1
|
Sanchez de la Nava AM, Arenal Á, Fernández-Avilés F, Atienza F. Artificial Intelligence-Driven Algorithm for Drug Effect Prediction on Atrial Fibrillation: An in silico Population of Models Approach. Front Physiol 2021; 12:768468. [PMID: 34938202 PMCID: PMC8685526 DOI: 10.3389/fphys.2021.768468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Antiarrhythmic drugs are the first-line treatment for atrial fibrillation (AF), but their effect is highly dependent on the characteristics of the patient. Moreover, anatomical variability, and specifically atrial size, have also a strong influence on AF recurrence. Objective: We performed a proof-of-concept study using artificial intelligence (AI) that enabled us to identify proarrhythmic profiles based on pattern identification from in silico simulations. Methods: A population of models consisting of 127 electrophysiological profiles with a variation of nine electrophysiological variables (G Na , I NaK , G K1, G CaL , G Kur , I KCa , [Na] ext , and [K] ext and diffusion) was simulated using the Koivumaki atrial model on square planes corresponding to a normal (16 cm2) and dilated (22.5 cm2) atrium. The simple pore channel equation was used for drug implementation including three drugs (isoproterenol, flecainide, and verapamil). We analyzed the effect of every ionic channel combination to evaluate arrhythmia induction. A Random Forest algorithm was trained using the population of models and AF inducibility as input and output, respectively. The algorithm was trained with 80% of the data (N = 832) and 20% of the data was used for testing with a k-fold cross-validation (k = 5). Results: We found two electrophysiological patterns derived from the AI algorithm that was associated with proarrhythmic behavior in most of the profiles, where G K1 was identified as the most important current for classifying the proarrhythmicity of a given profile. Additionally, we found different effects of the drugs depending on the electrophysiological profile and a higher tendency of the dilated tissue to fibrillate (Small tissue: 80 profiles vs Dilated tissue: 87 profiles). Conclusion: Artificial intelligence algorithms appear as a novel tool for electrophysiological pattern identification and analysis of the effect of antiarrhythmic drugs on a heterogeneous population of patients with AF.
Collapse
Affiliation(s)
- Ana Maria Sanchez de la Nava
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,ITACA Institute, Universitat Politécnica de València, València, Spain
| | - Ángel Arenal
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Felipe Atienza
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Chandrasekaran V, Carta G, da Costa Pereira D, Gupta R, Murphy C, Feifel E, Kern G, Lechner J, Cavallo AL, Gupta S, Caiment F, Kleinjans JCS, Gstraunthaler G, Jennings P, Wilmes A. Generation and characterization of iPSC-derived renal proximal tubule-like cells with extended stability. Sci Rep 2021; 11:11575. [PMID: 34078926 PMCID: PMC8172841 DOI: 10.1038/s41598-021-89550-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
The renal proximal tubule is responsible for re-absorption of the majority of the glomerular filtrate and its proper function is necessary for whole-body homeostasis. Aging, certain diseases and chemical-induced toxicity are factors that contribute to proximal tubule injury and chronic kidney disease progression. To better understand these processes, it would be advantageous to generate renal tissues from human induced pluripotent stem cells (iPSC). Here, we report the differentiation and characterization of iPSC lines into proximal tubular-like cells (PTL). The protocol is a step wise exposure of small molecules and growth factors, including the GSK3 inhibitor (CHIR99021), the retinoic acid receptor activator (TTNPB), FGF9 and EGF, to drive iPSC to PTL via cell stages representing characteristics of early stages of renal development. Genome-wide RNA sequencing showed that PTL clustered within a kidney phenotype. PTL expressed proximal tubular-specific markers, including megalin (LRP2), showed a polarized phenotype, and were responsive to parathyroid hormone. PTL could take up albumin and exhibited ABCB1 transport activity. The phenotype was stable for up to 7 days and was maintained after passaging. This protocol will form the basis of an optimized strategy for molecular investigations using iPSC derived PTL.
