1
|
Chen X, Chen Y, Shu R, Lu S, Gu MM, Shen C, Wang Z, Cui X. Investigating the effects of global gene knockout of MrgF on motor performance and pain sensitivity in mice. Hereditas 2025; 162:31. [PMID: 40033362 DOI: 10.1186/s41065-025-00377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Mas-related G protein-coupled receptors (Mrgs) are a subset of GPCRs linked to pain modulation. MrgF was identified as an orphan Mrg whose function and ligand remain unclear. In this study, in addition to its expression in the dorsal root ganglia (DRG), the primary afferent center that transmits pain, we identified dense expression of MrgF, particularly concentrated in the Purkinje cell layer of the mouse cerebellum. Given the the important role of Purkinje neurons in both motor modulation and non-motor modulation, including pain processing, we established a MrgF knockout mouse (MrgF-/-) model and performed a battery of behavioral tests to explore motor performance and assess pain-associated responses. MrgF-/- mice exhibited no disturbances in coordination and motor balance during the rotarod, pole, balance beam, and treadmill tests, and normal cerebellar histology was retained. In hot plate assays, MrgF-/- mice displayed reduced pain-related behavioral responses to thermal stimuli, although no significance differences were found in tail flick assays between MrgF-/- and wild-type (wt) mice. Moreover, in formalin tests, MrgF-/- mice also showed decreased chemical-induced nociception. This was accompanied by a downregulation in the expression levels of genes associated with nociceptive modulation, such as c-fos, Runx1, Nav1.7, Nav1.8, and Nav1.9, within the DRG of MrgF-/- mice. Taken together, our findings suggest that MrgF may play a significant role in modulating pain sensitivity, thereby advancing the understanding of the functional characteristics of the Mrgs family.
Collapse
Affiliation(s)
- Xuejiao Chen
- Institute of Neuroscience and Brain science, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, 441021, China.
| | - Yan Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Runzhe Shu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ming-Min Gu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xiaofang Cui
- Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Yang J, Xie YF, Smith R, Ratté S, Prescott SA. Discordance between preclinical and clinical testing of Na V 1.7-selective inhibitors for pain. Pain 2025; 166:481-501. [PMID: 39928833 PMCID: PMC11808711 DOI: 10.1097/j.pain.0000000000003425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024]
Abstract
ABSTRACT The voltage-gated sodium channel Na V 1.7 plays an important role in pain processing according to genetic data. Those data made Na V 1.7 a popular drug target, especially since its relatively selective expression in nociceptors promised pain relief without the adverse effects associated with broader sodium channel blockade. Despite encouraging preclinical data in rodents, Na V 1.7-selective inhibitors have not yet proven effective in clinical trials. Discrepancies between preclinical and clinical results should raise alarms. We reviewed preclinical and clinical reports on the analgesic efficacy of Na V 1.7-selective inhibitors and found critical differences in several factors. Putting aside species differences, most preclinical studies tested young male rodents with limited genetic variability, inconsistent with the clinical population. Inflammatory pain was the most common preclinical chronic pain model whereas nearly all clinical trials focused on neuropathic pain despite some evidence suggesting Na V 1.7 channels are not essential for neuropathic pain. Preclinical studies almost exclusively measured evoked pain whereas most clinical trials assessed average pain intensity without distinguishing between evoked and spontaneous pain. Nearly all preclinical studies gave a single dose of drug unlike the repeat dosing used clinically, thus precluding preclinical data from demonstrating whether tolerance or other slow processes occur. In summary, preclinical testing of Na V 1.7-selective inhibitors aligned poorly with clinical testing. Beyond issues that have already garnered widespread attention in the pain literature, our results highlight the treatment regimen and choice of pain model as areas for improvement.
Collapse
Affiliation(s)
- Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Russell Smith
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Steven A. Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Latremoliere A. From a clinically relevant pain target to a possible analgesic treatment strategy. Neurotherapeutics 2025; 22:e00542. [PMID: 39909810 PMCID: PMC12014399 DOI: 10.1016/j.neurot.2025.e00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025] Open
Affiliation(s)
- Alban Latremoliere
- Department of Neurosurgery, Neurosurgery Pain Research Institute, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Furia A, Liguori R, Donadio V. Small-Fiber Neuropathy: An Etiology-Oriented Review. Brain Sci 2025; 15:158. [PMID: 40002491 PMCID: PMC11853085 DOI: 10.3390/brainsci15020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Small-fiber neuropathy (SFN), affecting Aδ or C nerve fibers, is characterized by alterations of pain and temperature sensation, as well as autonomic dysfunction. Its diagnosis may still remain challenging as methods specifically assessing small nerve fibers are not always readily available, and standard techniques for large-fiber neuropathies, such as electroneuromyography, yield negative results. Still, skin biopsy for epidermal innervation and quantitative sensory testing allow for diagnosis in the presence of a congruent clinical picture. OBJECTIVES Many different etiologies may underlie small-fiber neuropathy, of which metabolic (diabetes mellitus/impaired glucose tolerance) and idiopathic remain prevalent. The aim of this narrative review is to provide a general picture of SFN while focusing on the different etiologies described in the literature in order to raise awareness of the variegated set of different causes of SFN and promote adequate diagnostic investigation. METHODS The term "Small-Fiber Neuropathy" was searched on the PubMed database with its different recognized etiologies: the abstracts of the articles were reviewed and described in the article if relevant for a total of 40 studies. RESULTS Many different disorders have been associated with SFN, even though often in the form of case reports or small case series. CONCLUSIONS Idiopathic forms of SFN remain the most prevalent in the literature, but association with different disorders (e.g., infectious, autoimmune) should prompt investigation for SFN in the presence of a congruent clinical picture (e.g., pain with neuropathic features).
Collapse
Affiliation(s)
- Alessandro Furia
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, 40138 Bologna, Italy
| | - Rocco Liguori
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, 40138 Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche Di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
| | - Vincenzo Donadio
- Dipartimento di Scienze Biomediche e Neuromotorie, University of Bologna, 40138 Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche Di Bologna, UOC Clinica Neurologica, 40139 Bologna, Italy
| |
Collapse
|
5
|
McIlvried LA, Del Rosario JS, Pullen MY, Wangzhou A, Sheahan TD, Shepherd AJ, Slivicki RA, Lemen JA, Price TJ, Copits BA, Gereau RW. Intrinsic adaptive plasticity in mouse and human sensory neurons. J Gen Physiol 2025; 157:e202313488. [PMID: 39688836 DOI: 10.1085/jgp.202313488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 06/07/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
In response to changes in activity induced by environmental cues, neurons in the central nervous system undergo homeostatic plasticity to sustain overall network function during abrupt changes in synaptic strengths. Homeostatic plasticity involves changes in synaptic scaling and regulation of intrinsic excitability. Increases in spontaneous firing and excitability of sensory neurons are evident in some forms of chronic pain in animal models and human patients. However, whether mechanisms of homeostatic plasticity are engaged in sensory neurons of the peripheral nervous system (PNS) is unknown. Here, we show that sustained depolarization (induced by 24-h incubation in 30 mM KCl) induces compensatory changes that decrease the excitability of mouse and human sensory neurons without directly opposing membrane depolarization. Voltage-clamp recordings show that sustained depolarization produces no significant alteration in voltage-gated potassium currents, but a robust reduction in voltage-gated sodium currents, likely contributing to the overall decrease in neuronal excitability. The compensatory decrease in neuronal excitability and reduction in voltage-gated sodium currents reversed completely following a 24-h recovery period in a normal medium. Similar adaptive changes were not observed in response to 24 h of sustained action potential firing induced by optogenetic stimulation at 1 Hz, indicating the need for prolonged depolarization to drive engagement of this adaptive mechanism in sensory neurons. Our findings show that mouse and human sensory neurons are capable of engaging adaptive mechanisms to regulate intrinsic excitability in response to sustained depolarization in a manner similar to that described in neurons in the central nervous system.
Collapse
Affiliation(s)
- Lisa A McIlvried
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John Smith Del Rosario
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Melanie Y Pullen
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, USA
| | - Tayler D Sheahan
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew J Shepherd
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard A Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, The University of Texas at Dallas, Dallas, TX, USA
| | - Bryan A Copits
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert W Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience and Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Hestehave S, Allen HN, Gomez K, Duran P, Calderon-Rivera A, Loya-López S, Rodríguez-Palma EJ, Khanna R. Small molecule targeting Na V 1.7 via inhibition of CRMP2-Ubc9 interaction reduces pain-related outcomes in a rodent osteoarthritic model. Pain 2025; 166:99-111. [PMID: 39106443 PMCID: PMC11649477 DOI: 10.1097/j.pain.0000000000003357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/09/2024]
Abstract
ABSTRACT Osteoarthritis (OA) is a highly prevalent and disabling joint disease, characterized by pathological progressive joint deformation and clinical symptoms of pain. Disease-modifying treatments remain unavailable, and pain-mitigation is often suboptimal, but recent studies suggest beneficial effects by inhibition of the voltage-gated sodium channel Na V 1.7. We previously identified compound 194 as an indirect inhibitor of Na V 1.7 by preventing SUMOylation of the Na V 1.7-trafficking protein, collapsin response mediator protein 2. Compound 194 reduces the functional activity of Na V 1.7 channels and produces effective analgesia in a variety of acute and neuropathic pain models. However, its effectiveness has not yet been evaluated in models of OA. Here, we explore the effects of 194 on pain-related outcomes in the OA-like monoiodoacetate model using behavioral assessment, biochemistry, novel in vivo fiber photometry, and patch clamp electrophysiology. We found that the monoiodoacetate model induced (1) increased pain-like behaviors and calcium responses of glutamatergic neurons in the parabrachial nucleus after evoked cold and mechanical stimuli, (2) conditioned place aversion to mechanical stimulation, (3) functional weight bearing asymmetry, (4) increased sodium currents in dorsal root ganglia neurons, and (5) increased calcitonin gene-related peptide-release in the spinal cord. Crucially, administration of 194 improved all these pain-related outcomes. Collectively, these findings support indirect inhibition of Na V 1.7 as an effective treatment of OA-related pain through the inhibition of collapsin response mediator protein 2-SUMOylation via compound 194.
Collapse
Affiliation(s)
- Sara Hestehave
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Heather N. Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Santiago Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Erick J. Rodríguez-Palma
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York 10010, USA
- Pain Research Center, New York University, New York, NY 10010, USA
| |
Collapse
|
7
|
Rodríguez-Palma EJ, Loya-Lopez S, Min SM, Calderon-Rivera A, Gomez K, Khanna R, Axtman AD. Targeting Na v1.7 and Na v1.8 with a PIKfyve inhibitor to reverse inflammatory and neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2025; 17:100174. [PMID: 39720155 PMCID: PMC11665415 DOI: 10.1016/j.ynpai.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024]
Abstract
PIKfyve (1-phosphatidylinositol 3-phosphate 5-kinase), a lipid kinase, plays an important role in generating phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P2). SGC-PIKFYVE-1, a potent and selective inhibitor of PIKfyve, has been used as a chemical probe to explore pathways dependent on PIKfyve activity. Based on reported changes in membrane dynamics and ion transport in response to PIKfyve inhibition, we hypothesized that pharmacological inhibition of PIKfyve could modulate pain. Acute treatment with SGC-PIKFYVE-1 (10 µM) inhibited voltage-gated sodium currents through the inhibition of Nav1.7 and Nav1.8 channels, without affecting voltage-gated calcium or potassium currents in sensory neurons. Additionally, systemic administration of SGC-PIKFYVE-1 (30 mg/kg) alleviated mechanical and cold sensitivity induced by neuropathic or inflammatory pain in both male and female mice, without causing motor impairments. Although other functions of PIKfyve are well characterized, its role in inhibiting chronic pain has not been fully elucidated. Our study provides proof-of-concept for this alternative approach to pain management. Collectively, these results highlight the inhibitory effects of PIKfyve as a promising avenue for further exploration in chronic pain treatment.
