1
|
Lin Y, Wang Y, Li L, Zhang K. Coding circular RNA in human cancer. Genes Dis 2025; 12:101347. [PMID: 40034125 PMCID: PMC11875173 DOI: 10.1016/j.gendis.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 04/05/2024] [Accepted: 04/28/2024] [Indexed: 03/05/2025] Open
Abstract
circular RNA (circRNA) is a covalently closed single-stranded RNA that lacks 5' and 3' ends and has long been considered a noncoding RNA. With the development of high-throughput sequencing and bioinformatics technology, the understanding of circRNA has become increasingly advanced. Recent studies have shown that some cytoplasmic circRNAs can be effectively translated into detectable proteins, further indicating the importance of circRNA in cellular pathology and physiological functions. Internal ribosome entry site (IRES) and N6-methyladenosine (m6A) mediated cap-independent translation initiation are considered potential mechanisms of circRNA translation. Multiple circRNAs have been shown to play crucial roles in human cancer. This paper provides an overview of the nature and functions of circRNA and describes the possible mechanisms underlying the initiation of circRNA translation. We summarized the emerging functions of circRNA-encoded proteins in human cancer. Finally, we discuss the therapeutic potential of circRNAs and the challenges of research in this field. This review on circRNA translation will reveal a hidden human proteome and enhance our understanding of the importance of circRNAs in human malignant tumors.
Collapse
Affiliation(s)
| | | | - Lixin Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250000, China
| | - Kai Zhang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250000, China
| |
Collapse
|
2
|
Setegne M, Cabral AT, Tiwari A, Shen F, Thiam HR, Dassama LMK. Engineering Cell-Specific Protein Delivery Vehicles for Erythroid Lineage Cells. ACS BIO & MED CHEM AU 2025; 5:268-282. [PMID: 40255284 PMCID: PMC12006860 DOI: 10.1021/acsbiomedchemau.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 04/22/2025]
Abstract
Biologics such as proteins, peptides, and oligonucleotides are powerful ligands to modulate challenging drug targets that lack readily accessible and "ligandable" pockets. However, the limited membrane permeance of biologics severely restricts their intracellular applications. Moreover, different cell types may exhibit varying levels of impermeability, and some delivery vehicles might be more sensitive to this variance. Erythroid lineage cells are especially challenging to deliver cargo to because of their unique cytoskeleton and the absence of endocytosis in mature erythrocytes. We recently employed a cell permeant miniature protein to deliver bioPROTACs to human umbilical cord blood derived erythroid progenitor cells (HUDEP-2) and primary hematopoietic stem (CD34+) cells (Shen et al., ACS Cent. Sci.2022, 8, 1695-1703). While successful, the low efficiency of delivery and lack of cell-type specificity limit use of bioPROTACs in vivo. In this work, we thoroughly evaluated the performance of various recently reported cell penetrating peptides (CPPs), CPP additives, bacterial toxins, and contractile injection systems for their ability to deliver cargo to erythroid precursor cells. We also explored how targeting receptors enriched on the erythroid cell surface might improve the efficiencies and specificities of these delivery vehicles. Our results reveal that certain vehicles exhibit improved efficiencies when directed to cell surface receptors while others do not benefit from this targeting strategy. Together, these findings advance our understanding of protein delivery to challenging cell types and illustrate some of the intricacies of cell-surface receptor targeting.
Collapse
Affiliation(s)
- Mekedlawit
T. Setegne
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Aidan T. Cabral
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Anushri Tiwari
- Department
of Biology, Stanford University, Stanford, California 94305, United States
| | - Fangfang Shen
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hawa Racine Thiam
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| | - Laura M. K. Dassama
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
3
|
Child T, Bassett R, Howles CM. The influence of the pharmaceutical industry on the development of gonadotrophins and ovarian stimulation protocols in assisted reproductive technologies. Front Endocrinol (Lausanne) 2025; 16:1536844. [PMID: 40255498 PMCID: PMC12006903 DOI: 10.3389/fendo.2025.1536844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/03/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction This review examines the evolution of gonadotrophins in ovarian stimulation (OS) protocols for assisted reproductive techniques (ART). Since the advent of in vitro fertilisation (IVF) in the late 1970s, the pharmaceutical industry has played a pivotal role in advancing gonadotrophin production, improving drug purity and optimising delivery methods. Despite significant progress, questions remain about the robustness of the evidence supporting the use of different gonadotrophins and the impact of industry-driven research on clinical practice. The review critically examines the evolution, evidence and future directions of gonadotrophin use in ART. Methods A comprehensive literature search was carried out in multiple databases to select articles/reviews on historical developments, manufacturing and analytical techniques, regulatory frameworks and clinical trials undertaken to assess gonadotrophin production, formulation processes and their integration into clinical practice. The analysis included mainly evidence from pharmaceutical sponsored randomised controlled trials (RCTs) as well as single arm, registration or post approval studies. Studies on new molecular entities were reviewed. Systematic reviews and meta-analyses, national registries were consulted. Laboratory developments, regulatory challenges, economic constraints, were considered. Results Over the past four decades, ART has seen remarkable improvements, including increased live birth rates in women of advanced ovarian age, reduced multiple births, and the advent of patient-friendly pen devices. Innovations such as recombinant FSH (rFSH) and biosimilars have expanded treatment options. However, the high cost of drug development as well as the complexity of the ART process have contributed to underpowered trials and reliance on meta-analyses, which often fail to account for confounding factors. Discussion While gonadotrophins have been shown to be effective for OS, unresolved issues, such as the role of supplementing LH activity in OS protocols, highlight the need for more robust trials. Collaboration between stakeholders is essential to standardise trial designs, define key outcomes and minimise bias. Emerging technologies, including AI and genetic testing, offer opportunities to refine embryo assessment and implantation outcomes, thus improving trial design. A renewed focus on rigorous, transparent trials and interdisciplinary collaboration is essential to advance patient care and address unmet challenges in ART treatment. Beyond gonadotrophins, alternative therapeutic avenues to improve oocyte competence and implantation success warrant exploration.
Collapse
Affiliation(s)
- Tim Child
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | | | - Colin M. Howles
- ARIES Consulting Sàrl, Geneva, Switzerland
- Honorary Fellow, Deanery of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
El-Saadony MT, Saad AM, Alkafaas SS, Dladla M, Ghosh S, Elkafas SS, Hafez W, Ezzat SM, Khedr SA, Hussien AM, Fahmy MA, Elesawi IE, Salem HM, Mohammed DM, Abd El-Mageed TA, Ahmed AE, Mosa WFA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA. Chitosan, derivatives, and its nanoparticles: Preparation, physicochemical properties, biological activities, and biomedical applications - A comprehensive review. Int J Biol Macromol 2025:142832. [PMID: 40187443 DOI: 10.1016/j.ijbiomac.2025.142832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/17/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Chitosan, derived from the deacetylation of chitin, is the second most widely used natural polymer, valued for its nontoxic, biocompatible, and biodegradable properties. These attributes have driven extensive research into diverse applications of chitosan and various derivatives. The key characteristics of chitosan muco-adhesion, permeability enhancement, drug release modulation, and antimicrobial activity are primarily due to its amino and hydroxyl groups. However, the limited solubility of raw chitosan in water and most organic solvents has posed challenges for broader application. Numerous chemically modified derivatives have been developed to address these inadequacies with improved physical and chemical properties. Among these derivatives, chitosan nanoparticles have emerged as versatile drug carriers with precise release kinetics and the capacity for targeted delivery, greatly enhancing drug efficacy and safety profiles for therapeutic applications. Due to these unique physicochemical properties, chitosan and chitosan nanoparticles are promising for improved drug delivery, vaccine administration, transplantation, gene therapy, and diagnostics. This review examines the physicochemical properties and bioactivities of chitosan and chitosan nanoparticles, emphasizing their broad-ranging biomedical applications.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed M Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mthokozisi Dladla
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia 32511, Egypt; Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg 191002, Russia
| | - Wael Hafez
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Salma Mohamed Ezzat
- Department of Chemistry, Division of Biochemistry, Faculty of Science, Tanta University, Tanta 44511, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohamed A Fahmy
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ibrahim Eid Elesawi
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Diseases of Birds, Rabbits, Fish & Their Care & Wildlife, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Taia A Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria 21531, Egypt
| | | | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
5
|
Nakmode DD, Singh B, Abdella S, Song Y, Garg S. Long-acting parenteral formulations of hydrophilic drugs, proteins, and peptide therapeutics: mechanisms, challenges, and therapeutic benefits with a focus on technologies. Drug Deliv Transl Res 2025; 15:1156-1180. [PMID: 39661312 PMCID: PMC11870889 DOI: 10.1007/s13346-024-01747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 12/12/2024]
Abstract
Despite being the most widely prescribed formulation, oral formulations possess several limitations such as low adherence, low bioavailability, high toxicity (in the case of anticancer drugs), and multiple-time administration requirements. All these limitations can be overcome by long-acting injectables. Improved adherence, patient compliance, and reduced relapse have been observed with long-acting formulation which has increased the demand for long-acting injectables. Drugs or peptide molecules with oral bioavailability issues can be easily delivered by long-acting systems. This review comprehensively addresses the various technologies used to develop long-acting injections with a particular focus on hydrophilic drugs and large molecules as well as the factors affecting the choice of formulation strategy. This is the first review that discusses the possible technologies that can be used for developing long-acting formulations for hydrophilic molecules along with factors which will affect the choice of the technology. Furthermore, the mechanism of drug release as well as summaries of marketed formulations will be presented. This review also discusses the challenges associated with the manufacturing and scale-up of the long-acting injectables.