Collapse
Affiliation(s)
- Vidya Chandrasekaran
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands
| | - Giada Carta
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands
| | - Daniel da Costa Pereira
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands
| | - Rajinder Gupta
- Department of Toxicogenomics, Maastricht University, School of Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | - Cormac Murphy
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands
| | - Elisabeth Feifel
- Institute of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Kern
- Institute of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Judith Lechner
- Institute of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | - Florian Caiment
- Department of Toxicogenomics, Maastricht University, School of Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | - Jos C S Kleinjans
- Department of Toxicogenomics, Maastricht University, School of Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | - Gerhard Gstraunthaler
- Institute of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Jennings
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands.
| | - Anja Wilmes
- Division of Molecular and Computational Toxicology, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081, HZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Assay Procedures for Compound Testing of hiPSC-Derived Cardiomyocytes Using Multiwell Microelectrode Arrays. Methods Mol Biol 2020; 1994:197-208. [PMID: 31124117 DOI: 10.1007/978-1-4939-9477-9_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The cardiac action potential requires a precise timing of activation and inactivation of ion channel subtypes. Deviations, for example, due to blockage of specific voltage-gated potassium channels, can result in live-threatening arrhythmias. Due to the limitations of standard cellular assays based on cells which artificially express only single ion channel subtypes, many potentially interesting compounds are discarded during drug development. More predictive functional assays are required. With the upcoming of human stem-cell derived cardiomyocytes (hiPS-CM) these assays are available, supporting even the design of patient-derived disease models. Microelectrode array systems allow to noninvasively record and evaluate cardiac field action potentials. In this chapter we describe how to cultivate hiPS-CM on two parallelized MEA systems and suggest an experimental strategy for compound tests.
Collapse
|
4
|
Hyun SW, Kim BR, Lin D, Hyun SA, Yoon SS, Seo JW. The effects of gentamicin and penicillin/streptomycin on the electrophysiology of human induced pluripotent stem cell-derived cardiomyocytes in manual patch clamp and multi-electrode array system. J Pharmacol Toxicol Methods 2018; 91:1-6. [DOI: 10.1016/j.vascn.2017.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 11/29/2017] [Accepted: 12/09/2017] [Indexed: 02/06/2023]
|
5
|
Mulder P, de Korte T, Dragicevic E, Kraushaar U, Printemps R, Vlaming MLH, Braam SR, Valentin JP. Predicting cardiac safety using human induced pluripotent stem cell-derived cardiomyocytes combined with multi-electrode array (MEA) technology: A conference report. J Pharmacol Toxicol Methods 2018; 91:36-42. [PMID: 29355722 DOI: 10.1016/j.vascn.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/21/2017] [Accepted: 01/10/2018] [Indexed: 12/20/2022]
Abstract
Safety pharmacology studies that evaluate drug candidates for potential cardiovascular liabilities remain a critical component of drug development. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have recently emerged as a new and promising tool for preclinical hazard identification and risk assessment of drugs. Recently, Pluriomics organized its first User Meeting entitled 'Combining Pluricyte® Cardiomyocytes & MEA for Safety Pharmacology applications', consisting of scientific sessions and live demonstrations, which provided the opportunity to discuss the application of hiPSC-CMs (Pluricyte® Cardiomyocytes) in cardiac safety assessment to support early decision making in safety pharmacology. This report summarizes the outline and outcome of this Pluriomics User Meeting, which took place on November 24-25, 2016 in Leiden (The Netherlands). To reflect the content of the communications presented at this meeting we have cited key scientific articles and reviews.
Collapse
Affiliation(s)
- Petra Mulder
- Pluriomics BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Tessa de Korte
- Pluriomics BV, Galileiweg 8, 2333 BD Leiden, The Netherlands.
