1
|
Rajamohan R, Kamaraj E, Muthuraja P, Murugavel K, Prabakaran DS, Govindasamy C, Almutairi KM, Sun S. Supramolecular interaction of ketoprofen with native and hydroxypropyl beta-cyclodextrin: Improved solubility and anti-inflammatory. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 333:125904. [PMID: 39978185 DOI: 10.1016/j.saa.2025.125904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Ketoprofen (KTP), an active pharmaceutical ingredient with poor solubility in water and other aqueous solvents, has gained attention for its improved solubility and quicker therapeutic effects when combined with cyclodextrin (CD). This study thoroughly examines how varying concentrations of CD affect KTP, leading to notable increases in absorbance and fluorescence intensity. The binding constant for the 1:1 complex is determined from these changes. Ultrasonication enabled the successful formation of inclusion complexes (ICs) of KTP with β-cyclodextrin (βCD) and hydroxypropyl-β-cyclodextrin (HβCD), referred to as KTP:βCD IC and KTP:HβCD IC, respectively. Significant differences in chemical shift values and surface morphology are observed for the ICs compared to their uncomplexed form. The thermal stability of KTP is markedly improved when combined with CDs. The HOMO-LUMO relationship stabilizes the complex through favorable interactions and electron transfer action within the ICs. Additionally, protein denaturation assays showed significant enhancements in the anti-inflammatory and anti-arthritic activities of KTP in its IC form compared to KTP alone. Thus, due to their enhanced solubility and complexation properties, the ICs of KTP show promising potential as drug materials for solid dosage forms.
Collapse
Affiliation(s)
- Rajaram Rajamohan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Eswaran Kamaraj
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Perumal Muthuraja
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, India
| | - Kuppusamy Murugavel
- PG and Research Department of Chemistry, Government Arts College, Chidambaram 608 102, Tamil Nadu, India
| | - D S Prabakaran
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603 203, India; Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur, Tamil Nadu 626 124, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P. O. Box 10219, 11433 Riyadh, Saudi Arabia
| | - Khalid M Almutairi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P. O. Box 10219, 11433 Riyadh, Saudi Arabia
| | - Seho Sun
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
2
|
Pina LTS, Rabelo TK, Borges LP, S S Gonçalves V, Silva AS, Oliveira MA, S S Quintans J, Quintans Júnior LJ, Scotti L, Scotti MT, da Silva Júnior EG, Douglas Melo Coutinho H, Guimarães AG. Antihyperalgesic effect of γ-terpinene complexed in β-cyclodextrin on neuropathic pain model induced by tumor cells. Int J Pharm 2024; 662:124538. [PMID: 39079594 DOI: 10.1016/j.ijpharm.2024.124538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024]
Abstract
Neuropathic pain is a high-intensity pain that can be caused by compression, transection, injury, nerve infiltration and drug treatment of cancer. Furthermore, drug therapy has low clinical efficacy, many adverse effects and remission of painful symptoms. In this way, natural products derived from plants constitute a promising therapeutic alternative. Therefore, the aim of this study was to evaluate the antihyperalgesic effect of γ-terpinene (γ-TPN) e γ-terpinene in β-cyclodextrin inclusion complexes (TPN/CD) on neuropathic pain induced by tumor cells. Complexation extended the effect time for another 5 h and daily treatment for six days with γ-TPN (50 mg/kg, p.o.) and γ-TPN/β-CD (50 mg/kg, p.o.) significantly reduced (p < 0.001) the mechanical hyperalgesia induced by the administration of 2x106 sarcoma cells 180 in the around the sciatic nerve. In addition, the Grip and Rota-rod techniques demonstrated that there was no interference on the muscle strength and motor coordination of the animals, suggesting that the compound under study does not have central nervous system depressant effects at the doses used. Molecular docking studies demonstrate favorable binding energies between γ-TPN and β-CD, and alpha-2 adrenergic, glutamatergic, opioid and cholinergic receptors. Thus, this study demonstrates the potential of terpinene complexation in controlling neuropathic pain induced by tumor cells.
Collapse
Affiliation(s)
- Lícia T S Pina
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Thallita K Rabelo
- Harquail Centre for Neuromodulation, Sunnybrook Helth Sciences Centre, University of Toronto, Ontario, Canada
| | - Lysandro P Borges
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Vitória S S Gonçalves
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Akleyton S Silva
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Jullyana S S Quintans
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | | | | | | | | | - Adriana G Guimarães
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
3
|
Santos WBR, Pina LTS, de Oliveira MA, Santos LABO, Batista MVA, Trindade GGG, Duarte MC, Almeida JRGS, Quintans-Júnior LJ, Quintans JSS, Serafini MR, Coutinho HDM, Kowalska G, Baj T, Kowalski R, Guimarães AG. Antinociceptive Effect of a p-Cymene/β-Cyclodextrin Inclusion Complex in a Murine Cancer Pain Model: Characterization Aided through a Docking Study. Molecules 2023; 28:molecules28114465. [PMID: 37298941 DOI: 10.3390/molecules28114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Pain is one of the most prevalent and difficult to manage symptoms in cancer patients, and conventional drugs present a range of adverse reactions. The development of β-cyclodextrins (β-CD) complexes has been used to avoid physicochemical and pharmacological limitations due to the lipophilicity of compounds such as p-Cymene (PC), a monoterpene with antinociceptive effects. Our aim was to obtain, characterize, and measure the effect of the complex of p-cymene and β-cyclodextrin (PC/β-CD) in a cancer pain model. Initially, molecular docking was performed to predict the viability of complex formation. Afterward, PC/β-CD was obtained by slurry complexation, characterized by HPLC and NMR. Finally, PC/β-CD was tested in a Sarcoma 180 (S180)-induced pain model. Molecular docking indicated that the occurrence of interaction between PC and β-CD is favorable. PC/β-CD showed complexation efficiency of 82.61%, and NMR demonstrated PC complexation in the β-CD cavity. In the S180 cancer pain model, PC/β-CD significantly reduced the mechanical hyperalgesia, spontaneous nociception, and nociception induced by non-noxious palpation at the doses tested (p < 0.05) when compared to vehicle differently from free PC (p > 0.05). Therefore, the complexation of PC in β-CD was shown to improve the pharmacological effect of the drug as well as reducing the required dose.
Collapse
Affiliation(s)
- Wagner B R Santos
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Lícia T S Pina
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Marlange A de Oliveira
- Departament of Physiology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Lucas A B O Santos
- Departament of Biology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Marcus V A Batista
- Departament of Biology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Gabriela G G Trindade
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Marcelo C Duarte
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Jackson R G S Almeida
- Department of Pharmacy, Federal University of Vale do São Francisco, Juazeiro 48902-300, BA, Brazil
| | | | - Jullyana S S Quintans
- Departament of Physiology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Mairim R Serafini
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry (DBQ), Regional University of Cariri (URCA), Pimenta, Crato 63105-000, CE, Brazil
| | - Grażyna Kowalska
- Department of Tourism and Recreation, University of Life Sciences in Lublin, 15 Akademicka Str., 20-950 Lublin, Poland
| | - Tomasz Baj
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodźki Str., 20-093 Lublin, Poland
| | - Radosław Kowalski
- Department of Analysis and Food Quality Assessment, University of Life Sciences in Lublin, 8 Skromna Str., 20-704 Lublin, Poland
| | - Adriana G Guimarães
- Departament of Pharmacy, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil
| |
Collapse
|
4
|
Santos AM, Carvalho Santana Júnior C, Nascimento Júnior JAC, Andrade TDA, Shanmugam S, Thangaraj P, Frank LA, Serafini MR. Antibacterial drugs and cyclodextrin inclusion complexes: a patent review. Expert Opin Drug Deliv 2023; 20:349-366. [PMID: 36722254 DOI: 10.1080/17425247.2023.2175815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Bacterial antibiotic resistance occurs when bacteria mutate and escape the effect of antibiotics, which makes the antibiotics no longer effective in treating infections. New solutions for bacterial infections are a persistent need including the identification of drugs with better pharmacological profiles, more potent, and safer. Cyclodextrins inclusion complexes have been able to improve the physicochemical and pharmacological properties of the formulation molecules, resulting in new alternatives with better efficacy. AREAS COVERED The patents analyzed in the review used treatments based on antibiotics already on the market, natural products, and synthesized molecules composed of the formulation with cyclodextrins. The combination between cyclodextrin and nanostructures also were presented in the patents review process. Moreover, inclusion complexes have been an alternative in developing treatment mainly in China by the pharmaceutical industries in several countries such as Germany, Hungary, the United States of America, Japan and China. EXPERT OPINION This review is broad and complete since it considers the first patent involving cyclodextrins and antibacterial drugs. Therefore, the various inclusion complexes and antibacterial drugs alternatives presented in this review offer therapeutic options to fight bacterial infections. If shown to be effective, these drugs may be extremely important in the current clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil.,Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil.,Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
5
|
Beserra-Filho JIA, Maria-Macêdo A, Silva-Martins S, Custódio-Silva AC, Soares-Silva B, Silva SP, Lambertucci RH, de Souza Araújo AA, Lucchese AM, Quintans-Júnior LJ, Santos JR, Silva RH, Ribeiro AM. Lippia grata essential oil complexed with β-cyclodextrin ameliorates biochemical and behavioral deficits in an animal model of progressive parkinsonism. Metab Brain Dis 2022; 37:2331-2347. [PMID: 35779151 DOI: 10.1007/s11011-022-01032-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/13/2022] [Indexed: 10/17/2022]
Abstract
Parkinson's disease (PD) is identified by the loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc), and is correlated to aggregates of proteins such as α-synuclein, Lewy's bodies. Although the PD etiology remains poorly understood, evidence suggests a main role of oxidative stress on this process. Lippia grata Schauer, known as "alecrim-do-mato", "alecrim-de-vaqueiro", "alecrim-da-chapada", is a native bush from tropical areas mainly distributed throughout the Central and South America. This plant species is commonly used in traditional medicine for relief of pain and inflammation conditions, and that has proven antioxidant effects. We evaluated the effects of essential oil of the L. grata after its complexed with β-cyclodextrin (LIP) on PD animal model induced by reserpine (RES). Behavioral assessments were performed across the treatment. Upon completion the treatment, the animals were euthanized, afterwards their brains were isolated and processed for immunohistochemical and oxidative stress analysis. The LIP treatment delayed the onset of the behavior of catalepsy, decreased the number of oral movements and prevented the memory impairment on the novel object recognition task. In addition, the treatment with LIP protected against dopaminergic depletion in the SNpc and dorsal striatum (STRd), and decreased the α-syn immunoreactivity in the SNpc and hippocampus (HIP). Moreover, there was reduction of the oxidative stability index. These findings demonstrated that the LIP treatment has neuroprotective effect in a progressive parkinsonism model, suggesting that LIP could be an important source for novel treatment approaches in PD.
