Alam MJ, Saha S, Ray P, Rahim MA, Islam MT, Setzer WN, Salehi B, Ahmadi M, Abdalla M, Sharifi-Rad J, Kundu SK. Analgesic and Anti-Inflammatory Potential of Essential Oil of Eucalyptus camaldulensis Leaf: In Vivo and in Silico Studies. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211007634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The objective of our present study is to scrutinize the analgesic and anti-inflammatory potentials of essential oil of Eucalyptus camaldulensis leaf using different in vivo assay models at doses of 100, 200, and 400 mg/kg body weight. Twenty chemical compounds, which were isolated from the leaves essential oil of E. camaldulensis, were docked using AutodockVina against cyclooxygenase 2, tumor necrosis factor-α, and interleukin-1β convertase to elucidate the analgesic and anti-inflammatory activity. The essential oil of E. camaldulensis exhibited noteworthy analgesic activities in the writhing test. In the tail immersion and hot-plate test, the essential oil significantly extended the latency period. The number of licks in the formalin-induced paw licking test was markedly reduced following essential oil administration. In addition, E. camaldulensis essential oil revealed notable anti-inflammatory responses in carrageenan-induced paw edema, xylene induced ear edema and cotton pellet induced granuloma methods. Among 20 compounds, 5 ( cis-sabinol, globulol, α-eudesmol, β-eudesmol, and γ-eudesmol) showed better binding for cyclooxygenase-2 while β-eudesmol exhibited higher affinity for TNFα than that of TNF-alpha-IN-1 and standard drug. In the case of interleukin 1β convertase, maximum affinity was shown by α-eudesmol than the synthetic drug belnacasan. Chemical components of the essential oil interacted with diverse amino acid residues which were similar to the natural substrate and standard drugs. In conclusion, E. camaldulensis essential oil can be an effective source of analgesic and anti-inflammatory treatment and additional modification and docking studies will be required to justify the efficiency of globulol, α-eudesmol, β-eudesmol, and γ-eudesmol.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Md. Jahir Alam
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Sushmita Saha
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Pranta Ray
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - William N. Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, USA
- Aromatic Plant Research Center, Lehi, UT, USA
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Ahmadi
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohnad Abdalla
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Shandong Province, P.R. China
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | | |
Collapse
|
14
|
Jeyamogan S, Khan NA, Sagathevan K, Siddiqui R. Crocodylus porosus: a potential source of anticancer molecules. BMJ OPEN SCIENCE 2020; 4:e100040. [PMID: 35047686 PMCID: PMC8749261 DOI: 10.1136/bmjos-2019-100040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 02/09/2020] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
Background Cancer remains a global threat resulting in significant morbidity and mortality despite advances in therapeutic interventions, suggesting urgency for identification of anticancer agents. Crocodiles thrive in polluted habitat, feed on germ-infested meat, are exposed to carcinogenic heavy metals, are the very few species to survive the catastrophic Cretaceous–Paleogene extinction event, yet have a prolonged lifespan and rarely been reported to develop cancer. Therefore, we hypothesised that animals living in polluted environments such as crocodiles possess anticancer molecules/mechanisms. Methods Crocodylus porosus was procured, blood collected, dissected and lysates prepared from internal organs. Organ lysates and sera were tested for growth inhibition, cytotoxic effects and cell survival against HeLa, PC3 and MCF7 cells and subjected to liquid chromatography mass spectrometry. RNA transcriptome analysis and differential gene analysis were performed using Galaxy Bioinformatics. Results Sera exhibited potent growth inhibition and cytotoxic effects against cancer cells. 80 molecules were detected from C. porosus and 19 molecules were putatively identified. Additionally, more than 100 potential anticancer peptides were identified from sera using bioinformatics based on peptide amino acid composition, binary profile, dipeptide composition and pseudo-amino acid composition. Following transcriptome analysis, 14 genes in treated HeLa cells, 51 genes in treated MCF7 cells and 2 genes in treated PC3 cells, were found to be expressed, compared with untreated controls. Conclusion Animals residing in polluted milieus are an unexploited source for prospective pharmaceutical drugs, and could lead to identification of novel antitumour compound(s) and/or further understanding of the mechanisms of cancer resistance.
Collapse
Affiliation(s)
- Shareni Jeyamogan
- Department of Biological Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - K Sagathevan
- Science and Technology, Sunway College, Bandar Sunway, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Shah F, Bell IM. Cutaneous Adverse Events Caused by Sulfonamide-Containing Drugs: Reality or Perception? J Med Chem 2020; 63:7447-7457. [PMID: 32091882 DOI: 10.1021/acs.jmedchem.9b01932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Falgun Shah
- Computational Structural Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Ian M. Bell
- Discovery Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
16
|
Jeyamogan S, Khan NA, Sagathevan K, Siddiqui R. Sera/Organ Lysates of Selected Animals Living in Polluted Environments Exhibit Cytotoxicity against Cancer Cell Lines. Anticancer Agents Med Chem 2020; 19:2251-2268. [DOI: 10.2174/1871520619666191011161314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/30/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023]
Abstract
Background:
Species of crocodiles and cockroaches can withstand high radiation, reside in unsanitary
conditions, thrive on germ-infested feed, and are exposed to heavy metals, yet they are not reported to
develop cancer. It has been postulated that such species have mechanisms to defend themselves against developing
cancer. Here, selected species have been tested for potential cytotoxicity against selected cancer cell lines.
Methods:
In this study, various species of vertebrates and invertebrates were procured including Columba livia,
Gallus gallus domesticus, Varanus salvator, Cuora kamamora amboinensis, Reticulatus malayanus, Oreochromis
mossambicus, Rattus rattus, American bullfrog, Donax sp., Polymesoda coaxans, Tenebrio molitor,
Lumbricus terrestris, Blatta lateralis, Grammostola rosea, and Penaeus monodon. Species were dissected and
their organ lysates/sera/haemolymph were prepared. Cytotoxicity assays were performed using Prostate Cancer
cells (PC3), Henrietta Lacks cervical adenocarcinoma cells (HeLa) and human breast adenocarcinoma cells
(MCF7) as well as human keratinized skin cells (Hacat), by measuring lactate dehydrogenase release as an indicator
for cell death. Growth inhibition assays were performed to determine the effects on cancer cell proliferation.
