1
|
Li XL, Han C, Luo M, Xiao S, Li J, Yu C, Cheng S, Jin Y, Han Y, Todoroki K, Shi Q, Min JZ. Relative quantitation of glycans in cetuximab using ultra-high-performance liquid chromatography-high-resolution mass spectrometry by Pronase E digestion. J Chromatogr A 2022; 1677:463302. [PMID: 35820231 DOI: 10.1016/j.chroma.2022.463302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022]
Abstract
Glycans play important roles in the activity and function of monoclonal antibodies (mAbs). In this study, an isotope labeling method for the relative quantitative analysis of glycans in cetuximab, a chimeric human/mouse IgG1 monoclonal antibody that specifically targets epidermal growth factor receptor, via hydrophilic interaction LC-ultra-high-performance LC-HRMS was established based on Pronase E digestion. To this aim, novel isotope MS probes, i.e., 3-benzoyl-2-oxothiazolidine-4-carboxylic acid (d0-BOTC) and 3-(2,3,4,5,6-pentadeuterio-benzoyl)-2-oxothiazolidine-4-carboxylate acid (d5-BOTC), which include a carboxyl group to target the amino functional group in glycosylamine, were developed. The nonspecific Pronase E enzyme could simultaneously digest the peptide bound to the N- and O-glycans into glycosylamine having only one amino acid. Since the mass difference between the light- and heavy-labeled glycans was 5.0 Da, the relative abundance of their MS peaks was used to achieve the qualitative and relative quantitative analysis of glycans. Sialylglycopeptide was used as a complex glycan model to validate the accuracy of the method. The results demonstrated the good linearity (R2 ≥ 0.9994) between the experimentally detected MS intensity ratios and the theoretical molar ratios of the d0-BOTC to the corresponding d5-BOTC derivatives in the dynamic range of 0.03-10 and 0.03-20 of three orders magnitude for the d5-BOTC/d0-BOTC ratios. The reproducibility was between 0.16% and 10.70%, and the limit of detection was 13 fmol. The feasibility of the relative quantification method was investigated by analyzing the glycan content in cetuximab, finding good consistency between experimental and theoretical molar ratios (5:1, 3:1, 1:1, 1:3, 1:5) of d0/d5-BOTC-labeled glycans. Finally, 13 glycans were successfully identified in cetuximab by applying this method using an in-house Tracefinder database. This study provides a novel strategy for the high throughput analysis, identification, and functional study of glycans in mAbs.
Collapse
Affiliation(s)
- Xi-Ling Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Chengqiang Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Miao Luo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Shuyun Xiao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Jing Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Chenglong Yu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Shengyu Cheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Yueying Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Yu Han
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-Analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Qing Shi
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China.
| | - Jun Zhe Min
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Pharmaceutical Analysis, College of Pharmacy, Yanbian University, and Department of Pharmacy, Yanbian University Hospital, Yanji, Jilin 133002, China.
| |
Collapse
|
2
|
Kaumaya PTP. B-cell epitope peptide cancer vaccines: a new paradigm for combination immunotherapies with novel checkpoint peptide vaccine. Future Oncol 2020; 16:1767-1791. [PMID: 32564612 PMCID: PMC7426751 DOI: 10.2217/fon-2020-0224] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
In light of the numerous US FDA-approved humanized monoclonal antibodies (mAbs) for cancer immunotherapy, it is surprising that the advancement of B-cell epitope vaccines designed to elicit a natural humoral polyclonal antibody response has not gained traction in the immune-oncology landscape. Passive immunotherapy with humanized mAbs (Trastuzumab [Herceptin®]; Pertuzumab [Perjeta®]) has provided clinical benefit to breast cancer patients, albeit with significant shortcomings including toxicity problems and resistance, high costs, sophisticated therapeutic regimen and long half-life. The role of B-cell humoral immunity in cancer is under appreciated and underdeveloped. We have advanced the idea of active immunotherapy with chimeric B-cell epitope peptides incorporating a 'promiscuous' T-cell epitope that elicits a polyclonal antibody response, which provides safe, cost-effective therapeutic advantage over mAbs. We have created a portfolio of validated B-cell peptide epitopes against multiple receptor tyrosine kinases (HER-1, HER-3, IGF-1R and VEGF). We have successfully translated two HER-2 combination B-cell peptide vaccines in Phase I and II clinical trials. We have recently developed an effective novel PD-1 vaccine. In this article, I will review our approaches and strategies that focus on B-cell epitope cancer vaccines.