Collapse
Affiliation(s)
- Jose Ivo A Beserra-Filho
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda Maria-Macêdo
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Suellen Silva-Martins
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | - Beatriz Soares-Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | - Sara Pereira Silva
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil
| | | | | | - Angélica Maria Lucchese
- Graduate Programm in Biotechnology, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | | | - José Ronaldo Santos
- Department of Biosciences, Universidade Federal de Sergipe, Itabaiana, Sergipe, Brazil
| | - Regina H Silva
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Alessandra M Ribeiro
- Departament of Biosciences, Universidade Federal de São Paulo, Santos, São Paulo, Brazil.
| |
Collapse
|
6
|
Pina LTS, Rabelo TK, Trindade GGG, Almeida IKS, Oliveira MA, Dos Santos PL, Souza DS, de Menezes-Filho JER, de Vasconcelos CML, Santos SL, Scotti L, Scotti MT, Araújo AAS, Quintans JSS, Quintans LJ, Guimarães AG. γ-Terpinene complexed with β-cyclodextrin attenuates spinal neuroactivity in animals with cancer pain by Ca2+ channel block. J Pharm Pharmacol 2022; 74:1629-1639. [PMID: 35976257 DOI: 10.1093/jpp/rgac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Considering that γ-terpinene (γ-TPN) is a monoterpene found in Cannabis oil, with high lipophilicity and limited pharmacokinetics, our objective was to evaluate whether its complexation in β-cyclodextrin (γ-TPN/β-CD) could improve its physicochemical properties and action on cancer pain, as well as verify the mechanisms of action involved. METHODS The γ-TPN/β-CD was prepared and submitted to physicochemical characterization. Animals with sarcoma 180 were treated (vehicle, γ-TPN 50 mg/kg, γ-TPN/β-CD 5 mg/kg or morphine) and assessed for hyperalgesia, TNF-α and IL-1β levels, iNOS and c-Fos activity. The effects of γ-TPN on calcium channels were studied by patch-clamp and molecular docking. RESULTS β-CD improved the physicochemical properties and prolonged the anti-hyperalgesic effect of γ-TPN. This compound also reduced the levels of IL-1β, TNF-α and iNOS in the tumour, and c-Fos protein in the spinal cord. In addition, it reduced Ca2+ current, presenting favourable chemical interactions with different voltage-dependent calcium channels. CONCLUSION These results indicate that the complexation of γ-TPN into β-CD increases its stability and time effect, reducing spinal neuroactivity and inflammation by blocking calcium channels.
Collapse
Affiliation(s)
- Lícia T S Pina
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Thallita K Rabelo
- Sunnybrook Research Institute. Harquail Centre for Neuromodulation, Canada
| | - Gabriela G G Trindade
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Iggo K S Almeida
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Priscila L Dos Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Diego Santos Souza
- Department of Biophysics and Immunology, Federal University of Minas Gerais, Brazil.,Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Sandra L Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luciana Scotti
- Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | | | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Jullyana S S Quintans
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Lucindo J Quintans
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Adriana G Guimarães
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
7
|
Ologe MO. A novel gedunin-2-hydroxypropyl-β-cyclodextrin inclusion complex improves anti-nociceptive and anti-inflammatory activities of gedunin in rodents. Niger J Physiol Sci 2022; 37:9-19. [PMID: 35947833 DOI: 10.54548/njps.v37i1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Gedunin is a bioactive compound, obtained from Entandrophragma angolense (EA), which has limited therapeutic usefulness due to poor aqueous solubility and first-pass effects. Cyclodextrins are cyclic oligosaccharides that form complexes with poorly soluble compounds, thus enhancing their pharmacological activity. In this article, we evaluated the pharmacological activities of gedunin-2-hydroxypropyl-β-cyclodextrin complex (GCD) in rodents. The antinociceptive activity of GCD (50, 100, 200 mg/kg) and Gedunin (50mg/kg) was tested in acetic acid-induced writhing and formalin-induced paw licking in mice. The anti-inflammatory activity was investigated in carrageenan-induced paw oedema and air pouch inflammation models in rats. Leucocytes counts, Tumour Necrosis Factor-alpha (TNF-α) level, nitric oxide, malondialdehyde, reduced glutathione, and myeloperoxidase enzyme activities were assessed in the air pouch exudate. The GCD (200mg/kg) significantly decreased writhing response, reduced licking duration and decreased oedema compared with gedunin and control. Exudate volume and leucocyte count were significantly reduced by GCD (200 mg/kg), it decreased myeloperoxidase activity and inhibited TNF-α release. The carrageenan-induced GSH depletion, increased malondialdehyde and nitrite levels were significantly reversed by GCD (200 mg/kg) relative to gedunin and control. The GCD complex demonstrated significant antinociceptive and anti-inflammatory activities relative to gedunin alone via mechanisms associated with inhibition of oxidative stress and inflammation in rodents.
Collapse
|
8
|
Pereira EWM, Heimfarth L, Santos TK, Passos FRS, Siqueira-Lima P, Scotti L, Scotti MT, Almeida JRGDS, Campos AR, Coutinho HDM, Martin P, Quintans-Júnior LJ, Quintans JSS. Limonene, a citrus monoterpene, non-complexed and complexed with hydroxypropyl-β-cyclodextrin attenuates acute and chronic orofacial nociception in rodents: Evidence for involvement of the PKA and PKC pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153893. [PMID: 35026511 DOI: 10.1016/j.phymed.2021.153893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic orofacial pain is a serious public health problem with a prevalence of 7-11% in the population. This disorder has different etiologies and characteristics that make pharmacological treatment difficult. Natural products have been shown to be a promising source of treatments for the management of chronic pain, as an example the terpenes. PURPOSE The aim of this study was to evaluate the anti-nociceptive and anti-inflammatory effects of one of these terpenes, d-limonene (LIM - a common monoterpene found in citrus fruits) alone and complexed with hydroxypropyl-β-cyclodextrin (LIM/HPβCD) in preclinical animal models. METHODS Orofacial pain was induced by the administration of hypertonic saline on the corneal surface, the injection of formalin into the temporomandibular joint (TMJ), or chronic constriction injury of the infraorbital nerve (CCI-IoN). The study used male Wistar rats and Swiss mice treated with LIM (50 mg/kg), LIM/HPβCD (50 mg/kg), vehicle (control), gabapentin or morphine, and eyes wiping (induced by hypertonic saline), face rubbing (formalin-induced in TMJ) or mechanical hyperalgesia (provoked by CCI-IoN) were assessed. Additionally, ELISA was used to measure TNF-α, and western blot analysis to assess levels of PKAcα, NFκB, p38MAPK and phosphorylated PKC substrates. Serum levels of aspartate aminotransferase (AST) and alanine transferase (ALT) were also evaluated. RESULTS LIM and LIM/HPβCD significantly reduced (p < 0.001) corneal nociception and formalin-induced TMJ nociception. In addition, both substances attenuated (p < 0.001) mechanical hyperalgesia in the CCI-IoN model. The antinociceptive effect induced by LIM and HPβCD/LIM was associated with decreased TNF-α levels, downregulation of the NFκB and p38MAPK signalling pathways and reduced PKC substrate phosphorylation and PKA immunocontent. Moreover, the results demonstrated that complexation with HPβCD was able to decrease the therapeutic dose of LIM. CONCLUSION LIM was found to be a promising molecule for the treatment of orofacial pain due to its capacity to modulate some important mediators essential to the establishment of pain, and HPβCD can be a key tool to improve the profile of LIM.
Collapse
Affiliation(s)
- Erik W M Pereira
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Luana Heimfarth
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Tiffany Kb Santos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Fabiolla R S Passos
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | | | | | | | | | - Adriana R Campos
- Experimental Biology Centre (NUBEX). University of Fortaleza, Fortaleza, CE, Brazil
| | | | - Patrick Martin
- Univ Artois, UniLaSalle, Unité Transformations & Agroressources, Béthune, France
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| | - Jullyana S S Quintans
- Department of Physiology, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe, São Cristóvão, SE, Brazil; Health Sciences Graduate Program (PPGCS), Federal University of Sergipe, Aracaju, SE, Brazil
| |
Collapse
|
9
|
Bhuyan NN, Joardar A, Bag BP, Chakraborty H, Mishra A. Exploring the inclusion complex formation of 3-acetylcoumarin with β-cyclodextrin and its delivery to a carrier protein: A spectroscopic and computational study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Silva EAP, Santos DM, de Carvalho FO, Menezes IAC, Barreto AS, Souza DS, Quintans-Júnior LJ, Santos MRV. Monoterpenes and their derivatives as agents for cardiovascular disease management: A systematic review and meta-analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153451. [PMID: 33483251 DOI: 10.1016/j.phymed.2020.153451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Monoterpenes are one of the most studied plant's secondary metabolites, they are found abundantly in essential oils of aromatic plants. They also have a great range of pharmacological properties, such as antihypertensive, bradycardic, antiarrhythmic and hypotensive. In the face of the burden caused by cardiovascular disease (CVDs) worldwide, studies using monoterpenes to assess their cardiovascular effects have increased over the years. PURPOSE This systematic review aimed to summarize the use of monoterpenes in animal models of any CVDs. METHODS PubMed, SCOPUS, LILACS and Web of Science databases were used to search for articles that used monoterpenes, in any type of administration, to treat or prevent CVDs in animal models. The PRISMA guidelines were followed. Two independent researchers extracted main characteristics of studies, methods and outcomes. Data obtained were analyzed qualitatively and quantitatively. RESULTS At the ending of the search process, 33 articles were selected for the systematic review. Of these, 17 articles were included in the meta-analysis. A total of 16 different monoterpenes were found for the treatment of hypertension, myocardial infarction, pulmonary hypertension, cardiac hypertrophy and arrhythmia. The main actions include hypotension, bradycardia, vasodilatation, antiarrhythmic, and antioxidant and antiapoptotic properties. From our data, it can be suggested that monoterpenes may be a significant source for new drug development. However, there is still a need to apply these knowledge into clinical research and a long path to pursue before putting them in the market. CONCLUSION The variability of cardiovascular effects demonstrated by the monoterpenes highlighted them as a promising candidates for treatment or prevention of CVDs. Nevertheless, studies that investigate their biological sites of action needs to be further encouraged.