| | - Elena Dragicevic
- Nanion Technologies GmbH, Ganghoferstraße 70a, D-80339 Munich, Germany
| | - Udo Kraushaar
- NMI Natural and Medical Sciences Institute, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | | | | | - Stefan R Braam
- Pluriomics BV, Galileiweg 8, 2333 BD Leiden, The Netherlands
| | - Jean-Pierre Valentin
- Investigative Toxicology, Non-Clinical Development, UCB-Biopharma, Chemin du Foriest, 1420 Braine l'Alleud, Belgium
| |
Collapse
|
6
|
Hyun SW, Kim BR, Hyun SA, Seo JW. The assessment of electrophysiological activity in human-induced pluripotent stem cell-derived cardiomyocytes exposed to dimethyl sulfoxide and ethanol by manual patch clamp and multi-electrode array system. J Pharmacol Toxicol Methods 2017; 87:93-98. [PMID: 28377112 DOI: 10.1016/j.vascn.2017.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/14/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Recently, electrophysiological activity has been effectively measured in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to predict drug-induced arrhythmia. Dimethyl sulfoxide (DMSO) and ethanol have been used as diluting agents in many experiments. However, the maximum DMSO and ethanol concentrations that can be effectively used in the measurement of electrophysiological parameters in hiPSC-CMs-based patch clamp and multi-electrode array (MEA) have not been fully elucidated. METHODS We investigated the effects of varying concentrations of DMSO and ethanol used as diluting agents on several electrophysiological parameters in hiPSC-CMs using patch clamp and MEA. RESULTS Both DMSO and ethanol at concentrations>1% in external solution resulted in osmolality >400mOsmol/kg, but pH was not affected by either agent. Neither DMSO nor ethanol led to cell death at the concentrations examined. However, resting membrane potential, action potential amplitude, action potential duration at 90% and 40%, and corrected field potential duration were decreased significantly at 1% ethanol concentration. DMSO at 1% also significantly decreased the sodium spike amplitude. In addition, the waveform of action potential and field potential was recorded as irregular at 3% concentrations of both DMSO and ethanol. Concentrations of up to 0.3% of either agent did not affect osmolality, pH, cell death, or electrophysiological parameters in hiPSC-CMs. DISCUSSION Our findings suggest that 0.3% is the maximum concentration at which DMSO or ethanol should be used for dilution purposes in hiPSC-CMs-based patch clamp and MEA.
Collapse
Affiliation(s)
- Soo-Wang Hyun
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, 34114 Daejeon, Republic of Korea.
| | - Bo-Ram Kim
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, 34114 Daejeon, Republic of Korea.
| | - Sung-Ae Hyun
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, 34114 Daejeon, Republic of Korea.
| | - Joung-Wook Seo
- Research Group for Safety Pharmacology, Korea Institute of Toxicology, KRICT, 34114 Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Hortigon-Vinagre MP, Zamora V, Burton FL, Green J, Gintant GA, Smith GL. The Use of Ratiometric Fluorescence Measurements of the Voltage Sensitive Dye Di-4-ANEPPS to Examine Action Potential Characteristics and Drug Effects on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Toxicol Sci 2016; 154:320-331. [PMID: 27621282 PMCID: PMC5139069 DOI: 10.1093/toxsci/kfw171] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) and higher throughput platforms have emerged as potential tools to advance cardiac drug safety screening. This study evaluated the use of high bandwidth photometry applied to voltage-sensitive fluorescent dyes (VSDs) to assess drug-induced changes in action potential characteristics of spontaneously active hiPSC-CM. Human iPSC-CM from 2 commercial sources (Cor.4U and iCell Cardiomyocytes) were stained with the VSD di-4-ANEPPS and placed in a specialized photometry system that simultaneously monitors 2 wavebands of emitted fluorescence, allowing ratiometric measurement of membrane voltage. Signals were acquired at 10 kHz and analyzed using custom software. Action potential duration (APD) values were normally distributed in cardiomyocytes (CMC) from both sources though the mean and variance differed significantly (APD90: 229 ± 15 ms vs 427 ± 49 ms [mean ± SD, P < 0.01]; average spontaneous cycle length: 0.99 ± 0.02 s vs 1.47 ± 0.35 s [mean ± SD, P < 0.01], Cor.4U vs iCell CMC, respectively). The 10-90% rise time of the AP (Trise) was ∼6 ms and was normally distributed when expressed as 1/[Formula: see text] in both cell preparations. Both cell types showed a rate dependence analogous to that of adult human cardiac cells. Furthermore, nifedipine, ranolazine, and E4031 had similar effects on cardiomyocyte electrophysiology in both cell types. However, ranolazine and E4031 induced early after depolarization-like events and high intrinsic firing rates at lower concentrations in iCell CMC. These data show that VSDs provide a minimally invasive, quantitative, and accurate method to assess hiPSC-CM electrophysiology and detect subtle drug-induced effects for drug safety screening while highlighting a need to standardize experimental protocols across preparations.