Collapse
Affiliation(s)
- Pravin TP Kaumaya
- Department of Obstetrics & Gynecology, College of Medicine, Wexner Medical Center, The James Cancer Hospital & Solove Research Institute, The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Jung HS, Lee SI, Kang SH, Wang JS, Yang EH, Jeon B, Myung J, Baek JY, Park SK. Monoclonal antibodies against autocrine motility factor suppress gastric cancer. Oncol Lett 2017; 13:4925-4932. [PMID: 28599497 DOI: 10.3892/ol.2017.6037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
Autocrine motility factor (AMF), which is a secreted form of phosphoglucose isomerase, is mainly secreted by various tumors and has cytokine-like activity. AMF is known to stimulate proliferation, survival and metastasis of cancer cells, and angiogenesis within a tumor. The present study investigated whether inhibition of AMF using targeted-antibodies was able to suppress the growth of cancer. A migration assay using a Boyden chamber was utilized to measure the activity of AMF on the motility of cancer cells. A recombinant human AMF (rhAMF) prepared from E. coli transformed with the pET22b-AMF vector increased the motility of MDA-MB-231 and A549 cells, but it did not affect that of NCI-N87 or HepG2 cells, which exhibited the ability to secrete high amounts of their own endogenous AMF into the culture medium. The extent to which the AMF receptor was expressed on cancer cells did not correlate clearly with the cell motility stimulated by rhAMF. In A549-xenografted nude mice treated with sunitinib or cetuximab, a decrease in the plasma AMF concentration was accompanied by a reduction in tumor weight, suggesting an association between the plasma AMF concentration and anticancer activity. A monoclonal antibody (9A-4H), which revealed a high binding affinity for E. coli-derived rhAMF, significantly suppressed the growth of tumors in Balb/c nude mice transplanted with the human gastric cancer cell line NCI-N87, to the similar extent as trastuzumab, an anticancer antibody. The present study suggests, for the first time, that an antibody specific to AMF may be a therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Hahn-Sun Jung
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Su In Lee
- College of Pharmacy, Republic of Korea University, Sejong 30019, Republic of Korea
| | - Seung-Hoon Kang
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Jin Sang Wang
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Eun Hee Yang
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Byungwook Jeon
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Jayhyuk Myung
- Boryung Central Research Institute, Boryung Pharmaceutical Co. Ltd., Ansan-Si, Kyeongki-Do 03127, Republic of Korea
| | - Ji Young Baek
- College of Pharmacy, Republic of Korea University, Sejong 30019, Republic of Korea
| | - Song-Kyu Park
- College of Pharmacy, Republic of Korea University, Sejong 30019, Republic of Korea.,Research Driven Hospital, Korea University Guro Hospital, Biomedical Research Center, Seoul 08308, Republic of Korea
| |
Collapse
|
6
|
Carlson JJ, Garrison LP, Ramsey SD, Veenstra DL. The potential clinical and economic outcomes of pharmacogenomic approaches to EGFR-tyrosine kinase inhibitor therapy in non-small-cell lung cancer. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2009; 12:20-27. [PMID: 18647257 DOI: 10.1111/j.1524-4733.2008.00415.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
OBJECTIVES Pharmacogenomic applications in oncology offer significant promise, but the clinical and economic implications remain unclear. The objective of this study was to evaluate the potential cost-utility of implementing epidermal growth factor receptor (EGFR) testing before initiating second-line therapy for advanced refractory non-small-cell lung cancer (NSCLC). METHODS We developed a decision analytic model to evaluate the cost-utility of EGFR protein expression or gene copy number testing compared to standard care with erlotinib in refractory advanced NSCLC patients. Costs and utilities were obtained from publicly available sources. We performed sensitivity analyses to evaluate uncertainty in the results. RESULTS The quality-adjusted life expectancies for erlotinib, EGFR protein expression testing, and gene copy number testing were: 