Collapse
Affiliation(s)
- Erick J. Rodríguez-Palma
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Santiago Loya-Lopez
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Sophia M. Min
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aida Calderon-Rivera
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Kimberly Gomez
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Pain Research and Integrated Neuroscience Center (PRINC), College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Alison D. Axtman
- Structural Genomics Consortium (SGC), UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lead contact
| |
Collapse
|
8
|
Resch FJ, Heber S, Shahi F, Zauner M, Ciotu CI, Gleiss A, Sator S, Fischer MJM. Human cold pain: a randomized crossover trial. Pain 2024:00006396-990000000-00795. [PMID: 39693244 DOI: 10.1097/j.pain.0000000000003503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 12/20/2024]
Abstract
ABSTRACT The mechanism causing cold pain in humans is unresolved. Animal data suggest a nonredundant contribution to cold pain for transient receptor potential channels TRPM8 and TRPA1 for detection and voltage-gated sodium channels NaV1.7 and NaV1.8 for conduction at these temperatures. We established an intradermal injection-based cold pain model, which allows pharmacologically addressing molecular targets at the site of cooling. Lidocaine, added to the injection solution as positive control, largely reduced cold-induced pain in 36 volunteers. The 4 mentioned molecular targets were blocked by antagonists in a double-blinded crossover trial. Pain induced by 3°C intradermal fluid was not reduced to a relevant extent by any of the 4 antagonists alone or by the quadruple combination. However, the temperature threshold for cold pain appeared shifted by the inhibition of TRPA1, TRPM8, and NaV1.7 and to a lesser extent by NaV1.8 inhibition, 4-fold inhibition decreased the threshold by 5.8°C. Further mechanisms contributing to human cold pain need to be considered.
Collapse
Affiliation(s)
- Felix J Resch
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Heber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Farzin Shahi
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Manuel Zauner
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Sabine Sator
- Division of Special Anesthesia and Pain Medicine, Department of Anesthesia, Intensive Care and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Vasylyev DV, Zhao P, Schulman BR, Waxman SG. Interplay of Nav1.8 and Nav1.7 channels drives neuronal hyperexcitability in neuropathic pain. J Gen Physiol 2024; 156:e202413596. [PMID: 39378238 PMCID: PMC11465073 DOI: 10.1085/jgp.202413596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/09/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024] Open
Abstract
While voltage-gated sodium channels Nav1.7 and Nav1.8 both contribute to electrogenesis in dorsal root ganglion (DRG) neurons, details of their interactions have remained unexplored. Here, we studied the functional contribution of Nav1.8 in DRG neurons using a dynamic clamp to express Nav1.7L848H, a gain-of-function Nav1.7 mutation that causes inherited erythromelalgia (IEM), a human genetic model of neuropathic pain, and demonstrate a profound functional interaction of Nav1.8 with Nav1.7 close to the threshold for AP generation. At the voltage threshold of -21.9 mV, we observed that Nav1.8 channel open-probability exceeded Nav1.7WT channel open-probability ninefold. Using a kinetic model of Nav1.8, we showed that a reduction of Nav1.8 current by even 25-50% increases rheobase and reduces firing probability in small DRG neurons expressing Nav1.7L848H. Nav1.8 subtraction also reduces the amplitudes of subthreshold membrane potential oscillations in these cells. Our results show that within DRG neurons that express peripheral sodium channel Nav1.7, the Nav1.8 channel amplifies excitability at a broad range of membrane voltages with a predominant effect close to the AP voltage threshold, while Nav1.7 plays a major role at voltages closer to resting membrane potential. Our data show that dynamic-clamp reduction of Nav1.8 conductance by 25-50% can reverse hyperexcitability of DRG neurons expressing a gain-of-function Nav1.7 mutation that causes pain in humans and suggests, more generally, that full inhibition of Nav1.8 may not be required for relief of pain due to DRG neuron hyperexcitability.
Collapse
Affiliation(s)
- Dmytro V. Vasylyev
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Peng Zhao
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Betsy R. Schulman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Stephen G. Waxman
- Department of Neurology and Center for Neuroscience and Regeneration Research, Yale University School of Medicine, New Haven, CT, USA
- Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
10
|
Le Franc A, Da Silva A, Lepetre-Mouelhi S. Nanomedicine and voltage-gated sodium channel blockers in pain management: a game changer or a lost cause? Drug Deliv Transl Res 2024; 14:2112-2145. [PMID: 38861139 DOI: 10.1007/s13346-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/12/2024]
Abstract
Pain, a complex and debilitating condition affecting millions globally, is a significant concern, especially in the context of post-operative recovery. This comprehensive review explores the complexity of pain and its global impact, emphasizing the modulation of voltage-gated sodium channels (VGSC or NaV channels) as a promising avenue for pain management with the aim of reducing reliance on opioids. The article delves into the role of specific NaV isoforms, particularly NaV 1.7, NaV 1.8, and NaV 1.9, in pain process and discusses the development of sodium channel blockers to target these isoforms precisely. Traditional local anesthetics and selective NaV isoform inhibitors, despite showing varying efficacy in pain management, face challenges in systemic distribution and potential side effects. The review highlights the potential of nanomedicine in improving the delivery of local anesthetics, toxins and selective NaV isoform inhibitors for a targeted and sustained release at the site of pain. This innovative strategy seeks to improve drug bioavailability, minimize systemic exposure, and optimize therapeutic outcomes, holding significant promise for secure pain management and enhancing the quality of life for individuals recovering from surgical procedures or suffering from chronic pain.
Collapse
Affiliation(s)
- Adélaïde Le Franc
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Alexandre Da Silva
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | |
Collapse
|
11
|
Lee KH, Kim UJ, Cha M, Lee BH. Inhibiting Nav1.7 channels in pulpitis: An in vivo study on neuronal hyperexcitability. Biochem Biophys Res Commun 2024; 717:150044. [PMID: 38718567 DOI: 10.1016/j.bbrc.2024.150044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Pulpitis constitutes a significant challenge in clinical management due to its impact on peripheral nerve tissue and the persistence of chronic pain. Despite its clinical importance, the correlation between neuronal activity and the expression of voltage-gated sodium channel 1.7 (Nav1.7) in the trigeminal ganglion (TG) during pulpitis is less investigated. The aim of this study was to examine the relationship between experimentally induced pulpitis and Nav1.7 expression in the TG and to investigate the potential of selective Nav1.7 modulation to attenuate TG abnormal activity associated with pulpitis. Acute pulpitis was induced at the maxillary molar (M1) using allyl isothiocyanate (AITC). The mice were divided into three groups: control, pulpitis model, and pulpitis model treated with ProTx-II, a selective Nav1.7 channel inhibitor. After three days following the surgery, we conducted a recording and comparative analysis of the neural activity of the TG utilizing in vivo optical imaging. Then immunohistochemistry and Western blot were performed to assess changes in the expression levels of extracellular signal-regulated kinase (ERK), c-Fos, collapsin response mediator protein-2 (CRMP2), and Nav1.7 channels. The optical imaging result showed significant neurological excitation in pulpitis TGs. Nav1.7 expressions exhibited upregulation, accompanied by signaling molecular changes suggestive of inflammation and neuroplasticity. In addition, inhibition of Nav1.7 led to reduced neural activity and subsequent decreases in ERK, c-Fos, and CRMP2 levels. These findings suggest the potential for targeting overexpressed Nav1.7 channels to alleviate pain associated with pulpitis, providing practical pain management strategies.
Collapse
Affiliation(s)
- Kyung Hee Lee
- Department of Dental Hygiene, Division of Health Science, Dongseo University, Busan, 47011, Republic of Korea
| | - Un Jeng Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
12
|
Breslin MJ, Schubert JW, Wang D, Huang C, Clements MK, Li Y, Zhou X, Vardigan JD, Kraus RL, Santarelli VP, Uslaner JM, Coleman PJ, Stachel SJ. 2-Aminopyridines as Potent and Selective Na v1.8 Inhibitors Exhibiting Efficacy in a Nonhuman Primate Pain Model. ACS Med Chem Lett 2024; 15:917-923. [PMID: 38894930 PMCID: PMC11181479 DOI: 10.1021/acsmedchemlett.4c00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Herein we describe the discovery of a 2-aminopyridine scaffold as a potent and isoform selective inhibitor of the Nav1.8 sodium channel. Parallel library synthesis, guided by in silico predictions, rapidly transformed initial hits into a novel 2-aminopyridine lead class possessing good ADME and pharmacokinetic profiles that were able to display activity in a clinically translatable nonhuman primate capsaicin-sensitized thermode pharmacodynamic assay. Progress toward the lead identification, optimization, and in vivo efficacy of these compounds will be discussed.
Collapse
Affiliation(s)
- Michael J. Breslin
- Discovery
Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Jeffrey W. Schubert
- Discovery
Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Deping Wang
- Modeling
and Informatics, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Chienjung Huang
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Michelle K. Clements
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Yuxing Li
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Xiaoping Zhou
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Joshua D. Vardigan
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Richard L. Kraus
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Vincent P. Santarelli
- Neuroscience
Biology Discovery, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Jason M. Uslaner
- Preclinical
and Translational Medicine Discovery, Merck
& Co., Inc., 770
Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Paul J. Coleman
- Discovery
Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| | - Shawn J. Stachel
- Discovery
Chemistry, Merck & Co., Inc., 770 Sumneytown Pike, P.O. Box 4, West Point, Pennsylvania 19486, United States
| |
Collapse
|
13
|
Choi NR, Choi WG, Lee JH, Park J, Kim YT, Das R, Woo JH, Kim BJ. Atractylodes macrocephala Koidz Alleviates Symptoms in Zymosan-Induced Irritable Bowel Syndrome Mouse Model through TRPV1, NaV1.5, and NaV1.7 Channel Modulation. Nutrients 2024; 16:1683. [PMID: 38892616 PMCID: PMC11174792 DOI: 10.3390/nu16111683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
(1) Background: Irritable bowel syndrome (IBS) is a common disease in the gastrointestinal (GI) tract. Atractylodes macrocephala Koidz (AMK) is known as one of the traditional medicines that shows a good efficacy in the GI tract. (2) Methods: We investigated the effect of AMK in a network pharmacology and zymosan-induced IBS animal model. In addition, we performed electrophysiological experiments to confirm the regulatory mechanisms related to IBS. (3) Results: Various characteristics of AMK were investigated using TCMSP data and various analysis systems. AMK restored the macroscopic changes and weight to normal. Colonic mucosa and inflammatory factors were reduced. These effects were similar to those of amitriptyline and sulfasalazine. In addition, transient receptor potential (TRP) V1, voltage-gated Na+ (NaV) 1.5, and NaV1.7 channels were inhibited. (4) Conclusion: These results suggest that AMK may be a promising therapeutic candidate for IBS management through the regulation of ion channels.