Liquid Chromatography-Mass Spectrometry (LC-MS/MS) was performed for molecular identification.
Results:
The results revealed that body lysates of Polymesoda coaxans demonstrated more than 99% growth
inhibition of all cancer cell lines tested but not on normal Hacat cells. More importantly, the serum of M. reticulatus
abolished growth and produced cytotoxicity. Hence these samples were subjected to Liquid Chromatography-
Mass Spectrometry (LC-MS/MS), which detected 81 small molecules and putatively identified 20 molecules
when matched against the METLIN database. Out of 1094 peptides, 21 peptides were identified, while
1074 peptides were categorized as novel peptides. Based on properties such as peptide amino acid composition,
binary profile, dipeptide composition and pseudo-amino acid composition, 306 potential peptides were
identified.
Conclusion:
To our knowledge, here for the first time, we report a comprehensive analysis of sera exhibiting
cytotoxicity against cancer cell lines tested and identified several molecules using LC-MS/MS.
Collapse
Affiliation(s)
- Shareni Jeyamogan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Naveed A. Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Kuppusamy Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
17
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Ziegler AL, Blikslager AT. Sparing the gut: COX-2 inhibitors herald a new era for treatment of horses with surgical colic. EQUINE VET EDUC 2019; 32:611-616. [PMID: 34305336 DOI: 10.1111/eve.13189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to manage a wide variety of conditions in horses, including management of colic. Flunixin meglumine is by far the most commonly used drug in the control of colic pain and inflammation and has become a go-to for not only veterinarians but also horse-owners and nonmedical equine professionals. NSAID use, however, has always been controversial in critical cases due to a high risk of adverse effects associated with their potent cyclo-oxygenase (COX) inhibition. There are two important COX isoenzymes: COX-1 is generally beneficial for normal renal and gastrointestinal functions and COX-2 is associated with the pain and inflammation of disease. Newer selective NSAIDs can target COX-2-driven pathology while sparing important COX-1-driven physiology, which is of critical importance in horses with severe gastrointestinal disease. Emerging research suggests that firocoxib, a COX-2-selective NSAID labelled for use in horses, may be preferable for use in colic cases in spite of the decades-long dogma that flunixin saves lives.
Collapse
Affiliation(s)
- A L Ziegler
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| | - A T Blikslager
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, North Carolina, USA
| |
Collapse
|
19
|
Effects of nonselective and selective cyclooxygenase inhibitors on the contractions of isolated bronchial smooth muscle in the horse. ACTA VET BRNO 2018. [DOI: 10.2754/avb201887020099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We evaluated the effects of nonselective cyclooxygenase (COX)-1/COX-2 inhibitors (acetylsalicylic acid, indomethacin, ibuprofen, flunixin meglumine, phenylbutazone), preferential COX-2 inhibitors (diclofenac, meloxicam, carprofen), selective COX-1 inhibitor (SC-560), and selective COX-2 inhibitors (celecoxib, firocoxib, parecoxib) on the contractions of isolated bronchi induced by electrical field stimulation (EFS). Bronchial rings, obtained from lungs of slaughtered horses, were put in isolated organ baths, and the mechanical activity was measured by means of isotonic transducers. Electrical Field Stimulation was applied to the preparations, and the effects of drugs on the amplitude of evoked contractions were measured. Nonselective COX inhibitors did not modify EFS-induced contractions to a relevant degree, except indomethacin which caused a concentration-dependent decrease of the contraction amplitude. Conversely, preferential COX-2 inhibitors enhanced the contractions in a concentration-related fashion, whilst the selective COX-1 inhibitor reduced them. Among selective COX-2 inhibitors, parecoxib increased EFS-evoked contractions whereas celecoxib and firocoxib were ineffective. These results suggest that the inhibition of prostanoid synthesis does not modify the electrical field-stimulated contractions of isolated horse bronchi. Since EFS-induced contractions of horse bronchi were previously shown to be of full cholinergic nature, the increase caused by diclofenac, meloxicam, carprofen, and parecoxib could be due to an inhibition of acetylcholinesterase; in accordance, these drugs potentiated exogenous acetylcholine-induced but not carbachol-induced bronchial contraction. Indomethacin and SC-560 might instead decrease bronchial contractions by inhibiting calcium currents. Clinical use of meloxicam and carprofen in horses with bronchial hyper-responsiveness requires caution for a potential risk of causing adverse effects due to bronchoconstriction.
Collapse
|
20
|
Čeponytė U, Paškevičiūtė M, Petrikaitė V. Comparison of NSAIDs activity in COX-2 expressing and non-expressing 2D and 3D pancreatic cancer cell cultures. Cancer Manag Res 2018; 10:1543-1551. [PMID: 29942156 PMCID: PMC6007190 DOI: 10.2147/cmar.s163747] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Purpose In this study, we evaluated the anticancer activity of non-steroidal anti-inflammatory drugs (NSAIDs) in BxPC-3 and MIA PaCa-2 pancreatic cancer cell cultures. Methods To test the effect of compounds on the viability of cells, the MTT assay was used. The activity of NSAIDs in 3D cell cultures was evaluated by measuring the size change of spheroids. The type of cell death was identified by cell staining with Hoechst 33342 and propidium iodide. To evaluate the effect on the colony-forming ability of cancer cells, the clonogenic assay was used. Results Five out of seven tested NSAIDs reduced the viability of BxPC-3 and MIA PaCa-2 cancer cells. Fenamates were more active against cyclooxygenase-2 expressing BxPC-3 than cyclooxygenase-2 non-expressing MIA PaCa-2 cell line. Fenamates and coxibs exerted higher activity in monolayer cultured cells, whereas salicylates were more active in 3D cultures. Fenamates and coxibs induced dose-dependent apoptosis and necrosis. NSAIDs also inhibited the colony-forming ability of cancer cells. Meclofenamic acid, niflumic acid, and parecoxib possessed higher activity on BxPC-3, and celecoxib possessed higher activity on MIA PaCa-2 cell colony formation. Conclusion Our results show that fenamates, coxibs, and salicylates possess anticancer activity on human pancreatic cancer BxPC-3 and MIA PaCa-2 cell cultures.