Collapse
Affiliation(s)
- Eric Aian P Silva
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil
| | - Danillo M Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Fernanda Oliveira de Carvalho
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Igor A Cortes Menezes
- Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro, 181, Curitiba-PR, 80060-900, Brazil
| | - André S Barreto
- Department of Health Education, Universidade Federal de Sergipe, Av. Governador Marcelo Deda, 13, Centro, Lagarto-SE, CEP 49400-000, Brazil
| | - Diego S Souza
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil
| | - Márcio R V Santos
- Department of Physiology, Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil; Health Sciences Graduate Program, Universidade Federal de Sergipe, Rua Claudio Batista S/N, Sanatorio, Aracaju-SE, 49.060-100, Brazil; Biotechnology Graduate Program - Rede Nordeste de Biotecnologia (RENORBIO), Universidade Federal de Sergipe, Av. Marechal Rondon, S/N, Cidade Universitaria, São Cristovao-SE, 49100-000, Brazil.
| |
Collapse
|
11
|
Sauer RS, Krummenacher I, Bankoglu EE, Yang S, Oehler B, Schöppler F, Mohammadi M, Güntzel P, Ben-Kraiem A, Holzgrabe U, Stopper H, Broscheit JA, Braunschweig H, Roewer N, Brack A, Rittner HL. Stabilization of Delphinidin in Complex with Sulfobutylether-β-Cyclodextrin Allows for Antinociception in Inflammatory Pain. Antioxid Redox Signal 2021; 34:1260-1279. [PMID: 32977733 DOI: 10.1089/ars.2019.7957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aims: Delphinidin (DEL) is a plant-derived antioxidant with clinical potential to treat inflammatory pain but suffers from poor solubility and low bioavailability. The aim of the study was to develop a well-tolerated cyclodextrin (CD)-DEL complex with enhanced bioavailability and to investigate the mechanisms behind its antinociceptive effects in a preclinical model of inflammatory pain. Results: CD-DEL was highly soluble and stable in aqueous solution, and was nontoxic. Systemic administration of CD-DEL reversed mechanical and heat hyperalgesia, while its local application into the complete Freund's adjuvant (CFA)-induced inflamed paw dose-dependently reduced mechanical hyperalgesia, paw volume, formation of the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE), and tissue migration of CD68+ macrophages. CD-DEL also directly prevented 4-HNE-induced mechanical hyperalgesia, cold allodynia, and an increase in the intracellular calcium concentration into transient receptor potential ankyrin 1 expressing cells. Both 4-HNE- and CFA-induced reactive oxygen species (ROS) levels were sensitive to CD-DEL, while its capacity to scavenge superoxide anion radicals (inhibitory concentration 50 [IC50]: 70 ± 5 μM) was higher than that observed for hydroxyl radicals (IC50: 600 ± 50 μM). Finally, CD-DEL upregulated heme oxygenase 1 that was prevented by HMOX-1 siRNA in vitro. Innovation:In vivo application of DEL to treat inflammatory pain is facilitated by complexation with CD. Apart from its antioxidant effects, the CD-DEL has a unique second antioxidative mechanism involving capturing of 4-HNE into the CD cavity followed by displacement and release of the ROS scavenger DEL. Conclusion: CD-DEL has antinociceptive, antioxidative, and anti-inflammatory effects making it a promising formulation for the local treatment of inflammatory pain.
Collapse
Affiliation(s)
- Reine-Solange Sauer
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Ivo Krummenacher
- Institute for Inorganic Chemistry and Julius Maximilians University Würzburg, Würzburg, Germany
| | - Ezgi Eylül Bankoglu
- Institute of Pharmacology and Toxicology, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Shaobing Yang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beatrice Oehler
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Friedrich Schöppler
- Institute for Physical and Theoretical Chemistry and Julius Maximilians University Würzburg, Würzburg, Germany
| | - Milad Mohammadi
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Paul Güntzel
- Institute for Pharmacy and Food Chemistry, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Adel Ben-Kraiem
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Helga Stopper
- Institute of Pharmacology and Toxicology, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Jens A Broscheit
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry and Julius Maximilians University Würzburg, Würzburg, Germany
| | - Norbert Roewer
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Alexander Brack
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L Rittner
- Department for Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Santos PL, Rabelo TK, Matos JPSCF, Anjos KS, Melo MAO, Carvalho YMBG, Lima BS, Menezes PP, Araújo AAS, Picot L, Almeida JRGS, Brito RG, Quintans-Júnior LJ. Involvement of nuclear factor κB and descending pain pathways in the anti-hyperalgesic effect of β-citronellol, a food ingredient, complexed in β-cyclodextrin in a model of complex regional pain syndrome - Type 1. Food Chem Toxicol 2021; 153:112260. [PMID: 34051299 DOI: 10.1016/j.fct.2021.112260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/22/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023]
Abstract
Complex regional pain syndrome type 1 (CRPS-1) is a painful syndrome without effective treatment. In order to explore possible new treatments, we used an animal model of CRPS-1 to examine the effects of β-Citronellol (βCT), a monoterpene found in a variety of plants that has been shown to have analgesic effects. We aimed to assess its effects alone, and complexed with β-cyclodextrin (βCD), which has been previously used to enhance the effects of a number of medicines. The βCT-βCD was characterized physiochemically using high performance liquid chromatography (HPLC) and differential scanning calorimetry (DSC) and shown to have 80% efficiency. In the animal model, Swiss mice were treated with βCT, βCT-βCD, vehicle, pregabalin or sham and evaluated for hyperalgesia and motor coordination. Inflammatory mediators were measured by Western blot or ELISA and the descending pain pathway by immunofluorescence. βCT was shown to have an anti-hyperalgesic effect (without affecting motor coordination) that reduced inflammatory mediators and activated the descending pain pathway, and these effects were increased with complexation in βCD. Our results showed βCT-βCD to be a promising treatment for CRPS-1.
Collapse
Affiliation(s)
- Priscila L Santos
- Graduate Program of Health Sciences, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Thallita K Rabelo
- Graduate Program of Health Sciences, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - João P S C F Matos
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Klécia S Anjos
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Marlange A O Melo
- Graduate Program of Health Sciences, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Yasmim M B G Carvalho
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Bruno S Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Paula P Menezes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Adriano A S Araújo
- Graduate Program of Health Sciences, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil; Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Laurent Picot
- Faculty of Science and Technology, University of La Rochelle, La Rochelle, France
| | | | - Renan G Brito
- Tiradentes University, 49032-490, Aracaju, SE, Brazil
| | - Lucindo J Quintans-Júnior
- Graduate Program of Health Sciences, Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil; Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology (DFS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
13
|
Yang R, Hong Y, Wang Y, Zhao L, Shen L, Feng Y. The embodiment of the strategy of “using active chemicals as excipients” in compound preparation. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Abd Rashed A, Abd Rahman AZ, Rathi DNG. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules 2021; 26:1107. [PMID: 33669787 PMCID: PMC7922935 DOI: 10.3390/molecules26041107] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the improvements in life expectancy, neurodegenerative conditions have arguably become the most dreaded maladies of older people. The neuroprotective and anti-ageing potentials of essential oils (EOs) are widely evaluated around the globe. The objective of this review is to analyse the effectiveness of EOs as neuroprotective remedies among the four common age-related neurodegenerative diseases. The literature was extracted from three databases (PubMed, Web of Science and Google Scholar) between the years of 2010 to 2020 using the medical subject heading (MeSH) terms "essential oil", crossed with "Alzheimer's disease (AD)", "Huntington's disease (HD)", "Parkinson's disease (PD)" or "amyotrophic lateral sclerosis (ALS)". Eighty three percent (83%) of the studies were focused on AD, while another 12% focused on PD. No classifiable study was recorded on HD or ALS. EO from Salvia officinalis has been recorded as one of the most effective acetylcholinesterase and butyrylcholinesterase inhibitors. However, only Cinnamomum sp. has been assessed for its effectiveness in both AD and PD. Our review provided useful evidence on EOs as potential neuroprotective remedies for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Ahmad Zuhairi Abd Rahman
- Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Devi Nair Gunasegavan Rathi
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| |
Collapse
|
15
|
Santos Passos FR, Pereira EWM, Heimfarth L, Monteiro BS, Barbosa Gomes de Carvalho YM, Siqueira-Lima PS, Melo Coutinho HD, Antunes de Souza Araújo A, Guedes da Silva Almeida JR, Barreto RSS, Picot L, Quintans-Júnior LJ, Quintans JSS. Role of peripheral and central sensitization in the anti-hyperalgesic effect of hecogenin acetate, an acetylated sapogenin, complexed with β-cyclodextrin: Involvement of NFκB and p38 MAPK pathways. Neuropharmacology 2021; 186:108395. [PMID: 33516738 DOI: 10.1016/j.neuropharm.2020.108395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/30/2022]
Abstract
Neuropathic pain develops due to injury to the somatosensory system, affecting the patient's quality of life. In view of the ineffectiveness of the current pharmacotherapy, substances obtained from natural products (NPs) are a promising alternative. One NP that has been discussed in the literature is hecogenin acetate (HA), a steroidal sapogenin with anti-inflammatory and antinociceptive activity. However, HA has low water solubility, which affects its bioavailability. Thus, the objective of this study was to evaluate the anti-hyperalgesic activity of pure and complexed hecogenin acetate (HA/βCD) in an animal model of chronic neuropathic and inflammatory pain. The inclusion complex was prepared at a molar ratio of 1:2 (HA:βCD) by the lyophilization method. For the induction of chronic inflammatory pain, the mice received an intraplantar injection of CFA (complete Freund's adjuvant), and were evaluated for mechanical hyperalgesia and for the levels of myeloperoxidase (MPO) in the skin of the paw after eight days of treatment. HA and HA/βCD reduced mechanical hyperalgesia in relation to the vehicle group until the fourth and fifth hours, respectively, in the acute evaluation, with a superior effect of the complexed form over the pure form in the second and third hour after treatment (p < 0.001). In the chronic evaluation, HA and HA/βCD reduced hyperalgesia in relation to the vehicle in the eight days of treatment (p < 0.001). Both pure (p < 0.01) and complexed (p < 0.001) forms reduced myeloperoxidase activity in the skin of the animals' paw. Groups of animals subjected to the same pharmacological protocol were submitted to the partial sciatic nerve ligation (PSNL) model and evaluated for mechanical and thermal hyperalgesia, and cold allodynia. HA and HA/βCD reduced mechanical hyperalgesia until the fourth and sixth hours, respectively, and both reduced hyperalgesia in relation to the vehicle in the chronic evaluation (p < 0.001). HA and HA/βCD also reduced thermal hyperalgesia and cold allodynia (p < 0.05 and p < 0.001, respectively). The analysis of the spinal cord of these animals showed a decrease in the levels of the pro-inflammatory cytokines TNF-α, IL-1β and IL-6 and a reduction in the phosphorylation of NFκB and p38MAPK, as well as a decrease in microglioses compared to the vehicle group. In addition, HA/βCD reduced the nociception induced by intraplantar injection of agonist TRPA1 (p < 0.01) and TRPM8 (p < 0.05). Treatment for eight days with HA and HA/βCD showed no signs of gastric or liver damage. HA and HA/βCD were, therefore, shown to have antinociceptive effects in chronic pain models. Based on our exploration of the mechanisms of the action of HA, these effects are likely to be related to inhibited leukocyte migration, interaction with the TRPA1 and TRPM8 receptors, reduced pro-inflammatory cytokines levels, microglial expression and suppression of NF-κB p65 and p38 MAPK pathway signaling. Therefore, HA/βCD has great potential for use in the treatment of chronic pain.