Collapse
Affiliation(s)
- Na-Ri Choi
- Department of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
| | - Jong-Hwan Lee
- Department of Biomedical Engineering, College of Engineering, Dong-Eui University, Busan 47340, Republic of Korea;
| | - Joon Park
- Division of Food Functionality, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (J.P.); (Y.-T.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Yun-Tai Kim
- Division of Food Functionality, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (J.P.); (Y.-T.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Raju Das
- Department of Physiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Joo-Han Woo
- Department of Physiology, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea;
| | - Byung-Joo Kim
- Department of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (N.-R.C.); (W.-G.C.)
| |
Collapse
|
14
|
Shin SM, Itson-Zoske B, Fan F, Xiao Y, Qiu C, Cummins TR, Hogan QH, Yu H. Peripherally targeted analgesia via AAV-mediated sensory neuron-specific inhibition of multiple pronociceptive sodium channels. J Clin Invest 2024; 134:e170813. [PMID: 38722683 PMCID: PMC11213509 DOI: 10.1172/jci170813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/07/2024] [Indexed: 06/30/2024] Open
Abstract
This study reports that targeting intrinsically disordered regions of the voltage-gated sodium channel 1.7 (NaV1.7) protein facilitates discovery of sodium channel inhibitory peptide aptamers (NaViPA) for adeno-associated virus-mediated (AAV-mediated), sensory neuron-specific analgesia. A multipronged inhibition of INa1.7, INa1.6, INa1.3, and INa1.1 - but not INa1.5 and INa1.8 - was found for a prototype and named NaViPA1, which was derived from the NaV1.7 intracellular loop 1, and is conserved among the TTXs NaV subtypes. NaViPA1 expression in primary sensory neurons (PSNs) of dorsal root ganglia (DRG) produced significant inhibition of TTXs INa but not TTXr INa. DRG injection of AAV6-encoded NaViPA1 significantly attenuated evoked and spontaneous pain behaviors in both male and female rats with neuropathic pain induced by tibial nerve injury (TNI). Whole-cell current clamp of the PSNs showed that NaViPA1 expression normalized PSN excitability in TNI rats, suggesting that NaViPA1 attenuated pain by reversal of injury-induced neuronal hypersensitivity. IHC revealed efficient NaViPA1 expression restricted in PSNs and their central and peripheral terminals, indicating PSN-restricted AAV biodistribution. Inhibition of sodium channels by NaViPA1 was replicated in the human iPSC-derived sensory neurons. These results summate that NaViPA1 is a promising analgesic lead that, combined with AAV-mediated PSN-specific block of multiple TTXs NaVs, has potential as a peripheral nerve-restricted analgesic therapeutic.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Fan Fan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yucheng Xiao
- Department of Biology, School of Science, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Orthopedic Surgery, Qingdao Municipal Hospital, Qingdao, China
| | - Theodore R. Cummins
- Department of Biology, School of Science, Indiana University-Purdue University, Indianapolis, Indiana, USA
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
15
|
Xie YF, Yang J, Ratté S, Prescott SA. Similar excitability through different sodium channels and implications for the analgesic efficacy of selective drugs. eLife 2024; 12:RP90960. [PMID: 38687187 PMCID: PMC11060714 DOI: 10.7554/elife.90960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy - achieving similar function using different components - and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.
Collapse
Affiliation(s)
- Yu-Feng Xie
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Jane Yang
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick ChildrenTorontoCanada
- Institute of Biomedical Engineering, University of TorontoTorontoCanada
- Department of Physiology, University of TorontoTorontoCanada
| |
Collapse
|
16
|
Loya-Lopez SI, Allen HN, Duran P, Calderon-Rivera A, Gomez K, Kumar U, Shields R, Zeng R, Dwivedi A, Saurabh S, Korczeniewska OA, Khanna R. Intranasal CRMP2-Ubc9 inhibitor regulates Na V 1.7 to alleviate trigeminal neuropathic pain. Pain 2024; 165:573-588. [PMID: 37751532 PMCID: PMC10922202 DOI: 10.1097/j.pain.0000000000003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 09/28/2023]
Abstract
ABSTRACT Dysregulation of voltage-gated sodium Na V 1.7 channels in sensory neurons contributes to chronic pain conditions, including trigeminal neuropathic pain. We previously reported that chronic pain results in part from increased SUMOylation of collapsin response mediator protein 2 (CRMP2), leading to an increased CRMP2/Na V 1.7 interaction and increased functional activity of Na V 1.7. Targeting this feed-forward regulation, we developed compound 194 , which inhibits CRMP2 SUMOylation mediated by the SUMO-conjugating enzyme Ubc9. We further demonstrated that 194 effectively reduces the functional activity of Na V 1.7 channels in dorsal root ganglia neurons and alleviated inflammatory and neuropathic pain. Here, we used a comprehensive array of approaches, encompassing biochemical, pharmacological, genetic, electrophysiological, and behavioral analyses, to assess the functional implications of Na V 1.7 regulation by CRMP2 in trigeminal ganglia (TG) neurons. We confirmed the expression of Scn9a , Dpysl2 , and UBE2I within TG neurons. Furthermore, we found an interaction between CRMP2 and Na V 1.7, with CRMP2 being SUMOylated in these sensory ganglia. Disrupting CRMP2 SUMOylation with compound 194 uncoupled the CRMP2/Na V 1.7 interaction, impeded Na V 1.7 diffusion on the plasma membrane, and subsequently diminished Na V 1.7 activity. Compound 194 also led to a reduction in TG neuron excitability. Finally, when intranasally administered to rats with chronic constriction injury of the infraorbital nerve, 194 significantly decreased nociceptive behaviors. Collectively, our findings underscore the critical role of CRMP2 in regulating Na V 1.7 within TG neurons, emphasizing the importance of this indirect modulation in trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Santiago I. Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Heather N. Allen
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
| | - Upasana Kumar
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07101, United States of America
| | - Rory Shields
- Rutgers School of Graduate Studies, Newark Health Science Campus, Newark, NJ 07101, United States of America
| | - Rui Zeng
- Department of Chemistry, College of Arts and Sciences, New York University, 100 Washington Square East, New York, NY 10003, United States of America
| | - Akshat Dwivedi
- Department of Chemistry, College of Arts and Sciences, New York University, 100 Washington Square East, New York, NY 10003, United States of America
| | - Saumya Saurabh
- Department of Chemistry, College of Arts and Sciences, New York University, 100 Washington Square East, New York, NY 10003, United States of America
| | - Olga A. Korczeniewska
- Center for Orofacial Pain and Temporomandibular Disorders, Department of Diagnostic Sciences, Rutgers School of Dental Medicine, Newark, NJ 07101, United States of America
- Rutgers School of Graduate Studies, Newark Health Science Campus, Newark, NJ 07101, United States of America
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, New York, United States of America
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, United States of America
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY, 10010, USA
| |
Collapse
|
17
|
Tan ZY, Wu B, Su X, Zhou Y, Ji YH. Differential expression of slow and fast-repriming tetrodotoxin-sensitive sodium currents in dorsal root ganglion neurons. Front Mol Neurosci 2024; 16:1336664. [PMID: 38273939 PMCID: PMC10808659 DOI: 10.3389/fnmol.2023.1336664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Sodium channel Nav1.7 triggers the generation of nociceptive action potentials and is important in sending pain signals under physiological and pathological conditions. However, studying endogenous Nav1.7 currents has been confounded by co-expression of multiple sodium channel isoforms in dorsal root ganglion (DRG) neurons. In the current study, slow-repriming (SR) and fast-repriming (FR) tetrodotoxin-sensitive (TTX-S) currents were dissected electrophysiologically in small DRG neurons of both rats and mice. Three subgroups of small DRG neurons were identified based on the expression pattern of SR and FR TTX-S currents. A majority of rat neurons only expressed SR TTX-S currents, while a majority of mouse neurons expressed additional FR TTX-S currents. ProTx-II inhibited SR TTX-S currents with variable efficacy among DRG neurons. The expression of both types of TTX-S currents was higher in Isolectin B4-negative (IB4-) compared to Isolectin B4-positive (IB4+) neurons. Paclitaxel selectively increased SR TTX-S currents in IB4- neurons. In simulation experiments, the Nav1.7-expressing small DRG neuron displayed lower rheobase and higher frequency of action potentials upon threshold current injections compared to Nav1.6. The results suggested a successful dissection of endogenous Nav1.7 currents through electrophysiological manipulation that may provide a useful way to study the functional expression and pharmacology of endogenous Nav1.7 channels in DRG neurons.
Collapse
Affiliation(s)
- Zhi-Yong Tan
- Department of Pathophysiology, Hebei University School of Basic Medicine, Baoding, China
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Bin Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Institute of Special Environment Medicine, Nantong University, Nantong, China
| | - Xiaolin Su
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - You Zhou
- Department of Physiology, Hebei University School of Basic Medicine, Baoding, China
| | - Yong-Hua Ji
- Department of Physiology, Hebei University School of Basic Medicine, Baoding, China
| |
Collapse
|
18
|
Saleh DO, Sedik AA. Novel drugs affecting diabetic peripheral neuropathy. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:657-670. [PMID: 38645500 PMCID: PMC11024403 DOI: 10.22038/ijbms.2024.75367.16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Diabetic peripheral neuropathy (DPN) poses a significant threat, affecting half of the global diabetic population and leading to severe complications, including pain, impaired mobility, and potential amputation. The delayed manifestation of diabetic neuropathy (DN) makes early diagnosis challenging, contributing to its debilitating impact on individuals with diabetes mellitus (DM). This review examines the multifaceted nature of DPN, focusing on the intricate interplay between oxidative stress, metabolic pathways, and the resulting neuronal damage. It delves into the challenges of diagnosing DN, emphasizing the critical role played by hyperglycemia in triggering these cascading effects. Furthermore, the study explores the limitations of current neuropathic pain drugs, prompting an investigation into a myriad of pharmaceutical agents tested in both human and animal trials over the past decade. The methodology scrutinizes these agents for their potential to provide symptomatic relief for DPN. The investigation reveals promising results from various pharmaceutical agents tested for DPN relief, showcasing their efficacy in ameliorating symptoms. However, a notable gap persists in addressing the underlying problem of DPN. The results underscore the complexity of DPN and the challenges in developing therapies that go beyond symptomatic relief. Despite advancements in treating DPN symptoms, there remains a scarcity of options addressing the underlying problem. This review consolidates the state-of-the-art drugs designed to combat DPN, highlighting their efficacy in alleviating symptoms. Additionally, it emphasizes the need for a deeper understanding of the diverse processes and pathways involved in DPN pathogenesis.
Collapse
Affiliation(s)
- Dalia O. Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| | - Ahmed A. Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, 12622, Egypt
| |
Collapse
|
19
|
Basbaum AI, Jensen TS, Keefe FJ. Fifty years of pain research and clinical advances: highlights and key trends. Pain 2023; 164:S11-S15. [PMID: 37831954 PMCID: PMC10787538 DOI: 10.1097/j.pain.0000000000003058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 10/15/2023]
Abstract
ABSTRACT This article highlights advances in basic science preclinical pain research, clinical research, and psychological research occurring over the 50 years since the International Association for the Study of Pain was founded. It presents important findings and key trends in these 3 areas of pain science: basic science preclinical research, clinical research, and psychological research.
Collapse
Affiliation(s)
- Allan I. Basbaum
- Department of Anatomy, University California San Francisco, San Francisco, CA USA 94158
| | - Troels. S Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University Hosital, DK, 8200 Aarhus N, Denmark
| | - Francis J. Keefe
- Duke Pain Prevention and Treatment Research Program, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA 27705
| |
Collapse
|
20
|
Coltman NJ, Roberts RA, Sidaway JE. Data science in drug discovery safety: Challenges and opportunities. Exp Biol Med (Maywood) 2023; 248:1993-2000. [PMID: 38062553 PMCID: PMC10798188 DOI: 10.1177/15353702231215890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Early de-risking of drug targets and chemistry is essential to provide drug projects with the best chance of success. Target safety assessments (TSAs) use target biology, gene and protein expression data, genetic information from humans and animals, and competitor compound intelligence to understand the potential safety risks associated with modulating a drug target. However, there is a vast amount of information, updated daily that must be considered for each TSA. We have developed a data science-based approach that allows acquisition of relevant evidence for an optimal TSA. This is built on expert-led conventional and artificial intelligence-based mining of literature and other bioinformatics databases. Potential safety risks are identified according to an evidence framework, adjusted to the degree of target novelty. Expert knowledge is necessary to interpret the evidence and to take account of the nuances of drug safety, the modality, and the intended patient population for each TSA within each project. Overall, TSAs take full advantage of the most recent developments in data science and can be used within drug projects to identify and mitigate risks, helping with informed decision-making and resource management. These approaches should be used in the earliest stages of a drug project to guide decisions such as target selection, discovery chemistry options, in vitro assay choice, and end points for investigative in vivo studies.