Collapse
Affiliation(s)
- Ugnė Čeponytė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Miglė Paškevičiūtė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vilma Petrikaitė
- Department of Drug Chemistry, Faculty of Pharmacy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
21
|
Jin X, Zhou F, Liu Y, Cheng C, Yao L, Jia Y, Wang G, Zhang J. Simultaneous determination of parecoxib and its main metabolites valdecoxib and hydroxylated valdecoxib in mouse plasma with a sensitive LC-MS/MS method to elucidate the decreased drug metabolism of tumor bearing mice. J Pharm Biomed Anal 2018; 158:1-7. [PMID: 29843006 DOI: 10.1016/j.jpba.2018.05.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 12/15/2022]
Abstract
Parecoxib (PX), a prodrug of valdecoxib (VX), is an injectable selective COX-2 inhibitor, and is recommended for the treatment of cancer pain. PX can be rapidly hydrolyzed into its active metabolite VX, and VX is further metabolized into hydroxylated valdecoxib (OH-VX) by cytochrome P450 enzymes. However, cancer patients have been reported to possess reduced drug metabolism ability, which might cause excessive drug accumulation. Such overdose of PX significantly increased the risk of renal safety and cardiovascular events. Therefore, it is necessary to elucidate the concentration profiles of PX and its metabolites in cancer status. In this study, a sensitive, rapid and specific LC-MS/MS method for quantification of PX, VX and OH-VX in the plasma of tumor bearing mouse was developed and validated. After protein precipitation, all the analytes were separated on an Agilent ZORBAX Extend-C18 HPLC column (2.1 × 100 mm, 3.5 μm) with gradient elution. The analytes were detected by an electrospray negative ionization mass spectrometry in the multiple reaction monitoring mode. The transition m/z 369.0 → 119.0, m/z 312.9 → 117.9, m/z 329.0 → 196.0, and m/z 307.1 → 161.3 were used for monitoring PX, VX, OH-VX and IS respectively. The calibration curves of the analytes showed good linearity over the concentration range of 3-3000 ng/mL for PX and VX, and 3-1000 ng/mL for OH-VX. Intra- and inter-batch accuracies (in terms of relative error, RE < 9.9%) and precisions (in terms of relative standard deviation, RSD < 8.8%) satisfied the standard of validation. The matrix effect, recovery and stability were also within acceptable criteria. The method was successfully applied to the pharmacokinetics study of PX in tumor bearing mice, and PX and VX levels were found elevated with the growth of tumor volume, which might increase the risk of drug overdose.
Collapse
Affiliation(s)
- Xiaoliang Jin
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Fang Zhou
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yan Liu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chen Cheng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lan Yao
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yuanwei Jia
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jingwei Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
22
|
Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis 2018; 9:143-150. [PMID: 29392089 PMCID: PMC5772852 DOI: 10.14336/ad.2017.0306] [Citation(s) in RCA: 497] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
NSAIDs, non-steroidal anti-inflammatory drugs, are one of the most commonly prescribed pain medications. It is a highly effective drug class for pain and inflammation; however, NSAIDs are known for multiple adverse effects, including gastrointestinal bleeding, cardiovascular side effects, and NSAID induced nephrotoxicity. As our society ages, it is crucial to have comprehensive knowledge of this class of medication in the elderly population. Therefore, we reviewed the pharmacodynamics and pharmacokinetics, current guidelines for NSAIDs use, adverse effect profile, and drug interaction of NSAIDs and commonly used medications in the elderly.
Collapse
Affiliation(s)
| | | | - Katie Melhado
- Department of Medicine, Einstein Medical Center, Philadelphia, Pennsylvania, PA 19141, USA.
| | - Janani Rangaswami
- Division of Nephrology, Department of Medicine, Einstein Medical Center, Philadelphia, PA 19144, USA
| |
Collapse
|
23
|
Maniar KH, Jones IA, Gopalakrishna R, Vangsness CT. Lowering side effects of NSAID usage in osteoarthritis: recent attempts at minimizing dosage. Expert Opin Pharmacother 2017; 19:93-102. [PMID: 29212381 DOI: 10.1080/14656566.2017.1414802] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Osteoarthritis is a burdensome disease that causes progressive damage to articular cartilage. Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the preferred treatments for symptomatic relief. However, NSAIDs can cause serious dose-dependent side effects, which has prompted experts to recommend the minimization of NSAID dosage. AREAS COVERED This review focuses on three broad strategies that are currently being investigated or implemented to minimize NSAID dosage: nano-formulation, encapsulation, and topical delivery. The benefits, challenges and current status of these methods are discussed. EXPERT OPINION Multiple strategies are under investigation to lower NSAID dosage. There is great potential in developing formulations that utilize more than one of these strategies together. However, there are challenges to developing these lower dose preparations. In order to maximize the clinical potential of the abundance of NSAIDs that are both available and being developed, there is a major need for additional clinical studies directly comparing safety and efficacy of different preparations.
Collapse
Affiliation(s)
- Kevin H Maniar
- a Keck School of Medicine of USC , Los Angeles , CA , USA
| | - Ian A Jones
- b Department of Orthopaedic Surgery , Keck School of Medicine of USC , Los Angeles , CA , USA
| | - Rayudu Gopalakrishna
- c Department of Integrative Anatomical Sciences , Keck School of Medicine of USC , Los Angeles , CA , USA
| | - C Thomas Vangsness
- b Department of Orthopaedic Surgery , Keck School of Medicine of USC , Los Angeles , CA , USA
| |
Collapse
|
24
|
Ziegler A, Fogle C, Blikslager A. Update on the use of cyclooxygenase-2-selective nonsteroidal anti-inflammatory drugs in horses. J Am Vet Med Assoc 2017; 250:1271-1274. [PMID: 28509650 DOI: 10.2460/javma.250.11.1271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nonsteroidal anti-inflammatory drugs work through inhibition of cyclooxygenase (COX) and are highly effective for the treatment of pain and inflammation in horses. There are 2 clinically relevant isoforms of COX. Cyclooxygenase-1 is constitutively expressed and is considered important for a variety of physiologic functions, including gastrointestinal homeostasis. Thus, NSAIDs that selectively inhibit COX-2 while sparing COX-1 may be associated with a lower incidence of adverse gastrointestinal effects. Various formulations of firocoxib, a COX-2-selective NSAID, labeled for use in horses are available in the United States. Equine practitioners should know that the FDA limits the use of firocoxib to formulations labeled for horses, regardless of price concerns. In addition, practitioners will benefit from understanding the nuances of firocoxib administration, including the importance of correct dosing and the contraindications of combining NSAIDs. Together with knowledge of the potential advantages of COX-2 selectivity, these considerations will help veterinarians select and treat patients that could benefit from this new class of NSAID.