Collapse
Affiliation(s)
- M P Hortigon-Vinagre
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom
| | - V Zamora
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom
| | - F L Burton
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom
| | - J Green
- AbbVie, 1 North Waukegan Road, Department ZR-13, Building AP-9A, North Chicago, Illinois 60064-6119
| | - G A Gintant
- AbbVie, 1 North Waukegan Road, Department ZR-13, Building AP-9A, North Chicago, Illinois 60064-6119
| | - G L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow 126 University Place, Glasgow G12 8TA, United Kingdom
- Clyde Biosciences Ltd, BioCity Scotland, Bo'Ness Road, Newhouse, Lanarkshire, Scotland ML1 5UH, United Kingdom
| |
Collapse
|
8
|
Bett GCL, Kaplan AD, Rasmusson RL. Action Potential Shape Is a Crucial Measure of Cell Type of Stem Cell-Derived Cardiocytes. Biophys J 2016; 110:284-6. [PMID: 26745432 DOI: 10.1016/j.bpj.2015.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/06/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022] Open
Affiliation(s)
- Glenna C L Bett
- Department of Obstetrics and Gynecology, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York; Department of Physiology and Biophysics, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York.
| | - Aaron D Kaplan
- Department of Medicine, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York; Department of Biomedical Engineering, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York
| | - Randall L Rasmusson
- Department of Physiology and Biophysics, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York; Department of Biomedical Engineering, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, New York.
| |
Collapse
|
9
|
|
10
|
Pfeiffer ER, Vega R, McDonough PM, Price JH, Whittaker R. Specific prediction of clinical QT prolongation by kinetic image cytometry in human stem cell derived cardiomyocytes. J Pharmacol Toxicol Methods 2016; 81:263-73. [PMID: 27095424 DOI: 10.1016/j.vascn.2016.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023]
Abstract
INTRODUCTION A priority in the development and approval of new drugs is assessment of cardiovascular risk. Current methodologies for screening compounds (e.g. HERG testing) for proarrhythmic risk lead to many false positive and false negative results, resulting in the attrition of potentially therapeutic compounds in early development, and the advancement of other candidates that cause adverse effects. With improvements in the technologies of high content imaging and human stem cell differentiation, it is now possible to directly screen compounds for arrhythmogenic tendencies in human stem cell derived cardiomyocytes (hSC-CMs). METHODS A training panel of 90 compounds consisting of roughly equal numbers of QT-prolonging and negative control (non-QT-prolonging) compounds, and a follow-up blinded study of 35 compounds including 16 from the 90 compound panel and 2 duplicates, were evaluated for prolongation of the calcium transient in hSC-CMs using kinetic image cytometry (KIC), a specialized form of high content analysis. RESULTS The KIC-hSC-CM assay identified training compounds that prolong the calcium transient with 98% specificity, 97% precision, 80% sensitivity, and 89% accuracy in predicting clinical QT prolongation by these compounds. The follow-up study of 35 blinded compounds confirmed the reproducibility and strong diagnostic accuracy of the assay. DISCUSSION The correlation of the KIC-hSC-CM results to clinical observations met or surpassed traditional preclinical assessment of cardiac risk utilizing animal models. Thus, the KIC-hSC-CM assay, which can be accomplished in high throughput and at relatively low cost, is an effective new model system for testing chemicals for cardiovascular risk.
Collapse
Affiliation(s)
| | - Raquel Vega
- Vala Sciences, Inc., San Diego, CA 92121, United States
| | | | | | | |
Collapse
|
11
|
CSAHi study: Evaluation of multi-electrode array in combination with human iPS cell-derived cardiomyocytes to predict drug-induced QT prolongation and arrhythmia — Effects of 7 reference compounds at 10 facilities. J Pharmacol Toxicol Methods 2016; 78:93-102. [DOI: 10.1016/j.vascn.2015.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 10/29/2015] [Accepted: 12/02/2015] [Indexed: 12/23/2022]
|
12
|
|
13
|
Kempf H, Andree B, Zweigerdt R. Large-scale production of human pluripotent stem cell derived cardiomyocytes. Adv Drug Deliv Rev 2016; 96:18-30. [PMID: 26658242 DOI: 10.1016/j.addr.2015.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Regenerative medicine, including preclinical studies in large animal models and tissue engineering approaches as well as innovative assays for drug discovery, will require the constant supply of hPSC-derived cardiomyocytes and other functional progenies. Respective cell production processes must be robust, economically viable and ultimately GMP-compliant. Recent research has enabled transition of lab scale protocols for hPSC expansion and cardiomyogenic differentiation towards more controlled processing in industry-compatible culture platforms. Here, advanced strategies for the cultivation and differentiation of hPSCs will be reviewed by focusing on stirred bioreactor-based techniques for process upscaling. We will discuss how cardiomyocyte mass production might benefit from recent findings such as cell expansion at the cardiovascular progenitor state. Finally, remaining challenges will be highlighted, specifically regarding three dimensional (3D) hPSC suspension culture and critical safety issues ahead of clinical translation.