Collapse
Affiliation(s)
- Deepa D Nakmode
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Baljinder Singh
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sadikalmahdi Abdella
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation, University of South Australia, North Terrace, Adelaide, SA, 5000, Australia.
| |
Collapse
|
6
|
Loxley GA, Coser C, Ghaemmaghami AM, Yang J. Long-term interleukin-4 release from 3D printable affinity hydrogels promotes M2-like macrophage polarisation in vitro. Biomater Sci 2025. [PMID: 40152475 PMCID: PMC11951857 DOI: 10.1039/d4bm01623h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
The biopharmaceutical industry for engineered protein drugs is rapidly increasing in size but there is a lack of controlled release vehicles to enable targeted delivery for regenerative medicine applications. In this study, we used photocrosslinkable 3-sulfopropyl acrylate potassium salt (SPAK)-poly(ethylene glycol) diacrylate (PEGDA) hydrogels to achieve controlled release of lysozyme for 70 days with zero-order release and tuneable release rate. Scaling down hydrogel volume and protein loading concentration to release Transforming growth factor beta-1 (TGF-β1) and Interleukin-4 (IL-4) resulted in low cumulative release, even without SPAK. Increasing PEGDA molecular weight from 4 kDa to 20 kDa improved TGF-β1 release but it still remained below 10% after 10 days. We observed sustained IL-4 release in the therapeutic ng mL-1 range for 73 days when loading IL-4 to 5% SPAK-10% PEGDA post photocrosslinking. Released IL-4 maintained bioactivity, promoting M2-like polarisation of THP-1 macrophages with day 53 supernatant, modelling long-term immunomodulation in vitro. We manufactured SPAK-PEGDA hydrogels by projection micro stereolithography, in which 3D printed 5% SPAK-10% PEGDA had an increased lysozyme release rate compared to its cast counterpart. 3D printed 5% SPAK-10% PEGDA with porous 3D design had an increased lysozyme release rate compared to a volume matched non-porous design. These findings highlight the potential of SPAK-PEGDA hydrogels for long-term cytokine delivery and show proof-of-concept for manipulating protein release kinetics with 3D printed hydrogel design.
Collapse
Affiliation(s)
- George A Loxley
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
- Immunology & Immuno-bioengineering Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
- Section of Immunology, School of Biosciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Consuelo Coser
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
- Immunology & Immuno-bioengineering Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Amir M Ghaemmaghami
- Immunology & Immuno-bioengineering Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jing Yang
- Division of Regenerative Medicine and Cellular Therapies, Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
7
|
Wu Y, Ji C, Yan Z, Fang X, Wang Y, Ma Y, Li J, Jin S, Chen H, Ji S, Zheng Y, Xiao S. Biological Coatings: Advanced Strategies Driving Multifunctionality and Clinical Potential in Dermal Substitutes. J Biomed Mater Res B Appl Biomater 2025; 113:e35545. [PMID: 39992741 DOI: 10.1002/jbm.b.35545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025]
Abstract
Skin tissue defects caused by various acute and chronic etiologies frequently occur in clinical medicine. Traditional surgical repair methods have certain limitations, while dermal substitutes combined with skin grafting have become an alternative to conventional surgery. Biological coatings, by loading bioactive substances such as polysaccharides and proteins, or by using bioactive substances as carriers, can promote cell adhesion, proliferation, and differentiation. This optimizes the mechanical properties and biocompatibility of the substitutes, enhances their antibacterial properties, and improves their feasibility for clinical application. This paper explores various common biological coating materials and the construction methods used in the field of dermal substitutes. It highlights the importance and necessity of biological coatings in the development of multifunctional designs for dermal substitutes. By summarizing the current research, this paper aims to offer new insights and references for the multifunctional design and clinical application of dermal substitutes.
Collapse
Affiliation(s)
- Yixin Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Chao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Zhenzhen Yan
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Xiaowan Fang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Yuxiang Wang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Yicheng Ma
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Jingzhu Li
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Shunxin Jin
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Hao Chen
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Ou L, Setegne MT, Elliot J, Shen F, Dassama LMK. Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics. Chem Rev 2025; 125:2120-2183. [PMID: 39818743 PMCID: PMC11870016 DOI: 10.1021/acs.chemrev.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
The nascent field of targeted protein degradation (TPD) could revolutionize biomedicine due to the ability of degrader molecules to selectively modulate disease-relevant proteins. A key limitation to the broad application of TPD is its dependence on small-molecule ligands to target proteins of interest. This leaves unstructured proteins or those lacking defined cavities for small-molecule binding out of the scope of many TPD technologies. The use of proteins, peptides, and nucleic acids (otherwise known as "biologics") as the protein-targeting moieties in degraders addresses this limitation. In the following sections, we provide a comprehensive and critical review of studies that have used proteins and peptides to mediate the degradation and hence the functional control of otherwise challenging disease-relevant protein targets. We describe existing platforms for protein/peptide-based ligand identification and the drug delivery systems that might be exploited for the delivery of biologic-based degraders. Throughout the Review, we underscore the successes, challenges, and opportunities of using protein-based degraders as chemical biology tools to spur discoveries, elucidate mechanisms, and act as a new therapeutic modality.
Collapse
Affiliation(s)
- Lisha Ou
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Mekedlawit T. Setegne
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
| | - Jeandele Elliot
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Fangfang Shen
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Laura M. K. Dassama
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Sarafan
ChEM-H Institute, Stanford University, Stanford, California 94305, United States
- Department
of Microbiology & Immunology, Stanford
School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
9
|
Wallace EJ, O'Dwyer J, Dolan EB, Burke LP, Wylie R, Bellavia G, Straino S, Cianfarani F, Ciotti G, Serini S, Calviello G, Roche ET, Mitra T, Duffy GP. Actuation-Mediated Compression of a Mechanoresponsive Hydrogel by Soft Robotics to Control Release of Therapeutic Proteins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2401744. [PMID: 39692747 PMCID: PMC11831469 DOI: 10.1002/advs.202401744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/31/2024] [Indexed: 12/19/2024]
Abstract
Therapeutic proteins, the fastest growing class of pharmaceuticals, are subject to rapid proteolytic degradation in vivo, rendering them inactive. Sophisticated drug delivery systems that maintain protein stability, prolong therapeutic effects, and reduce administration frequency are urgently required. Herein, a mechanoresponsive hydrogel is developed contained within a soft robotic drug delivery (SRDD) device. In a step-change from previously reported systems, pneumatic actuation of this system releases the cationic therapeutic protein Vascular Endothelial Growth Factor (VEGF) in a bioactive form which is required for therapeutic angiogenesis, the growth of new blood vessels, in numerous clinical conditions. The ability of the SRDD device to release bioactive VEGF in a spatiotemporal manner from the hydrogel is tested in diabetic rats - a model in which angiogenesis is difficult to stimulate. Daily actuation of the SRDD device in the diabetic rat model significantly increased cluster of differentiation 31+ (CD31+) blood vessel number (p = 0.0335) and the diameter of alpha-smooth muscle actin+ (α-SMA+) blood vessels (p = 0.0025) compared to passive release of VEGF from non-actuated devices. The SRDD device combined with the mechanoresponsive hydrogel offers the potential to deliver an array of bioactive therapeutics in a spatiotemporal manner to mimic their natural release in vivo.
Collapse
Affiliation(s)
- Eimear J. Wallace
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- Explora‐Bioscience SrlG. Peroni 386Rome00131Italy
| | - Joanne O'Dwyer
- Pharmacology and TherapeuticsSchool of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
| | - Eimear B. Dolan
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
- Biomedical EngineeringSchool of EngineeringUniversity of GalwayGalwayH91 HX31Ireland
| | - Liam P. Burke
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- Antimicrobial Resistance and Microbial Ecology GroupSchool of Medicine, College of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 DK59Ireland
- Centre for One HealthRyan InstituteUniversity of GalwayGalwayH91 DK59Ireland
| | - Robert Wylie
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
| | | | | | | | | | - Simona Serini
- Department of Translational Medicine and SurgerySection of General Pathology, Faculty of Medicine and SurgeryUniversità Cattolica del Sacro CuoreLargo F. VitoRome1‐00168Italy
| | - Gabriella Calviello
- Department of Translational Medicine and SurgerySection of General Pathology, Faculty of Medicine and SurgeryUniversità Cattolica del Sacro CuoreLargo F. VitoRome1‐00168Italy
| | - Ellen T. Roche
- Institute for Medical Engineering and ScienceMassachusetts Institute of TechnologyCambridgeMA 01239USA
- Harvard‐MIT Program in Health Sciences and TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Tapas Mitra
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
| | - Garry P. Duffy
- Anatomy and Regenerative Medicine Institute (REMEDI)School of MedicineCollege of Medicine Nursing and Health SciencesUniversity of GalwayGalwayH91 W2TYIreland
- CÚRAMSFI Research Centre for Medical DevicesUniversity of GalwayGalwayH91 W2TYIreland
- SFI Centre for Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College DublinDublinD02 W9K7Ireland
| |
Collapse
|
10
|
Georgieva S, Todorov P, Tchekalarova J. Spinorphin Molecules as Opportunities for Incorporation into Spinorphin@AuNPs Conjugate Systems for Potential Sustained Targeted Delivery to the Brain. Pharmaceuticals (Basel) 2025; 18:53. [PMID: 39861116 PMCID: PMC11768570 DOI: 10.3390/ph18010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Background: This study explores the potential for the synthesis of peptide nanosystems comprising spinorphin molecules (with rhodamine moiety: Rh-S, Rh-S5, and Rh-S6) conjugated with nanoparticles (AuNPs), specifically peptide Rh-S@AuNPs, peptide Rh-S5@AuNPs, and peptide Rh-S6@AuNPs, alongside a comparative analysis of the biological activities of free and conjugated peptides. The examination of the microstructural characteristics of the obtained peptide systems and their physicochemical properties constitutes a key focus of this study. Methods: Zeta (ζ) potential, Fourier transformation infrared (FTIR) spectroscopy, circular dichroism (CD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), and UV-Vis spectrophotometry were employed to elucidate the structure-activity correlations of the peptide@nano AuNP systems. Results: The zeta potential values for all the Rh-S@AuNPs demonstrate that the samples are electrically stable and resistant to flocculation and coagulation. The absorption of energy quanta from UV-Vis radiation by the novel nanopeptide systems does not substantially influence the distinctive signal of AuNPs, which is situated at around 531 nm. The FTIR measurements indicate the signals associated with the unique functional groups of the peptides, whereas circular dichroism verifies the synthesis of the conjugated nanocomposites of the spinorphin@AuNP type. An analysis of the SEM and TEM data revealed that most AuNPs have a spherical morphology, with an average diameter of around 21.92 ± 6.89 nm. The results of the in vivo studies showed promising findings regarding the anticonvulsant properties of the nanocompounds, especially the Rh-S@AuNP formulation. Conclusions: All the nanocompounds tested demonstrated the ability to reduce generalized tonic-clonic seizures. This suggests that these formulations may effectively target the underlying neuronal hyperexcitability. In addition, the prepared Rh-S@AuNP formulations also showed anticonvulsant activity in the maximal electroshock test performed in mice, which was evident after systemic (intraperitoneal) administration. The study's findings indicate that conjugates can be synthesized via a straightforward process, rendering them potential therapeutic agents with biological activity.
