1
|
Shin SK, Oh S, Chun SK, Ahn MJ, Lee SM, Kim K, Kang H, Lee J, Shin SP, Lee J, Jung YK. Immune signature and therapeutic approach of natural killer cell in chronic liver disease and hepatocellular carcinoma. J Gastroenterol Hepatol 2024; 39:1717-1727. [PMID: 38800890 DOI: 10.1111/jgh.16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024]
Abstract
Natural killer (NK) cells are one of the key members of innate immunity that predominantly reside in the liver, potentiating immune responses against viral infections or malignant tumors. It has been reported that changes in cell numbers and function of NK cells are associated with the development and progression of chronic liver diseases (CLDs) including non-alcoholic fatty liver disease, alcoholic liver disease, and chronic viral hepatitis. Also, it is known that the crosstalk between NK cells and hepatic stellate cells plays an important role in liver fibrosis and cirrhosis. In particular, the impaired functions of NK cells observed in CLDs consequently contribute to occurrence and progression of hepatocellular carcinoma (HCC). Chronic infections by hepatitis B or C viruses counteract the anti-tumor immunity of the host by producing the sheddases. Soluble major histocompatibility complex class I polypeptide-related sequence A (sMICA), released from the cell surfaces by sheddases, disrupts the interaction and affects the function of NK cells. Recently, the MICA/B-NK stimulatory receptor NK group 2 member D (NKG2D) axis has been extensively studied in HCC. HCC patients with low membrane-bound MICA or high sMICA concentration have been associated with poor prognosis. Therefore, reversing the sMICA-mediated downregulation of NKG2D has been proposed as an attractive strategy to enhance both innate and adaptive immune responses against HCC. This review aims to summarize recent studies on NK cell immune signatures and its roles in CLD and hepatocellular carcinogenesis and discusses the therapeutic approaches of MICA/B-NKG2D-based or NK cell-based immunotherapy for HCC.
Collapse
Affiliation(s)
- Seung Kak Shin
- Division of Gastroenterology and Hepatology, Department of Internal medicine, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon, South Korea
| | - Sooyeon Oh
- Chaum Life Center, School of Medicine, CHA University, Seoul, South Korea
| | - Su-Kyung Chun
- Chaum Life Center, School of Medicine, CHA University, Seoul, South Korea
| | - Min-Ji Ahn
- Center for Research and Development, CHA Advanced Research Institute, Seoul, South Korea
| | - Seung-Min Lee
- Center for Research and Development, CHA Advanced Research Institute, Seoul, South Korea
| | - Kayun Kim
- School of Medicine, CHA University, Seoul, South Korea
| | - Hogyeong Kang
- School of Medicine, CHA University, Seoul, South Korea
| | - Jeongwoo Lee
- School of Medicine, CHA University, Seoul, South Korea
| | - Suk Pyo Shin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Jooho Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Young Kul Jung
- Department of Internal Medicine, Korea University Ansan Hospital, Ansan, South Korea
| |
Collapse
|
2
|
Ward JW, Wanlapakorn N, Poovorawan Y, Shouval D. Hepatitis B Vaccines. PLOTKIN'S VACCINES 2023:389-432.e21. [DOI: 10.1016/b978-0-323-79058-1.00027-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Feitelson MA, Arzumanyan A, Spector I, Medhat A. Hepatitis B x (HBx) as a Component of a Functional Cure for Chronic Hepatitis B. Biomedicines 2022; 10:biomedicines10092210. [PMID: 36140311 PMCID: PMC9496119 DOI: 10.3390/biomedicines10092210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022] Open
Abstract
Patients who are carriers of the hepatitis B virus (HBV) are at high risk of chronic liver disease (CLD) which proceeds from hepatitis, to fibrosis, cirrhosis and to hepatocellular carcinoma (HCC). The hepatitis B-encoded X antigen, HBx, promotes virus gene expression and replication, protects infected hepatocytes from immunological destruction, and promotes the development of CLD and HCC. For virus replication, HBx regulates covalently closed circular (ccc) HBV DNA transcription, while for CLD, HBx triggers cellular oxidative stress, in part, by triggering mitochondrial damage that stimulates innate immunity. Constitutive activation of NF-κB by HBx transcriptionally activates pro-inflammatory genes, resulting in hepatocellular destruction, regeneration, and increased integration of the HBx gene into the host genome. NF-κB is also hepatoprotective, which sustains the survival of infected cells. Multiple therapeutic approaches include direct-acting anti-viral compounds and immune-stimulating drugs, but functional cures were not achieved, in part, because none were yet devised to target HBx. In addition, many patients with cirrhosis or HCC have little or no virus replication, but continue to express HBx from integrated templates, suggesting that HBx contributes to the pathogenesis of CLD. Blocking HBx activity will, therefore, impact multiple aspects of the host–virus relationship that are relevant to achieving a functional cure.
Collapse
Affiliation(s)
- Mark A. Feitelson
- Room 409 Biolife Building, Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, USA
- Correspondence: ; Tel.: +1-215-204-8434
| | - Alla Arzumanyan
- Room 409 Biolife Building, Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th Street, Philadelphia, PA 19122, USA
| | | | - Arvin Medhat
- Department of Molecular Cell Biology, Islamic Azad University Tehran North Branch, Tehran 1975933411, Iran
| |
Collapse
|
4
|
Hepatitis B Viral Protein HBx and the Molecular Mechanisms Modulating the Hallmarks of Hepatocellular Carcinoma: A Comprehensive Review. Cells 2022; 11:cells11040741. [PMID: 35203390 PMCID: PMC8870387 DOI: 10.3390/cells11040741] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
With 296 million cases estimated worldwide, chronic hepatitis B virus (HBV) infection is the most common risk factor for hepatocellular carcinoma (HCC). HBV-encoded oncogene X protein (HBx), a key multifunctional regulatory protein, drives viral replication and interferes with several cellular signalling pathways that drive virus-associated hepatocarcinogenesis. This review article provides a comprehensive overview of the role of HBx in modulating the various hallmarks of HCC by supporting tumour initiation, progression, invasion and metastasis. Understanding HBx-mediated dimensions of complexity in driving liver malignancies could provide the key to unlocking novel and repurposed combinatorial therapies to combat HCC.
Collapse
|
5
|
You H, Qin S, Zhang F, Hu W, Li X, Liu D, Kong F, Pan X, Zheng K, Tang R. Regulation of Pattern-Recognition Receptor Signaling by HBX During Hepatitis B Virus Infection. Front Immunol 2022; 13:829923. [PMID: 35251017 PMCID: PMC8891514 DOI: 10.3389/fimmu.2022.829923] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role in HBV replication and virus-associated diseases. Accumulating evidence so far indicates that pattern recognition receptors (PRRs) are at the front-line of the host defense responses to restrict the virus by inducing the expression of interferons and various inflammatory factors. However, depending on HBX, the virus can control PRR signaling by modulating the expression and activity of essential molecules involved in the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote the development of viral diseases. In this review, we provide an overview of the mechanisms that are linked to the regulation of PRR signaling mediated by HBX to inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we propose that a comprehensive understanding of the modulation of cellular factors involved in PRR signaling induced by the viral protein may open new avenues for the treatment of HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
6
|
Interaction between the Hepatitis B Virus and Cellular FLIP Variants in Viral Replication and the Innate Immune System. Viruses 2022; 14:v14020373. [PMID: 35215970 PMCID: PMC8874586 DOI: 10.3390/v14020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
During viral evolution and adaptation, many viruses have utilized host cellular factors and machinery as their partners. HBx, as a multifunctional viral protein encoded by the hepatitis B virus (HBV), promotes HBV replication and greatly contributes to the development of HBV-associated hepatocellular carcinoma (HCC). HBx interacts with several host factors in order to regulate HBV replication and evolve carcinogenesis. The cellular FADD-like IL-1β-converting enzyme (FLICE)-like inhibitory protein (c-FLIP) is a major factor that functions in a variety of cellular pathways and specifically in apoptosis. It has been shown that the interaction between HBx and c-FLIP determines HBV fate. In this review, we provide a comprehensive and detailed overview of the interplay between c-FLIP and HBV in various environmental circumstances. We describe strategies adapted by HBV to establish its chronic infection. We also summarize the conventional roles of c-FLIP and highlight the functional outcome of the interaction between c-FLIP and HBV or other viruses in viral replication and the innate immune system.