Collapse
|
25
|
Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma. Eur J Pharm Sci 2017; 107:217-229. [PMID: 28728977 DOI: 10.1016/j.ejps.2017.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/16/2017] [Accepted: 07/16/2017] [Indexed: 12/30/2022]
Abstract
Boron neutron capture therapy (BNCT) is a binary therapy that employs neutron irradiation on the boron agents to release high-energy helium and alpha particles to kill cancer cells. An optimal response to BNCT depends critically on the time point of maximal 10B accumulation and highest tumor to normal ratio (T/N) for performing the neutron irradiation. The aggressive cholangiocarcinoma (CCA) representing a liver cancer that overexpresses COX-2 enzyme is aimed to be targeted by COX-2 selective boron carrier, fenbufen boronopinacol (FBPin). Two main works were performed including: 1) chemical synthesis of FBPin as the boron carrier and 2) radiochemical labeling with F-18 to provide the radiofluoro congener, m-[18F]fluorofenbufen ester boronopinacol (m-[18F]FFBPin), to assess the binding affinity, cellular accumulation level and distribution profile in CCA rats. FBPin was prepared from bromofenbufen via 3 steps with 82% yield. The binding assay employed [18F]FFBPin to compete FBPin for binding to COX-1 (IC50=0.91±0.68μM) and COX-2 (IC50=0.33±0.24μM). [18F]FFBPin-derived 60-min dynamic PET scans predict the 10B-accumulation of 0.8-1.2ppm in liver and 1.2-1.8ppm in tumor and tumor to normal ratio=1.38±0.12. BNCT was performed 40-55min post intravenous administration of FBPin (20-30mg) in the CCA rats. CCA rats treated with BNCT display more tumor reduction than that by NCT with respect of 2-[18F]fluoro-2-deoxy glucose uptake in the tumor region of interest, 20.83±3.00% (n=12) vs. 12.83±3.79% (n=10), P=0.05. The visualizing agent [18F]FFBPin resembles FBPin to generate the time-dependent boron concentration profile. Optimal neutron irradiation period is thus determinable for BNCT. A boron-substituted agent based on COX-2-binding features has been prepared. The moderate COX-2/COX-1 selectivity index of 2.78 allows a fair tumor selectivity index of 1.38 with a mild cardiovascular effect. The therapeutic effect from FBPin with BNCT warrants a proper COX-2 targeting of boron NSAIDs.
Collapse
|
26
|
Chiral Derivatives of Xanthones: Investigation of the Effect of Enantioselectivity on Inhibition of Cyclooxygenases (COX-1 and COX-2) and Binding Interaction with Human Serum Albumin. Pharmaceuticals (Basel) 2017; 10:ph10020050. [PMID: 28561772 PMCID: PMC5490407 DOI: 10.3390/ph10020050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 12/02/2022] Open
Abstract
Searching of new enantiomerically pure chiral derivatives of xanthones (CDXs) with potential pharmacological properties, particularly those with anti-inflammatory activity, has remained an area of interest of our group. Herein, we describe in silico studies and in vitro inhibitory assays of cyclooxygenases (COX-1 and COX-2) for different enantiomeric pairs of CDXs. The evaluation of the inhibitory activities was performed by using the COX Inhibitor Screening Assay Kit. Docking simulations between the small molecules (CDXs; known ligands and decoys) and the enzyme targets were undertaken with AutoDock Vina embedded in PyRx—Virtual Screening Tool software. All the CDXs evaluated exhibited COX-1 and COX-2 inhibition potential as predicted. Considering that the (S)-(−)-enantiomer of the nonsteroidal anti-inflammatory drug ketoprofen preferentially binds to albumin, resulting in lower free plasma concentration than (R)-(+)-enantiomer, protein binding affinity for CDXs was also evaluated by spectrofluorimetry as well as in in silico. For some CDXs enantioselectivity was observed.
Collapse
|
27
|
Inan Genç A, Gok S, Banerjee S, Severcan F. Valdecoxib Recovers the Lipid Composition, Order and Dynamics in Colon Cancer Cell Lines Independent of COX-2 Expression: An ATR-FTIR Spectroscopy Study. APPLIED SPECTROSCOPY 2017; 71:105-117. [PMID: 27354402 DOI: 10.1177/0003702816654164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Prostanoids play an important role in a variety of physiological and pathophysiological processes including inflammation and cancer. The rate-limiting step in the prostanoid biosynthesis pathway is catalyzed by cyclooxygenases (COXs). Aberrant expression of the inducible isoform COX-2 plays a significant role in colon cancer initiation and progression. In this study, we have hypothesized that COX-2 specific inhibitors such as Valdecoxib (VLX), being highly hydrophobic, may alter biophysical properties of cellular lipids. In this study, COX-2 expressing (HT29) and COX-2 non-expressing (SW620) colon cancer cell lines were treated with VLX and examined using attenuated total reflection infrared spectroscopy. The results revealed that VLX treatment decreased lipid fluidity in the cells irrespective of COX-2 expression status and affected order parameters of the lipids in both cell lines. Cluster analysis also indicated that the spectral differences between the two cell lines are profound and could be successfully differentiated. Valdecoxib treatment could enhance the composition, order and dynamics of the lipids of colon cancer cells independently of its COX-2 inhibitory mechanism. Valdecoxib has therapeutic effects upon colon cancer, therefore it can be used as an adjuvant and/or chemopreventive agent for colon cancer.