Collapse
Affiliation(s)
- Stela Georgieva
- Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria
| | - Petar Todorov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria;
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
11
|
Cai Z, Liu B, Cai Q, Gou J, Tang X. Advances in microsphere-based therapies for peritoneal carcinomatosis: challenges, innovations, and future prospects. Expert Opin Drug Deliv 2025; 22:31-46. [PMID: 39641971 DOI: 10.1080/17425247.2024.2439462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/09/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION Clinical outcomes for the treatment of peritoneal carcinomatosis (PC) have remained suboptimal. Microsphere-based intraperitoneal chemotherapy has shown considerable potential in preclinical studies. However, due to the complications associated with peritoneal adhesions, there has been a lack of comprehensive reviews focusing on the progress of microsphere applications in the treatment of PC. AREAS COVERED We provide an overview of the current clinical treatment strategies for PC and analyze the potential advantages of microspheres in this context. Regarding the issue of peritoneal adhesions induced by microspheres, we investigate the underlying mechanisms and propose possible solutions. Furthermore, we outline the future directions for the development of microsphere-based therapies in the treatment of PC. EXPERT OPINION Microspheres formulated with highly biocompatible materials to the peritoneum, such as sodium alginate, gelatin, or genipin, or with an optimal particle size (4 ~ 30 μm) and lower molecular weights (10 ~ 57 kDa), can prevent peritoneal adhesions and improve drug distribution. To further enhance the antitumor efficacy, enhancing the tumor penetration capability and specificity of microspheres, optimizing intraperitoneal distribution, and addressing tumor resistance have demonstrated significant potential in preclinical studies, offering new therapeutic prospects for the treatment of PC.
Collapse
Affiliation(s)
- Zhitao Cai
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Boyuan Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qing Cai
- Department of Formulation, Zhuhai Livzon Microsphere Technology Co. Ltd, Zhuhai, China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
12
|
Guo Y, Sun T, Li M, Chen Z, Liu Y, Luo X, Chen Y, Li Y, Kuai L, Yu X, Zou L. Revolutionizing Heart Failure Therapy: Harnessing IVT mRNA and Fusion Protein Technology to Prolong rhBNP Half-Life. Pharm Res 2025; 42:137-149. [PMID: 39806211 PMCID: PMC11785693 DOI: 10.1007/s11095-024-03807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Recombinant human B-type natriuretic peptide (rhBNP) has been extensively proven to be an effective mean of heart failure (HF) therapy, but its clinical application is limited by its very short half-life. This study aims to combine in vitro transcribed mRNA (IVT mRNA) and fusion protein technology to develop a rhBNP-Fc mRNA drug with long half-life, high efficiency and few side effects to treat HF. METHODS The rhBNP-Fc fusion mRNA with IgG4-Fc sequence was produced by IVT technology. rhBNP-Fc mRNA was transfected into HEK293T cells to examine the expression in vitro. rhBNP-Fc mRNA encapsulated in LNP was injected into normal mice to detect the translation efficiency, half-life and negative effects in vivo. Finally, it was injected into doxorubicin-induced HF mice to screen the cardiac protective effect. RESULTS The rhBNP-Fc fusion mRNA extended the half-life of rhBNP, showing sustained expression in cell line for at least one day. rhBNP-Fc mRNA translation showed dose-dependent levels, and was still detectable 5 d after injection in vivo. In the HF mouse model, a single administration of rhBNP-Fc mRNA-LNP improved cardiac function, including improving heart ejection and reducing HF biomarkers expression. Additionally, rhBNP-Fc mRNA-LNP treatment mitigated myocardial damage, normalized cardiomyocyte structure, and reduced the levels of pro-inflammatory cytokines. CONCLUSION The rhBNP-Fc mRNA has the potential to serve as an alternative to traditional protein therapies, thereby reducing clinical dosages, injection frequencies, and treatment costs. Our findings offer new insights into the development and application of mRNA drugs, emphasizing their therapeutic potential in long-acting drugs.
Collapse
Affiliation(s)
- Yingyu Guo
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
| | - Tianhan Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Mengyao Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
| | - Ziwei Chen
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuanmei Luo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yayu Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lu Kuai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Dahua Road, Dongdan, Beijing, 100730, PR China.
| | - Lihui Zou
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, No.1 Dahua Road, Dongdan, Beijing, 100730, P.R. China.
| |
Collapse
|
13
|
Hong LQ, Ho TNT, Cu ST, Ngan LT, Tran NQ, Dang TT. Effective Strategies in Designing Chitosan-hyaluronic Acid Nanocarriers: From Synthesis to Drug Delivery Towards Chemotherapy. Curr Drug Deliv 2025; 22:41-62. [PMID: 38310441 DOI: 10.2174/0115672018275983231207101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 02/05/2024]
Abstract
The biomedical field faces an ongoing challenge in developing more effective anti-cancer medication due to the significant burden that cancer poses on human health. Extensive research has been conducted on the utilization of natural polysaccharides in nanomedicine owing to their properties of biocompatibility, biodegradability, non-immunogenicity, and non-toxicity. These characteristics make them a potent drug delivery system for cancer therapy. The chitosan hyaluronic acid nanoparticle (CSHANp) system, consisting of chitosan and hyaluronic acid nanoparticles, has exhibited considerable potential as a nanocarrier for various cancer drugs, rendering it one of the most auspicious systems presently accessible. The CSHANps demonstrate remarkable drug loading capacity, precise control over drug release, and exceptional selectivity towards cancer cells. These properties enhance the therapeutic effectiveness against cancerous cells. This article aims to provide a comprehensive analysis of CSHANp, focusing on its characteristics, production techniques, applications, and future prospects.
Collapse
Affiliation(s)
- Long-Quy Hong
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Thao N T Ho
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Son T Cu
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
| | - Lien Tuyet Ngan
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Quyen Tran
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Tien T Dang
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, 1B TL29, District 12, Ho Chi Minh City, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| |
Collapse
|
14
|
Tagad H, Marin A, Hlushko R, Andrianov AK. Hydrolytically Degradable Zwitterionic Polyphosphazene Containing HEPES Moieties as Side Groups. Biomacromolecules 2024; 25:6791-6800. [PMID: 39315416 PMCID: PMC11480972 DOI: 10.1021/acs.biomac.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Zwitterionic polymers, ampholytic macromolecules containing ionic moieties of opposite sign on the same pendant groups, exhibit strong protein-repulsive properties and an inherent biological inertness. For that reason, these highly hydrated inner salt macromolecules have emerged as some of the most viable alternatives to poly(ethylene glycol) (PEG), a gold standard in enabling stealth behavior in life science applications. However, the structural diversity of polymer zwitterions remains limited, and currently available macromolecules do not possess an intrinsic ability to undergo hydrolytical degradation, an important prerequisite for use in drug delivery applications. The present paper reports on the synthesis of a zwitterionic polymer, a multimerized form (two thousand copies), of a biologically benign buffering agent, HEPES, which is covalently assembled on a polyphosphazene backbone. The polymer exhibits typical polyzwitterionic solution behavior, an environmentally dependent hydrolytic degradation pattern, and excellent in vitro compatibility, features that highlight its potential utility for life science applications.
Collapse
Affiliation(s)
- Harichandra
D. Tagad
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Alexander Marin
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Raman Hlushko
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Alexander K. Andrianov
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
15
|
Modi D, Hussain MS, Ainampudi S, Prajapati BG. Long acting injectables for the treatment of prostate cancer. J Drug Deliv Sci Technol 2024; 100:105996. [DOI: 10.1016/j.jddst.2024.105996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
|
16
|
Adams SC, Nambiar AK, Bressler EM, Raut CP, Colson YL, Wong WW, Grinstaff MW. Immunotherapies for locally aggressive cancers. Adv Drug Deliv Rev 2024; 210:115331. [PMID: 38729264 PMCID: PMC11228555 DOI: 10.1016/j.addr.2024.115331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Improving surgical resection outcomes for locally aggressive tumors is key to inducing durable locoregional disease control and preventing progression to metastatic disease. Macroscopically complete resection of the tumor is the standard of care for many cancers, including breast, ovarian, lung, sarcoma, and mesothelioma. Advancements in cancer diagnostics are increasing the number of surgically eligible cases through early detection. Thus, a unique opportunity arises to improve patient outcomes with decreased recurrence rates via intraoperative delivery treatments using local drug delivery strategies after the tumor has been resected. Of the current systemic treatments (e.g., chemotherapy, targeted therapies, and immunotherapies), immunotherapies are the latest approach to offer significant benefits. Intraoperative strategies benefit from direct access to the tumor microenvironment which improves drug uptake to the tumor and simultaneously minimizes the risk of drug entering healthy tissues thereby resulting in fewer or less toxic adverse events. We review the current state of immunotherapy development and discuss the opportunities that intraoperative treatment provides. We conclude by summarizing progress in current research, identifying areas for exploration, and discussing future prospects in sustained remission.
Collapse
Affiliation(s)
- Sarah C Adams
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Arun K Nambiar
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Eric M Bressler
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Yolonda L Colson
- Massachusetts General Hospital, Department of Surgery, Boston, MA 02114, USA.