Collapse
Affiliation(s)
- Fabiolla Rocha Santos Passos
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Erik W M Pereira
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Luana Heimfarth
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Brenda S Monteiro
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Yasmim Maria Barbosa Gomes de Carvalho
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | - Rosana S S Barreto
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil
| | - Laurent Picot
- La Rochelle Université, UMRi CNRS 7266 LIENSs, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil
| | - Jullyana S S Quintans
- Laboratory of Neurosciences and Pharmacological Assays (LANEF- Laboratório de Neurociências e Ensaios Farmacológicos), Department of Physiology, Federal University of Sergipe, São Cristóvão, Brazil; Health Sciences Graduate Program, Brazil.
| |
Collapse
|
16
|
Antioxidant Molecules from Plant Waste: Extraction Techniques and Biological Properties. Processes (Basel) 2020. [DOI: 10.3390/pr8121566] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fruit, vegetable, legume, and cereal industries generate many wastes, representing an environmental pollution problem. However, these wastes are a rich source of antioxidant molecules such as terpenes, phenolic compounds, phytosterols, and bioactive peptides with potential applications mainly in the food and pharmaceutical industries, and they exhibit multiple biological properties including antidiabetic, anti-obesity, antihypertensive, anticancer, and antibacterial properties. The aforementioned has increased studies on the recovery of antioxidant compounds using green technologies to value plant waste, since they represent more efficient and sustainable processes. In this review, the main antioxidant molecules from plants are briefly described and the advantages and disadvantages of the use of conventional and green extraction technologies used for the recovery and optimization of the yield of antioxidant naturals are detailed; finally, recent studies on biological properties of antioxidant molecules extracted from plant waste are presented here.
Collapse
|
17
|
Anti-Inflammatory and Physicochemical Characterization of the Croton Rhamnifolioides Essential Oil Inclusion Complex in β-Cyclodextrin. BIOLOGY 2020; 9:biology9060114. [PMID: 32486128 PMCID: PMC7344496 DOI: 10.3390/biology9060114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022]
Abstract
Croton rhamnifolioides is used in popular medicine for the treatment of inflammatory diseases. The objective of this study was to characterize and evaluate the anti-inflammatory effect of C. rhamnifolioides essential oil complexed in β-cyclodextrin (COEFC). The physicochemical characterization of the complexes was performed using different physical methods. The anti-inflammatory activity was evaluated in vivo by ear edema, paw edema, cotton pellet-induced granuloma, and vascular permeability by Evans blue extravasation. The mechanism of action was validated by molecular docking of the major constituent into the cyclooxygenase-2 (COX-2 enzyme). All doses of the COEFC reduced acute paw edema induced by carrageenan and dextran, as well as vascular permeability. Our results suggest the lowest effective dose of all samples inhibited the response induced by histamine or arachidonic acid as well as the granuloma formation. The complexation process showed that the pharmacological effects were maintained, however, showing similar results using much lower doses. The results demonstrated an involvement of the inhibition of pathways dependent on eicosanoids and histamine. Complexation of β-cyclodextrin/Essential oil (β-CD/EO) may present an important tool in the study of new compounds for the development of anti-inflammatory drugs.
Collapse
|
18
|
Bakshi PR, Londhe VY. Widespread applications of host-guest interactive cyclodextrin functionalized polymer nanocomposites: Its meta-analysis and review. Carbohydr Polym 2020; 242:116430. [PMID: 32564862 DOI: 10.1016/j.carbpol.2020.116430] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/27/2020] [Accepted: 05/09/2020] [Indexed: 01/03/2023]
Abstract
Cyclodextrins are cyclic oligosaccharides, having tyroid shape of the molecule which has a hydrophobic cavity and outer hydrophilic surface. This characteristic feature of the dextrins allows it to function as a functionalizing as well as a stabilizing agent. Polymer nanocomposites are nanoscale composites of polymers with enhanced and synergized properties of its components and have been known to have applications in various fields of chemistry, biomedical, pharmaceutical and environmental purposes to name a few. To impart specificity, thermal, mechanical stability, resistance to solvents and biodegradability to the polymers, cyclodextrins have been incorporated in the nanocomposites. The utilization of the aforementioned properties of cyclodextrins to the polymer nanocomposites, implications of the incorporation of cyclodextrins to polymer nanocomposites and their subsequent applications in various fields have been discussed in this review systematically, using PRISMA guidelines.
Collapse
Affiliation(s)
- Pooja R Bakshi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India.
| | - Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Vile Parle [W], Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
19
|
Oliveira MA, Heimfarth L, Passos FRS, Miguel-Dos-Santos R, Mingori MR, Moreira JCF, Lauton SS, Barreto RSS, Araújo AAS, Oliveira AP, Oliveira JT, Baptista AF, Martinez AMB, Quintans-Júnior LJ, Quintans JSS. Naringenin complexed with hydroxypropyl-β-cyclodextrin improves the sciatic nerve regeneration through inhibition of p75 NTR and JNK pathway. Life Sci 2020; 241:117102. [PMID: 31790691 DOI: 10.1016/j.lfs.2019.117102] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/17/2022]
Abstract
Peripheral nerve injuries are common conditions that often lead to dysfunctions. Although much knowledge exists on the several factors that mediate the complex biological process involved in peripheral nerve regeneration, there is a lack of effective treatments that ensure full functional recovery. Naringenin (NA) is the most abundant flavanone found in citrus fruits and it has promising neuroprotective, anti-inflammatory and antioxidant effects. This study aimed to enhance peripheral nerve regeneration using an inclusion complex containing NA and hydroxypropyl-β-cyclodextrin (HPβCD), named NA/HPβCD. A mouse sciatic nerve crush model was used to evaluate the effects of NA/HPβCD on nerve regeneration. Sensory and motor parameters, hyperalgesic behavior and the sciatic functional index (SFI), respectively, improved with NA treatment. Western blot analysis revealed that the levels of p75NTR ICD and p75NTR full length as well phospho-JNK/total JNK ratios were preserved by NA treatment. In addition, NA treatment was able to decrease levels of caspase 3. The concentrations of TNF-α and IL-1β were decreased in the lumbar spine, on the other hand there was an increase in IL-10. NA/HPβCD presented a better overall morphological profile but it was not able to increase the number of myelinated fibers. Thus, NA was able to enhance nerve regeneration, and NA/HPβCD decreased effective drug doses while maintaining the effect of the pure drug, demonstrating the advantage of using the complex over the pure compound.
Collapse
Affiliation(s)
- Marlange A Oliveira
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Fabiolla Rocha Santos Passos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Rodrigo Miguel-Dos-Santos
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Moara R Mingori
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio F Moreira
- Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sandra S Lauton
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, 49100-000, Brazil
| | - Aldeidia P Oliveira
- Medicinal Plants Research Center, Federal University of Piauí, Teresina, PI 64.049-550, Brazil
| | - Júlia T Oliveira
- Department of Pathology, Medical School - HUCFF - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Ana Maria B Martinez
- Department of Pathology, Medical School - HUCFF - Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Lucindo J Quintans-Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil.
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Federal University of Sergipe; Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, 49100-000 lBrazil.
| |
Collapse
|
20
|
Siqueira-Lima PS, Quintans JSS, Heimfarth L, Passos FRS, Pereira EWM, Rezende MM, Menezes-Filho JER, Barreto RSS, Coutinho HDM, Araújo AAS, Medrado AS, Naves LA, Bomfim HF, Lucchese AM, Gandhi SR, Quintans-Júnior LJ. Involvement of the PKA pathway and inhibition of voltage gated Ca2+ channels in antihyperalgesic activity of Lippia grata/β-cyclodextrin. Life Sci 2019; 239:116961. [PMID: 31654745 DOI: 10.1016/j.lfs.2019.116961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 11/17/2022]
Abstract
Neuropathic pain (NP) is a difficult condition to treat because of the modest efficacy of available drugs. New treatments are required. In the study we aimed to investigate the effects of the essential oil from Lippia grata alone or complexed in β-cyclodextrin (LG or LG-βCD) on persistent inflammatory and neuropathic pain in a mouse model. We also investigated Ca2+ currents in rat dorsal root ganglion (DRG) neurons. Male Swiss mice were treated with LG or LG/β-CD (24 mg/kg, i.g.) and their effect was evaluated using an acute inflammatory pleurisy model and nociception triggered by intraplantar injection of an agonist of the TRPs channels. We also tested their effect in chronic pain models: injection of Freund's Complete Adjuvant and partial sciatic nerve ligation (PSNL). In the pleurisy model, LG reduced the number of leukocytes and the levels of TNF-α and IL-1β. It also inhibited cinnamaldehyde and menthol-induced nociceptive behavior. The pain threshold in mechanical and thermal hyperalgesia was increased and paw edema was decreased in models of inflammatory and neuropathic pain. PSNL increased inflammatory protein contents and LG and LG-βCD restored the protein contents of TNF-α, NF-κB, and PKA, but not IL-1β and IL-10. LG inhibited voltage gated Ca2+ channels from DRG neurons. Our results suggested that LG or LG-βCD produce anti-hyperalgesic effect in chronic pain models through reductions in TNF-α levels and PKA, and inhibited voltage-gated calcium channels and may be innovative therapeutic agents for the management of NP.
Collapse
Affiliation(s)
- Pollyana S Siqueira-Lima
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Jullyana S S Quintans
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil.
| | - Luana Heimfarth
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Fabiolla R S Passos
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Erik W M Pereira
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Marilia M Rezende
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - José E R Menezes-Filho
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Rosana S S Barreto
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil
| | - Henrique D M Coutinho
- Regional University of Cariri. Universidade Regional do Cariri (URCA), Crato/CE, 63105-000, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000, Brazil
| | - Aline S Medrado
- Federal University of Minas Gerais. Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Ligia A Naves
- Federal University of Minas Gerais. Belo Horizonte, MG, CEP 31270-901, Brazil
| | - Horácio F Bomfim
- Post-Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, BA, 44036-900, Brazil
| | - Angélica M Lucchese
- Post-Graduate Program in Biotechnology, State University of Feira de Santana, Feira de Santana, BA, 44036-900, Brazil
| | | | - Lucindo J Quintans-Júnior
- Multiuser Health Center Facility (CMulti-Saúde), Brazil; Department of Physiology (DFS). Federal University of Sergipe (UFS), São Cristóvão, SE, 49100-000 Brazil.
| |
Collapse
|
21
|
Peixoto ADC, Vaez SC, Soares KD, Ferreira LF, Loguercio AD, Faria-E-Silva AL. Preemptive Use of Piroxicam on Tooth Sensitivity Caused By In-Office Bleaching: A Randomized Clinical Trial. Braz Dent J 2019; 30:498-504. [PMID: 31664303 DOI: 10.1590/0103-6440201902762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
This clinical trial evaluated the effect of preemptive use of the non-steroidal anti-inflammatory drug piroxicam in a single dose 30 min prior to in-office bleaching on the prevention of tooth sensitivity (TS) reported by patients. Fifty patients were submitted to two sessions of in-office tooth bleaching with 35% hydrogen peroxide used for 2 sessions, each consisting of a single 45-min application, with an interval of 7 days between session. Thirty minutes prior to the procedure, the patient randomly received a single dose of piroxicam (200 mg) or placebo in a double-blind, randomized, crossover design. The TS was evaluated using verbal rate (VRS) and visual analog (VAS) scales during the bleaching procedure and at 24 h after each session. The color changes were assessed by the Vita Bleachedguide scale 1 week after each bleaching session. Risk of TS was calculated from the VRS and analyzed by the McNemar test, while the level of TS was analyzed by the Mann-Whitney test. For the VAS, t-tests were used to compare data from the treatments at each assessment time. Data regarding color changes were subjected to Wilcoxon and Mann-Whitney tests (α=0.05). The preemptive administration of piroxicam did not affect the risk and level of TS compared to placebo, irrespective of the assessment time. The treatment sequence did not affect bleaching effectiveness. In conclusion, the administration of a single dose of piroxicam prior to in-office tooth bleaching was unable to significantly reduce the risk and level of TS.