Collapse
Affiliation(s)
- Aysun Inan Genç
- Department of Biological Sciences, Middle East Technical University, Turkey
| | - Seher Gok
- Department of Biological Sciences, Middle East Technical University, Turkey
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Turkey
| | - Feride Severcan
- Department of Biological Sciences, Middle East Technical University, Turkey
| |
Collapse
|
28
|
Grösch S, Niederberger E, Geisslinger G. Investigational drugs targeting the prostaglandin E2 signaling pathway for the treatment of inflammatory pain. Expert Opin Investig Drugs 2017; 26:51-61. [PMID: 27841017 DOI: 10.1080/13543784.2017.1260544] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAID) are the most commonly used drugs for the treatment of pain, inflammation and fever. Although they are effective for a huge number of users, their analgesic properties are not sufficient for several patients and the occurrence of side effects still constitutes a big challenge during long term therapy. Areas covered: This review gives an overview about the first and second generations of NSAIDs (COX1/2 non-selective, COX-2 selective), and their main side effects which gave still an urgent need for safer drugs and for the establishment of novel treatment strategies (improved safety, tolerability, patient convenience). The current developments of a possible third generation NSAID class comprise changes in the formulation of already approved drugs, combination therapies, dual cyclooxygenase-lipoxygenase inhibitors, NO- and H2S-releasing NSAIDs, prostaglandin synthase inhibitors and EP receptor modulators, respectively. Literature search has been done with PubMed NCBI. Expert opinion: Currently, there is no newly developed drug that is superior to the already approved selective and non-selective NSAIDs. Several novel approaches show promising analgesic efficacy but side effects are still an important problem. Solutions might be constituted by combination therapies allowing administration of lower drug doses or by individualized therapies targeting molecules apart from COX, respectively.
Collapse
Affiliation(s)
- Sabine Grösch
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Ellen Niederberger
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
| | - Gerd Geisslinger
- a Pharmazentrum frankfurt/ZAFES , Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt , Frankfurt am Main , Germany
- b Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP) , Frankfurt/Main , Germany
| |
Collapse
|
29
|
Baglieri A, Meschisi L, De Sarlo F, Machetti F. Competitive Copper Catalysis in the Condensation of Primary Nitro Compounds with Terminal Alkynes: Synthesis of Isoxazoles. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ausilia Baglieri
- Istituto di chimica dei composti organometallici, c/o Dipartimento di chimica Ugo Schiff; Consiglio nazionale delle ricerche (CNR); Via della Lastruccia 13 50019 Sesto Fiorentino, Firenze Italy
| | - Luca Meschisi
- Dipartimento di chimica Ugo Schiff; Università degli studi di Firenze; Via della Lastruccia 13 50019 Sesto Fiorentino Firenze Italy
| | - Francesco De Sarlo
- Dipartimento di chimica Ugo Schiff; Università degli studi di Firenze; Via della Lastruccia 13 50019 Sesto Fiorentino Firenze Italy
| | - Fabrizio Machetti
- Istituto di chimica dei composti organometallici, c/o Dipartimento di chimica Ugo Schiff; Consiglio nazionale delle ricerche (CNR); Via della Lastruccia 13 50019 Sesto Fiorentino, Firenze Italy
| |
Collapse
|
30
|
Shankaran KS, Ganai SA, K P A, P B, Mahadevan V. In silico and In vitro evaluation of the anti-inflammatory potential of Centratherum punctatum Cass-A. J Biomol Struct Dyn 2016; 35:765-780. [PMID: 26984043 DOI: 10.1080/07391102.2016.1160840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Centratherum punctatum Cass., a herb belonging to the family Asteraceae has been traditionally used as a curative against diverse disorders like inflammation, tumor, depression, and hypertension. Though the medicinal properties of this plant have been attributed to the presence of flavonoids, glucosides, alkaloids, Vitamin C, etc., the molecular constituents of this plant and of the flavonoids that contribute to its medicinal activity have not been explored yet. This work attempts to evaluate the potential of Centratherum punctatum extract as an anti-inflammatory agent. Ethanolic extracts of Centratherum punctatum analyzed by High Performance Thin Layer Chromatography (HPTLC) and Liquid Chromatography-Mass Spectrometry (LC-MS/MS) identified the presence of the flavones kaempferol, glycoside Isorhamnetin-3-O-rutinoside, and kaempferol-3-glucoside. The plant extract exhibited anti-oxidant property as confirmed by DPPH assay and IC50 value of 271.6 μg/mL during inhibition of protein denaturation, 186.8 μg/mL during RBC membrane stabilization, and 278.2 μg/mL for proteinase inhibition. Membrane stabilizing functions of flavones and flavones glycosides validated the anti-inflammatory potential of the extract. In silico evaluation using a rigorous molecular docking protocol with receptors of Cox2, TNF-α, Interleukin 1β convertase, and Histamine H1 predicted high binding affinity of the isoflavones and isoflavone glycosides of Centratherum punctatum Cass. The interactions have also been shown to compare well with that of known drugs valdecoxib through Gln178, His342, and Gly340, desloratadine (through Lys191 and Thr194) and belnacasin (through Asp288 and Gly287) proven to function through the anti-inflammatory pathway. This work establishes the anti-inflammatory potential of Centratherum punctatum Cass. extract as an alternative to existing therapeutic approach to inflammation through a systematic in silico approach supplementing the findings.
Collapse
Affiliation(s)
| | - Shabir Ahmad Ganai
- a School of Chemical & Biotechnology , SASTRA University , Thanjavur , India.,c Centre for Nanotechnology & Advanced Biomaterials(CeNTAB), School of Chemical & Biotechnology , SASTRA University , Thanjavur , India
| | - Arun K P
- b Centre for Advanced Research in Indian System of Medicine , SASTRA University , Thanjavur , India
| | - Brindha P
- b Centre for Advanced Research in Indian System of Medicine , SASTRA University , Thanjavur , India
| | - Vijayalakshmi Mahadevan
- a School of Chemical & Biotechnology , SASTRA University , Thanjavur , India.,c Centre for Nanotechnology & Advanced Biomaterials(CeNTAB), School of Chemical & Biotechnology , SASTRA University , Thanjavur , India
| |
Collapse
|
31
|
Improving drug safety with a systems pharmacology approach. Eur J Pharm Sci 2016; 94:84-92. [PMID: 27287422 DOI: 10.1016/j.ejps.2016.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/20/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
Systems pharmacology is used to mechanistically analyze drug-adverse drug reaction (ADRs) pairs and is a promising solution to the complex problem of understanding mechanisms of toxicity. In this research, we have explored the feasibility of retrospectively mapping population-level adverse events from the FDA Adverse Event Reporting System (FAERS) to chemical and biological databases to identify drug safety signals and the underlying molecular mechanisms. We used an analytic platform - Molecular Analysis of Side Effects (MASE™). For this purpose, we selected the adverse event of severe and potentially fatal cutaneous reactions (SCARs) that are associated with acetaminophen (APAP). SCARs encompass the continuum between Stevens-Johnson Syndrome (SJS) and Toxic Epidermal Necrolysis (TEN). We found a statistically significant association between APAP and TEN, the most severe form of SCARs. We also explored the influence of APAP on other classes of drugs commonly associated with SCARs. We found that APAP significantly reduced the risk of SCARs commonly associated with carbamazepine (CBZ). We used molecular docking simulations to propose a mechanism for APAP's reduction in CBZ-induced SCARs which is competitive inhibition of the binding of CBZ to HLA-B*15:02. We conclude that systems pharmacology can complement established surveillance methodologies by providing a means to undertake an independent investigation and review of the mechanisms by which drugs cause adverse events.