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Chemistry, Boston University, Boston MA 02215, USA.
| |
Collapse
|
17
|
Andrianov AK. Delivery of protein therapeutics and vaccines using their multivalent complexes with synthetic polyelectrolytes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 212:235-259. [PMID: 40122646 DOI: 10.1016/bs.pmbts.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Clinical applications of protein and peptide-based therapeutics and vaccines are rapidly expanding. However, the development of promising new product candidates is often hindered by unfavorable pharmacokinetic profiles, which necessitate the implementation of drug delivery systems to improve protein stability and bioavailability. Non-covalent modification of proteins with synthetic polyelectrolytes, which relies on the strength of cooperative multivalent interactions, may offer potential advantages. In contrast to commonly employed covalent conjugation or microencapsulation methodologies, this technology offers dynamic protection of the protein thereby minimizing the loss of its biological activity, enabling "mix-and-match" formulation approaches, reducing manufacturing costs and simplifying regulatory processes. The range of potential life sciences applications ranges from immunopotentiation and vaccine delivery systems to long-circulating stealth biotherapeutics. This review analyses current technology in the context of intended clinical indications and discusses various synthetic and formulation approaches leading to supramolecular complexation. It evaluates dynamic interactions of complexes with constituents of physiological compartments and attempts to identify critical factors that can affect future advancement of this paradigm-shifting protein delivery technology.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.
| |
Collapse
|
18
|
Gorantla A, Hall JTVE, Troidle A, Janjic JM. Biomaterials for Protein Delivery: Opportunities and Challenges to Clinical Translation. MICROMACHINES 2024; 15:533. [PMID: 38675344 PMCID: PMC11052476 DOI: 10.3390/mi15040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The development of biomaterials for protein delivery is an emerging field that spans materials science, bioengineering, and medicine. In this review, we highlight the immense potential of protein-delivering biomaterials as therapeutic options and discuss the multifaceted challenges inherent to the field. We address current advancements and approaches in protein delivery that leverage stimuli-responsive materials, harness advanced fabrication techniques like 3D printing, and integrate nanotechnologies for greater targeting and improved stability, efficacy, and tolerability profiles. We also discuss the demand for highly complex delivery systems to maintain structural integrity and functionality of the protein payload. Finally, we discuss barriers to clinical translation, such as biocompatibility, immunogenicity, achieving reliable controlled release, efficient and targeted delivery, stability issues, scalability of production, and navigating the regulatory landscape for such materials. Overall, this review summarizes insights from a survey of the current literature and sheds light on the interplay between innovation and the practical implementation of biomaterials for protein delivery.
Collapse
Affiliation(s)
- Amogh Gorantla
- Department of Engineering, Wake Forest University, Winston-Salem, NC 27109, USA;
| | | | | | - Jelena M. Janjic
- School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| |
Collapse
|
19
|
Subraveti SN, Peters SM, Nader MG, Burni FA, Raghavan SR. A Smart Skin for Hydrogels That Enables Switchable Solute Release. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9201-9209. [PMID: 38329464 DOI: 10.1021/acsami.3c10515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Many applications of hydrogels rely on their ability to deliver encapsulated solutes, such as drugs; however, small hydrophilic solutes rapidly leak out of gels by diffusion. A need exists for a way to regulate solute release out of gels─to ensure zero release until a desired time (the OFF state) and thereafter for the release to be switched ON at a high rate. This should ideally be a repeatable switch; i.e., the gel should be cyclable repeatedly between the ON and OFF states. Such perfect, cyclical ON-OFF release of solutes from gels is demonstrated for the first time through a "smart skin" that is synthesized rapidly (in ∼10 min) around an entire gel. The thin (∼100 μm) and transparent polymer skin is endowed with redox-responsive properties through the use of urethane and acrylate monomers, one of which contains a thioether group. Initially, the skin is hydrophobic (water contact angle 102°), and it completely prevents hydrophilic solutes from leaking out of the gel. When contacted with oxidants such as hydrogen peroxide (H2O2), the thioethers are converted to sulfoxides, making the skin hydrophilic (water contact angle 42°) and thereby turning ON the release of solutes. Conversely, solute release can be turned OFF subsequently by adding a reducing agent such as vitamin C that reverts the sulfoxides to thioethers and thus returns the skin to its hydrophobic state. The release rate in the ON state can be tuned via the skin thickness as well as the oxidant concentration. The ability to regulate solute delivery from gels using smart skins is likely to prove significant in areas ranging from separations to agriculture and drug delivery.
Collapse
Affiliation(s)
- Sai Nikhil Subraveti
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sebastian M Peters
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Morine G Nader
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Faraz A Burni
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
20
|
Duvnjak M, Villois A, Ramazani F. Biodegradable Long-Acting Injectables: Platform Technology and Industrial Challenges. Handb Exp Pharmacol 2024; 284:133-150. [PMID: 37059910 DOI: 10.1007/164_2023_651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Long-acting injectables have been used to benefit patients with chronic diseases. So far, several biodegradable long-acting platform technologies including drug-loaded polymeric microparticles, implants (preformed and in situ forming), oil-based solutions, and aqueous suspension have been established. In this chapter, we summarize all the marketed technology platforms and discuss their challenges regarding development including but not limited to controlling drug release, particle size, stability, sterilization, scale-up manufacturing, etc. Finally, we discuss important criteria to consider for the successful development of long-acting injectables.
Collapse
Affiliation(s)
- Marieta Duvnjak
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Alessia Villois
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland
| | - Farshad Ramazani
- Technical Research and Development, Novartis Pharma AG, Basel, Switzerland.
| |
Collapse
|
21
|
Jena D, Srivastava N, Chauhan I, Verma M. Challenges and Therapeutic Approaches for the Protein Delivery System: A Review. Pharm Nanotechnol 2024; 12:391-411. [PMID: 38192140 DOI: 10.2174/0122117385265979231115074255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 01/10/2024]
Abstract
The protein delivery system is one of the innovative or novel drug delivery systems in the present era. Proteins play an indispensable role in our body and are mainly found in every part, like tissue and cells of our body. It also controls various functions, such as maintaining our tissue, transportation, muscle recovery, enzyme production and acting as an energy source for our body. Protein therapeutics have big future perspectives, and their use in the treatment of a wide range of serious diseases has transformed the delivery system in the pharmaceutical and biotechnology industries. The chief advantage of protein delivery is that it can be delivered directly to the systemic circulation. So far, parenteral routes, such as intravenous, intramuscular, and subcutaneous, are the most often used method of administering protein drugs. Alternative routes like buccal, oral, pulmonary, transdermal, nasal, and ocular routes have also shown a remarkable success rate. However, as with all other types of delivery, here, several challenges are posed due to the presence of various barriers, such as the enzymatic barrier, intestinal epithelial barrier, capillary endothelial barrier, and blood-brain barrier. There are several approaches that have been explored to overcome these barriers, such as chemical modification, enzymatic inhibitors, penetration enhancers, and mucoadhesive polymers. This review article discusses the protein, its functions, routes of administration, challenges, and strategies to achieve ultimate formulation goals. Recent advancements like the protein Pegylation method and Depofoam technology are another highlight of the article.
Collapse
Affiliation(s)
- Devashish Jena
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Nimisha Srivastava
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow, Sector 125, Noida, 201313, India
| | - Iti Chauhan
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| | - Madhu Verma
- Department of Pharmaceutics, I.T.S College of Pharmacy, Muradnagar, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
22
|
Wang J, Chen L, Qin S, Xie M, Luo SZ, Li W. Advances in biosynthesis of peptide drugs: Technology and industrialization. Biotechnol J 2024; 19:e2300256. [PMID: 37884278 DOI: 10.1002/biot.202300256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
Peptide drugs are developed from endogenous or synthetic peptides with specific biological activities. They have advantages of strong target specificity, high efficacy and low toxicity, thus showing great promise in the treatment of many diseases such as cancer, infections, and diabetes. Although an increasing number of peptide drugs have entered market in recent years, the preparation of peptide drug substances is yet a bottleneck problem for their industrial production. Comparing to the chemical synthesis method, peptide biosynthesis has advantages of simple synthesis, low cost, and low contamination. Therefore, the biosynthesis technology of peptide drugs has been widely used for manufacturing. Herein, we reviewed the development of peptide drugs and recent advances in peptide biosynthesis technology, in order to shed a light to the prospect of industrial production of peptide drugs based on biosynthesis technology.
Collapse
Affiliation(s)
- Jing Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
- College of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| | - Mingyuan Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
| |
Collapse
|
23
|
Niloy KK, Lowe TL. Injectable systems for long-lasting insulin therapy. Adv Drug Deliv Rev 2023; 203:115121. [PMID: 37898336 DOI: 10.1016/j.addr.2023.115121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Insulin therapy is the mainstay to treat diabetes characterizedd by hyperglycemia. However, its short half-life of only 4-6 min limits its effectiveness in treating chronic diabetes. Advances in recombinant DNA technology and protein engineering have led to several insulin analogue products that have up to 42 h of glycemic control. However, these insulin analogues still require once- or twice-daily injections for optimal glycemic control and have poor patient compliance and adherence issues. To achieve insulin release for more than one day, different injectable delivery systems including microspheres, in situ forming depots, nanoparticles and composite systems have been developed. Several of these delivery systems have advanced to clinical trials for once-weekly insulin injection. This review comprehensively summarizes the developments of injectable insulin analogs and delivery systems covering the whole field of injectable long-lasting insulin technologies from prototype design, preclinical studies, clinical trials to marketed products for the treatment of diabetes.
Collapse
Affiliation(s)
- Kumar Kulldeep Niloy
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Tao L Lowe
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
24
|
Marsh MC, Owen SC. Therapeutic Fusion Proteins. AAPS J 2023; 26:3. [PMID: 38036919 DOI: 10.1208/s12248-023-00873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Therapeutic fusion proteins are a class of hybrid constructs that combine distinct biomolecules into a single platform with the additive effects of the components. The ability to fuse two unrelated proteins provides a means to localize mechanisms to better treat a range of diseases. Fusion proteins can be designed to impart diverse functions, including increasing half-life, providing targeting, and enabling sustained signaling. Of these, half-life extenders, which are fused to a therapeutic protein to increase exposure, are the most established group of fusion proteins, with many clinical successes. Rapid advances in antibody and antibody-derivative technology have enabled the fusion of targeting domains with therapeutic proteins. An emerging group of therapeutic fusion proteins has two separate active functions. Although most research for therapeutic fusion proteins focuses on cancer, prior successes provide a foundation for studies into other diseases as well. The exponential emergence of biopharmaceuticals gives precedence for increased research into therapeutic fusion proteins for a multitude of diseases.