Collapse
|
7
|
Medhat A, Arzumanyan A, Feitelson MA. Hepatitis B x antigen (HBx) is an important therapeutic target in the pathogenesis of hepatocellular carcinoma. Oncotarget 2021; 12:2421-2433. [PMID: 34853663 PMCID: PMC8629409 DOI: 10.18632/oncotarget.28077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/04/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is a human pathogen that has infected an estimated two billion people worldwide. Despite the availability of highly efficacious vaccines, universal screening of the blood supply for virus, and potent direct acting anti-viral drugs, there are more than 250 million carriers of HBV who are at risk for the sequential development of hepatitis, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). More than 800,000 deaths per year are attributed to chronic hepatitis B. Many different therapeutic approaches have been developed to block virus replication, and although effective, none are curative. These treatments have little or no impact upon the portions of integrated HBV DNA, which often encode the virus regulatory protein, HBx. Although given little attention, HBx is an important therapeutic target because it contributes importantly to (a) HBV replication, (b) in protecting infected cells from immune mediated destruction during chronic infection, and (c) in the development of HCC. Thus, the development of therapies targeting HBx, combined with other established therapies, will provide a functional cure that will target virus replication and further reduce or eliminate both the morbidity and mortality associated with chronic liver disease and HCC. Simultaneous targeting of all these characteristics underscores the importance of developing therapies against HBx.
Collapse
Affiliation(s)
- Arvin Medhat
- Department of Molecular Cell Biology, Azad University, North Unit, Tehran, Iran
| | - Alla Arzumanyan
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Mark A Feitelson
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Lin Y, Liu Y, Xu D, Guo F, Zhang W, Zhang Y, Bai G. HBxAg promotes HBV replication and EGFR activation in human placental trophoblasts. Exp Ther Med 2021; 22:1211. [PMID: 34584556 PMCID: PMC8422389 DOI: 10.3892/etm.2021.10645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a global epidemic. The main transmission route of chronic HBV infection is from mother to child, yet the mechanisms underlying HBV intrauterine infection remain unclear. In the present study, the effect and the mechanism underlying hepatitis B virus X antigen (HBxAg) on HBV replication and EGFR activation in trophoblasts was investigated. Serum samples from pregnant women with HBV infection were used to infect trophoblasts and HBxAg expression was detected using ELISA. HBV plasmids carrying either full length hepatitis B virus X (HBx) or HBx with a deletion mutation (ΔHBx) were transfected into trophoblasts and expression levels of HBV DNA, hepatitis B e-antigen and pregenomic (pg)RNA, and structural maintenance of chromosomes (Smc) 5/6 were assessed. The association between HBx and EGFR promoters was characterized using a luciferase reporter assay and EGFR/PI3K/phosphorylated (p)-AKT expression and apoptosis rate were also monitored. The results of the present study indicated that HBxAg expression increased with the increasing titre of HBV DNA (P<0.05). Compared with the wild-type group, the amount of HBV DNA in the supernatant and cells was significantly reduced (P<0.05) in the ΔHBx group and the intracellular HBeAg and pgRNA levels were also significantly decreased (P<0.05). In addition, Smc5/6 expression was also significantly decreased (P<0.05) when the intracellular HBx protein was expressed compared with mock-transfected cells. Co-transfection of HBx and EGFR promoter plasmids in JEG-3 and HTR-8 cells significantly elevated EGFR promoter driven luciferase expression relative to the control group (P<0.01). In EGFR overexpressing cells, the expression of PI3K/p-AKT was significantly increased, whereas the apoptosis rate was significantly decreased (P<0.05). These results were reversed in the EGFR-knockdown group. In conclusion, the present study demonstrated that HBx promotes HBV replication in trophoblasts via downregulation of Smc5/6, activates the EGFR promoter and inhibits trophoblast apoptosis via the PI3K/p-AKT downstream signalling pathway, thereby increasing the risk of HBV intrauterine infection.
Collapse
Affiliation(s)
- Yayun Lin
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Liu
- Institute of Infectious Diseases, 5th Medical Center of Chinese PLA General Hospital, Beijing 100141, P.R. China
| | - Dongping Xu
- Institute of Infectious Diseases, 5th Medical Center of Chinese PLA General Hospital, Beijing 100141, P.R. China
| | - Fanfan Guo
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wentao Zhang
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yidan Zhang
- College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guiqin Bai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
9
|
Dzobo K. The Role of Viruses in Carcinogenesis and Molecular Targeting: From Infection to Being a Component of the Tumor Microenvironment. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:358-371. [PMID: 34037476 DOI: 10.1089/omi.2021.0052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
About a tenth of all cancers are caused by viruses or associated with viral infection. Recent global events including the coronavirus disease-2019 (COVID-19) pandemic means that human encounter with viruses is increased. Cancer development in individuals with viral infection can take many years after infection, demonstrating that the involvement of viruses in cancer development is a long and complex process. This complexity emanates from individual genetic heterogeneity and the many steps involved in cancer development owing to viruses. The process of tumorigenesis is driven by the complex interaction between several viral factors and host factors leading to the creation of a tumor microenvironment (TME) that is ideal and promotes tumor formation. Viruses associated with human cancers ensure their survival and proliferation through activation of several cellular processes including inflammation, migration, and invasion, resistance to apoptosis and growth suppressors. In addition, most human oncoviruses evade immune detection and can activate signaling cascades including the PI3K-Akt-mTOR, Notch and Wnt pathways associated with enhanced proliferation and angiogenesis. This expert review examines and synthesizes the multiple biological factors related to oncoviruses, and the signaling cascades activated by these viruses contributing to viral oncogenesis. In particular, I examine and review the Epstein-Barr virus, human papillomaviruses, and Kaposi's sarcoma herpes virus in a context of cancer pathogenesis. I conclude with a future outlook on therapeutic targeting of the viruses and their associated oncogenic pathways within the TME. These anticancer strategies can be in the form of, but not limited to, antibodies and inhibitors.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Prifti GM, Moianos D, Giannakopoulou E, Pardali V, Tavis JE, Zoidis G. Recent Advances in Hepatitis B Treatment. Pharmaceuticals (Basel) 2021; 14:417. [PMID: 34062711 PMCID: PMC8147224 DOI: 10.3390/ph14050417] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatitis B virus infection affects over 250 million chronic carriers, causing more than 800,000 deaths annually, although a safe and effective vaccine is available. Currently used antiviral agents, pegylated interferon and nucleos(t)ide analogues, have major drawbacks and fail to completely eradicate the virus from infected cells. Thus, achieving a "functional cure" of the infection remains a real challenge. Recent findings concerning the viral replication cycle have led to development of novel therapeutic approaches including viral entry inhibitors, epigenetic control of cccDNA, immune modulators, RNA interference techniques, ribonuclease H inhibitors, and capsid assembly modulators. Promising preclinical results have been obtained, and the leading molecules under development have entered clinical evaluation. This review summarizes the key steps of the HBV life cycle, examines the currently approved anti-HBV drugs, and analyzes novel HBV treatment regimens.
Collapse
Affiliation(s)
- Georgia-Myrto Prifti
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Dimitrios Moianos
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Erofili Giannakopoulou
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - Vasiliki Pardali
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| | - John E. Tavis
- Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO 63104, USA;
| | - Grigoris Zoidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (G.-M.P.); (D.M.); (E.G.); (V.P.)
| |
Collapse
|
11
|
Liu C, Dai Q, Ding Q, Wei M, Kong X. Identification of key genes in hepatitis B associated hepatocellular carcinoma based on WGCNA. Infect Agent Cancer 2021; 16:18. [PMID: 33726794 PMCID: PMC7962393 DOI: 10.1186/s13027-021-00357-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic Infection of Hepatitis B virus (HBV) is one risk factor of hepatocellular carcinoma (HCC). Much effort has been made to research the process of HBV-associated HCC, but its molecular mechanisms of carcinogenesis remain vague. Here, weighted gene co-expression network analysis (WGCNA) was employed to explore the co-expressed modules and hub/key genes correlated to HBV-associated HCC. We found that genes of the most significant module related to HBV-associated HCC were enriched in DNA replication, p53 signaling pathway, cell cycle, and HTLV-1 infection associated pathway; these cellular pathways played critical roles in the initiation and development of HCC or viral infections. Furthermore, seven hub/key genes were identified based on the topological network analysis, and their roles in HCC were verified by expression and Kaplan-Meier survival analysis. Protein-protein interaction and KEGG pathway analysis suggested that these key genes may stimulate cellular proliferation to promote the HCC progression. This study provides new perspectives to the knowledge of the key pathways and genes in the carcinogenesis process of HBV-associated HCC, and our findings provided potential therapeutic targets and clues of the carcinogenesis of HBV-associated HCC.
