1
|
Adam M, Bain M, Ashraf T, Dona J, Al Zaben B, Shafik G, Srikantharajah R, Kulkarni MP, Williams KA, De Rubis G, Yeung S, Oliver BGG, Dua K. Exploring the influence of vaping on the pharmacokinetic fate of inhaled therapeutics. Arch Toxicol 2025:10.1007/s00204-025-04060-w. [PMID: 40287888 DOI: 10.1007/s00204-025-04060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
The surge of electronic cigarette use in Australia, especially amongst the younger population, raises significant concerns about its impact on respiratory health. This review focuses on the detrimental effects of vaping on pulmonary function, delving into oxidative stress, ventilation-perfusion mismatching, as well as cellular damage. Our findings show that e-cigarette use adversely affects the pharmacokinetics of inhaled therapies, reducing efficacy through impaired drug distribution, clearance and absorption, as well as alterations in metabolism. These negative effects mirror the impacts of traditional cigarette smoking, posing a severe health risk not only to individuals who vape, but also to those with pre-existing respiratory conditions. Despite its perception as a safer alternative, its consequence on pulmonary health is becoming increasingly evident with issues such as nicotine addiction and emerging evidence that even short-term exposure to e-cigarette aerosols impairs lung function, potentially paving the way for chronic respiratory diseases. This underscores an urgent need for further research on its long-term implications, particularly for individuals relying on inhalation therapies, emphasising the need for informed public health strategies and guiding clinical practice to safeguard respiratory health in this rapidly evolving landscape.
Collapse
Affiliation(s)
- Merna Adam
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Madeline Bain
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Toufic Ashraf
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Jayden Dona
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Borouj Al Zaben
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gina Shafik
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ramya Srikantharajah
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Mangesh Pradeep Kulkarni
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, 2113, Australia
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, 2113, Australia
| | - Stewart Yeung
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, 2113, Australia
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, 2113, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Consortium in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, 2113, Australia.
| |
Collapse
|
2
|
Forbes B, Bäckman P, Cabal A, Clark A, Ehrhardt C, Hastedt JE, Hickey AJ, Hochhaus G, Jiang W, Kassinos S, Kuehl PJ, Olsson B, Prime D, Son YJ, Teague S, Tehler U, Wylie J. iBCS: 4. Application of the Inhalation Biopharmaceutics Classification System to the Development of Orally Inhaled Drug Products. Mol Pharm 2025; 22:1740-1751. [PMID: 40079210 PMCID: PMC11979882 DOI: 10.1021/acs.molpharmaceut.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
This is the fourth paper in a series describing an inhalation biopharmaceutics classification system (iBCS), an initiative supported by the Product Quality Research Institute. The paper examines the application of the inhalation Biopharmaceutics Classification System (iBCS) through the drug discovery, development, and postapproval phases for orally inhaled drug products (OIDP) and for the development of generic OIDPs. We consider the implication of the iBCS class in terms of product performance and identify the practical gaps that must be filled to enable the classification system to be adopted into day-to-day practice. Consideration is given to the critical experimental data required and the methods for their generation with a focus on: (i) dose to the lungs, (ii) drug solubility in relevant media and methods to model the dissolution of respirable formulations, and (iii) pulmonary drug permeability. As described in three prior publications, the iBCS was developed to classify inhaled drugs based on physicochemical and biorelevant product attributes in a manner that will allow formulators and discovery chemists to identify and mitigate product development risks. It was not established to enable in vitro determination of bioequivalence between orally inhaled drug products. However, once analytical methods are in place to correctly classify inhaled drugs, the system has the potential to provide an understanding of the development risks associated with both establishing bioequivalence between two drug products and enabling postapproval changes based on product iBCS class.
Collapse
Affiliation(s)
- Ben Forbes
- King’s
College London, London SE1 9NH, U.K.
| | | | - Antonio Cabal
- Eisai, Woodcliff Lake, New Jersey 07677, United States
| | - Andy Clark
- Aerogen
Pharma, San Mateo, California 94402, United States
| | - Carsten Ehrhardt
- School
of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Jayne E. Hastedt
- JDP
Pharma
Consulting, San Carlos, California 94070, United States
| | - Anthony J. Hickey
- University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- RTI
International, Research Triangle
Park, North Carolina 27709, United States
| | | | - Wenlei Jiang
- Center
for Drug Evaluation and Research, Office of Generic Drugs, Office
of Research and Standards, U.S. FDA, Silver Spring, Maryland 20993, United States
| | | | - Philip J. Kuehl
- Lovelace Biomedical, Albuquerque, New Mexico 87108, United States
| | - Bo Olsson
- Emmace
Consulting, SE-223 63 Lund, Sweden
| | - David Prime
- Pulmonary Drug
Delivery Consultant, Ware SG12, U.K.