Collapse
Affiliation(s)
| | - Ruth A Roberts
- ApconiX, Alderley Edge, Cheshire SK10 4TG, UK
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | | |
Collapse
|
21
|
Choi NR, Kwon MJ, Choi WG, Kim SC, Park JW, Nam JH, Kim BJ. The traditional herbal medicines mixture, Banhasasim-tang, relieves the symptoms of irritable bowel syndrome via modulation of TRPA1, NaV1.5 and NaV1.7 channels. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116499. [PMID: 37059250 DOI: 10.1016/j.jep.2023.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The cause of irritable bowel syndrome (IBS), a functional gastrointestinal (GI) disorder, remains unclear. Banhasasim-tang (BHSST), a traditional herbal medicines mixture, mainly used to treat GI-related diseases, may have a potential in IBS treatment. IBS is characterized by abdominal pain as the main clinical symptom, which seriously affects the quality of life. AIM OF THE STUDY We conducted a study to evaluate the effectiveness of BHSST and its mechanisms of action in treating IBS. MATERIALS AND METHODS We evaluated the efficacy of BHSST in a zymosan-induced diarrhea-predominant animal model of IBS. Electrophysiological methods were used to confirm modulation of transient receptor potential (TRP) and voltage-gated Na+ (NaV) ion channels, which are associated mechanisms of action. RESULTS Oral administration of BHSST decreased colon length, increased stool scores, and increased colon weight. Weight loss was also minimized without affecting food intake. In mice administered with BHSST, the mucosal thickness was suppressed, making it similar to that of normal mice, and the degree of tumor necrosis factor-α was severely reduced. These effects were similar to those of the anti-inflammatory drug-sulfasalazine-and antidepressant-amitriptyline. Moreover, pain-related behaviors were substantially reduced. Additionally, BHSST inhibited TRPA1, NaV1.5, and NaV1.7 ion channels associated with IBS-mediated visceral hypersensitivity. CONCLUSIONS In summary, the findings suggest that BHSST has potential beneficial effects on IBS and diarrhea through the modulation of ion channels.
Collapse
Affiliation(s)
- Na Ri Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Min Ji Kwon
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| | - Sang Chan Kim
- College of Oriental Medicine Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Jae-Woo Park
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Kyungju, 38066, Republic of Korea; Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang, 10326, Republic of Korea.
| | - Byung Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan, 50612, Republic of Korea.
| |
Collapse
|
22
|
Loya-Lopez SI, Allen HN, Duran P, Calderon-Rivera A, Gomez K, Kumar U, Shields R, Zeng R, Dwivedi A, Saurabh S, Korczeniewska OA, Khanna R. Intranasal CRMP2-Ubc9 Inhibitor Regulates Na V 1.7 to Alleviate Trigeminal Neuropathic Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549195. [PMID: 37502910 PMCID: PMC10370107 DOI: 10.1101/2023.07.16.549195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Dysregulation of voltage-gated sodium Na V 1.7 channels in sensory neurons contributes to chronic pain conditions, including trigeminal neuropathic pain. We previously reported that chronic pain results in part from increased SUMOylation of collapsin response mediator protein 2 (CRMP2), leading to an increased CRMP2/Na V 1.7 interaction and increased functional activity of Na V 1.7. Targeting this feed-forward regulation, we developed compound 194 , which inhibits CRMP2 SUMOylation mediated by the SUMO-conjugating enzyme Ubc9. We further demonstrated that 194 effectively reduces the functional activity of Na V 1.7 channels in dorsal root ganglia neurons and alleviated inflammatory and neuropathic pain. Here, we employed a comprehensive array of investigative approaches, encompassing biochemical, pharmacological, genetic, electrophysiological, and behavioral analyses, to assess the functional implications of Na V 1.7 regulation by CRMP2 in trigeminal ganglia (TG) neurons. We confirmed the expression of Scn9a , Dpysl2 , and UBE2I within TG neurons. Furthermore, we found an interaction between CRMP2 and Na V 1.7, with CRMP2 being SUMOylated in these sensory ganglia. Disrupting CRMP2 SUMOylation with compound 194 uncoupled the CRMP2/Na V 1.7 interaction, impeded Na V 1.7 diffusion on the plasma membrane, and subsequently diminished Na V 1.7 activity. Compound 194 also led to a reduction in TG neuron excitability. Finally, when intranasally administered to rats with chronic constriction injury of the infraorbital nerve (CCI-ION), 194 significantly decreased nociceptive behaviors. Collectively, our findings underscore the critical role of CRMP2 in regulating Na V 1.7 within TG neurons, emphasizing the importance of this indirect modulation in trigeminal neuropathic pain.
Collapse
|
23
|
McIlvried LA, Del Rosario JS, Pullen MY, Wangzhou A, Sheahan TD, Shepherd AJ, Slivicki RA, Lemen JA, Price TJ, Copits BA, Gereau RW. Intrinsic Homeostatic Plasticity in Mouse and Human Sensory Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544829. [PMID: 37398430 PMCID: PMC10312743 DOI: 10.1101/2023.06.13.544829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In response to changes in activity induced by environmental cues, neurons in the central nervous system undergo homeostatic plasticity to sustain overall network function during abrupt changes in synaptic strengths. Homeostatic plasticity involves changes in synaptic scaling and regulation of intrinsic excitability. Increases in spontaneous firing and excitability of sensory neurons are evident in some forms of chronic pain in animal models and human patients. However, whether mechanisms of homeostatic plasticity are engaged in sensory neurons under normal conditions or altered after chronic pain is unknown. Here, we showed that sustained depolarization induced by 30mM KCl induces a compensatory decrease in the excitability in mouse and human sensory neurons. Moreover, voltage-gated sodium currents are robustly reduced in mouse sensory neurons contributing to the overall decrease in neuronal excitability. Decreased efficacy of these homeostatic mechanisms could potentially contribute to the development of the pathophysiology of chronic pain.
Collapse
Affiliation(s)
- Lisa A. McIlvried
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- These authors contributed equally
| | - John Smith Del Rosario
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- These authors contributed equally
| | - Melanie Y. Pullen
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Andi Wangzhou
- Department of Neuroscience and Center for Advanced Pain Studies; The University of Texas at Dallas; Dallas, TX, 75080; USA
| | - Tayler D. Sheahan
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Andrew J. Shepherd
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | | | - Theodore J. Price
- Department of Neuroscience and Center for Advanced Pain Studies; The University of Texas at Dallas; Dallas, TX, 75080; USA
| | - Bryan A. Copits
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology; Washington University School of Medicine; St. Louis, MO, 63110; USA
- Department of Neuroscience and Department of Biomedical Engineering; Washington University School of Medicine; St. Louis, MO, 63110; USA
- Lead contact
| |
Collapse
|
24
|
Zidar N, Tomašič T, Kikelj D, Durcik M, Tytgat J, Peigneur S, Rogers M, Haworth A, Kirby RW. New aryl and acylsulfonamides as state-dependent inhibitors of Na v1.3 voltage-gated sodium channel. Eur J Med Chem 2023; 258:115530. [PMID: 37329714 DOI: 10.1016/j.ejmech.2023.115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Voltage-gated sodium channels (Navs) play an essential role in neurotransmission, and their dysfunction is often a cause of various neurological disorders. The Nav1.3 isoform is found in the CNS and upregulated after injury in the periphery, but its role in human physiology has not yet been fully elucidated. Reports suggest that selective Nav1.3 inhibitors could be used as novel therapeutics to treat pain or neurodevelopmental disorders. Few selective inhibitors of this channel are known in the literature. In this work, we report the discovery of a new series of aryl and acylsulfonamides as state-dependent inhibitors of Nav1.3 channels. Using a ligand-based 3D similarity search and subsequent hit optimization, we identified and prepared a series of 47 novel compounds and tested them on Nav1.3, Nav1.5, and a selected subset also on Nav1.7 channels in a QPatch patch-clamp electrophysiology assay. Eight compounds had an IC50 value of less than 1 μM against the Nav1.3 channel inactivated state, with one compound displaying an IC50 value of 20 nM, whereas activity against the inactivated state of the Nav1.5 channel and Nav1.7 channel was approximately 20-fold weaker. None of the compounds showed use-dependent inhibition of the cardiac isoform Nav1.5 at a concentration of 30 μM. Further selectivity testing of the most promising hits was measured using the two-electrode voltage-clamp method against the closed state of the Nav1.1-Nav1.8 channels, and compound 15b displayed small, yet selective, effects against the Nav1.3 channel, with no activity against the other isoforms. Additional selectivity testing of promising hits against the inactivated state of the Nav1.3, Nav1.7, and Nav1.8 channels revealed several compounds with robust and selective activity against the inactivated state of the Nav1.3 channel among the three isoforms tested. Moreover, the compounds were not cytotoxic at a concentration of 50 μM, as demonstrated by the assay in human HepG2 cells (hepatocellular carcinoma cells). The novel state-dependent inhibitors of Nav1.3 discovered in this work provide a valuable tool to better evaluate this channel as a potential drug target.
Collapse
Affiliation(s)
- Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Martina Durcik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Jan Tytgat
- University of Leuven (KU Leuven), Toxicology & Pharmacology, O&N2, PO Box 922, Herestraat 49, 3000, Leuven, Belgium
| | - Steve Peigneur
- University of Leuven (KU Leuven), Toxicology & Pharmacology, O&N2, PO Box 922, Herestraat 49, 3000, Leuven, Belgium
| | - Marc Rogers
- Metrion Biosciences Limited, Building 2, Granta Centre, Granta Park, Great Abington, Cambridge, CB21 6AL, UK
| | - Alexander Haworth
- Metrion Biosciences Limited, Building 2, Granta Centre, Granta Park, Great Abington, Cambridge, CB21 6AL, UK
| | - Robert W Kirby
- Metrion Biosciences Limited, Building 2, Granta Centre, Granta Park, Great Abington, Cambridge, CB21 6AL, UK
| |
Collapse
|
25
|
Derre A, Soler N, Billoux V, Benizri S, Vialet B, Rivat C, Barthélémy P, Carroll P, Pattyn A, Venteo S. FXYD2 antisense oligonucleotide provides an efficient approach for long-lasting relief of chronic peripheral pain. JCI Insight 2023; 8:161246. [PMID: 37154155 DOI: 10.1172/jci.insight.161246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Chronic pain, whether of inflammatory or neuropathic origin, affects about 18% of the population of developed countries, and most current treatments are only moderately effective and/or cause serious side effects. Therefore, the development of novel therapeutic approaches still represents a major challenge. The Na,K-ATPase modulator FXYD2 is critically required for the maintenance of neuropathic pain in rodents. Here, we set up a therapeutic protocol based on the use of chemically modified antisense oligonucleotides (ASOs) to inhibit FXYD2 expression and treat chronic pain. We identified an ASO targeting a 20-nucleotide stretch in the FXYD2 mRNA that is evolutionarily conserved between rats and humans and is a potent inhibitor of FXYD2 expression. We used this sequence to synthesize lipid-modified forms of ASO (FXYD2-LASO) to facilitate their entry into dorsal root ganglia neurons. We established that intrathecal or intravenous injections of FXYD2-LASO in rat models of neuropathic or inflammatory pain led to a virtually complete alleviation of their pain symptoms, without causing obvious side effects. Remarkably, by using 2'-O-2-methoxyethyl chemical stabilization of the ASO (FXYD2-LASO-Gapmer), we could significantly prolong the therapeutic action of a single treatment up to 10 days. This study establishes FXYD2-LASO-Gapmer administration as a promising and efficient therapeutic strategy for long-lasting relief of chronic pain conditions in human patients.