Collapse
Affiliation(s)
- Henning Kempf
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Birgit Andree
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic-, Transplantation and Vascular Surgery, Hannover Medical School, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
14
|
Maass K, Shekhar A, Lu J, Kang G, See F, Kim EE, Delgado C, Shen S, Cohen L, Fishman GI. Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells. Stem Cells 2016; 33:1102-12. [PMID: 25524238 DOI: 10.1002/stem.1921] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/16/2022]
Abstract
The cardiac Purkinje fiber network is composed of highly specialized cardiomyocytes responsible for the synchronous excitation and contraction of the ventricles. Computational modeling, experimental animal studies, and intracardiac electrical recordings from patients with heritable and acquired forms of heart disease suggest that Purkinje cells (PCs) may also serve as critical triggers of life-threatening arrhythmias. Nonetheless, owing to the difficulty in isolating and studying this rare population of cells, the precise role of PC in arrhythmogenesis and the underlying molecular mechanisms responsible for their proarrhythmic behavior are not fully characterized. Conceptually, a stem cell-based model system might facilitate studies of PC-dependent arrhythmia mechanisms and serve as a platform to test novel therapeutics. Here, we describe the generation of murine embryonic stem cells (ESC) harboring pan-cardiomyocyte and PC-specific reporter genes. We demonstrate that the dual reporter gene strategy may be used to identify and isolate the rare ESC-derived PC (ESC-PC) from a mixed population of cardiogenic cells. ESC-PC display transcriptional signatures and functional properties, including action potentials, intracellular calcium cycling, and chronotropic behavior comparable to endogenous PC. Our results suggest that stem-cell derived PC are a feasible new platform for studies of developmental biology, disease pathogenesis, and screening for novel antiarrhythmic therapies.
Collapse
Affiliation(s)
- Karen Maass
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 2016; 96:110-34. [PMID: 25956564 DOI: 10.1016/j.addr.2015.04.019] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 12/19/2022]
Abstract
Engineering functional human cardiac tissue that mimics the native adult morphological and functional phenotype has been a long held objective. In the last 5 years, the field of cardiac tissue engineering has transitioned from cardiac tissues derived from various animal species to the production of the first generation of human engineered cardiac tissues (hECTs), due to recent advances in human stem cell biology. Despite this progress, the hECTs generated to date remain immature relative to the native adult myocardium. In this review, we focus on the maturation challenge in the context of hECTs, the present state of the art, and future perspectives in terms of regenerative medicine, drug discovery, preclinical safety testing and pathophysiological studies.
Collapse
|
16
|
Predictivity of in vitro non-clinical cardiac contractility assays for inotropic effects in humans — A literature search. J Pharmacol Toxicol Methods 2015; 75:62-9. [DOI: 10.1016/j.vascn.2015.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 05/09/2015] [Accepted: 05/22/2015] [Indexed: 11/18/2022]
|
17
|
Cardiovascular Disease Modeling Using Patient-Specific Induced Pluripotent Stem Cells. Int J Mol Sci 2015; 16:18894-922. [PMID: 26274955 PMCID: PMC4581278 DOI: 10.3390/ijms160818894] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) has opened up a new scientific frontier in medicine. This technology has made it possible to obtain pluripotent stem cells from individuals with genetic disorders. Because iPSCs carry the identical genetic anomalies related to those disorders, iPSCs are an ideal platform for medical research. The pathophysiological cellular phenotypes of genetically heritable heart diseases such as arrhythmias and cardiomyopathies, have been modeled on cell culture dishes using disease-specific iPSC-derived cardiomyocytes. These model systems can potentially provide new insights into disease mechanisms and drug discoveries. This review focuses on recent progress in cardiovascular disease modeling using iPSCs, and discusses problems and future perspectives concerning their use.