Collapse
Affiliation(s)
- Chang Liu
- School of Medicine, Nankai University, Tianjin, China.
| | - Qinghai Dai
- Nankai University Second People's Hospital, Nankai University, Tianjin, China
| | - Qian Ding
- School of Medicine, Nankai University, Tianjin, China
| | - Min Wei
- School of Medicine, Nankai University, Tianjin, China. .,Nankai University Second People's Hospital, Nankai University, Tianjin, China.
| | - Xiaohong Kong
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
12
|
Han N, Yan L, Wang X, Sun X, Huang F, Tang H. An updated literature review: how HBV X protein regulates the propagation of the HBV. Future Virol 2020. [DOI: 10.2217/fvl-2020-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chronic HBV infection constitutes a burden on human beings and is closely associated with hepatocellular carcinoma. The propagation of the HBV is determined by many factors, and the HBV X protein (HBx) could have a significant influence on this. HBx is a regulatory protein that can directly or indirectly interact with many cellular proteins to affect both the propagation of the HBV and the activity of the host cells. In this review, we summarized the possible mechanisms by which HBx regulates HBV replication at transcriptional and post-transcriptional levels in various experimental systems.
Collapse
Affiliation(s)
- Ning Han
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| | - Xueer Wang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Xuehong Sun
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Feijun Huang
- Department of Forensic Pathology, West China School of Basic Science & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, PR China
| |
Collapse
|
13
|
Li Y, Shen C, Yang L, Yang Y, Wang M, Li S, Chen F, Yang M, Peng L, Ma J, Duan Z, Li L, Liu Y. Intra-host diversity of hepatitis B virus during mother-to-child transmission: the X gene may play a key role in virus survival in children after transmission. Arch Virol 2020; 165:1279-1288. [PMID: 32240369 DOI: 10.1007/s00705-020-04597-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/21/2020] [Indexed: 12/23/2022]
Abstract
Mother-to-child transmission of hepatitis B virus (HBV) is the main route of transmission in Asia, and characterization of HBV quasispecies is needed to further understand virus evolution and adaptation. To understand changes in HBV during mother-to-child transmission, we enrolled nine pairs of mothers and children in the study, including a set of twins. Three groups were infected with HBV genotype C, and six groups were infected with HBV genotype B. The full-length HBV genome was amplified by PCR from serum samples before antiviral treatment, the whole viral genomes from each pair were sequenced, and the complexity and diversity of the quasispecies were analyzed. The entropy of transmitted HBV in children was found to be lower than their mothers, suggesting that there was a bottleneck effect during HBV transmission from the mother to the child. Selective evolution was shown by calculating πN and πS in the whole genomes, and the highest values were obtained for the X gene, which plays a role in viral replication and immune escape. All genotype C patients and only one genotype B pair had a πN/πS greater than 1 ratio, indicating that positive selection had occurred. In addition, quasispecies were found to be different between the twin children despite having the same mother, indicating that virus evolution is host-specific.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Infectious Diseases, Shenzhen Third People's Hospital, University of South China, Shenzhen, 518112, China
| | - Chenguang Shen
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Liuqing Yang
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Yang Yang
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Miao Wang
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Shanqin Li
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Feng Chen
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Min Yang
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Ling Peng
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Jinmin Ma
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhongping Duan
- Difficult and complicated liver diseases and artificial liver center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Liqiang Li
- BGI-Shenzhen, Shenzhen, 518083, China.
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Yingxia Liu
- State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China.
| |
Collapse
|
14
|
A Disintegrin and Metalloproteinase 9 (ADAM9) in Advanced Hepatocellular Carcinoma and Their Role as a Biomarker During Hepatocellular Carcinoma Immunotherapy. Cancers (Basel) 2020; 12:cancers12030745. [PMID: 32245188 PMCID: PMC7140088 DOI: 10.3390/cancers12030745] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/15/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
The chemotherapeutics sorafenib and regorafenib inhibit shedding of MHC class I-related chain A (MICA) from hepatocellular carcinoma (HCC) cells by suppressing a disintegrin and metalloprotease 9 (ADAM9). MICA is a ligand for natural killer (NK) group 2 member D (NKG2D) and is expressed on tumor cells to elicit attack by NK cells. This study measured ADAM9 mRNA levels in blood samples of advanced HCC patients (n = 10). In newly diagnosed patients (n = 5), the plasma ADAM9 mRNA level was significantly higher than that in healthy controls (3.001 versus 1.00, p < 0.05). Among four patients treated with nivolumab therapy, two patients with clinical response to nivolumab showed significant decreases in fold changes of serum ADAM9 mRNA level from 573.98 to 262.58 and from 323.88 to 85.52 (p < 0.05); however, two patients with no response to nivolumab did not. Using the Cancer Genome Atlas database, we found that higher expression of ADAM9 in tumor tissues was associated with poorer survival of HCC patients (log-rank p = 0.00039), while ADAM10 and ADAM17 exhibited no such association. In addition, ADAM9 expression showed a positive correlation with the expression of inhibitory checkpoint molecules. This study, though small in sample size, clearly suggested that ADAM9 mRNA might serve as biomarker predicting clinical response and that the ADAM9-MICA-NKG2D system can be a good therapeutic target for HCC immunotherapy. Future studies are warranted to validate these findings.
Collapse
|
15
|
Wang F, Shen F, Wang Y, Li Z, Chen J, Yuan Z. Residues Asn118 and Glu119 of hepatitis B virus X protein are critical for HBx-mediated inhibition of RIG-I-MAVS signaling. Virology 2020; 539:92-103. [PMID: 31706164 DOI: 10.1016/j.virol.2019.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/24/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) X protein (HBx) has been reported to counteract the innate immune responses through interfering with the pattern recognition receptors signaling activated by retinoic acid-inducible gene-I (RIG-I)-mitochondrial antiviral signaling protein (MAVS). Here, we showed that, compared to the HBx derived from genotype (gt) A, C and D, HBx of gtB exhibited more potent inhibitory activity on the RIG-I-MAVS-mediated interferon-β promoter activation. Functional analysis of the genotype-associated differences in amino acid sequence and the reciprocal mutation experiments in transient-transfection and infection cell models revealed that HBx with asparagine (N) and glutamic acid (E) at 118-119 positions inhibited RIG-I signaling and interacted with MAVS more efficiently than that with lysine (K) and aspartic acid (D). An impaired RIG-I-induced MAVS aggregation was observed in the presence of HBx-118N119E while MAVS-TRAF3 interaction was not affected. These results implicated that HBx gene heterogeneity may affect the innate immune responses to HBV infection.
Collapse
Affiliation(s)
- Fan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Fang Shen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yang Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ze Li
- Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jieliang Chen
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Zhenghong Yuan
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Chemopreventive Effect of Phytosomal Curcumin on Hepatitis B Virus-Related Hepatocellular Carcinoma in A Transgenic Mouse Model. Sci Rep 2019; 9:10338. [PMID: 31316146 PMCID: PMC6637187 DOI: 10.1038/s41598-019-46891-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/01/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC), a leading cause of cancer mortality worldwide. Hepatitis B X protein (HBx) and pre-S2 mutant have been proposed as the two most important HBV oncoproteins that play key roles in HCC pathogenesis. Curcumin is a botanical constituent displaying potent anti-inflammatory and anti-cancer properties without toxic side effects. Phytosomal formulation of curcumin has been shown to exhibit enhanced bioavailability, improved pharmacokinetics, and excellent efficacy against many human diseases. However, effectiveness of phytosomal curcumin for HCC treatment remains to be clarified. In this study, we evaluated chemopreventive effect of phytosomal curcumin on HBV-related HCC by using a transgenic mouse model specifically expressing both HBx and pre-S2 mutant in liver. Compared with unformulated curcumin, phytosomal curcumin exhibited significantly greater effects on suppression of HCC formation, improvement of liver histopathology, decrease of lipid accumulation and leukocyte infiltration, and reduction of total tumor volume in transgenic mice. Moreover, phytosomal curcumin exerted considerably stronger effects on activation of anti-inflammatory PPARγ as well as inhibition of pro-inflammatory NF-κB than unformulated curcumin. Furthermore, phytosomal curcumin showed a comparable effect on suppression of oncogenic mTOR activation to unformulated curcumin. Our data demonstrated that phytosomal curcumin has promise for HCC chemoprevention in patients with chronic HBV infection.