Collapse
Affiliation(s)
| | - Savil Costa Vaez
- Graduate Program in Health Sciences, UFS - Universidade Federal de Sergipe, Aracaju, SE, Brazil
| | | | | | | | | |
Collapse
|
22
|
Fontinele LL, Heimfarth L, Pereira EWM, Rezende MM, Lima NT, Barbosa Gomes de Carvalho YM, Afonso de Moura Pires E, Guimarães AG, Bezerra Carvalho MT, de Souza Siqueira Barreto R, Campos AR, Antoniolli AR, Antunes de Souza Araújo A, Quintans-Júnior LJ, de Souza Siqueira Quintans J. Anti-hyperalgesic effect of (-)-α-bisabolol and (-)-α-bisabolol/β-Cyclodextrin complex in a chronic inflammatory pain model is associated with reduced reactive gliosis and cytokine modulation. Neurochem Int 2019; 131:104530. [PMID: 31425746 DOI: 10.1016/j.neuint.2019.104530] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/10/2019] [Accepted: 08/12/2019] [Indexed: 12/21/2022]
Abstract
Chronic pain is a continuous or recurring pain which exceeds the normal course of recovery to an injury or disease. According to the origin of the chronic pain, it can be classified as inflammatory or neuropathic. This study aimed to evaluate the antinociceptive and anti-inflammatory effect of (-)-α-bisabolol (BIS) alone and complexed with β-cyclodextrin (βCD) in preclinical models of chronic pain. Chronic pain was induced by Freund's Complete Adjuvant (FCA) or partial lesion of the sciatic nerve (PLSN). Swiss mice were treated with BIS, BIS-βCD (50 mg/kg, p.o) or vehicle (control) and mechanical hyperalgesia, thermal hyperalgesia, muscle strength and motor coordination were evaluated. In addition, levels of TNF-α and IL-10 and expression of the ionized calcium-binding adapter protein (IBA-1) were assessed in the spinal cord of the mice. The complexation efficiency of BIS in βCD was evaluated by High-Performance Liquid Chromatography. BIS and BIS-βCD reduced (p < 0.001) mechanical and thermal hyperalgesia. No alterations were found in force and motor coordination. In addition, BIS and BIS-βCD inhibited (p < 0.05) TNF-α production in the spinal cord and stimulated (p < 0.05) the release of IL-10 in the spinal cord in PLSN-mice. Further, BIS and BIS-βCD reduced IBA-1 immunostaining. Therefore, BIS and BIS-βCD attenuated hyperalgesia, deregulated cytokine release and inhibited IBA-1 expression in the spinal cord in the PLSN model. Moreover, our results show that the complexation of BIS in βCD reduced the therapeutic dose of BIS. We conclude that BIS is a promising molecule for the treatment of chronic pain.
Collapse
|
23
|
Anti-hyperalgesic and anti-inflammatory effects of citral with β-cyclodextrin and hydroxypropyl-β-cyclodextrin inclusion complexes in animal models. Life Sci 2019; 229:139-148. [DOI: 10.1016/j.lfs.2019.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Gouveia DN, Guimarães AG, Santos WBDR, Quintans-Júnior LJ. Natural products as a perspective for cancer pain management: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152766. [PMID: 31005719 DOI: 10.1016/j.phymed.2018.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer is the leading cause of death in the world and one of the main symptoms affecting these individuals is chronic pain, which must be evaluated and treated in its various components. Several drugs are currently used, but beyond the high cost, they have harmful side effects to patients or are transitorily effective. Ergo, there is a need to look for new options for cancer pain relief. Natural products (NPs) present themselves as strong candidates for the development of new drugs for the treatment of chronic pain, such as cancer pain. PURPOSE This systematic review aimed to summarize current knowledge about the analgesic profile of NPs in cancer pain. METHODS The search included PubMed, Scopus and Web of Science (from inception to June 2018) sought to summarize the articles studying new proposals with NPs for the management of oncological pain. Two independent reviewers extracted data on study characteristics, methods and outcomes. RESULTS After an extensive survey, 21 articles were selected, which described the analgesic potential of 15 natural compounds to relieve cancer pain. After analyzing the data, it can be suggested that these NPs, which have targets in central and peripheral mechanisms, are interesting candidates for the treatment of cancer pain for addressing different pharmacological mechanisms (even innovative), but ensuring the safety of these compounds is still a challenge. Likewise, the cannabinoids compounds leave the front as the most promising compounds for direct applicability due to the clinical studies that have already been developed and the background already established about these effects on chronic pain. CONCLUSION Regarding these findings, it can be concluded that the variability of possible biological sites of action is strategic for new perspectives in the development of therapeutic proposals different from those available in the current market.
Collapse
Affiliation(s)
- Daniele Nascimento Gouveia
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| | - Adriana Gibara Guimarães
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Av. Governador Marcelo Déda, 13, Lagarto, Sergipe, Brazil.
| | - Wagner Barbosa da Rocha Santos
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| | - Lucindo José Quintans-Júnior
- Departamento de Fisiologia, Laboratório de Neurociências e Ensaios Farmacológicos (LANEF). Universidade Federal de Sergipe, São Cristovão, Sergipe, Brazil
| |
Collapse
|
25
|
Carvalho AMS, Heimfarth L, Santos KA, Guimarães AG, Picot L, Almeida JRGS, Quintans JSS, Quintans-Júnior LJ. Terpenes as possible drugs for the mitigation of arthritic symptoms - A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 57:137-147. [PMID: 30668316 DOI: 10.1016/j.phymed.2018.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Arthritis is a syndrome associated with exacerbated inflammation, joint destruction and chronic pain and disability. Chronic treatment of arthritis is associated with several side effects and high abandonment. Therefore, there has been an ongoing search for alternative treatments to overcome these problems. PURPOSE Natural products, which are already widely used for their biological, cosmetic and pharmacotechnic properties, are a possible source for new drugs. Terpenes, a large class of organic compounds produced mainly by plants and trees, are a promising natural product and have already been shown to be effective in treating chronic pain, particularly of an inflammatory origin. STUDY DESIGN AND METHODS This review identifies the main terpenes with anti-arthritic activity reported in the last 10 years. A survey was conducted between December 2017 and June 2018 in the PUBMED, SCOPUS and Science Direct databases using combinations of the descriptors terpenes, arthritis and inflammation. RESULTS The results showed that terpenes have promising biological effects in relation to the treatment of arthritis, with the 24 terpenes identified in our survey being effective in the modulation of inflammatory mediators important to the physiopathology of arthritis, such as IL-6, IL-17, TNF-α, NFκB, and COX-2, among others. It is important to note that most of the studies used animal models, which limits, at least in part, the direct translation to humans of the experimental evidence produced by the studies. CONCLUSION Together, our finds suggest that terpenes can modulate the immuno-regulatory and destructive tissue events that underlie the clinical presentation and the progression of arthritis and are worthy of further clinical investigation.
Collapse
Affiliation(s)
- Alexandra M S Carvalho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Klécia A Santos
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Adriana G Guimarães
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042 La Rochelle, France.
| | | | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil.
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, Av. Marechal Rondon, SN, Rosa Elze, São Cristóvão, SE, Brazil.
| |
Collapse
|
26
|
Leite LHI, Leite GO, da Silva BAF, Santos SAAR, Magalhães FEA, Menezes PP, Serafini MR, Teixeira CS, Brito RG, Santos PL, da Costa JGM, Araújo AAS, Quintans-Júnior LJ, de Menezes IRA, Coutinho HDM, Campos AR. Molecular mechanism underlying orofacial antinociceptive activity of Vanillosmopsis arborea Baker (Asteraceae) essential oil complexed with β-cyclodextrin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:293-301. [PMID: 30293859 DOI: 10.1016/j.phymed.2018.09.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/19/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Vanillosmopsis arborea Baker has recognized economic value owing to the high content of (-)-α-bisabolol (BISA) in the essential oil of its stem (EOVA). The antinociceptive effect of EVOA has already been demonstrated, and β-cyclodextrin (βCD) is known to improve the analgesic effect of various substances. PURPOSE Thus, we aimed to evaluate the orofacial antinociceptive effect of a complex containing EOVA-βCD in rodents. METHODS EOVA was obtained by simple hydrodistillation, and the essential oil was complexed with βCD. The animals (n = 6/group) were treated orally with EOVA-βCD (10 or 50 mg/kg), or vehicle (control), and subjected to cutaneous orofacial nociception (formalin, capsaicin, acidic saline or glutamate), corneal (hypertonic saline) or temporomandibular (formalin) tests. The expression of FOS protein was analyzed in the spinal cord. Molecular docking was performed using the 5-HT3 and M2 receptors and BISA. RESULTS The oral administration of EOVA-βCD reduced nociceptive behaviour. Moreover, EOVA-βCD decreased FOS expression. The molecular docking study indicates that BISA interacts with 5-HT3 and M2 receptors, indicating the potential mechanism of action of the tested compound. CONCLUSIONS Our results indicate that EOVA-βCD possesses orofacial antinociceptive effect, indicating that this complex can be used in analgesic drug development.