Collapse
Affiliation(s)
- Alexandre Derre
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Noelian Soler
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Valentine Billoux
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Sebastien Benizri
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Brune Vialet
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Cyril Rivat
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Philippe Barthélémy
- ARNA Laboratory, University of Bordeaux, INSERM U1212, UMR CNRS 5320, Bordeaux, France
| | - Patrick Carroll
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Alexandre Pattyn
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| | - Stephanie Venteo
- Institute for Neurosciences of Montpellier, University of Montpellier, INSERM, Montpellier, France
| |
Collapse
|
26
|
Hernández-Plata E, Cruz AA, Becerril C. Na V1.7 channels are expressed in the lower airways of the human respiratory tract. Respir Physiol Neurobiol 2023; 311:104034. [PMID: 36792043 DOI: 10.1016/j.resp.2023.104034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
NaV channels expression have been reported in upper airways and tracheal smooth muscle cells controlling the generation and propagation of action potentials in the respiratory tract sensory neurons, but information about the presence of these proteins in the bronchioalveolar structures in human lungs was missing. The main objective covered in this work was to determine whether the NaV1.7 channels are expressed in lower airways, and to identify the cellular identities expressing these proteins. We detected high levels of the mRNA coding for NaV1.7 channels in isolated lung fibroblasts obtained from both normal lungs, and fibrotic lungs of patients with respiratory diseases. The protein was detected with two different antibodies in the bronchioalveolar tissue, alveolar endothelium, and capillary endothelium, in normal and pathologic lungs. These evidences are useful in the dissection of molecular mechanisms of pulmonary pathologies, and lead to consider the NaV1.7 channels as potential therapeutic targets for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Everardo Hernández-Plata
- Investigador por México, Consejo Nacional de Ciencia y Tecnología, and Instituto Nacional de Medicina Genómica, Mexico City, Mexico.
| | - Ana Alfaro Cruz
- Departamento de Patología, Hospital General de México, "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Carina Becerril
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
27
|
Nattapon R, Aree W, Sompol T, Anchalee V, Chit C, Wongsathit C, Kanokwan T, Mayuree TH, Narawut P. Standardized Centella asiatica (ECa 233) extract decreased pain hypersensitivity development in a male mouse model of chronic inflammatory temporomandibular disorder. Sci Rep 2023; 13:6642. [PMID: 37095163 PMCID: PMC10126003 DOI: 10.1038/s41598-023-33769-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/18/2023] [Indexed: 04/26/2023] Open
Abstract
Chronic inflammatory temporomandibular disorder (TMD) pain has a high prevalence, and available nonspecific treatments have adverse side effects. ECa 233, a standardized Centella asiatica extract, is highly anti-inflammatory and safe. We investigated its therapeutic effects by injecting complete Freund's adjuvant (CFA) into right temporomandibular joint of mice and administering either ibuprofen or ECa 233 (30, 100, and 300 mg/kg) for 28 days. Inflammatory and nociceptive markers, bone density, and pain hypersensitivity were examined. CFA decreased ipsilateral bone density, suggesting inflammation localization, which ipsilaterally caused immediate calcitonin gene-related peptide elevation in the trigeminal ganglia (TG) and trigeminal subnucleus caudalis (TNC), followed by late increase of NaV1.7 in TG and of p-CREB and activation of microglia in TNC. Contralaterally, only p-CREB and activated microglia in TNC showed delayed increase. Pain hypersensitivity, which developed early ipsilaterally, but late contralaterally, was reduced by ibuprofen and ECa 233 (30 or 100 mg/kg). However, ibuprofen and only 100-mg/kg ECa 233 effectively mitigated marker elevation. This suggests 30-mg/kg ECa 233 was antinociceptive, whereas 100-mg/kg ECa 233 was both anti-inflammatory and antinociceptive. ECa 233 may be alternatively and safely used for treating chronic inflammatory TMD pain, showing an inverted U-shaped dose-response relationship with maximal effect at 100 mg/kg.
Collapse
Affiliation(s)
- Rotpenpian Nattapon
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Srisavarindhira Bldg., 13Th Floor, Wanglang Road, Siriraj Subdistrict, Bangkoknoi District, Bangkok, 10700, Thailand
- Department of Oral Biology and Occlusion, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand
| | - Wanasuntronwong Aree
- Department of Oral Biology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Tapechum Sompol
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Srisavarindhira Bldg., 13Th Floor, Wanglang Road, Siriraj Subdistrict, Bangkoknoi District, Bangkok, 10700, Thailand
| | - Vattarakorn Anchalee
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Srisavarindhira Bldg., 13Th Floor, Wanglang Road, Siriraj Subdistrict, Bangkoknoi District, Bangkok, 10700, Thailand
| | - Care Chit
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Srisavarindhira Bldg., 13Th Floor, Wanglang Road, Siriraj Subdistrict, Bangkoknoi District, Bangkok, 10700, Thailand
| | - Chindasri Wongsathit
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Srisavarindhira Bldg., 13Th Floor, Wanglang Road, Siriraj Subdistrict, Bangkoknoi District, Bangkok, 10700, Thailand
| | - Tilokskulchai Kanokwan
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Srisavarindhira Bldg., 13Th Floor, Wanglang Road, Siriraj Subdistrict, Bangkoknoi District, Bangkok, 10700, Thailand
| | | | - Pakaprot Narawut
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Srisavarindhira Bldg., 13Th Floor, Wanglang Road, Siriraj Subdistrict, Bangkoknoi District, Bangkok, 10700, Thailand.
| |
Collapse
|
28
|
Alvarez-Perez B, Poras H, Maldonado R. The inhibition of enkephalin catabolism by dual enkephalinase inhibitor: A novel possible therapeutic approach for opioid use disorders. Br J Pharmacol 2023; 180:879-893. [PMID: 34378790 DOI: 10.1111/bph.15656] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
Despite the increasing impact of opioid use disorders on society, there is a disturbing lack of effective medications for their clinical management. An interesting innovative strategy to treat these disorders consists in the protection of endogenous opioid peptides to activate opioid receptors, avoiding the classical opioid-like side effects. Dual enkephalinase inhibitors (DENKIs) physiologically activate the endogenous opioid system by inhibiting the enzymes responsible for the breakdown of enkephalins, protecting endogenous enkephalins and increasing their half-lives and physiological actions. The activation of opioid receptors by the increased enkephalin levels, and their well-demonstrated safety, suggests that DENKIs could represent a novel analgesic therapy and a possible effective treatment for acute opioid withdrawal, as well as a promising alternative to opioid substitution therapy minimizing side effects. This new pharmacological class of compounds could bring effective and safe medications avoiding the major limitations of exogenous opioids, representing a novel approach to overcome the problem of opioid use disorders. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Beltran Alvarez-Perez
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| | | | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain
| |
Collapse
|
29
|
Petroianu GA, Aloum L, Adem A. Neuropathic pain: Mechanisms and therapeutic strategies. Front Cell Dev Biol 2023; 11:1072629. [PMID: 36727110 PMCID: PMC9884983 DOI: 10.3389/fcell.2023.1072629] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
The physiopathology and neurotransmission of pain are of an owe inspiring complexity. Our ability to satisfactorily suppress neuropathic or other forms of chronic pain is limited. The number of pharmacodynamically distinct and clinically available medications is low and the successes achieved modest. Pain Medicine practitioners are confronted with the ethical dichotomy imposed by Hippocrates: On one hand the mandate of primum non nocere, on the other hand, the promise of heavenly joys if successful divinum est opus sedare dolorem. We briefly summarize the concepts associated with nociceptive pain from nociceptive input (afferents from periphery), modulatory output [descending noradrenergic (NE) and serotoninergic (5-HT) fibers] to local control. The local control is comprised of the "inflammatory soup" at the site of pain origin and synaptic relay stations, with an ATP-rich environment promoting inflammation and nociception while an adenosine-rich environment having the opposite effect. Subsequently, we address the transition from nociceptor pain to neuropathic pain (independent of nociceptor activation) and the process of sensitization and pain chronification (transient pain progressing into persistent pain). Having sketched a model of pain perception and processing we attempt to identify the sites and modes of action of clinically available drugs used in chronic pain treatment, focusing on adjuvant (co-analgesic) medication.
Collapse
|
30
|
Kim RE, Choi JS. Polysorbate 80 blocked a peripheral sodium channel, Na v1.7, and reduced neuronal excitability. Mol Pain 2023; 19:17448069221150138. [PMID: 36550597 PMCID: PMC9829885 DOI: 10.1177/17448069221150138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Polysorbate 80 is a non-ionic detergent derived from polyethoxylated sorbitan and oleic acid. It is widely used in pharmaceuticals, foods, and cosmetics as an emulsifier. Nav1.7 is a peripheral sodium channel that is highly expressed in sympathetic and sensory neurons, and it plays a critical role in determining the threshold of action potentials (APs). We found that 10 μg/mL polysorbate 80 either abolished APs or increased the threshold of the APs of dorsal root ganglions. We thus investigated whether polysorbate 80 inhibits Nav1.7 sodium current using a whole-cell patch-clamp recording technique. Polysorbate 80 decreased the Nav1.7 current in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 250.4 μg/mL at a holding potential of -120 mV. However, the IC50 was 1.1 μg/mL at a holding potential of -90 mV and was estimated to be 0.9 μg/mL at the resting potentials of neurons, where most channels are inactivated. The activation rate and the voltage dependency of activation of Nav1.7 were not changed by polysorbate 80. However, polysorbate 80 caused hyperpolarizing shifts in the voltage dependency of the steady-state fast inactivation curve. The blocking of Nav1.7 currents by polysorbate 80 was not reversible at a holding potential of -90 mV but was completely reversible at -120 mV, where the channels were mostly in the closed state. Polysorbate 80 also slowed recovery from inactivation and induced robust use-dependent inhibition, indicating that it is likely to bind to and stabilize the inactivated state. Our results indicate that polysorbate 80 inhibits Nav1.7 current in concentration-, state-, and use-dependent manners when used even below commercial concentrations. This suggests that polysorbate 80 may be helpful in pain medicine as an excipient. In addition, in vitro experiments using polysorbate 80 with neurons should be conducted with caution.
Collapse
Affiliation(s)
| | - Jin-Sung Choi
- Jin-Sung Choi, Integrated Research Institute of Pharmaceutical Science, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, South Korea.
| |
Collapse
|
31
|
Review of the Treatments for Central Neuropathic Pain. Brain Sci 2022; 12:brainsci12121727. [PMID: 36552186 PMCID: PMC9775950 DOI: 10.3390/brainsci12121727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Central neuropathic pain (CNP) affects millions worldwide, with an estimated prevalence of around 10% globally. Although there are a wide variety of treatment options available, due to the complex and multidimensional nature in which CNP arises and presents symptomatically, many patients still experience painful symptoms. Pharmaceutical, surgical, non-invasive, cognitive and combination treatment options offer a generalized starting point for alleviating symptoms; however, a more customized approach may provide greater benefit. Here, we comment on the current treatment options that exist for CNP and further suggest the need for additional research regarding the use of biomarkers to help individualize treatment options for patients.