Collapse
|
17
|
Chen YY, Lin Y, Han PY, Jiang S, Che L, He CY, Lin YC, Lin ZN. HBx combined with AFB1 triggers hepatic steatosis via COX-2-mediated necrosome formation and mitochondrial dynamics disorder. J Cell Mol Med 2019; 23:5920-5933. [PMID: 31282064 PMCID: PMC6714226 DOI: 10.1111/jcmm.14388] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure have been recognized as independent risk factors for the occurrence and exacerbation of hepatic steatosis but their combined impacts and the potential mechanisms remain to be further elucidated. Here, we showed that exposure to AFB1 impaired mitochondrial dynamics and increased intracellular lipid droplets (LDs) in the liver of HBV-transgenic mice in vivo and the hepatitis B virus X protein (HBx)-expressing human hepatocytes both ex vivo and in vitro. HBx combined with AFB1 exposure also up-regulated receptor interaction protein 1 (RIP1), receptor interaction protein 3 (RIP3) and activated mixed lineage kinase domain like protein (MLKL), providing evidence of necrosome formation in the hepatocytes. The shift of the mitochondrial dynamics towards imbalance of fission and fusion was rescued when MLKL was inhibited in the HBx and AFB1 co-treated hepatocytes. Most importantly, based on siRNA or CRISPR/Cas9 system, we found that the combination of HBx and AFB1 exposure increased cyclooxygenase-2 (COX-2) to mediate up-regulation of RIP3 and dynamin-related protein 1 (Drp1), which in turn promoted location of RIP3-MLKL necrosome on mitochondria, subsequently exacerbated steatosis in hepatocytes. Taken together, these findings advance the understanding of mechanism associated with HBx and AFB1-induced hepatic necrosome formation, mitochondrial dysfunction and steatosis and make COX-2 a good candidate for treatment.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Pei-Yu Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Cheng-Yong He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
18
|
Xie L, Huang Y. Antagonism of RIP1 using necrostatin-1 (Nec-1) ameliorated damage and inflammation of HBV X protein (HBx) in human normal hepatocytes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1194-1199. [PMID: 30963789 DOI: 10.1080/21691401.2019.1575231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Linsen Xie
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, China
| | - Yongjie Huang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Tang X, Yan L, Li H, Du L, Shi Y, Huang F, Tang H. Increased expression of phosphoenolpyruvate carboxykinase cytoplasmic isoform by hepatitis B virus X protein affects hepatitis B virus replication. J Med Virol 2018; 91:258-264. [PMID: 30168585 DOI: 10.1002/jmv.25300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/09/2018] [Indexed: 02/05/2023]
Abstract
Hepatitis B virus X protein (HBx) can stimulate the transcription of phosphoenolpyruvate carboxykinase (PEPCK), a rate-determining enzyme in gluconeogenic pathway. Two isoforms of PEPCK exist, a cytoplasmic form (PCK1) and a mitochondrial isoform (PCK2). The current study investigated the direct effect of HBx-stimulated PEPCK on hepatitis B virus (HBV) replication. We showed that PCK1 rather than PCK2 was upregulated by HBx. We also demonstrated that overexpression of PCK1 decreased HBV replication, whereas inhibition of PCK1-enhanced HBV replication. Furthermore, we found overexpression of PCK1 led to reduced expression of peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α) and peroxisome proliferator-activated receptor γ (PPAR-γ), whereas knocking down PCK1 resulted in an increased expression of PGC-1α and PPAR-γ. When PPAR-γ was inhibited, knocking down PCK1 could not induce the apparent enhanced HBV replication. Our data suggested that PCK1 induced by HBx led to decreased HBV replication through the downregulation of PGC-1α and PPAR-γ. Thus, our study demonstrates a negative-feedback loop involving PCK1 and HBV may provide a balanced cell environment for HBV persistent infection.
Collapse
Affiliation(s)
- Xiaoqiong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Libo Yan
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Li
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Lingyao Du
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Shi
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Feijun Huang
- Department of Forensic Pathology, Medical School of Basic and Forensic Sciences, Sichuan University, Chengdu, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Caballero A, Tabernero D, Buti M, Rodriguez-Frias F. Hepatitis B virus: The challenge of an ancient virus with multiple faces and a remarkable replication strategy. Antiviral Res 2018; 158:34-44. [PMID: 30059722 DOI: 10.1016/j.antiviral.2018.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
Abstract
The hepatitis B virus (HBV) is the prototype member of the Hepadnaviridae, an ancient family of hepatotropic DNA viruses, which may have originated from 360 to 430 million years ago and with evidence of endogenization in reptilian genomes >200 million years ago. The virus is currently estimated to infect more than 250 million humans. The extremely successful spread of this pathogen among the human population is explained by its multiple particulate forms, effective transmission strategies (particularly perinatal transmission), long induction period and low associated mortality. These characteristics confer selective advantages, enabling the virus to persist in small, disperse populations and spread worldwide, with high prevalence rates in many countries. The HBV replication strategy is remarkably complex and includes a multiplicity of particulate structures. In addition to the common virions containing DNA in a relaxed circular (rcDNA) or double-stranded linear (dslDNA) forms, the viral population includes virion-like particles containing RNA or "empty" (viral envelopes and capsids without genomes), subviral particles (only an envelope) and even naked capsids. Consequently, several forms of the genome coexist in a single infection: (i) the "traveler" forms found in serum, including rcDNA and dslDNA, which originate from retrotranscription of a messenger RNA (the pregenomic RNA, another form of the viral genome itself) and (ii) forms confined to the host cell nucleus, including covalently closed circular DNA (cccDNA), which leads to a minichromosome form associated with histones and viral proteins, and double-stranded DNA integrated into the host genome. This complex composition lends HBV a kind of "multiple personality". Are these additional particles and genomic forms simple intermediaries/artifacts or do they play a role in the viral life cycle?
Collapse
Affiliation(s)
- Andrea Caballero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain.
| | - David Tabernero
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain.
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain; Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, General Hospital, Internal Medicine 2, 08035 Barcelona, Spain.
| | - Francisco Rodriguez-Frias
- Liver Pathology Unit, Departments of Biochemistry and Microbiology, Hospital Universitari Vall d'Hebron and Universitat Autònoma de Barcelona (UAB), 119-129 Passeig Vall d'Hebron, Clinical Laboratories, 08035 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 3-5 Avenida Monforte de Lemos, pavilion 11, 28029 Madrid, Spain.
| |
Collapse
|
21
|
Smc5/6 Antagonism by HBx Is an Evolutionarily Conserved Function of Hepatitis B Virus Infection in Mammals. J Virol 2018; 92:JVI.00769-18. [PMID: 29848586 DOI: 10.1128/jvi.00769-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is a major cause of liver disease and cancer in humans. HBVs (family Hepadnaviridae) have been associated with mammals for millions of years. Recently, the Smc5/6 complex, known for its essential housekeeping functions in genome maintenance, was identified as an antiviral restriction factor of human HBV. The virus has, however, evolved to counteract this defense mechanism by degrading the complex via its regulatory HBx protein. Whether the antiviral activity of the Smc5/6 complex against hepadnaviruses is an important and evolutionarily conserved function is unknown. In this study, we used an evolutionary and functional approach to address this question. We first performed phylogenetic and positive selection analyses of the Smc5/6 complex subunits and found that they have been conserved in primates and mammals. Yet, Smc6 showed marks of adaptive evolution, potentially reminiscent of a virus-host "arms race." We then functionally tested the HBx proteins from six divergent hepadnaviruses naturally infecting primates, rodents, and bats. We demonstrate that despite little sequence homology, these HBx proteins efficiently degraded mammalian Smc5/6 complexes, independently of the host species and of the sites under positive selection. Importantly, all HBx proteins also rescued the replication of an HBx-deficient HBV in primary human hepatocytes. These findings point to an evolutionarily conserved requirement for Smc5/6 inactivation by HBx, showing that Smc5/6 antiviral activity has been an important defense mechanism against hepadnaviruses in mammals. It will be interesting to investigate whether Smc5/6 may further be a restriction factor of other, yet-unidentified viruses that may have driven some of its adaptation.IMPORTANCE Infection with hepatitis B virus (HBV) led to 887,000 human deaths in 2015. HBV has been coevolving with mammals for millions of years. Recently, the Smc5/6 complex, which has essential housekeeping functions, was identified as a restriction factor of human HBV antagonized by the regulatory HBx protein. Here we address whether the antiviral activity of Smc5/6 is an important evolutionarily conserved function. We found that all six subunits of Smc5/6 have been conserved in primates, with only Smc6 showing signatures of an "evolutionary arms race." Using evolution-guided functional analyses that included infections of primary human hepatocytes, we demonstrated that HBx proteins from very divergent mammalian HBVs could all efficiently antagonize Smc5/6, independently of the host species and sites under positive selection. These findings show that Smc5/6 antiviral activity against HBV is an important function in mammals. They also raise the intriguing possibility that Smc5/6 may restrict other, yet-unidentified viruses.