Collapse
|
18
|
Visser SAG, de Alwis DP, Kerbusch T, Stone JA, Allerheiligen SRB. Implementation of quantitative and systems pharmacology in large pharma. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2014; 3:e142. [PMID: 25338195 PMCID: PMC4474169 DOI: 10.1038/psp.2014.40] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/30/2014] [Indexed: 02/04/2023]
Abstract
Quantitative and systems pharmacology concepts and tools are the foundation of the model-informed drug development paradigm at Merck for integrating knowledge, enabling decisions, and enhancing submissions. Rigorous prioritization of modeling and simulation activities has enabled key drug development decisions and led to a high return on investment through significant cost avoidance. Critical factors for the successful implementation, examples on impact on decision making with associated return of investment, and drivers for continued success are discussed.
Collapse
Affiliation(s)
- S A G Visser
- Quantitative Pharmacology and Pharmacometrics, Merck Research Labs, Merck & Co, Rahway, New Jersey, USA
| | - D P de Alwis
- Quantitative Pharmacology and Pharmacometrics, Merck Research Labs, Merck & Co, Rahway, New Jersey, USA
| | - T Kerbusch
- Quantitive Pharmacology and Pharmacometrics, MSD, Oss, The Netherlands
| | - J A Stone
- Quantitative Pharmacology and Pharmacometrics, Merck Research Labs, Merck & Co, Rahway, New Jersey, USA
| | - S R B Allerheiligen
- Quantitative Pharmacology and Pharmacometrics, Merck Research Labs, Merck & Co, Rahway, New Jersey, USA
| |
Collapse
|
19
|
Tian C, Zhu R, Zhu L, Qiu T, Cao Z, Kang T. Potassium Channels: Structures, Diseases, and Modulators. Chem Biol Drug Des 2013; 83:1-26. [DOI: 10.1111/cbdd.12237] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Chuan Tian
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian Liaoning 116600 China
| | - Ruixin Zhu
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Lixin Zhu
- Department of Pediatrics; Digestive Diseases and Nutrition Center; The State University of New York at Buffalo; Buffalo NY 14226 USA
| | - Tianyi Qiu
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Zhiwei Cao
- School of Life Sciences and Technology; Tongji University; Shanghai 200092 China
| | - Tingguo Kang
- School of Pharmacy; Liaoning University of Traditional Chinese Medicine; Dalian Liaoning 116600 China
| |
Collapse
|
20
|
Li G, Cheng G, Wu J, Ma S, Sun C. New iPSC for old long QT syndrome modeling: putting the evidence into perspective. Exp Biol Med (Maywood) 2013; 239:131-40. [PMID: 24363251 DOI: 10.1177/1535370213514000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Induced pluripotent stem cells (iPS cells or iPSCs) are typically derived by transfection of certain stem cell-associated genes into non-pluripotent cells, such as adult fibroblasts (typically adult somatic cells). Various diseases can be modeled through iPSC technology. The important implication of iPSCs to offer an unprecedented opportunity to recapitulate pathologic human tissue formation in vitro has generated great excitement and interest in the whole biomedical research community. Long QT syndrome (LQTS), an inherited heart disease, is characterized by prolonged QT interval on a surface electrocardiogram. LQTS presents with life-threatening cardiac arrhythmias, which can lead to fainting, syncope, and sudden death. The iPSC-derived cardiomyocytes from LQTS patients offer a potentially unlimited source of materials for biomedical study. They can be used to recapitulate complex physiological phenotypes, probe toxicological testing and drug screening, clarify the novel mechanistic insights and may also rectify gene defects at the cellular and molecular level. Despite the emerging challenges, iPSC technology has been increasingly recognized as a valuable and growing toolkit for modeling LQTS over other various models of human diseases.
Collapse
Affiliation(s)
- Guoliang Li
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | | | | | | | | |
Collapse
|
21
|
Townsend C, Brown BS. Predicting drug-induced QT prolongation and torsades de pointes: a review of preclinical endpoint measures. ACTA ACUST UNITED AC 2013; Chapter 10:Unit 10.16. [PMID: 23744708 DOI: 10.1002/0471141755.ph1016s61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Compound-induced prolongation of the cardiac QT interval is a major concern in drug development and this unit discusses approaches that can predict QT effects prior to undertaking clinical trials. The majority of compounds that prolong the QT interval block the cardiac rapid delayed rectifier potassium current, IKr (hERG). Described in this overview are different ways to measure hERG, from recent advances in automated electrophysiology to the quantification of channel protein trafficking and binding. The contribution of other cardiac ion channels to hERG data interpretation is also discussed. In addition, endpoint measures of the integrated activity of cardiac ion channels at the single-cell, tissue, and whole-animal level, including for example the well-established action potential to the more recent beat-to-beat variability, transmural dispersion of repolarization, and field potential duration, are described in the context of their ability to predict QT prolongation and torsadogenicity in humans.