Collapse
|
32
|
Niu H, Zhao S, Wang Y, Huang S, Zhou R, Wu Z, Song W, Chen X. Influence of genetic variants on remifentanil sensitivity in Chinese women. J Clin Pharm Ther 2022; 47:1858-1866. [PMID: 36196520 DOI: 10.1111/jcpt.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/28/2022] [Accepted: 09/04/2022] [Indexed: 11/27/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Significant individual differences have been observed in pain sensitivity and analgesic effect of opioids. Previous studies have shown that genetic factors contributed to analgesics requirement obviously. Therefore, we investigated the role of genetic polymorphisms in the sensitivity to the analgesic effect of remifentanil in this study. METHODS One hundred thirty-seven patients undergoing gynaecological surgery were observed. Before procedures, we measured the basal pain threshold of each patient, including the pressure pain threshold and pressure pain tolerance threshold. Subsequently, patients received a continuous remifentanil infusion for 15 min at a constant rate of 0.2 μg/(kg min). The pain thresholds were measured again after the remifentanil infusion. Moreover, respiratory depression was estimated using oxygen saturation during infusion. DNA was extracted from peripheral venous blood and genotyped using SNaPshot technology. RESULTS AND DISCUSSION Polymorphisms were found in genes associated with the individual variation in analgesia. Participants carrying OPRM1 rs9397685 AA, ADRB1 rs1801253 CC, and GCH1 rs8007267 CC polymorphisms showed higher sensitivity to analgesic effect induced by remifentanil, and the participants carrying the OPRD1 rs2234918 TT showed lower sensitivity to remifentanil-related respiratory depression. Moreover, individual susceptibility to remifentanil increases with age. WHAT IS NEW AND CONCLUSION Gene variation in OPRM1 rs9397685 AA, ADRB1 rs1801253 CC, GCH1 rs8007267 CC, and OPRD1 rs2234918 TT were related to the conspicuous interindividual differences in the analgesia and respiratory depression of remifentanil, mainly by affecting the target protein receptors and relative metabolic enzymes.
Collapse
Affiliation(s)
- Haojie Niu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruihui Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhouyang Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wentao Song
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Tolley JA, Walsh LE. Primary Erythromelalgia Treated With 10% Capsaicin Cream: A Case Report and a 10-Year Follow-Up. Cureus 2022; 14:e28342. [PMID: 36168350 PMCID: PMC9504803 DOI: 10.7759/cureus.28342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
In this case report, we describe the difficulty in finding a suitable treatment for a nine-year-old girl with erythromelalgia. Initially, she could only find pain relief through immersion of her hands and feet in buckets of cool water. Her pain did not respond to outpatient treatments, and she was ultimately admitted to the hospital for pain management. Many different medications and modalities were tried over the course of several weeks in the hospital. Finally, she received the most benefit from 10% compounded capsaicin cream administered under general anesthesia with regional analgesia for post-application pain. Over the course of several years, exacerbations of her pain were treated with additional applications of 10% capsaicin cream, with each application providing relief for an increased duration. Her severe pain flares eventually went into remission after several years. Today, after more than a decade following her initial presentation, she is a successful college student and is taking no medications for her erythromelalgia.
Collapse
|
34
|
McCollum MM, Larmore M, Ishihara S, Ng LCT, Kimura LF, Guadarrama E, Ta MC, Vien TN, Frost GB, Scheidt KA, Miller RE, DeCaen PG. Targeting the tamoxifen receptor within sodium channels to block osteoarthritic pain. Cell Rep 2022; 40:111248. [PMID: 36001977 PMCID: PMC9523973 DOI: 10.1016/j.celrep.2022.111248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
Voltage-gated sodium channels (NaV) in nociceptive neurons initiate action potentials required for transmission of aberrant painful stimuli observed in osteoarthritis (OA). Targeting NaV subtypes with drugs to produce analgesic effects for OA pain management is a developing therapeutic area. Previously, we determined the receptor site for the tamoxifen analog N-desmethyltamoxifen (ND-Tam) within a prokaryotic NaV. Here, we report the pharmacology of ND-Tam against eukaryotic NaVs natively expressed in nociceptive neurons. ND-Tam and analogs occupy two conserved intracellular receptor sites in domains II and IV of NaV1.7 to block ion entry using a "bind and plug" mechanism. We find that ND-Tam inhibition of the sodium current is state dependent, conferring a potent frequency- and voltage-dependent block of hyperexcitable nociceptive neuron action potentials implicated in OA pain. When evaluated using a mouse OA pain model, ND-Tam has long-lasting efficacy, which supports the potential of repurposing ND-Tam analogs as NaV antagonists for OA pain management.
Collapse
Affiliation(s)
- Megan M McCollum
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Megan Larmore
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shingo Ishihara
- Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Leo C T Ng
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Louise F Kimura
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eduardo Guadarrama
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - My C Ta
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Thuy N Vien
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Grant B Frost
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Rachel E Miller
- Division of Rheumatology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
35
|
van Niel J, Bloms-Funke P, Caspani O, Cendros JM, Garcia-Larrea L, Truini A, Tracey I, Chapman SC, Marco-Ariño N, Troconiz IF, Phillips K, Finnerup NB, Mouraux A, Treede RD. Pharmacological Probes to Validate Biomarkers for Analgesic Drug Development. Int J Mol Sci 2022; 23:8295. [PMID: 35955432 PMCID: PMC9368481 DOI: 10.3390/ijms23158295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
There is an urgent need for analgesics with improved efficacy, especially in neuropathic and other chronic pain conditions. Unfortunately, in recent decades, many candidate analgesics have failed in clinical phase II or III trials despite promising preclinical results. Translational assessment tools to verify engagement of pharmacological targets and actions on compartments of the nociceptive system are missing in both rodents and humans. Through the Innovative Medicines Initiative of the European Union and EFPIA, a consortium of researchers from academia and the pharmaceutical industry was established to identify and validate a set of functional biomarkers to assess drug-induced effects on nociceptive processing at peripheral, spinal and supraspinal levels using electrophysiological and functional neuroimaging techniques. Here, we report the results of a systematic literature search for pharmacological probes that allow for validation of these biomarkers. Of 26 candidate substances, only 7 met the inclusion criteria: evidence for nociceptive system modulation, tolerability, availability in oral form for human use and absence of active metabolites. Based on pharmacokinetic characteristics, three were selected for a set of crossover studies in rodents and healthy humans. All currently available probes act on more than one compartment of the nociceptive system. Once validated, biomarkers of nociceptive signal processing, combined with a pharmacometric modelling, will enable a more rational approach to selecting dose ranges and verifying target engagement. Combined with advances in classification of chronic pain conditions, these biomarkers are expected to accelerate analgesic drug development.
Collapse
Affiliation(s)
| | - Petra Bloms-Funke
- Translational Science & Intelligence, Grünenthal GmbH, 52099 Aachen, Germany;
| | - Ombretta Caspani
- Mannheim Center for Translational Neurosciences (MCTN), Department of Neurophysiology, University of Heidelberg, 69120 Mannheim, Germany; (O.C.); (R.-D.T.)
| | | | - Luis Garcia-Larrea
- Lyon Neurosciences Center Research Unit Inserm U 1028, Pierre Wertheimer Hospital, Hospices Civils de Lyon, Lyon 1 University, 69100 Lyon, France;
| | - Andrea Truini
- Department of Human Neuroscience, Sapienzia University, 00185 Rome, Italy;
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK;
| | - Sonya C. Chapman
- Eli Lilly and Company, Arlington Square, Bracknell RG12 1PU, UK;
| | - Nicolás Marco-Ariño
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (N.M.-A.); (I.F.T.)
| | - Iñaki F. Troconiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (N.M.-A.); (I.F.T.)
| | - Keith Phillips
- Eli Lilly and Company, Erl Wood, Bracknell GU20 6PH, UK;
| | - Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark;
| | - André Mouraux
- Institute of Neuroscience (IoNS), UCLouvain, B-1200 Brussels, Belgium
| | - Rolf-Detlef Treede
- Mannheim Center for Translational Neurosciences (MCTN), Department of Neurophysiology, University of Heidelberg, 69120 Mannheim, Germany; (O.C.); (R.-D.T.)
| |
Collapse
|
36
|
Borja GB, Zhang H, Harwood BN, Jacques J, Grooms J, Chantre RO, Zhang D, Barnett A, Werley CA, Lu Y, Nagle SF, McManus OB, Dempsey GT. Highly Parallelized, Multicolor Optogenetic Recordings of Cellular Activity for Therapeutic Discovery Applications in Ion Channels and Disease-Associated Excitable Cells. Front Mol Neurosci 2022; 15:896320. [PMID: 35860501 PMCID: PMC9289666 DOI: 10.3389/fnmol.2022.896320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Optogenetic assays provide a flexible, scalable, and information rich approach to probe compound effects for ion channel drug targets in both heterologous expression systems and associated disease relevant cell types. Despite the potential utility and growing adoption of optogenetics, there remains a critical need for compatible platform technologies with the speed, sensitivity, and throughput to enable their application to broader drug screening applications. To address this challenge, we developed the SwarmTM, a custom designed optical instrument for highly parallelized, multicolor measurements in excitable cells, simultaneously recording changes in voltage and calcium activities at high temporal resolution under optical stimulation. The compact design featuring high power LEDs, large numerical aperture optics, and fast photodiode detection enables all-optical individual well readout of 24-wells simultaneously from multi-well plates while maintaining sufficient temporal resolution to probe millisecond response dynamics. The Swarm delivers variable intensity blue-light optogenetic stimulation to enable membrane depolarization and red or lime-light excitation to enable fluorescence detection of the resulting changes in membrane potential or calcium levels, respectively. The Swarm can screen ~10,000 wells/day in 384-well format, probing complex pharmacological interactions via a wide array of stimulation protocols. To evaluate the Swarm screening system, we optimized a series of heterologous optogenetic spiking HEK293 cell assays for several voltage-gated sodium channel subtypes including Nav1.2, Nav1.5, and Nav1.7. The Swarm was able to record pseudo-action potentials stably across all 24 objectives and provided pharmacological characterization of diverse sodium channel blockers. We performed a Nav1.7 screen of 200,000 small molecules in a 384-well plate format with all 560 plates reaching a Z' > 0.5. As a demonstration of the versatility of the Swarm, we also developed an assay measuring cardiac action potential and calcium waveform properties simultaneously under paced conditions using human induced pluripotent stem (iPS) cell-derived cardiomyocytes as an additional counter screen for cardiac toxicity. In summary, the Swarm is a novel high-throughput all-optical system capable of collecting information-dense data from optogenetic assays in both heterologous and iPS cell-derived models, which can be leveraged to drive diverse therapeutic discovery programs for nervous system disorders and other disease areas involving excitable cells.
Collapse
|
37
|
Huang G, Liu D, Wang W, Wu Q, Chen J, Pan X, Shen H, Yan N. High-resolution structures of human Na v1.7 reveal gating modulation through α-π helical transition of S6 IV. Cell Rep 2022; 39:110735. [PMID: 35476982 DOI: 10.1016/j.celrep.2022.110735] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/28/2022] [Accepted: 04/02/2022] [Indexed: 11/26/2022] Open
Abstract
Nav1.7 represents a preeminent target for next-generation analgesics for its critical role in pain sensation. Here we report a 2.2-Å resolution cryo-EM structure of wild-type (WT) Nav1.7 complexed with the β1 and β2 subunits that reveals several previously indiscernible cytosolic segments. Reprocessing of the cryo-EM data for our reported structures of Nav1.7(E406K) bound to various toxins identifies two distinct conformations of S6IV, one composed of α helical turns only and the other containing a π helical turn in the middle. The structure of ligand-free Nav1.7(E406K), determined at 3.5-Å resolution, is identical to the WT channel, confirming that binding of Huwentoxin IV or Protoxin II to VSDII allosterically induces the α → π transition of S6IV. The local secondary structural shift leads to contraction of the intracellular gate, closure of the fenestration on the interface of repeats I and IV, and rearrangement of the binding site for the fast inactivation motif.
Collapse
Affiliation(s)
- Gaoxingyu Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Dongliang Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Weipeng Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiurong Wu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaofeng Chen
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaojing Pan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huaizong Shen
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China.