0.44, 0.48, and 0.50 quality-adjusted life years (QALYs); and the costs were: $57,238, $63,512, and $66,447, respectively. The most cost-effective testing option, EGFR gene copy number testing, produced an incremental cost-effectiveness ratio of $162,018/QALY compared to no testing (erlotinib). The results were most sensitive to the survival estimates, health state utilities, and cost of disease progression. In the probabilistic sensitivity analyses, erlotinib without testing was the optimal treatment strategy until the $150,000/QALY willingness-to-pay threshold, after which gene copy testing was optimal. The discounted expected value of perfect information at a $100,000/QALY threshold in the USA over 5 years was $31.4 million. CONCLUSIONS The study results suggest that EGFR pharmacogenomic testing has the potential to improve quality-adjusted life expectancy in the treatment of refractory NSCLC by a clinically meaningful margin at a value commensurate with the approved therapies in this setting. Additional research in this area is warranted.
Collapse
Affiliation(s)
- Josh J Carlson
- School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
7
|
Rivera F, Eugenia Vega-Villegas M, Lopez-Brea MF, Marquez R. Current situation of Panitumumab, Matuzumab, Nimotuzumab and Zalutumumab. Acta Oncol 2008; 47:9-19. [PMID: 18097777 DOI: 10.1080/02841860701704724] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
EGFR overexpression usually correlates with a more advanced disease stage, a poorer prognosis and a worse chemotherapy response. EGFR expression increase has been observed in many tumours. For all the aforementioned reasons, EGFR inhibition can be considered an attractive approach in cancer treatment. One strategy has been receptor inhibition of extracellular domain using monoclonal antibodies. Cetuximab is the most developed one and there is plenty information on the literature about its current status. In this review we focus on other EGFR monoclonal antibodies under clinical development. The more developed one is Panitumumab. Its clinical development is taking place very quickly and it has mainly been studied in colorectal cancer showing promising results. There are also other interesting drugs such as Matuzumab, Nimotuzumab and Zalutumumab.
Collapse
|
8
|
Skobeleva N, Menon S, Weber L, Golemis EA, Khazak V. In vitro and in vivo synergy of MCP compounds with mitogen-activated protein kinase pathway- and microtubule-targeting inhibitors. Mol Cancer Ther 2007; 6:898-906. [PMID: 17363484 PMCID: PMC2670615 DOI: 10.1158/1535-7163.mct-06-0602] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
An important clinical task is to coherently integrate the use of protein-targeted drugs into preexisting therapeutic regimens, with the goal of improving treatment efficacy. Constitutive activation of Ras-dependent signaling is important in many tumors, and agents that inhibit this pathway might be useful in numerous therapeutic combinations. The MCP compounds were identified as inhibitors of Ras-Raf interactions and previously shown to inhibit multiple Ras-dependent transformation phenotypes when used as monoagents in cell culture analyses. In this study, we investigate the ability of the MCP110 compound to synergistically enhance the activity of other therapeutic agents. In both a defined K-Ras-transformed fibroblast model and in human tumor cell lines with mutationally activated Ras, MCP110 selectively synergizes with other agents targeting the mitogen-activated protein kinase pathway, and with multiple agents (paclitaxel, docetaxel, and vincristine) targeting the microtubule network. The synergistic activity of MCP110 and paclitaxel was further established by experiments showing that in Kaposi's sarcoma oncogenically transformed cell lines, cellular models for tumors treated with taxanes in the clinic and in which Raf-dependent signaling plays an important role, MCP110 synergizes with paclitaxel and limit growth. Finally, in vivo testing indicate that MCP110 is bioavailable, inhibits the growth of LXFA 629 lung and SW620 colon carcinoma cells in xenograft models, and again strongly synergizes with paclitaxel. Together, these findings indicate that MCP compounds have potential to be effective in combination with other anticancer agents.