Collapse
|
32
|
Papageorgiou N, Zacharia E, Briasoulis A, Charakida M, Tousoulis D. Celecoxib for the treatment of atherosclerosis. Expert Opin Investig Drugs 2016; 25:619-633. [PMID: 26940257 DOI: 10.1517/13543784.2016.1161756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION It is widely accepted that inflammation plays a pivotal role in the progression of atherosclerosis. Anti-inflammatory drugs and especially selective cyclooxygenase-2 (COX-2) inhibitors have attracted a keen interest. AREAS COVERED In the present drug evaluation article, the authors elucidate the role of celecoxib, a selective COX-2 inhibitor, in the treatment of atherosclerosis. They discuss the atherogenic properties of the COX-2 enzyme. In addition, they address the studies that support an atheroprotective role of celecoxib. Moreover, they provide a review of the literature on the role of COX-2 inhibitors in increasing the rate of major adverse cardiovascular events. Finally, they discuss the emerging evidence that supports celecoxib as an adjuvant or neo-adjuvant therapy to percutaneous coronary intervention (PCI). EXPERT OPINION Several studies have demonstrated a beneficial effect of celecoxib on the progression of atherosclerosis. Nevertheless, this evidence is mainly derived from preliminary data, while a substantial number of clinical studies have raised concerns regarding the cardiovascular safety of COX-2 inhibitors. Interestingly, recent clinical studies have supported the advantages of short-term celecoxib administration in patients undergoing PCI. However, many more large scale clinical trials are required to assess the long-term safety and efficacy of celecoxib administration in patients with cardiovascular disease.
Collapse
Affiliation(s)
| | - Effimia Zacharia
- b 1st Department of Cardiology, Hippokration Hospital , University of Athens , Athens , Greece
| | - Alexandros Briasoulis
- c Division of Cardiology , Wayne State University/Detroit Medical Center , Detroit , MI , USA
| | - Marietta Charakida
- d Vascular Physiology Unit, Institute of Cardiovascular Science , University College London , London , UK
| | - Dimitris Tousoulis
- b 1st Department of Cardiology, Hippokration Hospital , University of Athens , Athens , Greece
| |
Collapse
|
33
|
Huang H, Al-Shabrawey M, Wang MH. Cyclooxygenase- and cytochrome P450-derived eicosanoids in stroke. Prostaglandins Other Lipid Mediat 2015; 122:45-53. [PMID: 26747234 DOI: 10.1016/j.prostaglandins.2015.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/28/2022]
Abstract
Arachidonic acid (AA) is metabolized by cyclooxygenase (COX) and cytochrome P450 (CYP) enzymes into eicosanoids, which are involved in cardiovascular diseases and stroke. Evidence has demonstrated the important functions of these eicosanoids in regulating cerebral vascular tone, cerebral blood flow, and autoregulation of cerebral circulation. Although COX-2 inhibitors have been suggested as potential treatments for stroke, adverse events, including an increased risk of stroke, occur following long-term use of coxibs. It is important to note that prolonged treatment with rofecoxib increased circulating levels of 20-hydroxyeicosatetraenoic acid (20-HETE), and 20-HETE blockade is a possible strategy to prevent coxib-induced stroke events. It appears that 20-HETE has detrimental effects in the brain, and that its blockade exerts cerebroprotection against ischemic stroke and subarachnoid hemorrhage (SAH). There is clear evidence that activation of EP2 and EP4 receptors exerts cerebroprotection against ischemic stroke. Several elegant studies have contributed to defining the importance of stabilizing the levels of epoxyeicosatrienoic acids (EETs), by inhibiting or deleting soluble epoxide hydrolase (sEH), in stroke research. These reports support the notion that sEH blockade is cerebroprotective against ischemic stroke and SAH. Here, we summarize recent findings implicating these eicosanoid pathways in cerebral vascular function and stroke. We also discuss the development of animal models with targeted gene deletion and specific enzymatic inhibitors in each pathway to identify potential targets for the treatment of ischemic stroke and SAH.
Collapse
Affiliation(s)
- Hui Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China; Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mohamed Al-Shabrawey
- Department of Oral Biology/Anatomy, College of Dental Medicine, Georgia Regents University, Augusta, GA 30912, United states
| | - Mong-Heng Wang
- Department of Physiology, Georgia Regents University, Augusta, GA 30912, United states.
| |
Collapse
|
34
|
Konstantinidou M, Gkermani A, Hadjipavlou-Litina D. Synthesis and Pharmacochemistry of New Pleiotropic Pyrrolyl Derivatives. Molecules 2015; 20:16354-74. [PMID: 26378503 PMCID: PMC6332026 DOI: 10.3390/molecules200916354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 01/04/2023] Open
Abstract
Within the framework of our attempts to synthesize pleiotropic anti-inflammatory agents, we have synthesized some chalcones and their corresponding 3,4-pyrrolyl derivatives. Chalcones constitute a class of compounds with high biological impact. They are known for a number of biological activities, including anti-inflammatory and free radical scavenging activities. They inhibit several enzymes implicated in the inflammatory process, such as lipoxygenase, cyclooxygenase (COX) and lysozymes. The synthesized pyrroles have been studied for: (1) their in vitro inhibition of lipoxygenase; (2) their in vitro inhibition of COX; (3) their in vitro inhibition of lipid peroxidation; (4) their interaction with the stable, N-centered, free radical, 2,2-diphenyl-1-picrylhydrazyl (DPPH); (5) their inhibition on interleukin-6 (IL-6); (6) their anti-proteolytic activity; and (7) their in vivo anti-inflammatory activity using carrageenan-induced rat paw edema. Their physicochemical properties were determined to explain the biological results. Lipophilicity was experimentally determined. 2i and 2v were found to be promising multifunctional molecules with high antiproteolytic and anti-inflammatory activities in combination with anti-interleukin-6 activity.