Collapse
Affiliation(s)
- Laura Hévila I Leite
- Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil; Institute of Educators Training, Federal University of Cariri, Brejo Santo, Ceará, Brazil
| | - Gerlânia O Leite
- Experimental Biology Center, University of Fortaleza, Fortaleza, Ceará, Brazil
| | | | | | | | - Paula P Menezes
- Department of Physiology, Federal University of Sergipe, São Cristõvão, Sergipe, Brazil
| | - Mairim R Serafini
- Department of Physiology, Federal University of Sergipe, São Cristõvão, Sergipe, Brazil
| | - Claudener S Teixeira
- Agrarian and Environmental Sciences Center, Federal University of Maranhão, Chapadinha, Maranhão, Brazil
| | - Renan G Brito
- Department of Physiology, Federal University of Sergipe, São Cristõvão, Sergipe, Brazil
| | - Priscila L Santos
- Department of Physiology, Federal University of Sergipe, São Cristõvão, Sergipe, Brazil
| | | | - Adriano A S Araújo
- Department of Physiology, Federal University of Sergipe, São Cristõvão, Sergipe, Brazil
| | | | - Irwin R A de Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | | | | |
Collapse
|
27
|
Silva EAP, Carvalho JS, Guimarães AG, Barreto RDS, Santos MR, Barreto AS, Quintans-Júnior LJ. The use of terpenes and derivatives as a new perspective for cardiovascular disease treatment: a patent review (2008–2018). Expert Opin Ther Pat 2018; 29:43-53. [DOI: 10.1080/13543776.2019.1558211] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Eric Aian P. Silva
- Department of Physiology, Federal University of Sergipe, Sergipe, Brazil
| | | | | | | | - Márcio R.V. Santos
- Department of Physiology, Federal University of Sergipe, Sergipe, Brazil
| | - André S. Barreto
- Department of Health Education, Federal University of Sergipe, Sergipe, Brazil
| | | |
Collapse
|
28
|
Beserra-Filho JIA, de Macêdo AM, Leão AHFF, Bispo JMM, Santos JR, de Oliveira-Melo AJ, Menezes PDP, Duarte MC, de Souza Araújo AA, Silva RH, Quintans-Júnior LJ, Ribeiro AM. Eplingiella fruticosa leaf essential oil complexed with β-cyclodextrin produces a superior neuroprotective and behavioral profile in a mice model of Parkinson's disease. Food Chem Toxicol 2018; 124:17-29. [PMID: 30481574 DOI: 10.1016/j.fct.2018.11.056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 12/18/2022]
Abstract
Evidence indicates that oxidative stress has an important role in the onset and progression of Parkinson's disease (PD). Antioxidant agents from natural products have shown neuroprotective effects in animal models of PD. Eplingiella fruticosa is an aromatic and medicinal plant of the Lamiaceae family that include culinary herbs. The essential oil (EPL) has anti-inflammatory and antioxidant activities. Cyclodextrins are used to enhances pharmacological profile of essential oil. We obtained the EPL from leaves and complexed with β-cyclodextrin (EPL-βCD). Phytochemical analysis showed as main constituents: β-caryophyllene, bicyclogermacrene and 1,8-cineole. We evaluated the effects of EPL and EPL-βCD (5 mg/kg, p.o. for 40 days) on male mice submitted to the progressive reserpine PD model. Behavioral evaluations, lipid peroxidation quantification and immunohistochemistry for tyrosine hydroxylase were conducted. EPL delayed the onset of catalepsy and decreased membrane lipid peroxides levels in the striatum. EPL-βCD also delayed the onset of catalepsy, reduced the frequency of oral diskynesia, restored memory deficit, produced anxiolytic activity and protected against dopaminergic depletion in the striatum and SNpc. These findings showed that EPL has a potential neuroprotective effect in a progressive PD animal model. Further, EPL-βCD enhanced this protective effects, suggesting a novel therapeutic approach to ameliorate the symptoms of PD.
Collapse
Affiliation(s)
- Jose I A Beserra-Filho
- Department of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim, 136, CEP 11015-020, Santos, SP, Brazil
| | - Amanda M de Macêdo
- Department of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim, 136, CEP 11015-020, Santos, SP, Brazil
| | - Anderson H F F Leão
- Department of Pharmacology, Universidade Federal de São Paulo, Edificio José Leal Prado, Rua Botucatu, 862, CEP 04023-062, São Paulo, SP, Brazil
| | - Jose Marcos M Bispo
- Department of Biosciences, Universidade Federal de Sergipe, Avenida Ver. Olímpio Grande, s/n, Porto, CEP 49500-000, Itabaiana, SE, Brazil
| | - José R Santos
- Department of Biosciences, Universidade Federal de Sergipe, Avenida Ver. Olímpio Grande, s/n, Porto, CEP 49500-000, Itabaiana, SE, Brazil
| | - Allan John de Oliveira-Melo
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Paula Dos Passos Menezes
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Marcelo C Duarte
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Adriano A de Souza Araújo
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Regina H Silva
- Department of Pharmacology, Universidade Federal de São Paulo, Edificio José Leal Prado, Rua Botucatu, 862, CEP 04023-062, São Paulo, SP, Brazil
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Universidade Federal de Sergipe, Avenida Marechal Rondon, s/n, CEP 49100-000, Aracaju, SE, Brazil
| | - Alessandra M Ribeiro
- Department of Biosciences, Universidade Federal de São Paulo, Rua Silva Jardim, 136, CEP 11015-020, Santos, SP, Brazil.
| |
Collapse
|
29
|
Camargo SB, Simões LO, Medeiros CFDA, de Melo Jesus A, Fregoneze JB, Evangelista A, Villarreal CF, Araújo AADS, Quintans-Júnior LJ, Silva DF. Antihypertensive potential of linalool and linalool complexed with β-cyclodextrin: Effects of subchronic treatment on blood pressure and vascular reactivity. Biochem Pharmacol 2018; 151:38-46. [DOI: 10.1016/j.bcp.2018.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
|
30
|
de França Almeida Moreira CDL, de Oliveira Pinheiro JG, da Silva-Júnior WF, Barbosa EG, Lavra ZMM, Pereira EWM, Resende MM, de Azevedo EP, Quintans-Júnior LJ, de Souza Araújo AA, de Souza Siqueira Quintans J, de Lima ÁAN. Amorphous solid dispersions of hecogenin acetate using different polymers for enhancement of solubility and improvement of anti-hyperalgesic effect in neuropathic pain model in mice. Biomed Pharmacother 2018; 97:870-879. [DOI: 10.1016/j.biopha.2017.10.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/20/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023] Open
|
31
|
Silva JC, de Moraes Alcantara LF, Dias Soares JM, e Silva MG, de Lavor ÉM, Andrade VM, dos Passos Menezes P, de Souza Araújo AA, Leite LHI, de Menezes IRA, Scotti L, Scotti MT, Oliveira RC, Quintans JS, Silva Almeida JRG, Quintans-Júnior LJ. Docking, characterization and investigation of β-cyclodextrin complexed with farnesol, an acyclic sesquiterpene alcohol, produces orofacial antinociceptive profile in experimental protocols. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Diniz TC, Pinto TCC, Menezes PDP, Silva JC, Teles RBDA, Ximenes RCC, Guimarães AG, Serafini MR, Araújo AADS, Quintans Júnior LJ, Almeida JRGDS. Cyclodextrins improving the physicochemical and pharmacological properties of antidepressant drugs: a patent review. Expert Opin Ther Pat 2017; 28:81-92. [PMID: 28965471 DOI: 10.1080/13543776.2017.1384816] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Depression is a serious mood disorder and is one of the most common mental illnesses. Despite the availability of several classes of antidepressants, a substantial percentage of patients are unresponsive to these drugs, which have a slow onset of action in addition to producing undesirable side effects. Some scientific evidence suggests that cyclodextrins (CDs) can improve the physicochemical and pharmacological profile of antidepressant drugs (ADDs). The purpose of this paper is to disclose current data technology prospects involving antidepressant drugs and cyclodextrins. AREAS COVERED We conducted a patent review to evaluate the antidepressive activity of the compounds complexed in CDs, and we analyzed whether these complexes improved their physicochemical properties and pharmacological action. The present review used 8 specialized patent databases for patent research, using the term 'cyclodextrin' combined with 'antidepressive agents' and its related terms. We found 608 patents. In the end, considering the inclusion criteria, 27 patents reporting the benefits of complexation of ADDs with CDs were included. EXPERT OPINION The use of CDs can be considered an important tool for the optimization of physicochemical and pharmacological properties of ADDs, such as stability, solubility and bioavailability.
Collapse
Affiliation(s)
- Tâmara Coimbra Diniz
- a Postgraduate Program in Biotechnology , State University of Feira de Santana , Feira de Santana , Brazil
| | - Tiago Coimbra Costa Pinto
- b Postgraduate Program in Neuropsychiatry and Behavioural Science , Federal University of Pernambuco , Recife , Brazil
| | | | - Juliane Cabral Silva
- d Nucleus of Biological Sciences , State University of Health Sciences of Alagoas , Maceió , Brazil
| | - Roxana Braga de Andrade Teles
- a Postgraduate Program in Biotechnology , State University of Feira de Santana , Feira de Santana , Brazil.,e Center for Studies and Research of Medicinal Plants , Federal University of San Francisco Valley , Petrolina , Brazil
| | | | | | | | | | | | - Jackson Roberto Guedes da Silva Almeida
- a Postgraduate Program in Biotechnology , State University of Feira de Santana , Feira de Santana , Brazil.,e Center for Studies and Research of Medicinal Plants , Federal University of San Francisco Valley , Petrolina , Brazil
| |
Collapse
|
33
|
Castro GT, Filippa MA, Peralta CM, Davin MV, Almandoz MC, Gasull EI. Solubility and Preferential Solvation of Piroxicam in Neat Solvents and Binary Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1515/zpch-2017-0946] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The solubilization and solvatochromic behavior of piroxicam (PRX) were analyzed using UV-vis spectroscopy in neat (protic and aprotic) and binary solvent mixtures. The effects of solvent dipolarity/polarizability and solvent–solute hydrogen bonding interactions on the absorption maxima were evaluated by means of the linear solvation energy relationship concept of Kamlet and Taft. This analysis indicated that both interactions play an important role in the position of the absorption maxima in neat solvents. While, the PRX solubility depends on the solute–solvent specific interactions, polarizability and the cohesive forces of the solvent, manifested mainly by means of the Hildebrand’s solubility parameter. Preferential solvation (PS) was studied in 10 binary mixtures. A non-ideal behavior of the wavenumber curve as the function of analytical mole fraction of co-solvent was detected. Index of preferential solvation, as well as the influence of solvent parameters were calculated. The process of dissolution was analyzed in aqueous binary mixtures of ethanol, ethylene glycol and propylene glycol. They were not spontaneous in all proportions, but when water concentration decreases in the mixtures, the process becomes more spontaneous.