Collapse
|
22
|
The role of HBV-induced autophagy in HBV replication and HBV related-HCC. Life Sci 2018; 205:107-112. [DOI: 10.1016/j.lfs.2018.04.051] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/06/2023]
|
23
|
Armentano MF, Caterino M, Miglionico R, Ostuni A, Pace MC, Cozzolino F, Monti M, Milella L, Carmosino M, Pucci P, Bisaccia F. New insights on the functional role of URG7 in the cellular response to ER stress. Biol Cell 2018; 110:147-158. [DOI: 10.1111/boc.201800004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Affiliation(s)
| | - Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Università degli Studi di Napoli “Federico II”; Naples 80121 Italy
| | - Rocchina Miglionico
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| | - Angela Ostuni
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| | - Maria Carmela Pace
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| | - Flora Cozzolino
- CEINGE Biotecnologie Avanzate s.c.a.r.l; Naples 80145 Italy
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Naples 80126 Italy
| | - Maria Monti
- CEINGE Biotecnologie Avanzate s.c.a.r.l; Naples 80145 Italy
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Naples 80126 Italy
| | - Luigi Milella
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| | - Monica Carmosino
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| | - Piero Pucci
- CEINGE Biotecnologie Avanzate s.c.a.r.l; Naples 80145 Italy
- Dipartimento di Scienze Chimiche; Università degli Studi di Napoli “Federico II”; Naples 80126 Italy
| | - Faustino Bisaccia
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza 85100 Italy
| |
Collapse
|
24
|
Yan L, Yu Y, Zhang Q, Tang X, Bai L, Huang F, Tang H. Identification of p90 Ribosomal S6 Kinase 2 as a Novel Host Protein in HBx Augmenting HBV Replication by iTRAQ-Based Quantitative Comparative Proteomics. Proteomics Clin Appl 2018; 12:e1700090. [PMID: 29350888 PMCID: PMC5947307 DOI: 10.1002/prca.201700090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/28/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to screen for novel host proteins that play a role in HBx augmenting Hepatitis B virus (HBV) replication. EXPERIMENTAL DESIGN Three HepG2 cell lines stably harboring different functional domains of HBx (HBx, HBx-Cm6, and HBx-Cm16) were cultured. ITRAQ technology integrated with LC-MS/MS analysis was applied to identify the proteome differences among these three cell lines. RESULTS In brief, a total of 70 different proteins were identified among HepG2-HBx, HepG2-HBx-Cm6, and HepG2-HBx-Cm16 by double repetition. Several differentially expressed proteins, including p90 ribosomal S6 kinase 2 (RSK2), were further validated. RSK2 was expressed at higher levels in HepG2-HBx and HepG2-HBx-Cm6 compared with HepG2-HBx-Cm16. Furthermore, levels of HBV replication intermediates were decreased after silencing RSK2 in HepG2.2.15. An HBx-minus HBV mutant genome led to decreased levels of HBV replication intermediates and these decreases were restored to levels similar to wild-type HBV by transient ectopic expression of HBx. After silencing RSK2 expression, the levels of HBV replication intermediates synthesized from the HBx-minus HBV mutant genome were not restored to levels that were observed with wild-type HBV by transient HBx expression. CONCLUSION AND CLINICAL RELEVANCE Based on iTRAQ quantitative comparative proteomics, RSK2 was identified as a novel host protein that plays a role in HBx augmenting HBV replication.
Collapse
Affiliation(s)
- Li‐Bo Yan
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - You‐Jia Yu
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Qing‐Bo Zhang
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Xiao‐Qiong Tang
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - Lang Bai
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| | - FeiJun Huang
- Department of Forensic PathologyMedical School of Basic and Forensic SciencesSichuan UniversityChengduChina
| | - Hong Tang
- Center of Infectious DiseasesWest China HospitalSichuan UniversityChengduP. R. China
| |
Collapse
|
25
|
Petruzziello A. Epidemiology of Hepatitis B Virus (HBV) and Hepatitis C Virus (HCV) Related Hepatocellular Carcinoma. Open Virol J 2018. [PMID: 29541276 PMCID: PMC5842386 DOI: 10.2174/1874357901812010026] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is one of the most prevalent primary malignant tumors and accounts for about 90% of all primary liver cancers. Its distribution varies greatly according to geographic location and it is more common in middle and low- income countries than in developed ones especially in Eastern Asia and Sub Saharan Africa (70% of all new HCCs worldwide), with incidence rates of over 20 per 100,000 individuals. Explanation The most important risk factors for HCC are Hepatitis B Virus (HBV) infection, Hepatitis C Virus (HCV) infection, excessive consumption of alcohol and exposition to aflatoxin B1. Its geographic variability and heterogeneity have been widely associated with the different distribution of HBV and HCV infections worldwide.Chronic HBV infection is one of the leading risk factors for HCC globally accounting for at least 50% cases of primary liver tumors worldwide. Generally, while HBV is the main causative agent in the high incidence HCC areas, HCV is the major etiological factor in low incidence HCC areas, like Western Europe and North America. Conclusion HBV-induced HCC is a complex, stepwise process that includes integration of HBV DNA into host DNA at multiple or single sites. On the contrary, the cancerogenesis mechanism of HCV is not completely known and it still remains controversial as to whether HCV itself plays a direct role in the development of tumorigenic progression.
Collapse
Affiliation(s)
- Arnolfo Petruzziello
- Department of Pathology, Virology and Molecular Biology Unit, Istituto Nazionale Tumori- IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
26
|
|
27
|
Xiang X, Qin HG, You XM, Wang YY, Qi LN, Ma L, Xiang BD, Zhong JH, Li LQ. Expression of P62 in hepatocellular carcinoma involving hepatitis B virus infection and aflatoxin B1 exposure. Cancer Med 2017; 6:2357-2369. [PMID: 28941211 PMCID: PMC5633547 DOI: 10.1002/cam4.1176] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/23/2017] [Accepted: 08/04/2017] [Indexed: 01/27/2023] Open
Abstract
This study aims to clarify the relationship and mechanism between expression of autophagy‐related protein P62 and prognosis of patients with hepatocellular carcinoma (HCC) involving chronic hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure. HCC patients who underwent resection were divided into three groups: HBV(+)/AFB1(+) (n = 26), HBV(+)/AFB1(−) (n = 68), and HBV(−)/AFB1(−) (n = 14). The groups were compared in terms of mRNA and protein levels of P62, disease‐free survival (DFS), and overall survival (OS) and the expression of NRF2, Nqo1, and AKR7A3 in P62 high‐expression and low‐expression group. HBV(+)/AFB1(+) group has lower DFS and OS, and higher P62 expression than in the other two groups. P62 expression generally correlated with elevated NRF2 and Nqo1 expression, and reduced AKR7A3 expression. Patients expressing high levels of P62 showed significantly lower DFS and OS rates than patients expressing low levels. HCC involving HBV infection and AFB1 exposure is associated with relatively high risk of tumor recurrence, and this poor prognosis may relate to high P62 expression. High P62 expression activates the NRF2 pathway, promotes tumor recurrence. The downregulation of AKR7A3 also reduced liver detoxification of aflatoxin B1.
Collapse
Affiliation(s)
- Xiao Xiang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Cancer Institute, Hospital Oncology School, Guangxi Cancer Center, Nanning, 530021, China
| | - Hong-Gui Qin
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Cancer Institute, Hospital Oncology School, Guangxi Cancer Center, Nanning, 530021, China
| | - Xue-Mei You
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Cancer Institute, Hospital Oncology School, Guangxi Cancer Center, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, China
| | - Yan-Yan Wang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Cancer Institute, Hospital Oncology School, Guangxi Cancer Center, Nanning, 530021, China
| | - Lu-Nan Qi
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Cancer Institute, Hospital Oncology School, Guangxi Cancer Center, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, China
| | - Liang Ma
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Cancer Institute, Hospital Oncology School, Guangxi Cancer Center, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, China
| | - Bang-De Xiang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Cancer Institute, Hospital Oncology School, Guangxi Cancer Center, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, China
| | - Jian-Hong Zhong
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Cancer Institute, Hospital Oncology School, Guangxi Cancer Center, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi Cancer Institute, Hospital Oncology School, Guangxi Cancer Center, Nanning, 530021, China.,Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Nanning, 530021, China
| |
Collapse
|
28
|
Reactive Oxygen Species-Mediated c-Jun NH 2-Terminal Kinase Activation Contributes to Hepatitis B Virus X Protein-Induced Autophagy via Regulation of the Beclin-1/Bcl-2 Interaction. J Virol 2017; 91:JVI.00001-17. [PMID: 28515304 DOI: 10.1128/jvi.00001-17] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 05/07/2017] [Indexed: 02/08/2023] Open
Abstract
Autophagy is closely associated with the regulation of hepatitis B virus (HBV) replication. HBV X protein (HBx), a multifunctional regulator in HBV-associated biological processes, has been demonstrated to be crucial for autophagy induction by HBV. However, the molecular mechanisms of autophagy induction by HBx, especially the signaling pathways involved, remain elusive. In the present investigation, we demonstrated that HBx induced autophagosome formation independently of the class I phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR signaling pathway. In contrast, the class III PI3K(VPS34)/beclin-1 pathway was revealed to be critical for HBx-induced autophagosome formation. Further study showed that HBx did not affect the level of VPS34 and beclin-1 expression but inhibited beclin-1/Bcl-2 association, and c-Jun NH2-terminal kinase (JNK) signaling was found to be important for this process. Moreover, it was found that HBx treatment led to the generation of reactive oxygen species (ROS), and inhibition of ROS activity abrogated both JNK activation and autophagosome formation. Of importance, ROS-JNK signaling was also revealed to play an important role in HBV-induced autophagosome formation and subsequent HBV replication. These data may provide deeper insight into the mechanisms of autophagy induction by HBx and help in the design of new therapeutic strategies against HBV infection.IMPORTANCE HBx plays a key role in diverse HBV-associated biological processes, including autophagy induction. However, the molecular mechanisms of autophagy induction by HBx, especially the signaling pathways involved, remain elusive. In the present investigation, we found that HBx induced autophagy independently of the class I PI3K/AKT/mTOR signaling pathway, while the class III PI3K(VPS34)/beclin-1 pathway was revealed to be crucial for this process. Further data showed that ROS-JNK activation by HBx resulted in the release of beclin-1 from its association with Bcl-2 to form a complex with VPS34, thus enhancing autophagosome formation. Of importance, ROS-JNK signaling was also demonstrated to be critical for HBV replication via regulation of autophagy induction. These data help to elucidate the molecular mechanisms of autophagy induction by HBx/HBV and might be useful for designing novel therapeutic approaches to HBV infection.