Collapse
Affiliation(s)
- Morgan C Marsh
- Department of Molecular Pharmaceutics, University of Utah, 30 South 2000 East, Room 301, Salt Lake City, Utah, 84112, USA
| | - Shawn C Owen
- Department of Molecular Pharmaceutics, University of Utah, 30 South 2000 East, Room 301, Salt Lake City, Utah, 84112, USA.
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA.
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, 84112, USA.
| |
Collapse
|
25
|
Nguyen TTK, Pham KY, Yook S. Engineered therapeutic proteins for sustained-release drug delivery systems. Acta Biomater 2023; 171:131-154. [PMID: 37717712 DOI: 10.1016/j.actbio.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Proteins play a vital role in diverse biological processes in the human body, and protein therapeutics have been applied to treat different diseases such as cancers, genetic disorders, autoimmunity, and inflammation. Protein therapeutics have demonstrated their advantages, such as specific pharmaceutical effects, low toxicity, and strong solubility. However, several disadvantages arise in clinical applications, including short half-life, immunogenicity, and low permeation, leading to reduced drug effectiveness. The structure of protein therapeutics can be modified to increase molecular size, leading to prolonged stability and increased plasma half-life. Notably, the controlled-release delivery systems for the sustained release of protein drugs and preserving the stability of cargo proteins are envisioned as a potential approach to overcome these challenges. In this review, we summarize recent research progress related to structural modifications (PEGylation, glycosylation, poly amino acid modification, and molecular biology-based strategies) and promising long-term delivery systems, such as polymer-based systems (injectable gel/implants, microparticles, nanoparticles, micro/nanogels, functional polymers), lipid-based systems (liposomes, solid lipid nanoparticles, nanostructured lipid carriers), and inorganic nanoparticles exploited for protein therapeutics. STATEMENT OF SIGNIFICANCE: In this review, we highlight recent advances concerning modifying proteins directly to enhance their stability and functionality and discuss state-of-the-art methods for the delivery and controlled long-term release of active protein therapeutics to their target site. In terms of drug modifications, four widely used strategies, including PEGylation, poly amino acid modification, glycosylation, and genetic, are discussed. As for drug delivery systems, we emphasize recent progress relating to polymer-based systems, lipid-based systems developed, and inorganic nanoparticles for protein sustained-release delivery. This review points out the areas requiring focused research attention before the full potential of protein therapeutics for human health and disease can be realized.
Collapse
Affiliation(s)
- Thoa Thi Kim Nguyen
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Khang-Yen Pham
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
26
|
Andrianov AK. Noncovalent PEGylation of protein and peptide therapeutics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1897. [PMID: 37138514 DOI: 10.1002/wnan.1897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023]
Abstract
Clinical applications of protein therapeutics-an advanced generation of drugs characterized by high biological specificity-are rapidly expanding. However, their development is often impeded by unfavorable pharmacokinetic profiles and largely relies on the use of drug delivery systems to prolong their in vivo half-life and suppress undesirable immunogenicity. Although a commercially established PEGylation technology based on protein conjugation with poly(ethylene glycol) (PEG)-protective steric shield resolves some of the challenges, the search for alternatives continues. Noncovalent PEGylation, which mainly relies on multivalent (cooperative) interactions and high affinity (host-guest) complexes formed between protein and PEG offers a number of potential advantages. Among them are dynamic or reversible protection of the protein with minimal loss of biological activity, drastically lower manufacturing costs, "mix-and-match" formulations approaches, and expanded scope of PEGylation targets. While a great number of innovative chemical approaches have been proposed in recent years, the ability to effectively control the stability of noncovalently assembled protein-PEG complexes under physiological conditions presents a serious challenge for the commercial development of the technology. In an attempt to identify critical factors affecting pharmacological behavior of noncovalently linked complexes, this Review follows a hierarchical analysis of various experimental techniques and resulting supramolecular architectures. The importance of in vivo administration routes, degradation patterns of PEGylating agents, and a multitude of potential exchange reactions with constituents of physiological compartments are highlighted. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Alexander K Andrianov
- Institute of Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| |
Collapse
|
27
|
Imaging of large volume subcutaneous deposition using MRI: exploratory clinical study results. Drug Deliv Transl Res 2023:10.1007/s13346-023-01318-7. [PMID: 36913105 PMCID: PMC10382358 DOI: 10.1007/s13346-023-01318-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2023] [Indexed: 03/14/2023]
Abstract
Subcutaneous (SC) delivery is a preferred route of administration for biotherapeutics but has predominantly been limited to volumes below 3 mL. With higher volume drug formulations emerging, understanding large volume SC (LVSC) depot localization, dispersion, and impact on the SC environment has become more critical. The aim of this exploratory clinical imaging study was to assess the feasibility of magnetic resonance imaging (MRI) to identify and characterize LVSC injections and their effect on SC tissue as a function of delivery site and volume. Healthy adult subjects received incremental injections of normal saline up to 5 mL total volume in the arm and up to 10 mL in the abdomen and thigh. MRI images were acquired after each incremental SC injection. Post-image analysis was performed to correct imaging artifacts, identify depot tissue location, create 3-dimensional (3D) SC depot rendering, and estimate in vivo bolus volumes and SC tissue distention. LVSC saline depots were readily achieved, imaged using MRI, and quantified via subsequent image reconstructions. Imaging artifacts occurred under some conditions, necessitating corrections applied during image analysis. 3D renderings were created for both the depot alone and in relation to the SC tissue boundaries. LVSC depots remained predominantly within the SC tissue and expanded with increasing injection volume. Depot geometry varied across injection sites and localized physiological structure changes were observed to accommodate LVSC injection volumes. MRI is an effective means to clinically visualize LVSC depots and SC architecture allowing assessment of deposition and dispersion of injected formulations.Trial Registration: Not applicable for this exploratory clinical imaging study.
Collapse
|
28
|
Encapsulating melittin from animal venom by finely tuned charge compensation with polymer carriers. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
29
|
Liu D, Wei M, Yan W, Xie H, Sun Y, Yuan B, Jin Y. Potential applications of drug delivery technologies against radiation enteritis. Expert Opin Drug Deliv 2023; 20:435-455. [PMID: 36809906 DOI: 10.1080/17425247.2023.2183948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
INTRODUCTION The incidence of abdominal tumors, such as colorectal and prostate cancers, continually increases. Radiation therapy is widely applied in the clinical treatment of patients with abdominal/pelvic cancers, but it often unfortunately causes radiation enteritis (RE) involving the intestine, colon, and rectum. However, there is a lack of suitable treatment options for effective prevention and treatment of RE. AREAS COVERED Conventional clinical drugs for preventing and treating RE are usually applied by enemas and oral administration. Innovative gut-targeted drug delivery systems including hydrogels, microspheres, and nanoparticles are proposed to improve the prevention and curation of RE. EXPERT OPINION The prevention and treatment of RE have not attracted sufficient attention in the clinical practice, especially compared to the treatment of tumors, although RE takes patients great pains. Drug delivery to the pathological sites of RE is a huge challenge. The short retention and weak targeting of conventional drug delivery systems affect the therapeutic efficiency of anti-RE drugs. Novel drug delivery systems including hydrogels, microspheres, and nanoparticles can allow drugs long-term retention in the gut and targeting the inflammation sites to alleviate radiation-induced injury.
Collapse
Affiliation(s)
- Dongdong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Meng Wei
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wenrui Yan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hua Xie
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yingbao Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Bochuan Yuan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
30
|
Jagrosse M, Agredo P, Abraham BL, Toriki ES, Nilsson BL. Supramolecular Phenylalanine-Derived Hydrogels for the Sustained Release of Functional Proteins. ACS Biomater Sci Eng 2023; 9:784-796. [PMID: 36693219 PMCID: PMC9930093 DOI: 10.1021/acsbiomaterials.2c01299] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Protein-based therapeutics have emerged as next-generation pharmaceutical agents for oncology, bone regeneration, autoimmune disorders, viral infections, and other diseases. The clinical application of protein therapeutics has been impeded by pharmacokinetic and pharmacodynamic challenges including off-target toxicity, rapid clearance, and drug stability. Strategies for the localized and sustained delivery of protein therapeutics have shown promise in addressing these challenges. Hydrogels are critical materials that enable these delivery strategies. Supramolecular hydrogels composed of self-assembled materials have demonstrated biocompatibility advantages over polymer hydrogels, with peptide and protein-based gels showing strong potential. However, cost is a significant drawback of peptide-based supramolecular hydrogels. Supramolecular hydrogels composed of inexpensive low-molecular-weight (LMW) gelators, including modified amino acid derivatives, have been reported as viable alternatives to peptide-based materials. Herein, we report the encapsulation and release of proteins from supramolecular hydrogels composed of perfluorinated fluorenylmethyloxcarbonyl-modified phenylalanine (Fmoc-F5-Phe-DAP). Specifically, we demonstrate release of four model proteins (ribonuclease A (RNase A), trypsin inhibitor (TI), bovine serum albumin (BSA), and human immunoglobulin G (IgG)) from these hydrogels. The emergent viscoelastic properties of these materials are characterized, and the functional and time-dependent release of proteins from the hydrogels is demonstrated. In addition, it is shown that the properties of the aqueous solution used for hydrogel formulation have a significant influence on the in vitro release profiles, as a function of the isoelectric point and molecular weight of the protein payloads. These studies collectively validate that this class of supramolecular LMW hydrogel possesses the requisite properties for the sustained and localized release of protein therapeutics.