Collapse
Affiliation(s)
- Gabriela Tatiana Castro
- Project PROICO 2-1614, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis , Chacabuco 917, D5700HHW , San Luis , Argentina
| | - Mauricio Andrés Filippa
- Project PROICO 2-1614, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis , Chacabuco 917, D5700HHW , San Luis , Argentina
| | - Cecilia Mariana Peralta
- Project PROICO 2-1614, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis , Chacabuco 917, D5700HHW , San Luis , Argentina
| | - María Virginia Davin
- Project PROICO 2-1614, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis , Chacabuco 917, D5700HHW , San Luis , Argentina
| | - María Cristina Almandoz
- Project PROICO 2-1614, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis , Chacabuco 917, D5700HHW , San Luis , Argentina
| | - Estela Isabel Gasull
- Project PROICO 2-1614, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis , Chacabuco 917, D5700HHW , San Luis , Argentina
| |
Collapse
|
34
|
Inclusion complex between β-cyclodextrin and hecogenin acetate produces superior analgesic effect in animal models for orofacial pain. Biomed Pharmacother 2017; 93:754-762. [DOI: 10.1016/j.biopha.2017.06.091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/14/2017] [Accepted: 06/23/2017] [Indexed: 11/18/2022] Open
|
35
|
Quintans JS, Pereira EW, Carvalho YM, Menezes PP, Serafini MR, Batista MV, Moreira CD, Lima ÁA, Branco A, Almeida JR, Gelain DP, Zengin G, Araújo AA, Quintans-Júnior LJ. Host–guest inclusion complexation of β-cyclodextrin and hecogenin acetate to enhance anti-hyperalgesic effect in an animal model of musculoskeletal pain. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Evaluation of the antibacterial and modulatory potential of α-bisabolol, β-cyclodextrin and α-bisabolol/β-cyclodextrin complex. Biomed Pharmacother 2017. [DOI: 10.1016/j.biopha.2017.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
37
|
Oliveira MA, Guimarães AG, Araújo AAS, Quintans-Júnior LJ, Quintans JSS. New drugs or alternative therapy to blurring the symptoms of fibromyalgia-a patent review. Expert Opin Ther Pat 2017; 27:1147-1157. [PMID: 28665159 DOI: 10.1080/13543776.2017.1349105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Fibromyalgia (FM) is a musculoskeletal condition characterized by chronic widespread pain, tenderness and often accompanied by other comorbid conditions such as depression, anxiety, chronic fatigue, among others. Now, we aimed to survey the recent patents describing new drugs or alternative therapy for FM. Areas covered: This review covers the therapeutic patents published between 2010 and 2017 from specialized search databases (WIPO, DERWENT, INPI, ESPANET and USPTO) that report the discovery of new drugs or pharmacologic alternative for the treatment of FM. Expert opinion: New therapeutic substances have been proposed in the last seven years. At least as it has been found in our survey, most are still in the pre-clinical phase of the study, and its clinical applicability is unclear. However, other therapeutic approaches were found in patents such as well-established drugs in the market in combination or drug repositioning that combines the 'new analgesic' effects with the old side effects. Hence, it is a safe approach for pharmaceutical market, but poorer to patients who need a radical innovation. So, there is the emerging need for further studies on the safety and efficacy of such therapeutic measures and the search for improvement of side effects, as well as the development of new drugs that are unorthodox for different FM symptoms.
Collapse
Affiliation(s)
- Marlange A Oliveira
- a Multiuser Center for Health (CMulti-Saúde) , Federal University of Sergipe , Sergipe , Brazil
| | - Adriana G Guimarães
- b Departament of Health Education , Federal University of Sergipe , Sergipe , Brazil
| | - Adriano A S Araújo
- a Multiuser Center for Health (CMulti-Saúde) , Federal University of Sergipe , Sergipe , Brazil
| | | | - Jullyana S S Quintans
- a Multiuser Center for Health (CMulti-Saúde) , Federal University of Sergipe , Sergipe , Brazil
| |
Collapse
|
38
|
Fast dissolving drug-drug eutectics with improved compressibility and synergistic effects. Eur J Pharm Sci 2017; 104:82-89. [DOI: 10.1016/j.ejps.2017.03.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/23/2016] [Accepted: 03/29/2017] [Indexed: 01/28/2023]
|
39
|
Siqueira-Lima PS, Brito RG, Araújo-Filho HG, Santos PL, Lucchesi A, Araújo AAS, Menezes PP, Scotti L, Scotti MT, Menezes IRA, Coutinho HDM, Zengin G, Aktumsek A, Antoniolli AR, Quintans-Júnior LJ, Quintans JSS. Anti-hyperalgesic effect of Lippia grata leaf essential oil complexed with β-cyclodextrin in a chronic musculoskeletal pain animal model: Complemented with a molecular docking and antioxidant screening. Biomed Pharmacother 2017; 91:739-747. [PMID: 28499245 DOI: 10.1016/j.biopha.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Due to its unclear pathophysiology, the pharmacological treatment of fibromyalgia is a challenge for researchers. Studies using medicinal plants, such as those from the genus Lippia, complexed with cyclodextrins (CDs) have shown innovative results. OBJECTIVE The present research intended to evaluate the effect of an inclusion complex containing β-cyclodextrin (βCD) inclusion complex with Lippia grata (LG) essential oil in a chronic musculoskeletal pain model, its central activity and its possible interaction with neurotransmitters involved in pain. METHODS After acid saline-induced chronic muscle pain, male mice were evaluated for primary and secondary hyperalgesia and muscle strength. Moreover, an antagonist assay was performed to assess the possible involvement of the opioidergic, serotonergic and noradrenergic pathways. In addition, Fos protein in the spinal cord was assessed, and a docking study and antioxidant assays were performed. RESULTS The treatment with LG-βCD, especially in the dose of 24mg/kg, was able to significantly decrease (p<0.05) the paw withdrawal and muscle threshold. Furthermore, LG-βCD was shown to affect the opioidergic and serotonergic pathways. There were no significant changes in muscle strength. Fos protein immunofluorescence showed a significant decrease in expression in the dorsal horn of the spinal cord. The main compounds of LG showed through the docking study interaction energies with the alpha-adrenergic and μOpioid receptors. In all antioxidant assays, LG exhibited stronger antioxidant activities than LG-βCD. CONCLUSION This study suggested that LG-βCD could be considered as a valuable source for designing new drugs in the treatment of chronic pain, especially musculoskeletal pain.
Collapse
Affiliation(s)
- Pollyana S Siqueira-Lima
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil; Graduate Program of Biotechnology (PPGBiotec), The State University of Feira de Santana, Feira de Santana, BA, Brazil
| | - Renan G Brito
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Heitor G Araújo-Filho
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Priscila L Santos
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Angélica Lucchesi
- Graduate Program of Biotechnology (PPGBiotec), The State University of Feira de Santana, Feira de Santana, BA, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy (DFA), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Paula P Menezes
- Department of Pharmacy (DFA), Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Luciana Scotti
- Graduate Program of Natural Product and Bioactive Synthetics, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Marcus T Scotti
- Graduate Program of Natural Product and Bioactive Synthetics, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, Ceará, Brazil
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Campus, 42250, Konya, Turkey
| | - Abdurrahman Aktumsek
- Department of Biology, Science Faculty, Selcuk University, Campus, 42250, Konya, Turkey
| | - Angelo R Antoniolli
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| | - Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays (LANEF), Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
40
|
Pina LTS, Gouveia DN, Costa JS, Quintans JSS, Quintans-Júnior LJ, Barreto RSS, Guimarães AG. New perspectives for chronic pain treatment: a patent review (2010-2016). Expert Opin Ther Pat 2017; 27:787-796. [DOI: 10.1080/13543776.2017.1297425] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lícia T. S. Pina
- Department of Physiology, Federal University of Sergipe, Sergipe, Brazil
| | - Daniele N. Gouveia
- Department of Physiology, Federal University of Sergipe, Sergipe, Brazil
| | - Janara S. Costa
- Department of Physiology, Federal University of Sergipe, Sergipe, Brazil
| | | | | | | | | |
Collapse
|
41
|
Quintans-Júnior LJ, Brito RG, Quintans JSS, Santos PL, Camargo ZT, Barreto PA, Arrigoni-Blank MF, Lucca-Júnior W, Scotti L, Scotti MT, Kolker SJ, Sluka KA. Nanoemulsion Thermoreversible Pluronic F127-Based Hydrogel Containing Hyptis pectinata (Lamiaceae) Leaf Essential Oil Produced a Lasting Anti-hyperalgesic Effect in Chronic Noninflammatory Widespread Pain in Mice. Mol Neurobiol 2017; 55:1665-1675. [PMID: 28194646 DOI: 10.1007/s12035-017-0438-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/03/2017] [Indexed: 01/12/2023]
Abstract
We evaluated if a nanostructured thermoreversible Pluronic F127-based hydrogel incorporated with Hyptis pectinata leaf essential oil (NE-EOH) produces a long-lasting anti-hyperalgesic effect on chronic muscle pain in an animal model. We induced chronic muscle pain by injecting the gastrocnemius with saline injections. Paw and muscle withdrawal thresholds and motor performance were evaluated after treatment and compared with morphine, diazepam, or vehicle. Naloxone and methysergide administration tested the involvement of opioid and serotonin receptors, respectively. Sites of action in the central nervous system for the NE-EOH were examined by measuring substance P (SP) levels in the spinal cord and Fos protein in the brainstem. NE-EOH increased paw and muscle withdrawal thresholds when compared with vehicle but had no effect on motor function. This analgesic effect was reversed by both naloxone and methysergide. NE-EOH decreased elevated substance P levels and reduced Fos-labeled neurons in the spinal cord and increased the number of Fos-labeled neurons in the periaqueductal gray (PAG), nucleus raphe magnus (NRM), and locus coeruleus (LC). NE-EOH was shown to produce a lasting anti-hyperalgesic effect. It uses opioid and serotonin receptors, activates brainstem inhibitory pathways, and reduces the release of excitatory neurotransmitters in the spinal cord and is a substance with potential to be used in the treatment of noninflammatory pain conditions. Graphical Abstract.
Collapse
Affiliation(s)
- Lucindo J Quintans-Júnior
- Department of Physiology (DFS), Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe (UFS), Av. Marechal Rondom, s/n, São Cristóvão, SE, Brazil.