Collapse
|
29
|
Kong F, You H, Tang R, Zheng K. The regulation of proteins associated with the cytoskeleton by hepatitis B virus X protein during hepatocarcinogenesis. Oncol Lett 2017; 13:2514-2520. [PMID: 28454428 DOI: 10.3892/ol.2017.5757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/06/2016] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major malignant disease worldwide, and chronic hepatitis B virus (HBV) infection is one of the primary causes for this type of cancer. Hepatitis B virus X protein (HBx) is a non-structural protein encoded by the viral genome that has significant effects on the pathogenesis of HCC. With the development of high-throughput assays and technologies, the abnormal HBx-induced expression of certain cellular proteins with assorted biological functions has been investigated. These target proteins identified by various methods include specific proteins associated with the cellular cytoskeleton, which contribute to HBx-induced hepatocarcinogenesis. In addition, the cytoskeletal proteins deregulated by HBx are involved in cell morphogenesis, adhesion, migration and proliferation. This review aims to summarize the current understanding of the expression profiles of HBx-associated cytoskeletal proteins, as well as their complex functions and underlying mechanisms in hepatocarcinogenesis. Considering that the potential therapeutics for various types of tumors may function through the stabilization of cytoskeletal proteins in order to restrict cellular movement and limit intracellular processes, clarifying the mechanisms underlying protein-associated cytoskeleton dysregulation by HBx may provide novel possibilities and potent therapeutic targets for HBV-associated HCC.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
30
|
Kong F, Hu W, Zhou K, Wei X, Kou Y, You H, Zheng K, Tang R. Hepatitis B virus X protein promotes interleukin-7 receptor expression via NF-κB and Notch1 pathway to facilitate proliferation and migration of hepatitis B virus-related hepatoma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:172. [PMID: 27821177 PMCID: PMC5100324 DOI: 10.1186/s13046-016-0448-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022]
Abstract
Background Interleukin-7 receptor (IL-7R) is involved in the abnormal function of solid tumors, but the role and regulatory mechanisms of IL-7R in HBV-related hepatocellular carcinoma (HCC) are still unclear. Methods Gene and protein expression levels of IL-7R were examined in hepatoma cells transfected with hepatitis B virus (HBV) plasmids and in hepatoma cells transfected with the multifunctional nonstructural protein X (HBX). The expression of HBX and IL-7R was measured by immunohistochemical analysis in HBV-related HCC tissues. The role of NF-κB and Notch1 pathways in HBX-mediated expression of IL-7R in hepatoma cells was examined. Activation of IL-7R downstream of intracellular signaling proteins AKT, JNK, STAT5, and the associated molecules CyclinD1 and matrix metalloproteinase-9 (MMP)-9, was assessed in HBX-positive cells with or without treatment with IL-7R short hairpin RNA (shRNA). Additionally, the role of IL-7R in HBX-mediated proliferation and migration of hepatoma cells was investigated. Results The expression of IL-7R was increased in hepatoma cells transfected with HBV plasmids; HBX was responsible for the HBV-mediated upregulation of IL-7R. Compared to adjacent tissues, the expression of HBX and IL-7R was increased in HBV-related HCC tissues. Additionally, the relative expression levels of HBX were associated with IL-7R in HBV-related HCC tissues. The activation of NF-κB pathways and expression of Notch1 were increased in hepatoma cells transfected with HBX, and inhibition of NF-κB and Notch1 pathways significantly decreased HBX-mediated expression of IL-7R. The activation of AKT and JNK and the expression of CyclinD1 and MMP-9 were increased in HBX-positive cells. When cells were treated with IL-7R shRNA, the activation of AKT and JNK, as well as the expression of CyclinD1 and MMP-9, were significantly inhibited. Additionally, IL-7R was responsible for HBX-induced proliferation and migration ability of hepatoma cells. Conclusions Our data demonstrate that HBX can upregulate IL-7R via NF-κB and Notch1 pathways to facilitate the activation of intracellular pathways and expression of associated molecules, and contribute to proliferation and migration of hepatoma cells.
Collapse
Affiliation(s)
- Fanyun Kong
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Wei Hu
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.,Department of Clinical Laboratory, Suqian People's Hospital, Nanjing Drum Tower Hospital Group, Suqian, Jiangsu, 223800, China
| | - Kai Zhou
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Xiao Wei
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Yanbo Kou
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Hongjuan You
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Kuiyang Zheng
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Renxian Tang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| |
Collapse
|
31
|
Shin GC, Kang HS, Lee AR, Kim KH. Hepatitis B virus-triggered autophagy targets TNFRSF10B/death receptor 5 for degradation to limit TNFSF10/TRAIL response. Autophagy 2016; 12:2451-2466. [PMID: 27740879 DOI: 10.1080/15548627.2016.1239002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Death receptors of TNFSF10/TRAIL (tumor necrosis factor superfamily member 10) contribute to immune surveillance against virus-infected or transformed cells by promoting apoptosis. Many viruses evade antiviral immunity by modulating TNFSF10 receptor signaling, leading to persistent infection. Here, we report that hepatitis B virus (HBV) X protein (HBx) restricts TNFSF10 receptor signaling via macroautophagy/autophagy-mediated degradation of TNFRSF10B/DR5, a TNFSF10 death receptor, and thus permits survival of virus-infected cells. We demonstrate that the expression of the TNFRSF10B protein is dramatically reduced both in liver tissues of chronic hepatitis B patients and in cell lines transfected with HBV or HBx. HBx-mediated downregulation of TNFRSF10B is caused by the lysosomal, but not proteasomal, degradation pathway. Immunoblotting analysis of LC3B and SQSTM1, and microscopy analysis of tandem-fluorescence-tagged LC3B revealed that HBx promotes complete autophagy. Inhibition of autophagy with a pharmacological inhibitor and LC3B knockdown revealed that HBx-induced autophagy is crucial for TNFRSF10B degradation. Immunoprecipitation and GST affinity isolation assays showed that HBx directly interacts with TNFRSF10B and recruits it to phagophores, the precursors to autophagosomes. We confirmed that autophagy activation is related to the downregulation of the TNFRSF10B protein in liver tissues of chronic hepatitis B patients. Inhibition of autophagy enhanced the susceptibility of HBx-infected hepatocytes to TNFSF10. These results identify the dual function of HBx in TNFRSF10B degradation: HBx plays a role as an autophagy receptor-like molecule, which promotes the association of TNFRSF10B with LC3B; HBx is also an autophagy inducer. Our data suggest a molecular mechanism for HBV evasion from TNFSF10-mediated antiviral immunity, which may contribute to chronic HBV infection.