Collapse
Affiliation(s)
- Markella Konstantinidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Alice Gkermani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
35
|
Distrutti E, Santucci L, Cipriani S, Renga B, Schiaroli E, Ricci P, Donini A, Fiorucci S. Bile acid activated receptors are targets for regulation of integrity of gastrointestinal mucosa. J Gastroenterol 2015; 50:707-19. [PMID: 25708288 DOI: 10.1007/s00535-015-1041-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/09/2015] [Indexed: 02/04/2023]
Abstract
Bile acids are the end product of cholesterol metabolism. Synthesized in the liver, primary bile acids are secreted by hepatocytes and are transformed by intestinal microbiota into secondary bile acids. In addition to their role in cholesterol and lipid absorption, bile acids act as signaling molecules activating a family of nuclear and G-protein-coupled receptors collectively known as bile acid activated receptors (BARs). These receptors are expressed at high density in enterohepatic tissues, but their expression occurs throughout the body and their activation mediates regulatory functions of bile acids on lipids and glucose metabolism and immunity. In the gastrointestinal tract, BARs maintain intestinal integrity, and their deletion makes the intestine more susceptible to the damage caused by acetylsalicylic acid and nonsteroidal anti-inflammatory drugs (NSAIDs). Deficiency in farnesoid X receptor and G-protein-coupled bile acid receptor 1 genes alters the expression/activity of cystathione γ-lyase and endothelial nitric oxide synthase, two genes involved in the synthesis of hydrogen sulfide and nitric oxide, i.e., two gaseous mediators that have been shown to be essential in maintaining the intestinal homeostasis. In addition, farnesoid X receptor regulates the expression of transporters required for secretion of phospholipid by hepatocytes. Because phospholids attenuate intestinal injury caused by acetylsalicylic acid and NSAIDs, BAR agonism could be exploited to protect the intestinal mucosa against injury caused by anti-inflammatory medications. This approach might be useful in the prevention of so-called NSAID enteropathy, a common clinical condition occurring in long-term users of NSAIDs, which is not effectively prevented either by cotreatment with proton pump inhibitors or by the use of coxibs.
Collapse
|
36
|
Miao X, Li J, Ouyang Q, Hu R, Zhang Y, Li H. Tolerability of selective cyclooxygenase 2 inhibitors used for the treatment of rheumatological manifestations of inflammatory bowel disease. Cochrane Database Syst Rev 2014; 2014:CD007744. [PMID: 25340915 PMCID: PMC11200115 DOI: 10.1002/14651858.cd007744.pub2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to reduce inflammatory pain and swelling in inflammatory bowel disease (IBD) patients with rheumatological manifestations. While these drugs effectively reduce musculoskeletal pain and stiffness, long-term use is limited by gastrointestinal (GI) adverse effects (AEs) and disease exacerbation. As an alternative to NSAIDs, selective cyclooxygenase 2 (COX-2) inhibitors were developed to improve GI safety and tolerability. COX-2 inhibitors include drugs such as celecoxib, rofecoxib, valdecoxib, etoricoxib, and lumiracoxib. Rofecoxib and valdecoxib have been withdrawn from the market worldwide due to safety concerns (most importantly for cardiovascular adverse events) and lumiracoxib has been withdrawn in many countries due to liver toxicity. However, celecoxib and etoricoxib continue to be available for use in many countries. Several studies have examined whether COX-2 inhibitors can be safely used for the treatment of rheumatological manifestations of IBD with inconsistent results. Some investigators report acceptable safety profiles associated with these drugs while others found that COX-2 inhibitors are associated with high rates of disease exacerbation. OBJECTIVES The objective of this systematic review was to evaluate the tolerability and safety of COX-2 inhibitors used for the treatment of rheumatological manifestations of IBD. SEARCH METHODS We searched the following databases from inception to 19 September 2013: PubMed, EMBASE, MEDLINE and CENTRAL. The search was not limited by language. Additional trials were identified by manually searching the reference lists of relevant papers and conference proceedings and through correspondence with experts and pharmaceutical companies. SELECTION CRITERIA Randomized controlled trials (RCTs) that compared COX-2 inhibitors to placebo were considered for inclusion. Participants were adult patients with IBD presenting with rheumatological manifestations of at least two weeks duration. DATA COLLECTION AND ANALYSIS Two authors independently assessed trial eligibility and extracted data. Methodological quality was assessed using the Cochrane risk of bias tool. The primary outcome measure was the proportion of patients with disease exacerbation as defined by the included studies. Secondary outcomes included GI adverse effects, renal toxicity, cardiovascular and thrombotic events. Data were analysed on an intention-to-treat basis where patients with missing final outcomes were assumed to have had an exacerbation of IBD. We calculated the risk ratio (RR) and corresponding 95% confidence interval (95% CI) for dichotomous outcomes. The overall quality of the evidence was assessed using the GRADE criteria. MAIN RESULTS There were no RCTs that assessed the tolerability or safety of the withdrawn COX-2 inhibitors rofecoxib, valdecoxib, or lumiracoxib. Two RCTs (n = 381 IBD patients with rheumatological manifestations) were included in the review. One study (n = 159) compared etoricoxib (60 to 120 mg/day) to placebo in IBD patients with quiescent or active ulcerative colitis or Crohn's disease. The other study (n = 222) compared celecoxib (200 mg twice daily) to placebo in patients with quiescent ulcerative colitis. Both studies were judged to be at low risk of bias. The two included studies were not pooled for meta-analysis due to differences in patient populations and treatment duration. There was no statistically significant difference in exacerbation of IBD between etoricoxib and placebo. After 12 weeks of treatment the IBD exacerbation rate was 17% (14/82) in the etoricoxib group compared to 19% (15/77) in the placebo group (RR 0.88, 95% CI 0.45 to 1.69). A GRADE analysis indicated that the overall quality of the evidence supporting this outcome was low due to