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa (UI), Iowa City, IA, USA.
| | - Renan G Brito
- Department of Physiology (DFS), Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe (UFS), Av. Marechal Rondom, s/n, São Cristóvão, SE, Brazil
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa (UI), Iowa City, IA, USA
| | - Jullyana S S Quintans
- Department of Physiology (DFS), Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe (UFS), Av. Marechal Rondom, s/n, São Cristóvão, SE, Brazil
| | - Priscila L Santos
- Department of Physiology (DFS), Laboratory of Neuroscience and Pharmacological Assays (LANEF), Federal University of Sergipe (UFS), Av. Marechal Rondom, s/n, São Cristóvão, SE, Brazil
| | - Zaine T Camargo
- Department of Chemistry, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | - Péricles A Barreto
- Department of Chemistry, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | | | - Waldecy Lucca-Júnior
- Department of Morphology, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| | - Luciana Scotti
- Department of Chemistry, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil
| | - Marcus T Scotti
- Department of Chemistry, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil
| | - Sandra J Kolker
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa (UI), Iowa City, IA, USA
| | - Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa (UI), Iowa City, IA, USA
| |
Collapse
|
42
|
Siqueira-Lima PS, Silva JC, Quintans JS, Antoniolli AR, Shanmugam S, Barreto RS, Santos MR, Almeida JR, Bonjardim LR, Menezes IR, Quintans-Júnior LJ. Natural products assessed in animal models for orofacial pain – a systematic review. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2017. [DOI: 10.1016/j.bjp.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Silva JC, Almeida JR, Quintans JS, Gopalsamy RG, Shanmugam S, Serafini MR, Oliveira MR, Silva BA, Martins AO, Castro FF, Menezes IR, Coutinho HD, Oliveira RC, Thangaraj P, Araújo AA, Quintans-Júnior LJ. Enhancement of orofacial antinociceptive effect of carvacrol, a monoterpene present in oregano and thyme oils, by β-cyclodextrin inclusion complex in mice. Biomed Pharmacother 2016; 84:454-461. [DOI: 10.1016/j.biopha.2016.09.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/16/2016] [Accepted: 09/17/2016] [Indexed: 12/21/2022] Open
|
44
|
Beta-cyclodextrin enhanced gastroprotective effect of (−)-linalool, a monoterpene present in rosewood essential oil, in gastric lesion models. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1245-1251. [PMID: 27629579 DOI: 10.1007/s00210-016-1298-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
|
45
|
Santos PL, Brito RG, Oliveira MA, Quintans JSS, Guimarães AG, Santos MRV, Menezes PP, Serafini MR, Menezes IRA, Coutinho HDM, Araújo AAS, Quintans-Júnior LJ. Docking, characterization and investigation of β-cyclodextrin complexed with citronellal, a monoterpene present in the essential oil of Cymbopogon species, as an anti-hyperalgesic agent in chronic muscle pain model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:948-57. [PMID: 27387403 DOI: 10.1016/j.phymed.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Citronellal (CT) is a monoterpene with antinociceptive acute effect. β-Cyclodextrin (βCD) has enhanced the analgesic effect of various substances. HYPOTHESIS/PURPOSE To evaluate the effect of CT both complexed in β-cyclodextrin (CT-βCD) and non-complexed, in a chronic muscle pain model (CMP) in mice. STUDY DESIGN The complex containing CT in βCD was obtained and characterized in the laboratory. The anti-hyperalgesic effect of CT and CT-βCD was evaluated in a pre-clinical in vivo study in a murine CMP. METHODS The complex was characterized through differential scanning calorimetry, derivative thermogravimetry, moisture determination, infrared spectroscopy and scanning electron microscopy. Male Swiss mice were pre-treated with CT (50mg/kg, po), CT-βCD (50mg/kg, po), vehicle (isotonic saline, po) or standard drug (tramadol4 mg/kg, ip). 60 min after the treatment and then each 1h, the mechanic hyperalgesia was evaluated to obtain the time effect. In addition, the muscle strength using grip strength meter and hyperalgesia were also performed daily, for 7 days. We assessed by immunofluorescence for Fos protein on brains and spinal cords of mice. The involvement of the CT with the glutamatergic system was studied with molecular docking. RESULTS All characterization methods showed the CT-βCD complexation. CT-induced anti-hyperalgesic effect lasted until 6h (p <0.001) while CT-βCD lasted until 8h (p <0.001vs vehicle and p <0.001vs CT from the 6th h). CT-βCD reduced mechanical hyperalgesia on all days of treatment (p <0.05), without changing muscle strength. Periaqueductal gray (p <0.01) and rostroventromedular area (p <0.05) showed significant increase in the Fos protein expression while in the spinal cord, there was a reduction (p <0.001). CT showed favorable energy binding (-5.6 and -6.1) to GluR2-S1S2J protein based in the docking score function. CONCLUSION We can suggest that βCD improved the anti-hyperalgesic effect of CT, and that effect seems to involve the descending pain-inhibitory mechanisms, with a possible interaction of the glutamate receptors, which are considered as promising molecules for the management of chronic pain such as CMP.
Collapse
Affiliation(s)
- Priscila L Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Renan G Brito
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Marlange A Oliveira
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | - Adriana G Guimarães
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Márcio R V Santos
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Paula P Menezes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Mairim R Serafini
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Irwin R A Menezes
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Henrique D M Coutinho
- Department of Biological Chemistry, Regional University of Cariri, Crato, CE, Brazil
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil..
| | | |
Collapse
|
46
|
Oliveira MGB, Brito RG, Santos PL, Araújo-Filho HG, Quintans JSS, Menezes PP, Serafini MR, Carvalho YMBG, Silva JC, Almeida JRGS, Scotti L, Scotti MT, Shanmugam S, Thangaraj P, Araújo AAS, Quintans-Júnior LJ. α-Terpineol, a monoterpene alcohol, complexed with β-cyclodextrin exerts antihyperalgesic effect in animal model for fibromyalgia aided with docking study. Chem Biol Interact 2016; 254:54-62. [PMID: 27231091 DOI: 10.1016/j.cbi.2016.05.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/07/2016] [Accepted: 05/22/2016] [Indexed: 01/07/2023]
Abstract
The anti-hyperalgesic effect of the complex containing α-terpineol (αTPN) and β-cyclodextrin (βCD) was analyzed in a non-inflammatory chronic muscle pain model, as well as its mechanism of action through docking study for a possible interaction with receptors. The αTPN-βCD complex was prepared and characterized through the thermogravimetry/derivate thermogravimetry (TG/DTG), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The model of chronic muscle pain was induced by two injections of pH 4.0 saline (20 μl) into the left gastrocnemius 5 days apart. After confirming hyperalgesia, male mice were treated with αTPN-βCD (25, 50 or 100 mg/kg; p.o.) or vehicle (saline 0.9%, p.o.) daily for 10 days. 1 h after the mechanical hyperalgesia, motor performance was evaluated. In addition, the systemic administration of naloxone and ondansetron tested the analgesic effect on the active opioid and serotonin receptors, respectively. The characterization tests indicated that αTPN was efficiently incorporated into βCD. The oral treatment with αTPN-βCD, at all doses tested, produced a significant (p < 0.001) decrease in the mechanical hyperalgesia, without causing any alteration in the force and in motor performance. This analgesic effect was reversed by the systemic administration of naloxone or ondansetron. These findings are corroborated by the docking study described in the present study, which verified a possible interaction of αTPN-βCD with opioid (MU, Kappa, Delta) and 5-HT receptors. Thus, it can be concluded that αTPN-βCD reduced the hyperalgesia followed by the chronic muscle pain model, probably evoked by the descending inhibitory pain system, specifically by opioid and serotoninergic receptors.
Collapse
Affiliation(s)
- Makson G B Oliveira
- Department of Physiology, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, São Cristóvão, Sergipe, CEP 49.000-100, Brazil.
| | - Renan G Brito
- Department of Physiology, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, São Cristóvão, Sergipe, CEP 49.000-100, Brazil.
| | - Priscila L Santos
- Department of Physiology, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, São Cristóvão, Sergipe, CEP 49.000-100, Brazil.
| | - Heitor G Araújo-Filho
- Department of Physiology, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, São Cristóvão, Sergipe, CEP 49.000-100, Brazil.
| | - Jullyana S S Quintans
- Department of Physiology, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, São Cristóvão, Sergipe, CEP 49.000-100, Brazil.
| | - Paula P Menezes
- Department of Pharmacy, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, São Cristóvão, Sergipe, CEP 49.100-000, Brazil.
| | - Mairim R Serafini
- Department of Pharmacy, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, São Cristóvão, Sergipe, CEP 49.100-000, Brazil.
| | - Yasmim M B G Carvalho
- Department of Pharmacy, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, São Cristóvão, Sergipe, CEP 49.100-000, Brazil.
| | - Juliane C Silva
- Department of Pharmacy, Federal University of San Francisco Valley, Petrolina, Pernambuco, CEP 56.304-917, Brazil.
| | - Jackson R G S Almeida
- Department of Pharmacy, Federal University of San Francisco Valley, Petrolina, Pernambuco, CEP 56.304-917, Brazil.
| | - Luciana Scotti
- Department of Chemistry, Federal University of Paraíba, João Pessoa, Paraíba, CEP 58051900, Brazil.
| | - Marcus T Scotti
- Department of Chemistry, Federal University of Paraíba, João Pessoa, Paraíba, CEP 58051900, Brazil.
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, São Cristóvão, Sergipe, CEP 49.100-000, Brazil.
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Adriano A S Araújo
- Department of Pharmacy, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, São Cristóvão, Sergipe, CEP 49.100-000, Brazil.
| | - Lucindo J Quintans-Júnior
- Department of Physiology, Federal University of Sergipe, Av. Tancredo Neves, S/N, Rosa Elza, São Cristóvão, Sergipe, CEP 49.000-100, Brazil.
| |
Collapse
|
47
|
Quintans-Júnior LJ, Araújo AA, Brito RG, Santos PL, Quintans JS, Menezes PP, Serafini MR, Silva GF, Carvalho FM, Brogden NK, Sluka KA. β-caryophyllene, a dietary cannabinoid, complexed with β-cyclodextrin produced anti-hyperalgesic effect involving the inhibition of Fos expression in superficial dorsal horn. Life Sci 2016; 149:34-41. [DOI: 10.1016/j.lfs.2016.02.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 12/23/2022]
|
48
|
Preparation, Characterization, and Pharmacological Activity of Cymbopogon winterianus Jowitt ex Bor (Poaceae) Leaf Essential Oil of β-Cyclodextrin Inclusion Complexes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:502454. [PMID: 26246838 PMCID: PMC4515525 DOI: 10.1155/2015/502454] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/11/2015] [Accepted: 06/16/2015] [Indexed: 01/09/2023]
Abstract
This study aimed to evaluate the orofacial antinociceptive effect of the Cymbopogon winterianus essential oil (LEO) complexed in β-cyclodextrin (LEO-CD) and to assess the possible involvement of the central nervous system (CNS). The LEO was extracted, chromatographed, and complexed in β-cyclodextrin. The complex was characterized by differential scanning calorimetry (DSC) and thermogravimetry derivative (TG/DTG). Male Swiss mice (2-3 months) were treated with LEO-CD (50-200 mg/kg, p.o.), vehicle (distilled water, p.o.), or standard drug (i.p.) and subjected to the orofacial nociception formalin-, capsaicin-, and glutamate-induced. After the formalin test, the animals were perfused and the brains subjected to immunofluorescence for Fos. The rota-rod test (7 rpm/min) was carried out. Geraniol (37.57%) was the main compound of LEO. DSC and TG/DTG proved the complexation. The orofacial nociceptive behavior was significantly (p < 0.05) reduced. The number of Fos-positive cells was significantly changed in the dorsal raphe nucleus (p < 0.01), locus coeruleus (p < 0.001), trigeminal nucleus (p < 0.05), and trigeminal thalamic tract (p < 0.05). LEO-CD did not cause changes in motor coordination in the rota-rod test. Thus, our results suggested that LEO-CD has an orofacial antinociceptive profile, probably mediated by the activation of the CNS without changing the motor coordination.
Collapse
|