Collapse
Affiliation(s)
- Gu-Choul Shin
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea.,b KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University , Seoul , Korea
| | - Hong Seok Kang
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea
| | - Ah Ram Lee
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea
| | - Kyun-Hwan Kim
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea.,b KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University , Seoul , Korea.,c Research Institute of Medical Sciences, Konkuk University , Seoul , Korea
| |
Collapse
|
32
|
Kim H, Lee SA, Kim BJ. X region mutations of hepatitis B virus related to clinical severity. World J Gastroenterol 2016; 22:5467-5478. [PMID: 27350725 PMCID: PMC4917607 DOI: 10.3748/wjg.v22.i24.5467] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/17/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection remains a major health problem, with more than 240 million people chronically infected worldwide and potentially 650000 deaths per year due to advanced liver diseases including liver cirrhosis and hepatocellular carcinoma (HCC). HBV-X protein (HBx) contributes to the biology and pathogenesis of HBV via stimulating virus replication or altering host gene expression related to HCC. The HBV X region contains only 465 bp encoding the 16.5 kDa HBx protein, which also contains several critical cis-elements such as enhancer II, the core promoter and the microRNA-binding region. Thus, mutations in this region may affect not only the HBx open reading frame but also the overlapped cis-elements. Recently, several types of HBx mutations significantly associated with clinical severity have been described, although the functional mechanism in most of these cases remains unsolved. This review article will mainly focus on the HBx mutations proven to be significantly related to clinical severity via epidemiological studies.
Collapse
|
33
|
Divergent viral presentation among human tumors and adjacent normal tissues. Sci Rep 2016; 6:28294. [PMID: 27339696 PMCID: PMC4919655 DOI: 10.1038/srep28294] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
We applied a newly developed bioinformatics system called VirusScan to investigate the viral basis of 6,813 human tumors and 559 adjacent normal samples across 23 cancer types and identified 505 virus positive samples with distinctive, organ system- and cancer type-specific distributions. We found that herpes viruses (e.g., subtypes HHV4, HHV5, and HHV6) that are highly prevalent across cancers of the digestive tract showed significantly higher abundances in tumor versus adjacent normal samples, supporting their association with these cancers. We also found three HPV16-positive samples in brain lower grade glioma (LGG). Further, recurrent HBV integration at the KMT2B locus is present in three liver tumors, but absent in their matched adjacent normal samples, indicating that viral integration induced host driver genetic alterations are required on top of viral oncogene expression for initiation and progression of liver hepatocellular carcinoma. Notably, viral integrations were found in many genes, including novel recurrent HPV integrations at PTPN13 in cervical cancer. Finally, we observed a set of HHV4 and HBV variants strongly associated with ethnic groups, likely due to viral sequence evolution under environmental influences. These findings provide important new insights into viral roles of tumor initiation and progression and potential new therapeutic targets.
Collapse
|
34
|
Zhang Y, Liu H, Yi R, Yan T, He Y, Zhao Y, Liu J. Hepatitis B virus whole-X and X protein play distinct roles in HBV-related hepatocellular carcinoma progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:87. [PMID: 27255760 PMCID: PMC4891919 DOI: 10.1186/s13046-016-0366-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/25/2016] [Indexed: 01/30/2023]
Abstract
Background The role of HBV X protein (HBx) in the development of hepatocellular carcinoma (HCC) has been well studied. However, little is known about the molecular functions of HBV whole-X protein (HBwx), a protein fused with HBx and upstream 56 amino acid, in HCC. In current study, the molecular functions of HBwx in HCC pathogenesis has been investigated, as well as comparison between HBwx and HBx. Methods Expression of HBwx and HBx in 50 HCC tissues was examined by immunohistochemistry. Their tumor-forming abilities were evaluated by an animal model and colony formation assay. Migration and invasion were detected by transwell assay and subcellular localization was tracked by GFP fluorescence. Cell proliferation, cell cycle and apoptosis were detected by CCK8 and FCM. Protein level was determined by Western blotting. Results HBwx was present in 72 % (36/50) of the liver tumor tissues and mainly expressed in the nucleus and deposited in the cytoplasm surrounding karyotheca. HBwx showed a promoting effect on tumorigenesis and growth in vivo and in vitro as well as cell migration and invasion, whilst such effect is compromised compared with that of HBx. Further analysis demonstrated differences in cell proliferation, cell cycle and cell apoptosis between cells expressing HBwx and those expressing HBx. Additionally, it was confirmed that RKIP-p-ERK pathway was involved in HBwx-related tumor formation. Conclusion HBwx, with the extra 56 amino acids, is closely related with hepatocarcinogenesis, while displays different biological functions from HBx.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.,Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710003, Shaanxi Province, China
| | - Hongli Liu
- Xi'an Eighth Hospital Affiliated to Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi Province, China.
| | - Ruitian Yi
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Taotao Yan
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yingli He
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yingren Zhao
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| | - Jinfeng Liu
- Department of Infectious Diseases, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
35
|
Engineering Hepadnaviruses as Reporter-Expressing Vectors: Recent Progress and Future Perspectives. Viruses 2016; 8:v8050125. [PMID: 27171106 PMCID: PMC4885080 DOI: 10.3390/v8050125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/21/2016] [Accepted: 04/29/2016] [Indexed: 12/18/2022] Open
Abstract
The Hepadnaviridae family of small, enveloped DNA viruses are characterized by a strict host range and hepatocyte tropism. The prototype hepatitis B virus (HBV) is a major human pathogen and constitutes a public health problem, especially in high-incidence areas. Reporter-expressing recombinant viruses are powerful tools in both studies of basic virology and development of antiviral therapeutics. In addition, the highly restricted tropism of HBV for human hepatocytes makes it an ideal tool for hepatocyte-targeting in vivo applications such as liver-specific gene delivery. However, compact genome organization and complex replication mechanisms of hepadnaviruses have made it difficult to engineer replication-competent recombinant viruses that express biologically-relevant cargo genes. This review analyzes difficulties associated with recombinant hepadnavirus vector development, summarizes and compares the progress made in this field both historically and recently, and discusses future perspectives regarding both vector design and application.
Collapse
|
36
|
Hepatitis B virus X protein identifies the Smc5/6 complex as a host restriction factor. Nature 2016; 531:386-9. [PMID: 26983541 DOI: 10.1038/nature17170] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 01/27/2016] [Indexed: 12/14/2022]
Abstract
Chronic hepatitis B virus infection is a leading cause of cirrhosis and liver cancer. Hepatitis B virus encodes the regulatory HBx protein whose primary role is to promote transcription of the viral genome, which persists as an extrachromosomal DNA circle in infected cells. HBx accomplishes this task by an unusual mechanism, enhancing transcription only from extrachromosomal DNA templates. Here we show that HBx achieves this by hijacking the cellular DDB1-containing E3 ubiquitin ligase to target the 'structural maintenance of chromosomes' (Smc) complex Smc5/6 for degradation. Blocking this event inhibits the stimulatory effect of HBx both on extrachromosomal reporter genes and on hepatitis B virus transcription. Conversely, silencing the Smc5/6 complex enhances extrachromosomal reporter gene transcription in the absence of HBx, restores replication of an HBx-deficient hepatitis B virus, and rescues wild-type hepatitis B virus in a DDB1-knockdown background. The Smc5/6 complex associates with extrachromosomal reporters and the hepatitis B virus genome, suggesting a direct mechanism of transcriptional inhibition. These results uncover a novel role for the Smc5/6 complex as a restriction factor selectively blocking extrachromosomal DNA transcription. By destroying this complex, HBx relieves the inhibition to allow productive hepatitis B virus gene expression.
Collapse
|
37
|
Zhu R, Mok MTS, Kang W, Lau SSK, Yip WK, Chen Y, Lai PBS, Wong VWS, To KF, Sung JJY, Cheng ASL, Chan HLY. Truncated HBx-dependent silencing of GAS2 promotes hepatocarcinogenesis through deregulation of cell cycle, senescence and p53-mediated apoptosis. J Pathol 2015; 237:38-49. [PMID: 25925944 DOI: 10.1002/path.4554] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 04/15/2015] [Accepted: 04/22/2015] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a worldwide threat to public health, especially in China, where chronic hepatitis B virus (HBV) infection is found in 80-90% of all HCCs. The HBV-encoded X antigen (HBx) is a trans-regulatory protein involved in virus-induced hepatocarcinogenesis. Although the carboxyl-terminus-truncated HBx, rather than the full-length counterpart, is frequently overexpressed in human HCCs, its functional mechanisms are not fully defined. We investigated the molecular function of a naturally occurring HBx variant which has 35 amino acids deleted at the C-terminus (HBxΔ35). Genome-wide scanning analysis and PCR validation identified growth arrest-specific 2 (GAS2) as a direct target of HBxΔ35 at transcriptional level in human immortalized liver cells. HBxΔ35 was found to bind the promoter region of GAS2 and attenuate its expression to promote hepatocellular proliferation and tumourigenicity. Further functional assays demonstrated that GAS2 induces p53-dependent apoptosis and senescence to counteract HBxΔ35-mediated tumourigenesis. Notably, GAS2 expression was significantly down-regulated in HCCs compared with the corresponding normal tissues. In conclusion, our integrated study uncovered a novel viral mechanism in hepatocarcinogenesis, wherein HBxΔ35 deregulates cell growth via direct silencing of GAS2 and thereby provides a survival advantage for pre-neoplastic hepatocytes to facilitate cancer development.