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
38
|
Chen Y, Xu E, Sang M, Wang Z, Zhang Y, Ye J, Zhou Q, Zhao C, Hu C, Lu W, Cao P. Makatoxin-3, a thermostable Nav1.7 agonist from Buthus martensii Karsch (BmK) scorpion elicits non-narcotic analgesia in inflammatory pain models. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114998. [PMID: 35063590 DOI: 10.1016/j.jep.2022.114998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic pain management represents a serious healthcare problem worldwide. The use of opioid analgesics for pain has always been hampered by their side effects; in particular, the addictive liability associated with chronic use. Finding a morphine replacement has been a long-standing goal in the field of analgesia. In traditional Chinese medicine, processed Buthus martensii Karsch (BmK) scorpion has been used as a painkiller to treat chronic inflammatory arthritis and spondylitis, so called "Scorpio-analgesia". However, the molecular basis and the underline mechanism for the Scorpio-analgesia are still unclear. AIM OF THE STUDY The study aims to investigate the molecular basis of "Scorpio analgesia" and identify novel analgesics from BmK scorpion. MATERIALS AND METHODS In this study, the analgesic abilities were determined using formalin-, acetic acid- and complete Freund's adjuvant-induced pain models. The effect of BmK venom and processed BmK venom on Nav1.7 were detected by whole-cell voltage-clamp recordings on HEK293-hNav1.7 stable cell line. Action potentials in Dorsal root ganglion (DRG) neurons induced by Makatoxin-3-R58A were recorded in current-clamp mode. The content of Makatoxin-3 was detected using competitive enzyme-linked immunosorbent assay based on the Makatoxin-3 antibody. High performance liquid chromatography, western blot and circular dichroism spectroscopy were used to analysis the stability of Makatoxin-3. RESULTS Here we demonstrate that Makatoxin-3, an α-like toxin in BmK scorpion venom targeting Nav1.7 is the critical component in Scorpio-analgesia. The analgesic effect of Makatoxin-3 could not be reversed by naloxone and is more potent than Nav1.7-selective inhibitors and non-steroidal anti-inflammatory drugs in inflammatory models. Moreover, a R58A mutant of Makatoxin-3 is capable of eliciting analgesia effect without inducing pain response. CONCLUSIONS This study advances ion channel biology and proposes Nav1.7 agonists, rather than the presumed Nav1.7-only blockers, for non-narcotic relief of chronic pain.
Collapse
Affiliation(s)
- Yonggen Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Erjin Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Ming Sang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Zhiheng Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Yuxin Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Qian Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Chenglei Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Chunping Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Wuguang Lu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China; School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
39
|
Timilsina M, Kernan DPM, Yang H, d'Aquin M. Synergy Between Embedding and Protein Functional Association Networks for Drug Label Prediction Using Harmonic Function. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:1203-1213. [PMID: 33064647 DOI: 10.1109/tcbb.2020.3031696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semi-Supervised Learning (SSL)is an approach to machine learning that makes use of unlabeled data for training with a small amount of labeled data. In the context of molecular biology and pharmacology, one can take advantage of unlabeled data. For instance, to identify drugs and targets where a few genes are known to be associated with a specific target for drugs and considered as labeled data. Labeling the genes requires laboratory verification and validation. This process is usually very time consuming and expensive. Thus, it is useful to estimate the functional role of drugs from unlabeled data using computational methods. To develop such a model, we used openly available data resources to create (i)drugs and genes, (ii)genes and disease, bipartite graphs. We constructed the genetic embedding graph from the two bipartite graphs using Tensor Factorization methods. We integrated the genetic embedding graph with the publicly available protein functional association network. Our results show the usefulness of the integration by effectively predicting drug labels.
Collapse
|
40
|
Mayoral V. An overview of the use and misuse/abuse of opioid analgesics in different world regions and future perspectives. Pain Manag 2022; 12:535-555. [PMID: 35118876 DOI: 10.2217/pmt-2021-0094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Opioids are an important therapeutic option for severe resistant chronic pain but, in the absence of proper oversight, their use has risks. The level of prescription opioid misuse/abuse differs among countries, due to differences in healthcare systems and pain management approaches. However, evaluating the true dimension of prescription opioid misuse/abuse is complicated by statistical reporting which often does not differentiate between prescription and illicit opioid use, or between prescription opioid use by patients and nonpatients, highlighting a need for greater uniformity. Parallel efforts to educate patients and the general public about opioid risks, facilitate appropriate analgesic prescribing and identify alternative formulations or options to use instead of or with opioids, may contribute to optimizing prescription opioid use for pain management.
Collapse
Affiliation(s)
- Victor Mayoral
- Pain Unit, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
41
|
Time-Dependent Changes in Protein Composition of Medial Prefrontal Cortex in Rats with Neuropathic Pain. Int J Mol Sci 2022; 23:ijms23020955. [PMID: 35055141 PMCID: PMC8781622 DOI: 10.3390/ijms23020955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 01/03/2023] Open
Abstract
Chronic pain is associated with time-dependent structural and functional reorganization of the prefrontal cortex that may reflect adaptive pain compensatory and/or maladaptive pain-promoting mechanisms. However, the molecular underpinnings of these changes and whether there are time-dependent relationships to pain progression are not well characterized. In this study, we analyzed protein composition in the medial prefrontal cortex (mPFC) of rats at two timepoints after spinal nerve ligation (SNL) using two-dimensional gel electrophoresis (2D-ELFO) and liquid chromatography with tandem mass spectrometry (LC–MS/MS). SNL, but not sham-operated, rats developed persistent tactile allodynia and thermal hyperalgesia, confirming the presence of experimental neuropathic pain. Two weeks after SNL (early timepoint), we identified 11 proteins involved in signal transduction, protein transport, cell homeostasis, metabolism, and apoptosis, as well as heat-shock proteins and chaperones that were upregulated by more than 1.5-fold compared to the sham-operated rats. Interestingly, there were only four significantly altered proteins identified at 8 weeks after SNL (late timepoint). These findings demonstrate extensive time-dependent modifications of protein expression in the rat mPFC under a chronic neuropathic pain state that might underlie the evolution of chronic pain characterized by early pain-compensatory and later aberrant mechanisms.
Collapse
|
42
|
Sloan G, Alam U, Selvarajah D, Tesfaye S. The Treatment of Painful Diabetic Neuropathy. Curr Diabetes Rev 2022; 18:e070721194556. [PMID: 34238163 DOI: 10.2174/1573399817666210707112413] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
Painful diabetic peripheral neuropathy (painful-DPN) is a highly prevalent and disabling condition, affecting up to one-third of patients with diabetes. This condition can have a profound impact resulting in a poor quality of life, disruption of employment, impaired sleep, and poor mental health with an excess of depression and anxiety. The management of painful-DPN poses a great challenge. Unfortunately, currently there are no Food and Drug Administration (USA) approved disease-modifying treatments for diabetic peripheral neuropathy (DPN) as trials of putative pathogenetic treatments have failed at phase 3 clinical trial stage. Therefore, the focus of managing painful- DPN other than improving glycaemic control and cardiovascular risk factor modification is treating symptoms. The recommended treatments based on expert international consensus for painful- DPN have remained essentially unchanged for the last decade. Both the serotonin re-uptake inhibitor (SNRI) duloxetine and α2δ ligand pregabalin have the most robust evidence for treating painful-DPN. The weak opioids (e.g. tapentadol and tramadol, both of which have an SNRI effect), tricyclic antidepressants such as amitriptyline and α2δ ligand gabapentin are also widely recommended and prescribed agents. Opioids (except tramadol and tapentadol), should be prescribed with caution in view of the lack of definitive data surrounding efficacy, concerns surrounding addiction and adverse events. Recently, emerging therapies have gained local licenses, including the α2δ ligand mirogabalin (Japan) and the high dose 8% capsaicin patch (FDA and Europe). The management of refractory painful-DPN is difficult; specialist pain services may offer off-label therapies (e.g. botulinum toxin, intravenous lidocaine and spinal cord stimulation), although there is limited clinical trial evidence supporting their use. Additionally, despite combination therapy being commonly used clinically, there is little evidence supporting this practise. There is a need for further clinical trials to assess novel therapeutic agents, optimal combination therapy and existing agents to determine which are the most effective for the treatment of painful-DPN. This article reviews the evidence for the treatment of painful-DPN, including emerging treatment strategies such as novel compounds and stratification of patients according to individual characteristics (e.g. pain phenotype, neuroimaging and genotype) to improve treatment responses.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine and the Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, and Liverpool University Hospital, NHS Foundation Trust, Liverpool, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester, Manchester, UK
| | - Dinesh Selvarajah
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
43
|
Nemenov MI, Singleton JR, Premkumar LS. Role of Mechanoinsensitive Nociceptors in Painful Diabetic Peripheral Neuropathy. Curr Diabetes Rev 2022; 18:e081221198649. [PMID: 34879806 DOI: 10.2174/1573399818666211208101555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/08/2021] [Accepted: 07/09/2021] [Indexed: 11/22/2022]
Abstract
The cutaneous mechanisms that trigger spontaneous neuropathic pain in diabetic peripheral neuropathy (PDPN) are far from clear. Two types of nociceptors are found within the epidermal and dermal skin layers. Small-diameter lightly myelinated Aδ and unmyelinated C cutaneous mechano and heat-sensitive (AMH and CMH) and C mechanoinsensitive (CMi) nociceptors transmit pain from the periphery to central nervous system. AMH and CMH fibers are mainly located in the epidermis, and CMi fibers are distributed in the dermis. In DPN, dying back intra-epidermal AMH and CMH fibers leads to reduced pain sensitivity, and the patients exhibit significantly increased pain thresholds to acute pain when tested using traditional methods. The role of CMi fibers in painful neuropathies has not been fully explored. Microneurography has been the only tool to access CMi fibers and differentiate AMH, CMH, and CMi fiber types. Due to the complexity, its use is impractical in clinical settings. In contrast, a newly developed diode laser fiber selective stimulation (DLss) technique allows to safely and selectively stimulate Aδ and C fibers in the superficial and deep skin layers. DLss data demonstrate that patients with painful DPN have increased Aδ fiber pain thresholds, while C-fiber thresholds are intact because, in these patients, CMi fibers are abnormally spontaneously active. It is also possible to determine the involvement of CMi fibers by measuring the area of DLss-induced neurogenic axon reflex flare. The differences in AMH, CMH, and CMi fibers identify patients with painful and painless neuropathy. In this review, we will discuss the role of CMi fibers in PDPN.
Collapse
Affiliation(s)
- Mikhail I Nemenov
- Department of Anesthesia, Stanford University, Palo Alto, CA, USA
- Lasmed LLC, Mountain View, CA, USA
| | | | - Louis S Premkumar
- Department of Pharmacology, SIU School of Medicine, Springfield, Illinois, USA and Ion Channel Pharmacology LLC, Springfield, IL, USA
| |
Collapse
|
44
|
Kwon M, Jung IY, Cha M, Lee BH. Inhibition of the Nav1.7 Channel in the Trigeminal Ganglion Relieves Pulpitis Inflammatory Pain. Front Pharmacol 2021; 12:759730. [PMID: 34955831 PMCID: PMC8694709 DOI: 10.3389/fphar.2021.759730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Pulpitis causes significant changes in the peripheral nervous system, which induce hyperalgesia. However, the relationship between neuronal activity and Nav1.7 expression following pulpal noxious pain has not yet been investigated in the trigeminal ganglion (TG). The aim of our study was to verify whether experimentally induced pulpitis activates the expression of Nav1.7 peripherally and the neuronal activities of the TGs can be affected by Nav1.7 channel inhibition. Acute pulpitis was induced through allyl isothiocyanate (AITC) application to the rat maxillary molar tooth pulp. Three days after AITC application, abnormal pain behaviors were recorded, and the rats were euthanized to allow for immunohistochemical, optical imaging, and western blot analyses of the Nav1.7 expression in the TG. A significant increase in AITC-induced pain-like behaviors and histological evidence of pulpitis were observed. In addition, histological and western blot data showed that Nav1.7 expressions in the TGs were significantly higher in the AITC group than in the naive and saline group rats. Optical imaging showed that the AITC group showed higher neuronal activity after electrical stimulation of the TGs. Additionally, treatment of ProTxII, selective Nav1.7 blocker, on to the TGs in the AITC group effectively suppressed the hyperpolarized activity after electrical stimulation. These findings indicate that the inhibition of the Nav1.7 channel could modulate nociceptive signal processing in the TG following pulp inflammation.