Collapse
Affiliation(s)
- Natalia Skobeleva
- Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA
- Petersburg Nuclear Physics Institute, Gatchina/St.Petersburg, Russia
| | | | | | - Erica A. Golemis
- Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA
| | | |
Collapse
|
9
|
Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou Q. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal Biochem 2007; 364:8-18. [PMID: 17362871 DOI: 10.1016/j.ab.2007.01.023] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 01/12/2007] [Accepted: 01/16/2007] [Indexed: 11/28/2022]
Abstract
Cetuximab is a novel therapeutic monoclonal antibody with two N-glycosylation sites: a conserved site in the CH2 domain and a second site within the framework 3 of the variable portion of the heavy chain. The detailed structures of these oligosaccharides were successfully characterized using orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight mass spectrometry (oMALDI Qq-TOF MS) and tandem mass spectrometry (MS/MS) in combination with exoglycosidase digestion. The N-linked oligosaccharides were released by treatment with N-glycanase F, reductively aminated with anthranilic acid, and fractionated by normal phase high-performance liquid chromatography (NP-HPLC). The fluorescent-labeled oligosaccharide pool and fractions were analyzed by oMALDI Qq-TOF MS and MS/MS in negative ion mode. Each fraction was further digested with an array of exoglycosidase mixtures, and subsequent MALDI TOF MS analysis of the resulting products yielded information about structural features of the oligosaccharide. The combined data revealed the presence of 21 distinct oligosaccharide structures in cetuximab. These oligosaccharides differ mainly in degree of sialylation with N-glycolyl neuraminic acid and extent of galactosylation (zero-, mono-, di-, and alpha(1-3)-galactosidase). The individual oligosaccharides were further assigned to the specific sites in the Fab and Fc regions of the antibody. This study represents a unique approach in that MS/MS data were used to identify and confirm the oligosaccharide structures of a protein.
Collapse
Affiliation(s)
- Jun Qian
- Department of Bioanalytical Science, Imclone Systems Incorporated, Branchburg, NJ 08876, USA
| | | | | | | | | | | |
Collapse
|
10
|
Reid A, Vidal L, Shaw H, de Bono J. Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur J Cancer 2007; 43:481-9. [PMID: 17208435 DOI: 10.1016/j.ejca.2006.11.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 11/16/2006] [Indexed: 02/06/2023]
Abstract
Targeting of epidermal growth factor receptor (EGFR) and HER2 is a proven anti-cancer strategy. However, heterodimerisation, compensatory 'crosstalk' and redundancy exist in the ErbB network, and there is therefore a sound scientific rationale for dual inhibition of EGFR and HER2. Trials of approved agents in combination, for example trastuzumab and cetuximab, are underway. There is also a new generation of small molecule tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mABs) that target two or more ErbB receptors. Lapatinib, a TKI of EGFR and HER2, has shown clinical benefit in trastuzumab refractory breast cancer and is poised for FDA approval. Other agents include BIBW-2992 and HKI-272, irreversible TKIs of EGFR and HER2, and pertuzumab, a heterodimerisation inhibitor of EGFR and HER2.
Collapse
Affiliation(s)
- Alison Reid
- Royal Marsden Hospital, The Institute of Cancer Research, Centre for Cancer Therapeutics, Downs Road, Sutton, Surrey SM2 5PT, UK
| | | | | | | |
Collapse
|