Collapse
Affiliation(s)
- Melissa
L. Jagrosse
- Department
of Chemistry, University of Rochester, Rochester, New York14627, United States
| | - Pamela Agredo
- Department
of Chemistry, University of Rochester, Rochester, New York14627, United States
| | - Brittany L. Abraham
- Department
of Chemistry, University of Rochester, Rochester, New York14627, United States
| | - Ethan S. Toriki
- Department
of Chemistry, University of Rochester, Rochester, New York14627, United States
| | - Bradley L. Nilsson
- Department
of Chemistry, University of Rochester, Rochester, New York14627, United States,Materials
Science Program, University of Rochester, Rochester, New York14627, United States,. Tel: +1 585 276-3053
| |
Collapse
|
31
|
Xu Z, Zhang L, Sun T, Zhou C, Xiao S, Yin H, Gong M, Zhang D, Liu Y. GSH‐Responsive Dnase‐I‐Loaded MnO
x
Nanoplatforms for Combined Protein‐Chemodynamic Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Zhongsheng Xu
- Department of Radiology Xinqiao Hospital Army Medical University Chongqing 400037 P.R. China
| | - Liang Zhang
- Department of Radiology Xinqiao Hospital Army Medical University Chongqing 400037 P.R. China
| | - Tao Sun
- Department of Radiology Xinqiao Hospital Army Medical University Chongqing 400037 P.R. China
| | - Chunyu Zhou
- Department of Radiology Xinqiao Hospital Army Medical University Chongqing 400037 P.R. China
| | - Shilin Xiao
- Department of Radiology Xinqiao Hospital Army Medical University Chongqing 400037 P.R. China
| | - Hong Yin
- Department of Orthopedics Xinqiao Hospital Army Medical University Chongqing 400037 P.R. China
| | - Mingfu Gong
- Department of Radiology Xinqiao Hospital Army Medical University Chongqing 400037 P.R. China
| | - Dong Zhang
- Department of Radiology Xinqiao Hospital Army Medical University Chongqing 400037 P.R. China
| | - Yun Liu
- Department of Radiology Xinqiao Hospital Army Medical University Chongqing 400037 P.R. China
- Department of Radiology Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 P.R. China
| |
Collapse
|
32
|
Chang CL, Cai Z, Hsu SYT. Gel-forming antagonist provides a lasting effect on CGRP-induced vasodilation. Front Pharmacol 2022; 13:1040951. [PMID: 36569288 PMCID: PMC9772450 DOI: 10.3389/fphar.2022.1040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Migraine affects ∼15% of the adult population, and the standard treatment includes the use of triptans, ergotamines, and analgesics. Recently, CGRP and its receptor, the CLR/RAMP1 receptor complex, have been targeted for migraine treatment due to their critical roles in mediating migraine headaches. The effort has led to the approval of several anti-CGRP antibodies for chronic migraine treatment. However, many patients still suffer continuous struggles with migraine, perhaps due to the limited ability of anti-CGRP therapeutics to fully reduce CGRP levels or reach target cells. An alternative anti-CGRP strategy may help address the medical need of patients who do not respond to existing therapeutics. By serendipity, we have recently found that several chimeric adrenomedullin/adrenomedullin 2 peptides are potent CLR/RAMP receptor antagonists and self-assemble to form liquid gels. Among these analogs, the ADE651 analog, which potently inhibits CLR/RAMP1 receptor signaling, forms gels at a 6-20% level. Screening of ADE651 variants indicated that residues at the junctional region of this chimeric peptide are important for gaining the gel-forming capability. Gel-formation significantly slowed the passage of ADE651 molecules through Centricon filters. Consistently, subcutaneous injection of ADE651 gel in rats led to the sustained presence of ADE651 in circulation for >1 week. In addition, analysis of vascular blood flow in rat hindlimbs showed ADE651 significantly reduces CGRP-induced vasodilation. Because gel-forming antagonists could have direct and sustained access to target cells, ADE651 and related antagonists for CLR/RAMP receptors may represent promising candidates for targeting CGRP- and/or adrenomedullin-mediated headaches in migraine patients.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Taoyuan, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD, United States
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA, United States,*Correspondence: Sheau Yu Teddy Hsu,
| |
Collapse
|
33
|
Hopkins K, Wakelin E, Romick N, Kennedy J, Simmons E, Solorio L. Basic Salt Additives Modulate the Acidic Microenvironment Around In Situ Forming Implants. Ann Biomed Eng 2022; 51:966-976. [PMID: 36454398 DOI: 10.1007/s10439-022-03109-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/28/2022] [Indexed: 12/04/2022]
Abstract
There is a growing number of protein drugs, yet their limited oral bioavailability requires that patients receive frequent, high dose injections. In situ forming implants (ISFIs) for controlled release of biotherapeutics have the potential to greatly reduce the injection frequency and improve patient compliance. However, protein release from ISFIs is a challenge due to their proclivity for instability. Specifically, factors such as the acidic microclimate within ISFIs can lead to protein aggregation and denaturation. Basic salts have been shown in PLGA microparticle and microcylinder formulations to significantly reduce protein instability by neutralizing this acidic environment. The overall objective of the study was to demonstrate that basic salts can be used with an ISFI system to neutralize the implant acidification. To this end, the basic salts MgCO3 and Mg(OH)2 were added to a protein-releasing ISFI and the effect on drug release, pH, implant swelling, implant diffusivity, and implant erosion were evaluated. Either salt added at 3 wt% neutralized the acidic environment surrounding the implants, keeping the pH at 6.64 ± 0.03 (MgCO3) and 6.46 ± 0.11 (Mg(OH)2) after 28 day compared to 3.72 ± 0.05 with no salts added. The salts initially increased solution uptake into the implants but delayed implant degradation and erosion. The 3 wt% Mg(OH)2 formulation also showed slightly improved drug release with a lower burst and increased slope. We showed that salt additives can be an effective way to modulate the pH in the ISFI environment, which can improve protein stability and ultimately improve the capacity of ISFIs for delivering pH-sensitive biomolecules. Such a platform represents a low-cost method of improving overall patient compliance and reducing the overall healthcare burden.
Collapse
|
34
|
Liu H, Liang Z, Wang Y, Li Y, Wang Y, Guo X, Guan W, Zou W, Wu Z. Identification of the effect of N-glycan modification and its sialylation on proteolytic stability and glucose-stabilizing activity of glucagon-like peptide 1 by site-directed enzymatic glycosylation. RSC Adv 2022; 12:31892-31899. [PMID: 36380917 PMCID: PMC9639207 DOI: 10.1039/d2ra05872c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/01/2022] [Indexed: 09/20/2023] Open
Abstract
In this study, an approach to prepare long-acting glucagon-like peptide 1 (GLP-1) by site-directed enzymatic glycosylation with homogeneous biantennary complex-type N-glycan has been developed. All the N-glycan-modified GLP-1 analogues preserved an unchanged secondary structure. The glycosylated GLP-1 analogues with sialyl complex-type N-glycan modified at Asn26 and Asn34 exhibited a 36.7- and 24.0-fold in vitro half-life respectively when incubated with dipeptidyl peptidase-IV (DPP-IV), and 25.0- and 13.9-fold respectively when incubated with mouse serum. Compared to native GLP-1, both glycosylated GLP-1 analogues modified at Asn34 by asialyl and sialyl N-glycan demonstrated lower maximum blood glucose levels, as well as more rapid and more persistent glucose-stabilizing capability in type 2 diabetic db/db mice. Our results indicated that the selection of an appropriate position (to avoid hindering the peptide-receptor binding) is crucial for N-glycan modification and its sialylation to improve the therapeutic properties of the modified peptides. The information learned would facilitate future design of therapeutic glycopeptides/glycoproteins with N-glycan to achieve enhanced pharmacological properties.
Collapse
Affiliation(s)
- Huan Liu
- College of Food and Biology, Hebei University of Science and Technology Shijiazhuang Hebei 050018 China
| | - Zengwei Liang
- College of Food and Biology, Hebei University of Science and Technology Shijiazhuang Hebei 050018 China
| | - Yu Wang
- College of Food and Biology, Hebei University of Science and Technology Shijiazhuang Hebei 050018 China
| | - Yingze Li
- College of Food and Biology, Hebei University of Science and Technology Shijiazhuang Hebei 050018 China
| | - Ya Wang
- College of Food and Biology, Hebei University of Science and Technology Shijiazhuang Hebei 050018 China
| | - Xin Guo
- Research Center, Hebei Province Hospital of Chinese Medicine, Affiliated Hospital of Hebei University of Traditional Chinese Medicine Shijiazhuang Hebei 050011 China
- Department of Pathology and Laboratory Medicine, Department of Pathology, Kanazawa Medical University Uchinada Ishikawa 920-0293 Japan
| | - Wanyi Guan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University Shijiazhuang Hebei 050024 China
| | - Wei Zou
- College of Food and Biology, Hebei University of Science and Technology Shijiazhuang Hebei 050018 China
| | - Zhigang Wu
- College of Food and Biology, Hebei University of Science and Technology Shijiazhuang Hebei 050018 China
| |
Collapse
|
35
|
Chang CL, Cai Z, Hsu SYT. Sustained Activation of CLR/RAMP Receptors by Gel-Forming Agonists. Int J Mol Sci 2022; 23:ijms232113408. [PMID: 36362188 PMCID: PMC9655119 DOI: 10.3390/ijms232113408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Background: Adrenomedullin (ADM), adrenomedullin 2 (ADM2), and CGRP family peptides are important regulators of vascular vasotone and integrity, neurotransmission, and fetoplacental development. These peptides signal through CLR/RAMP1, 2, and 3 receptors, and protect against endothelial dysfunction in disease models. As such, CLR/RAMP receptor agonists are considered important therapeutic candidates for various diseases. Methods and Results: Based on the screening of a series of palmitoylated chimeric ADM/ADM2 analogs, we demonstrated a combination of lipidation and accommodating motifs at the hinge region of select peptides is important for gaining an enhanced receptor-activation activity and improved stimulatory effects on the proliferation and survival of human lymphatic endothelial cells when compared to wild-type peptides. In addition, by serendipity, we found that select palmitoylated analogs self-assemble to form liquid gels, and subcutaneous administration of an analog gel led to the sustained presence of the peptide in the circulation for >2 days. Consistently, subcutaneous injection of the analog gel significantly reduced the blood pressure in SHR rats and increased vasodilation in the hindlimbs of adult rats for days. Conclusions: Together, these data suggest gel-forming adrenomedullin analogs may represent promising candidates for the treatment of various life-threatening endothelial dysfunction-associated diseases such as treatment-resistant hypertension and preeclampsia, which are in urgent need of an effective drug.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Kweishan, Taoyuan 20878, Taiwan
| | - Zheqing Cai
- CL Laboratory LLC, Gaithersburg, MD 20878, USA
| | - Sheau Yu Teddy Hsu
- Adepthera LLC, San Jose, CA 95138, USA
- Correspondence: ; Tel.: +1-650-799-3496
| |
Collapse
|
36
|
Zaman R, Islam RA, Chowdhury EH. Evolving therapeutic proteins to precisely kill cancer cells. J Control Release 2022; 351:779-804. [DOI: 10.1016/j.jconrel.2022.09.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
37
|
Self-Healing Hydrogels: Development, Biomedical Applications, and Challenges. Polymers (Basel) 2022; 14:polym14214539. [PMID: 36365532 PMCID: PMC9654449 DOI: 10.3390/polym14214539] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/22/2022] Open
Abstract
Polymeric hydrogels have drawn considerable attention as a biomedical material for their unique mechanical and chemical properties, which are very similar to natural tissues. Among the conventional hydrogel materials, self-healing hydrogels (SHH) are showing their promise in biomedical applications in tissue engineering, wound healing, and drug delivery. Additionally, their responses can be controlled via external stimuli (e.g., pH, temperature, pressure, or radiation). Identifying a suitable combination of viscous and elastic materials, lipophilicity and biocompatibility are crucial challenges in the development of SHH. Furthermore, the trade-off relation between the healing performance and the mechanical toughness also limits their real-time applications. Additionally, short-term and long-term effects of many SHH in the in vivo model are yet to be reported. This review will discuss the mechanism of various SHH, their recent advancements, and their challenges in tissue engineering, wound healing, and drug delivery.