Collapse
Affiliation(s)
- Ranxu Zhu
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Gastroenterology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Myth T S Mok
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Suki S K Lau
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wing-Kit Yip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yangchao Chen
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Paul B S Lai
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Vincent W S Wong
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ka-Fai To
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Joseph J Y Sung
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Alfred S L Cheng
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Henry L Y Chan
- Institute of Digestive Disease and State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China.,Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, SAR, China
| |
Collapse
|
38
|
Yung MK, Lo KW, Yip CW, Chung GTY, Tong CYK, Cheung PFY, Cheung TT, Poon RTP, So S, Fan ST, Cheung ST. Copy number gain of granulin-epithelin precursor (GEP) at chromosome 17q21 associates with overexpression in human liver cancer. BMC Cancer 2015; 15:264. [PMID: 25885205 PMCID: PMC4403714 DOI: 10.1186/s12885-015-1294-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/31/2015] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Granulin-epithelin precursor (GEP), a secretory growth factor, demonstrated overexpression in various human cancers, however, mechanism remain elusive. Primary liver cancer, hepatocellular carcinoma (HCC), ranks the second in cancer-related death globally. GEP controlled growth, invasion, metastasis and chemo-resistance in liver cancer. Noted that GEP gene locates at 17q21 and the region has been frequently reported to be amplified in subset of HCC. The study aims to investigate if copy number gain would associate with GEP overexpression. METHODS Quantitative Microsatellite Analysis (QuMA) was used to quantify the GEP DNA copy number, and fluorescent in situ hybridization (FISH) was performed to consolidate the amplification status. GEP gene copy number, mRNA expression level and clinico-pathological features were analyzed. RESULTS GEP DNA copy number determined by QuMA corroborated well with the FISH data, and the gene copy number correlated with the expression levels (n = 60, r = 0.331, P = 0.010). Gain of GEP copy number was observed in 20% (12/60) HCC and associated with hepatitis B virus infection status (P = 0.015). In HCC with increased GEP copy number, tight association between GEP DNA and mRNA levels were observed (n = 12, r = 0.664, P = 0.019). CONCLUSIONS Gain of the GEP gene copy number was observed in 20% HCC and the frequency comparable to literatures reported on the chromosome region 17q. Increased gene copy number contributed to GEP overexpression in subset of HCC.
Collapse
Affiliation(s)
- Man Kuen Yung
- Department of Surgery, The University of Hong Kong, Hong Kong, China.
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Chi Wai Yip
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Centre for Cancer Research, The University of Hong Kong, Hong Kong, China.
| | - Grace T Y Chung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Carol Y K Tong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China.
| | - Phyllis F Y Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Centre for Cancer Research, The University of Hong Kong, Hong Kong, China.
| | - Tan To Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Department of Surgery, Queen Mary Hospital, Hong Kong, China.
| | - Ronnie T P Poon
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Centre for Cancer Research, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Samuel So
- Department of Surgery, Stanford University, Stanford, USA.
| | - Sheung Tat Fan
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Centre for Cancer Research, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Siu Tim Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China. .,Centre for Cancer Research, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China. .,Department of Surgery, The University of Hong Kong, L9-55, Laboratory Block, Faculty of Medicine Building, 21 Sassoon Road, Hong Kong, China.
| |
Collapse
|
39
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent causes of cancer-related death globally. Above well-known risk factors for HCC development ranging from various toxins to diseases such as diabetes mellitus, chronic infection with hepatitis B virus and hepatitis C virus (HCV) poses the most serious threat, constituting the cause in more than 80 % of cases. In addition to the viral genes intensively investigated, the pathophysiological importance of host genetic factors has also been greatly and increasingly appreciated. Genome-wide association studies (GWAS) comprehensively search the host genome at the single-nucleotide level, and have successfully identified the genomic region associated with a whole variety of diseases. With respect to HCC, there have been reports from several groups on single nucleotide polymorphisms (SNPs) associated with hepatocarcinogenesis, among which was our GWAS discovering MHC class I polypeptide-related sequence A (MICA) as a susceptibility gene for HCV-induced HCC. MICA is a natural killer (NK) group 2D (NKG2D) ligand, whose interaction with NKG2D triggers NK cell-mediated cytotoxicity toward the target cells, and is a key molecule in tumor immune surveillance as its expression is induced on stressed cells such as transformed tumor cells for the detection by NK cells. In this review, the latest understanding of the MICA-NKG2D system in viral HCC, particularly focused on its antitumor properties and the involvement of MICA SNPs, is summarized, followed by a discussion of targets for state-of-the-art cancer immunotherapy with personalized medicine in view.
Collapse
|
40
|
Choi YB, Harhaj EW. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses. ACTA ACUST UNITED AC 2014; 9:423-436. [PMID: 25580106 DOI: 10.1007/s11515-014-1332-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Between 15-20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis.
Collapse
Affiliation(s)
- Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns HopkinsSchool of Medicine, Baltimore, MD 21287, USA
| | - Edward William Harhaj
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns HopkinsSchool of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
41
|
Abstract
Hepatocellular carcinoma is one of the major malignant tumors in the world today. The number of new cases of the tumor increases year by year, and hepatocellular carcinoma almost always runs a fulminant course and carries an especially grave prognosis. It has a low resectability rate and a high recurrence rate after surgical intervention, and responds poorly to anticancer drugs and radiotherapy. Hepatocellular carcinoma does not have a uniform geographical distribution: rather, very high incidences occur in Eastern and Southeastern Asia and in sub-Saharan Black Africans. In these regions and populations, the tumor shows a distinct shift in age distribution toward the younger ages, seen to greatest extent in sub-Saharan Black Africans. In all populations, males are more commonly affected. The most common risk factors for hepatocellular carcinoma in resource-poor populations with a high incidence of the tumor are chronic hepatitis B virus infection and dietary exposure to the fungal hepatocarcinogen aflatoxin B1. These two causative agents act either singly or synergistically. Both the viral infection and exposure to the fungus occur from early childhood, and the tumor typically presents at an early age. Chronic hepatitis C virus infection is an important cause of hepatocellular carcinoma in resource-rich countries with a low incidence of the tumor. The infection is acquired in adulthood and hepatocellular carcinoma occurs later than it does with hepatitis B virus-induced tumors. In recent years, obesity and the metabolic syndrome have increased markedly in incidence and importance as a cause of hepatocellular carcinoma in some resource-rich regions. Chronic alcohol abuse remains an important risk factor for malignant transformation of hepatocytes, frequently in association with alcohol-induced cirrhosis. Excessive iron accumulation in hereditary hemochromatosis and dietary iron overload in the Black African population and membranous obstruction of the inferior cava cause the tumor in a few countries.
Collapse
Affiliation(s)
- Michael C Kew
- Department of Medicine, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| |
Collapse
|
42
|
Pathak RK, Baunthiyal M, Taj G, Kumar A. Virtual screening of natural inhibitors to the predicted HBx protein structure of Hepatitis B Virus using molecular docking for identification of potential lead molecules for liver cancer. Bioinformation 2014; 10:428-35. [PMID: 25187683 PMCID: PMC4135291 DOI: 10.6026/97320630010428] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/26/2014] [Indexed: 01/18/2023] Open
Abstract
The HBx protein in Hepatitis B Virus (HBV) is a potential target for anti-liver cancer molecules. Therefore, it is of interest to screen
known natural compounds against the HBx protein using molecular docking. However, the structure of HBx is not yet known.
Therefore, the predicted structure of HBx using threading in LOMET was used for docking against plant derived natural
compounds (curcumin, oleanolic acid, resveratrol, bilobetin, luteoline, ellagic acid, betulinic acid and rutin) by Molegro Virtual
Docker. The screening identified rutin with binding energy of -161.65 Kcal/mol. Thus, twenty derivatives of rutin were further
designed and screened against HBx. These in silico experiments identified compounds rutin01 (-163.16 Kcal/mol) and rutin08 (-
165.76 Kcal/mol) for further consideration and downstream validation.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Biotechnology, G. B. Pant Engineering College, Pauri Garhwal-246194, Uttarakhand, India ; Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar-263145, Uttarakhand, India
| | - Mamta Baunthiyal
- Department of Biotechnology, G. B. Pant Engineering College, Pauri Garhwal-246194, Uttarakhand, India
| | - Gohar Taj
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar-263145, Uttarakhand, India
| | - Anil Kumar
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar-263145, Uttarakhand, India
| |
Collapse
|