very sparse data (29 events). There was no statistically significant difference in exacerbation of ulcerative colitis between celecoxib and placebo. After two weeks of treatment 4% (5/112) of celecoxib patients experienced an exacerbation of ulcerative colitis compared to 6% (7/110) of patients in the placebo group (RR 0.70, 95% CI 0.23 to 2.14). A GRADE analysis indicated that the overall quality of the evidence supporting this outcome was low due to very sparse data (12 events). The study comparing etoricoxib to placebo documented but did not report on AEs. The proportion of patients who experienced AEs was similar in the celecoxib and placebo groups (21% and 17%, respectively, P > 0.20). No patients in either group died or experienced serious adverse events. Eleven percent of patients in the celecoxib and placebo groups experienced GI AEs (RR 0.97, 95% CI 0.46 to 2.07). A GRADE analysis indicated that the overall quality of the evidence supporting this outcome was low due to very sparse data (24 events). GI AEs led to premature withdrawal from the study in 3% of patients in celecoxib and placebo groups respectively. GI AEs included increased stool frequency, rectal bleeding, and inflamed mucosa. No patients experienced any cardiovascular adverse events. Renal toxicity or thrombotic AEs were not reported. AUTHORS' CONCLUSIONS The results for disease exacerbation and AEs between the COX-2 inhibitors celecoxib and etoricoxib and placebo were uncertain. Thus no definitive conclusions regarding the tolerability and safety of the short term use of celecoxib and etoricoxib in patients with IBD can be drawn. The two included studies suggest that celecoxib and etoricoxib do not exacerbate IBD symptoms. However, it should be noted that both studies had relatively small sample sizes and short follow-up durations. Clinicians need to continue to weigh the risks and benefits of these drugs when treating patients IBD patients with rheumatological manifestations in order to avoid disease exacerbation and other adverse effects. Further RCTs are needed to determine the tolerability and safety of celecoxib and etoricoxib in these patients.
Collapse
Affiliation(s)
- Xin‐Pu Miao
- Hai Nan Provincial People's HospitalDepartment of Gastroenterology19 Xiu Hua Road, Xiu Ying DistrictHai Kou CityHan Nan ProvinceChina570311
| | - Jian‐Sheng Li
- First Affiliated Hospital of Zhengzhou UniversityDepartment of GastroenterologyZhengzhouHenan ProvinceChina450052
| | - Qin Ouyang
- West China Hospital, Sichuan UniversityDepartment of GastroenterologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Ren‐Wei Hu
- West China Hospital, Sichuan UniversityDepartment of GastroenterologyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Yan Zhang
- Guang An Men Hospital, China Academy of Chinese Medical SciencesDepartment of Acupuncture and MoxibustionNo. 5, Bei Xian Ge StreetBeijingChina100053
| | - Hui‐Yan Li
- West China Hospital, Sichuan UniversityDepartment of ChemotherapyNo. 37, Guo Xue XiangChengduSichuanChina610041
| | | |
Collapse
|
37
|
Aggarwal A, Al-Rohil RN, Batra A, Feustel PJ, Jones DM, DiPersio CM. Expression of integrin α3β1 and cyclooxygenase-2 (COX2) are positively correlated in human breast cancer. BMC Cancer 2014; 14:459. [PMID: 24950714 PMCID: PMC4069347 DOI: 10.1186/1471-2407-14-459] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/13/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Expression of integrin α3β1 is associated with tumor progression, metastasis, and poor prognosis in several cancers, including breast cancer. Moreover, preclinical studies have revealed important pro-tumorigenic and pro-metastatic functions for this integrin, including tumor growth, survival, invasion, and paracrine induction of angiogenesis. Our previously published work in a preclinical breast cancer model showed that integrin α3β1 promotes expression of cyclooxygenase-2 (COX2/PTGS2), a known driver of breast cancer progression. However, the clinical significance of this regulation was unknown. The objective of the current study was to assess the clinical relevance of the relationship between integrin α3β1 and COX2 by testing for their correlated expression among various forms of human breast cancer. METHODS Immunohistochemistry was performed to assess co-expression of α3 and COX2 in specimens of human invasive ductal carcinoma (IDC), either on a commercial tissue microarray (n = 59 samples) or obtained from Albany Medical Center archives (n = 68 samples). Immunostaining intensity for the integrin α3 subunit or COX2 was scored, and Spearman's rank correlation coefficient analysis was performed to assess their co-expression across and within different tumor subtypes or clinicopathologic criteria. RESULTS Although expression of integrin α3 or COX2 varied among clinical IDC samples, a statistically significant, positive correlation was detected between α3 and COX2 in both tissue microarrays (r(s) = 0.49, p < 0.001, n = 59) and archived samples (r(s) = 0.59, p < 0.0001, n = 68). In both sample sets, this correlation was independent of hormone receptor status, histological grade, or disease stage. CONCLUSIONS COX2 and α3 are correlated in IDC independently of hormone receptor status or other clinicopathologic features, supporting the hypothesis that integrin α3β1 is a determinant of COX2 expression in human breast cancer. These results support the clinical relevance of α3β1-dependent COX2 gene expression that we reported previously in breast cancer cells. The findings also suggest that COX2-positive breast carcinomas of various subtypes might be vulnerable to therapeutic strategies that target α3β1, and that α3 expression might serve as an independent prognostic biomarker.
Collapse
Affiliation(s)
- Anshu Aggarwal
- Center for Cell Biology & Cancer Research, Albany Medical College, Mail Code 165, Room MS-420, 47 New Scotland Avenue, Albany, NY 12208-3479, USA
| | - Rami N Al-Rohil
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - Anupam Batra
- Department of Internal Medicine, Albany Medical Center, Albany, NY 12208, USA
| | - Paul J Feustel
- Center for Neuropharmacology and Neurosciences, Albany Medical College, Albany, NY 12208, USA
| | - David M Jones
- Department of Pathology, Albany Medical Center, Albany, NY 12208, USA
| | - C Michael DiPersio
- Center for Cell Biology & Cancer Research, Albany Medical College, Mail Code 165, Room MS-420, 47 New Scotland Avenue, Albany, NY 12208-3479, USA
| |
Collapse
|