Collapse
|
38
|
Liu Y, Bai X, Lyu C, Fang J, Zhang F, Wu WH, Wei W, Zhang WB. Mechano-bioconjugation Strategy Empowering Fusion Protein Therapeutics with Aggregation Resistance, Prolonged Circulation, and Enhanced Antitumor Efficacy. J Am Chem Soc 2022; 144:18387-18396. [PMID: 36178288 DOI: 10.1021/jacs.2c06532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioconjugation is a powerful protein modification strategy to improve protein properties. Herein, we report mechano-bioconjugation as a novel approach to empower fusion protein therapeutics and demonstrate its utility by a protein heterocatenane (cat-IFN-ABD) containing interferon-α2b (IFN) mechanically interlocked with a consensus albumin-binding domain (ABD). The conjugate was selectively synthesized in cellulo following a cascade of post-translational events using a pair of heterodimerizing p53dim variants and two orthogonal split-intein reactions. The catenane topology was proven by combined techniques of LC-MS, SDS-PAGE, SEC, and controlled proteolytic digestion. Not only did cat-IFN-ABD retain activities comparable to those of the wild-type IFN and ABD, the conjugate also exhibited enhanced aggregation resistance and prolonged circulation time over the simple linear and cyclic fusions. Consequently, cat-IFN-ABD potently inhibited tumor growth in the mouse xenograft model. Therefore, mechano-bioconjugation by catenation accomplishes function integration with additional benefits, providing an alternative pathway for developing advanced protein therapeutics.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Xilin Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
39
|
|
40
|
Yawalkar AN, Pawar MA, Vavia PR. Microspheres for targeted drug delivery- A review on recent applications. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
41
|
Li F, Shao X, Liu D, Jiao X, Yang X, Yang W, Liu X. Vascular Disruptive Hydrogel Platform for Enhanced Chemotherapy and Anti-Angiogenesis through Alleviation of Immune Surveillance. Pharmaceutics 2022; 14:1809. [PMID: 36145556 PMCID: PMC9505154 DOI: 10.3390/pharmaceutics14091809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Patients undergoing immunotherapy always exhibit a low-response rate due to tumor heterogeneity and immune surveillance in the tumor. Angiogenesis plays an important role in affecting the status of tumor-infiltrated lymphocytes by inducing hypoxia and acidosis microenvironment, suggesting its synergistic potential in immunotherapy. However, the antitumor efficacy of singular anti-angiogenesis therapy often suffers from failure in the clinic due to the compensatory pro-angiogenesis signaling pathway. In this work, classic injectable thermosensitive PLGA-PEG-PLGA copolymer was used to construct a platform to co-deliver CA4P (vascular disruptive agent) and EPI for inducing immunogenic cell death of cancer cells by targeting the tumor immune microenvironment. Investigation of 4T1 tumor-bearing mouse models suggests that local administration of injectable V+E@Gel could significantly inhibit the proliferation of cancer cells and prolong the survival rate of 4T1 tumor-bearing mouse models. Histological analysis further indicates that V+E@Gel could effectively inhibit tumor angiogenesis and metastasis by down-regulating the expression of CD34, CD31, MTA1 and TGF-β. Moreover, due to the sustained release kinetics of V+E@Gel, its local administration relieves the immune surveillance in tumor tissues and thus induces a robust and long-lasting specific antitumor immune response. Overall, this work provides a new treatment strategy through the mediation of the tumor immune microenvironment by vascular disruption to fulfill enhanced chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Fasheng Li
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xinmei Shao
- Department of Neurology, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Dehui Liu
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xiaogang Jiao
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xinqi Yang
- Department of Imaging, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Wencai Yang
- Department of Interventional, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| | - Xiaoyan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan 517000, China
| |
Collapse
|
42
|
Gonella A, Grizot S, Liu F, López Noriega A, Richard J. Long-acting injectable formulation technologies: Challenges and opportunities for the delivery of fragile molecules. Expert Opin Drug Deliv 2022; 19:927-944. [PMID: 35899474 DOI: 10.1080/17425247.2022.2105318] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The development of long acting injectables (LAIs) for protein and peptide therapeutics has been a key challenge over the last 20 years. If these molecules offer advantages due to their high specificity and selectivity, their controlled release may confer several additional benefits in terms of extended half-life, local delivery, and patient compliance. AREA COVERED This manuscript aims to give an overview of peptide and protein based LAIs from an industrial perspective, describing both approved and promising technologies (with exceptions of protein engineering strategies and devices), their advantages and potential improvements to aid their access to the market. EXPERT OPINION Many LAIs have been developed for peptides, with formulations on the market for several decades. On the contrary, LAIs for proteins are still far from the market and issues related to manufacturing and sterilization of these products still need to be overcome. In situ forming depots (ISFDs), whose simple manufacturing conditions and easy administration procedures (without reconstitution) are strong advantages, appear as one of the most promising technologies for the delivery of these molecules. In this regard, the approval of ELIGARD® in the early 2000's (which still requires a complex reconstitution process), paved the way for the development of second-generation, ready-to-use ISFD technologies like BEPO® and FluidCrystal®.
Collapse
Affiliation(s)
- Andrea Gonella
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| | | | - Fang Liu
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| | | | - Joël Richard
- MedinCell S.A. - 3 rue des Frères Lumiere, 34830, Jacou, France
| |
Collapse
|
43
|
Hydroxypropyl methyl cellulose derivatives stabilize fragment antibody against aggregation in spray dried formulations at elevated temperature and resist pH changes. Eur J Pharm Biopharm 2022; 178:105-116. [DOI: 10.1016/j.ejpb.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/19/2022]
|
44
|
Kopač T, Krajnc M, Ručigaj A. Protein release from nanocellulose and alginate hydrogels: The study of adsorption and desorption kinetics. Colloids Surf B Biointerfaces 2022; 217:112677. [PMID: 35792530 DOI: 10.1016/j.colsurfb.2022.112677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 01/02/2023]
Abstract
This work presents a study of the lysozyme release from crosslinked TEMPO nanocellulose (TOCNF) and alginate (ALG) hydrogels in a medium with different ionic strength and temperature. The main objective is to develop a mathematical model for a detailed study of the concurrent action of diffusion mechanism and adsorption/desorption kinetics. Model fit parameters provide important information about the initial (maximum) adsorption rate and its deceleration with increasing ionic strength of the release medium. Similarly, the initial (minimum) desorption rate and its acceleration with increasing salt concentration can be determined. The model leads us to the conclusion that the initial adsorption rate is higher in the case of TOCNF, but due to fewer electrostatic interactions and morphology as well as topography of the surface, it decreases to a negligible value much faster than in the case of ALG, where the diffusion process becomes dominant.
Collapse
Affiliation(s)
- Tilen Kopač
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Matjaž Krajnc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia
| | - Aleš Ručigaj
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
45
|
Siefen T, Bjerregaard S, Borglin C, Lamprecht A. Assessment of joint pharmacokinetics and consequences for the intraarticular delivery of biologics. J Control Release 2022; 348:745-759. [PMID: 35714731 DOI: 10.1016/j.jconrel.2022.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023]
Abstract
Intraarticular (IA) injections provide the opportunity to deliver biologics directly to their site of action for a local and efficient treatment of osteoarthritis. However, the synovial joint is a challenging site of administration since the drug is rapidly eliminated across the synovial membrane and has limited distribution into cartilage, resulting in unsatisfactory therapeutic efficacy. In order to rationally develop appropriate drug delivery systems, it is essential to thoroughly understand the unique biopharmaceutical environments and kinetics in the joint to adequately simulate them in relevant experimental models. This review presents a detailed view on articular kinetics and drug-tissue interplay of IA administered drugs and summarizes how these can be translated into reasonable formulation strategies by identification of key factors through which the joint residence time can be prolonged and specific structures can be targeted. In this way, pros and cons of the delivery approaches for biologics will be evaluated and the extent to which biorelevant models are applicable to gain mechanistic insights and ameliorate formulation design is discussed.