Collapse
Affiliation(s)
- Claire Townsend
- GlaxoSmithKline Biological Reagents and Assay Development, Research Triangle Park, NC, USA
| | | |
Collapse
|
22
|
Safety pharmacology — Current and emerging concepts. Toxicol Appl Pharmacol 2013; 273:229-41. [DOI: 10.1016/j.taap.2013.04.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/31/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022]
|
23
|
Design and formulation of functional pluripotent stem cell-derived cardiac microtissues. Proc Natl Acad Sci U S A 2013; 110:E4698-707. [PMID: 24255110 DOI: 10.1073/pnas.1311120110] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Access to robust and information-rich human cardiac tissue models would accelerate drug-based strategies for treating heart disease. Despite significant effort, the generation of high-fidelity adult-like human cardiac tissue analogs remains challenging. We used computational modeling of tissue contraction and assembly mechanics in conjunction with microfabricated constraints to guide the design of aligned and functional 3D human pluripotent stem cell (hPSC)-derived cardiac microtissues that we term cardiac microwires (CMWs). Miniaturization of the platform circumvented the need for tissue vascularization and enabled higher-throughput image-based analysis of CMW drug responsiveness. CMW tissue properties could be tuned using electromechanical stimuli and cell composition. Specifically, controlling self-assembly of 3D tissues in aligned collagen, and pacing with point stimulation electrodes, were found to promote cardiac maturation-associated gene expression and in vivo-like electrical signal propagation. Furthermore, screening a range of hPSC-derived cardiac cell ratios identified that 75% NKX2 Homeobox 5 (NKX2-5)+ cardiomyocytes and 25% Cluster of Differentiation 90 OR (CD90)+ nonmyocytes optimized tissue remodeling dynamics and yielded enhanced structural and functional properties. Finally, we demonstrate the utility of the optimized platform in a tachycardic model of arrhythmogenesis, an aspect of cardiac electrophysiology not previously recapitulated in 3D in vitro hPSC-derived cardiac microtissue models. The design criteria identified with our CMW platform should accelerate the development of predictive in vitro assays of human heart tissue function.
Collapse
|
24
|
Human embryonic stem cell derived cardiac myocytes detect hERG-mediated repolarization effects, but not Nav1.5 induced depolarization delay. J Pharmacol Toxicol Methods 2013; 68:74-81. [DOI: 10.1016/j.vascn.2013.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/09/2013] [Accepted: 03/11/2013] [Indexed: 01/05/2023]
|
25
|
Harris K, Aylott M, Cui Y, Louttit JB, McMahon NC, Sridhar A. Comparison of Electrophysiological Data From Human-Induced Pluripotent Stem Cell–Derived Cardiomyocytes to Functional Preclinical Safety Assays. Toxicol Sci 2013; 134:412-26. [DOI: 10.1093/toxsci/kft113] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
26
|
Pierson JB, Berridge BR, Brooks MB, Dreher K, Koerner J, Schultze AE, Sarazan RD, Valentin JP, Vargas HM, Pettit SD. A public-private consortium advances cardiac safety evaluation: achievements of the HESI Cardiac Safety Technical Committee. J Pharmacol Toxicol Methods 2013; 68:7-12. [PMID: 23567075 DOI: 10.1016/j.vascn.2013.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/25/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The evaluation of cardiovascular side-effects is a critical element in the development of all new drugs and chemicals. Cardiac safety issues are a major cause of attrition and withdrawal due to adverse drug reactions (ADRs) in pharmaceutical drug development. METHODS The evolution of the HESI Technical Committee on Cardiac Safety from 2000-2013 is presented as an example of an effective international consortium of academic, government, and industry scientists working to improve cardiac safety. RESULTS AND DISCUSSION The HESI Technical Committee Working Groups facilitated the development of a variety of platforms for resource sharing and communication among experts that led to innovative strategies for improved drug safety. The positive impacts arising from these Working Groups are described in this article.
Collapse
Affiliation(s)
- Jennifer B Pierson
- Health and Environmental Sciences Institute, 1156 15th Street, Northwest, Suite 200, Washington, DC 20005, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|