Collapse
Affiliation(s)
- Minjee Kwon
- Department of Nursing, Kyungil University, Gyeongsan, South Korea
| | - Il Young Jung
- Department of Conservative Dentistry and Oral Science Research Center, Yonsei University College of Dentistry, Seoul, South Korea
| | - Myeounghoon Cha
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Bae Hwan Lee
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
45
|
Yang QY, Hu YH, Guo HL, Xia Y, Zhang Y, Fang WR, Li YM, Xu J, Chen F, Wang YR, Wang TF. Vincristine-Induced Peripheral Neuropathy in Childhood Acute Lymphoblastic Leukemia: Genetic Variation as a Potential Risk Factor. Front Pharmacol 2021; 12:771487. [PMID: 34955843 PMCID: PMC8696478 DOI: 10.3389/fphar.2021.771487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Vincristine (VCR) is the first-line chemotherapeutic medication often co-administered with other drugs to treat childhood acute lymphoblastic leukemia. Dose-dependent neurotoxicity is the main factor restricting VCR’s clinical application. VCR-induced peripheral neuropathy (VIPN) sometimes results in dose reduction or omission, leading to clinical complications or affecting the patient’s quality of life. With regard to the genetic basis of drug responses, preemptive pharmacogenomic testing and simultaneous blood level monitoring could be helpful for the transformation of various findings into individualized therapies. In this review, we discussed the potential associations between genetic variants in genes contributing to the pharmacokinetics/pharmacodynamics of VCR and VIPN incidence and severity in patients with acute lymphoblastic leukemia. Of note, genetic variants in the CEP72 gene have great potential to be translated into clinical practice. Such a genetic biomarker may help clinicians diagnose VIPN earlier. Besides, genetic variants in other genes, such as CYP3A5, ABCB1, ABCC1, ABCC2, TTPA, ACTG1, CAPG, SYNE2, SLC5A7, COCH, and MRPL47, have been reported to be associated with the VIPN, but more evidence is needed to validate the findings in the future. In fact, a variety of complex factors jointly determine the VIPN. In implementing precision medicine, the combination of genetic, environmental, and personal variables, along with therapeutic drug monitoring, will allow for a better understanding of the mechanisms of VIPN, improving the effectiveness of VCR treatment, reducing adverse reactions, and improving patients’ quality of life.
Collapse
Affiliation(s)
- Qing-Yan Yang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China.,School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ya-Hui Hu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hong-Li Guo
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Xia
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Zhang
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Rong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yun-Man Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jing Xu
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Pharmaceutical Sciences Research Center, Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yong-Ren Wang
- Department of Hematology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Teng-Fei Wang
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
46
|
Alles SRA, Smith PA. Peripheral Voltage-Gated Cation Channels in Neuropathic Pain and Their Potential as Therapeutic Targets. FRONTIERS IN PAIN RESEARCH 2021; 2:750583. [PMID: 35295464 PMCID: PMC8915663 DOI: 10.3389/fpain.2021.750583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/10/2021] [Indexed: 11/25/2022] Open
Abstract
The persistence of increased excitability and spontaneous activity in injured peripheral neurons is imperative for the development and persistence of many forms of neuropathic pain. This aberrant activity involves increased activity and/or expression of voltage-gated Na+ and Ca2+ channels and hyperpolarization activated cyclic nucleotide gated (HCN) channels as well as decreased function of K+ channels. Because they display limited central side effects, peripherally restricted Na+ and Ca2+ channel blockers and K+ channel activators offer potential therapeutic approaches to pain management. This review outlines the current status and future therapeutic promise of peripherally acting channel modulators. Selective blockers of Nav1.3, Nav1.7, Nav1.8, Cav3.2, and HCN2 and activators of Kv7.2 abrogate signs of neuropathic pain in animal models. Unfortunately, their performance in the clinic has been disappointing; some substances fail to meet therapeutic end points whereas others produce dose-limiting side effects. Despite this, peripheral voltage-gated cation channels retain their promise as therapeutic targets. The way forward may include (i) further structural refinement of K+ channel activators such as retigabine and ASP0819 to improve selectivity and limit toxicity; use or modification of Na+ channel blockers such as vixotrigine, PF-05089771, A803467, PF-01247324, VX-150 or arachnid toxins such as Tap1a; the use of Ca2+ channel blockers such as TTA-P2, TTA-A2, Z 944, ACT709478, and CNCB-2; (ii) improving methods for assessing "pain" as opposed to nociception in rodent models; (iii) recognizing sex differences in pain etiology; (iv) tailoring of therapeutic approaches to meet the symptoms and etiology of pain in individual patients via quantitative sensory testing and other personalized medicine approaches; (v) targeting genetic and biochemical mechanisms controlling channel expression using anti-NGF antibodies such as tanezumab or re-purposed drugs such as vorinostat, a histone methyltransferase inhibitor used in the management of T-cell lymphoma, or cercosporamide a MNK 1/2 inhibitor used in treatment of rheumatoid arthritis; (vi) combination therapy using drugs that are selective for different channel types or regulatory processes; (vii) directing preclinical validation work toward the use of human or human-derived tissue samples; and (viii) application of molecular biological approaches such as clustered regularly interspaced short palindromic repeats (CRISPR) technology.
Collapse
Affiliation(s)
- Sascha R A Alles
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Peter A Smith
- Department of Pharmacology, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
47
|
Wei B, Su H, Chen P, Tan HL, Li N, Qin ZE, Huang P, Chang S. Recent advancements in peripheral nerve-specific fluorescent compounds. Biomater Sci 2021; 9:7799-7810. [PMID: 34747953 DOI: 10.1039/d1bm01256h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nerve injury is a common complication of surgery. Accidental nerve damage or transection can lead to severe clinical symptoms including pain, numbness, paralysis and even expiratory dyspnoea. In recent years, with the rise of the field of fluorescence-guided surgery, researchers have discovered that nerve-specific fluorescent agents can serve as nerve markers in animals and can be used to guide surgical procedures and reduce the incidence of intraoperative nerve damage. Currently, researchers have begun to focus on biochemistry, materials chemistry and other fields to produce more neuro-specific fluorescent agents with physiological relevance and they are expected to have clinical applications. This review discusses the agents with potential to be used in fluorescence-guided nerve imaging during surgery.
Collapse
Affiliation(s)
- Bo Wei
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Huo Su
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Pei Chen
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Hai-Long Tan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Ning Li
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Zi-En Qin
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha 410008, Hunan, P.R. China. .,National Clinical Research Center for Geriatric Disorders, Changsha 410008, Hunan, P.R. China.,Clinical Research Center for Thyroid Diseases in Hunan Province, Changsha 410008, Hunan, P.R. China
| |
Collapse
|
48
|
Hao J, Brosse L, Bonnet C, Ducrocq M, Padilla F, Penalba V, Desplat A, Ruel J, Delmas P. The widely used antihistamine mepyramine causes topical pain relief through direct blockade of nociceptor sodium channels. FASEB J 2021; 35:e22025. [PMID: 34758144 DOI: 10.1096/fj.202100976rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
Mepyramine, a first-generation antihistamine targeting the histamine H(1) receptor, was extensively prescribed to patients suffering from allergic reactions and urticaria. Serious adverse effects, especially in case of overdose, were frequently reported, including drowsiness, impaired thinking, convulsion, and coma. Many of these side effects were associated with the blockade of histaminergic or cholinergic receptors. Here we show that mepyramine directly inhibits a variety of voltage-gated sodium channels, including the Tetrodotoxin-sensitive isoforms and the main isoforms (Nav1.7, Nav1.8, and Nav1.9) of nociceptors. Estimated IC50 were within the range of drug concentrations detected in poisoned patients. Mepyramine inhibited sodium channels through fast- or slow-inactivated state preference depending on the isoform. Moreover, mepyramine inhibited the firing responses of C- and Aβ-type nerve fibers in ex vivo skin-nerve preparations. Locally applied mepyramine had analgesic effects on the scorpion toxin-induced excruciating pain and produced pain relief in acute, inflammatory, and chronic pain models. Collectively, these data provide evidence that mepyramine has the potential to be developed as a topical analgesic agent.
Collapse
Affiliation(s)
- Jizhe Hao
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Lucie Brosse
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Caroline Bonnet
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Myriam Ducrocq
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Françoise Padilla
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Virginie Penalba
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Angélique Desplat
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Jérôme Ruel
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| | - Patrick Delmas
- Laboratoire de Neurosciences Cognitives, UMR 7291, CNRS, Aix-Marseille-Université, Marseille Cedex 15, France
| |
Collapse
|
49
|
Cai S, Moutal A, Yu J, Chew LA, Isensee J, Chawla R, Gomez K, Luo S, Zhou Y, Chefdeville A, Madura C, Perez-Miller S, Bellampalli SS, Dorame A, Scott DD, François-Moutal L, Shan Z, Woodward T, Gokhale V, Hohmann AG, Vanderah TW, Patek M, Khanna M, Hucho T, Khanna R. Selective targeting of NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in rodents. Sci Transl Med 2021; 13:eabh1314. [PMID: 34757807 PMCID: PMC11729770 DOI: 10.1126/scitranslmed.abh1314] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The voltage-gated sodium NaV1.7 channel, critical for sensing pain, has been actively targeted by drug developers; however, there are currently no effective and safe therapies targeting NaV1.7. Here, we tested whether a different approach, indirect NaV1.7 regulation, could have antinociceptive effects in preclinical models. We found that preventing addition of small ubiquitin-like modifier (SUMO) on the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 functions and had antinociceptive effects in rodents. In silico targeting of the SUMOylation site in CRMP2 (Lys374) identified >200 hits, of which compound 194 exhibited selective in vitro and ex vivo NaV1.7 engagement. Orally administered 194 was not only antinociceptive in preclinical models of acute and chronic pain but also demonstrated synergy alongside other analgesics—without eliciting addiction, rewarding properties, or neurotoxicity. Analgesia conferred by 194 was opioid receptor dependent. Our results demonstrate that 194 is a first-in-class protein-protein inhibitor that capitalizes on CRMP2-NaV1.7 regulation to deliver safe analgesia in rodents.
Collapse
Affiliation(s)
- Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Lindsey A. Chew
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, University Cologne, Joseph-Stelzmann-Str 9, Cologne D-50931, Germany
| | - Reena Chawla
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Yuan Zhou
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Cynthia Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Shreya Sai Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - David D. Scott
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Taylor Woodward
- Department of Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-2204, USA
| | - Vijay Gokhale
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Andrea G. Hohmann
- Department of Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-2204, USA
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Marcel Patek
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
- Bright Rock Path LLC, Tucson, AZ 85724, USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, University Cologne, Joseph-Stelzmann-Str 9, Cologne D-50931, Germany
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ 85724, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| |
Collapse
|
50
|
Santillo M, Damiano S. Focus on the role of Na(v)1.7 channel as molecular target of methocarbamol and its analgesic effects. Muscle Nerve 2021; 64:E29-E30. [PMID: 34614226 DOI: 10.1002/mus.27430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/08/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Mariarosaria Santillo
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Simona Damiano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| |
Collapse
|