Collapse
Affiliation(s)
- Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | | | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; PEPITE (EA4267), University of Burgundy/Franche-Comté, Besançon, France.
| |
Collapse
|
46
|
Peña Q, Wang A, Zaremba O, Shi Y, Scheeren HW, Metselaar JM, Kiessling F, Pallares RM, Wuttke S, Lammers T. Metallodrugs in cancer nanomedicine. Chem Soc Rev 2022; 51:2544-2582. [PMID: 35262108 DOI: 10.1039/d1cs00468a] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metal complexes are extensively used for cancer therapy. The multiple variables available for tuning (metal, ligand, and metal-ligand interaction) offer unique opportunities for drug design, and have led to a vast portfolio of metallodrugs that can display a higher diversity of functions and mechanisms of action with respect to pure organic structures. Clinically approved metallodrugs, such as cisplatin, carboplatin and oxaliplatin, are used to treat many types of cancer and play prominent roles in combination regimens, including with immunotherapy. However, metallodrugs generally suffer from poor pharmacokinetics, low levels of target site accumulation, metal-mediated off-target reactivity and development of drug resistance, which can all limit their efficacy and clinical translation. Nanomedicine has arisen as a powerful tool to help overcome these shortcomings. Several nanoformulations have already significantly improved the efficacy and reduced the toxicity of (chemo-)therapeutic drugs, including some promising metallodrug-containing nanomedicines currently in clinical trials. In this critical review, we analyse the opportunities and clinical challenges of metallodrugs, and we assess the advantages and limitations of metallodrug delivery, both from a nanocarrier and from a metal-nano interaction perspective. We describe the latest and most relevant nanomedicine formulations developed for metal complexes, and we discuss how the rational combination of coordination chemistry with nanomedicine technology can assist in promoting the clinical translation of metallodrugs.
Collapse
Affiliation(s)
- Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Alec Wang
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Orysia Zaremba
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Hans W Scheeren
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Josbert M Metselaar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany
| | - Roger M Pallares
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| | - Stefan Wuttke
- BCMaterials, Bld. Martina Casiano, 3rd. Floor, UPV/EHU Science Park, 48940, Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
47
|
Fayd'herbe De Maudave A, Leconet W, Toupet K, Constantinides M, Bossis G, de Toledo M, Vialaret J, Hirtz C, Lopez-Noriega A, Jorgensen C, Noël D, Louis-Plence P, Grizot S, Villalba M. Intra-articular delivery of full-length antibodies through the use of an in situ forming depot. J Control Release 2021; 341:578-590. [PMID: 34915070 DOI: 10.1016/j.jconrel.2021.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022]
Abstract
Monoclonal antibodies (mAbs) are large size molecules that have demonstrated high therapeutic potential for the treatment of cancer or autoimmune diseases. Despite some excellent results, their intravenous administration results in high plasma concentration. This triggers off-target effects and sometimes poor targeted tissue distribution. To circumvent this issue, we investigated a local controlled-delivery approach using an in situ forming depot technology. Two clinically relevant mAbs, rituximab (RTX) and daratumumab (DARA), were formulated using an injectable technology based on biodegradable PEG-PLA copolymers. The stability and controlled release features of the formulations were investigated. HPLC and mass spectrometry revealed the preservation of the protein structure. In vitro binding of formulated antibodies to their target antigens and to their cellular FcγRIIIa natural killer cell receptor was fully maintained. Furthermore, encapsulated RTX was as efficient as classical intravenous RTX treatment to inhibit the in vivo tumor growth of malignant human B cells in immunodeficient NSG mice. Finally, the intra-articular administration of the formulated mAbs yielded a sustained local release associated with a lower plasma concentration compared to the intra-articular delivery of non-encapsulated mAbs. Our results demonstrate that the utilization of this polymeric technology is a reliable alternative for the local delivery of fully functional clinically relevant mAbs.
Collapse
Affiliation(s)
| | | | | | - Michael Constantinides
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France
| | | | | | | | | | | | - Christian Jorgensen
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France
| | - Daniele Noël
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France
| | | | | | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, Montpellier, France; IRMB, CHU Montpellier, Montpellier, France; IRMB, Univ Montpellier, INSERM, CNRS, CHU Montpellier, Montpellier, France; Institut Sainte-Catherine, Avignon, France.
| |
Collapse
|
48
|
Sitohy M, Al-Mohammadi AR, Osman A, Abdel-Shafi S, El-Gazzar N, Hamdi S, Ismail SH, Enan G. Silver-Protein Nanocomposites as Antimicrobial Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3006. [PMID: 34835774 PMCID: PMC8617916 DOI: 10.3390/nano11113006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/09/2023]
Abstract
The use of nanomaterials alone or in composites with proteins is a promising alternative to inhibit pathogenic bacteria. In this regard, this study used seed proteins from both fenugreek (Trigonella foenum-graecum L.) (FNP) and mung bean (Viga radiate) (MNP), with silver nanoparticles (Ag-NPs) and nanocomposites of either Ag-NPs plus FNP (Ag-FNP) or Ag-NPs plus MNP (Ag-MNP) as inhibitory agents against pathogenic bacteria. FNP and MNP were isolated from fenugreek seeds and mung bean seeds, respectively, and fractionated using Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE). Both FNP and MNP were immobilized with Ag-NPs to synthesize the nanocomposites Ag-FNP and Ag-MNP, respectively. The physicochemical characteristics of Ag-NPs and their composites with proteins were studied by X-ray Diffraction (XRD), dynamic light scattering (DLS), the zeta potential, Scanning and Transmission Electron Microscopy (SEM and TEM, respectively), Atomic Force Microscopy (AFM), and the Brunauer-Emmett-Teller isotherm (BET), elucidating their structural parameters, size distribution, size charges, size surface morphology, particle shape, dimensional forms of particles, and specific surface area, respectively. The sole proteins, Ag-NPs, and their nanocomposites inhibited pathogenic Gram-positive and Gram-negative bacteria. The inhibitory activities of both nanocomposites (Ag-FNP and Ag-MNP) were more than those obtained by either Ag-NPs or proteins (FNP, MNP). Minimum inhibitory concentrations (MICs) of Ag-FNP were very low (20 and 10 µg mL-1) against Salmonellatyphimurium and Pseudomonasaerugenosa, respectively, but higher (162 µg mL-1) against E. coli and Listeriamonocytogenes. MICs of Ag-MNP were also very low (20 µg mL-1) against Staphylococcusaureus but higher (325 µg mL-1) against Listeriamonocytogenes. TEM images of Staphylococcusaureus and Salmonellatyphimurium, treated with Ag-FNP and Ag-MNP, at their MIC values, showed asymmetric, wrinkled exterior surfaces, cell deformations, cell depressions, and diminished cell numbers.
Collapse
Affiliation(s)
- Mahmoud Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (M.S.); (A.O.)
| | - Abdul-Raouf Al-Mohammadi
- Department of Science, King Khalid Military Academy, P.O. Box 22140, Riyadh 11495, Saudi Arabia;
| | - Ali Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt; (M.S.); (A.O.)
| | - Seham Abdel-Shafi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (N.E.-G.); (S.H.)
| | - Nashwa El-Gazzar
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (N.E.-G.); (S.H.)
| | - Sara Hamdi
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (N.E.-G.); (S.H.)
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate, Cairo University, Zayed City 12588, Egypt;
| | - Gamal Enan
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt; (N.E.-G.); (S.H.)
| |
Collapse
|
49
|
Posey N, Ma Y, Lueckheide M, Danischewski J, Fagan JA, Prabhu VM. Tuning Net Charge in Aliphatic Polycarbonates Alters Solubility and Protein Complexation Behavior. ACS OMEGA 2021; 6:22589-22602. [PMID: 34514231 PMCID: PMC8427630 DOI: 10.1021/acsomega.1c02523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
A synthetic strategy yielded polyelectrolytes and polyampholytes with tunable net charge for complexation and protein binding. Organocatalytic ring-opening polymerizations yielded aliphatic polycarbonates that were functionalized with both carboxylate and ammonium side chains in a post-polymerization, radical-mediated thiol-ene reaction. Incorporating net charge into the polymer architecture altered the chain dimensions in phosphate buffered solution in a manner consistent with self-complexation and complexation behavior with model proteins. A net cationic polyampholyte with 5% of carboxylate side chains formed large clusters rather than small complexes with bovine serum albumin, while 50% carboxylate polyampholyte was insoluble. Overall, the aliphatic polycarbonates with varying net charge exhibited different macrophase solution behaviors when mixed with protein, where self-complexation appears to compete with protein binding and larger-scale complexation.
Collapse
Affiliation(s)
| | - Yuanchi Ma
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Michael Lueckheide
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Julia Danischewski
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jeffrey A. Fagan
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Vivek M. Prabhu
- Materials Science and Engineering Division,
Material Measurement Laboratory, National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
50
|
PLGA/PLA-Based Long-Acting Injectable Depot Microspheres in Clinical Use: Production and Characterization Overview for Protein/Peptide Delivery. Int J Mol Sci 2021; 22:ijms22168884. [PMID: 34445587 PMCID: PMC8396256 DOI: 10.3390/ijms22168884] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022] Open
Abstract
Over the past few decades, long acting injectable (LAI) depots of polylactide-co-glycolide (PLGA) or polylactic acid (PLA) based microspheres have been developed for controlled drug delivery to reduce dosing frequency and to improve the therapeutic effects. Biopharmaceuticals such as proteins and peptides are encapsulated in the microspheres to increase their bioavailability and provide a long release period (days or months) with constant drug plasma concentration. The biodegradable and biocompatible properties of PLGA/PLA polymers, including but not limited to molecular weight, end group, lactide to glycolide ratio, and minor manufacturing changes, could greatly affect the quality attributes of microsphere formulations such as release profile, size, encapsulation efficiency, and bioactivity of biopharmaceuticals. Besides, the encapsulated proteins/peptides are susceptible to harsh processing conditions associated with microsphere fabrication methods, including exposure to organic solvent, shear stress, and temperature fluctuations. The protein/peptide containing LAI microspheres in clinical use is typically prepared by double emulsion, coacervation, and spray drying techniques. The purpose of this review is to provide an overview of the formulation attributes and conventional manufacturing techniques of LAI microspheres that are currently in clinical use for protein/peptides. Furthermore, the physicochemical characteristics of the microsphere formulations are deliberated.
Collapse
|