| | - Yoen-Ju Son
- Genentech, South San Francisco, California 94080, United States
| | | | - Ulrika Tehler
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Jennifer Wylie
- Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
3
|
Dhege CT, Kumar P, Choonara YE. Pulmonary drug delivery devices and nanosystems as potential treatment strategies for acute respiratory distress syndrome (ARDS). Int J Pharm 2024; 657:124182. [PMID: 38697584 DOI: 10.1016/j.ijpharm.2024.124182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/10/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Despite advances in drug delivery technologies, treating acute respiratory distress syndrome (ARDS) is challenging due to pathophysiological barriers such as lung injury, oedema fluid build-up, and lung inflammation. Active pharmaceutical ingredients (API) can be delivered directly to the lung site of action with the use of aerosol-based drug delivery devices, and this circumvents the hepatic first-pass effect and improves the bioavailability of drugs. This review discusses the various challenges and barriers for pulmonary drug delivery, current interventions for delivery, considerations for effective drug delivery, and the use of nanoparticle drug delivery carriers as potential strategies for delivering therapeutics in ARDS. Nanosystems have the added benefit of entrapping drugs, increase pulmonary drug bioavailability, and using biocompatible and biodegradable excipients that can facilitate targeted and/or controlled delivery. These systems provide an alternative to existing conventional systems. An effective way to deliver drugs for the treatment of ARDS can be by using colloidal systems that are aerosolized or inhaled. Drug distribution to the deeper pulmonary tissues is necessary due to the significant endothelial cell destruction that is prevalent in ARDS. The particle size of nanoparticles (<0.5 μm) makes them ideal candidates for treating ARDS as they can reach the alveoli. A look into the various potential benefits and limitations of nanosystems used for other lung disorders is also considered to indicate how they may be useful for the potential treatment of ARDS.
Collapse
Affiliation(s)
- Clarence T Dhege
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa.
| |
Collapse
|
4
|
Dong L, Zhuang X. Insights into Inhalation Drug Disposition: The Roles of Pulmonary Drug-Metabolizing Enzymes and Transporters. Int J Mol Sci 2024; 25:4671. [PMID: 38731891 PMCID: PMC11083391 DOI: 10.3390/ijms25094671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The past five decades have witnessed remarkable advancements in the field of inhaled medicines targeting the lungs for respiratory disease treatment. As a non-invasive drug delivery route, inhalation therapy offers numerous benefits to respiratory patients, including rapid and targeted exposure at specific sites, quick onset of action, bypassing first-pass metabolism, and beyond. Understanding the characteristics of pulmonary drug transporters and metabolizing enzymes is crucial for comprehending efficient drug exposure and clearance processes within the lungs. These processes are intricately linked to both local and systemic pharmacokinetics and pharmacodynamics of drugs. This review aims to provide a comprehensive overview of the literature on lung transporters and metabolizing enzymes while exploring their roles in exogenous and endogenous substance disposition. Additionally, we identify and discuss the principal challenges in this area of research, providing a foundation for future investigations aimed at optimizing inhaled drug administration. Moving forward, it is imperative that future research endeavors to focus on refining and validating in vitro and ex vivo models to more accurately mimic the human respiratory system. Such advancements will enhance our understanding of drug processing in different pathological states and facilitate the discovery of novel approaches for investigating lung-specific drug transporters and metabolizing enzymes. This deeper insight will be crucial in developing more effective and targeted therapies for respiratory diseases, ultimately leading to improved patient outcomes.
Collapse
Affiliation(s)
| | - Xiaomei Zhuang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China;
| |
Collapse
|
5
|
Abstracts from The International Society for Aerosols in Medicine. J Aerosol Med Pulm Drug Deliv 2023. [PMID: 37906031 DOI: 10.1089/jamp.2023.ab02.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
|
6
|
Mairinger S, Hernández-Lozano I, Zachhuber L, Filip T, Löbsch M, Zeitlinger M, Hacker M, Ehrhardt C, Langer O. Effect of budesonide on pulmonary activity of multidrug resistance-associated protein 1 assessed with PET imaging in rats. Eur J Pharm Sci 2023; 184:106414. [PMID: 36858275 DOI: 10.1016/j.ejps.2023.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
Multidrug resistance-associated protein 1 (MRP1/ABCC1) is a highly abundant efflux transporter in the lungs, which protects cells from toxins and oxidative stress and has been implicated in the pathophysiology of chronic obstructive pulmonary disease and cystic fibrosis. There is evidence from in vitro studies that the inhaled glucocorticoid budesonide can inhibit MRP1 activity. We used positron emission tomography (PET) imaging with 6-bromo-7-[11C]methylpurine ([11C]BMP), which is transformed in vivo into a radiolabeled MRP1 substrate, to assess whether intratracheally (i.t.) aerosolized budesonide affects pulmonary MRP1 activity in rats. Three groups of rats (n = 5-6 each) underwent dynamic PET scans of the lungs after i.t. aerosolization of either [11C]BMP alone, or [11C]BMP mixed with either budesonide (0.04 mg, corresponding to the maximum soluble dose) or the model MRP1 inhibitor MK571 (2 mg). From PET-measured radioactivity concentration-time curves, the rate constant describing radioactivity elimination from the right lung (kE,lung) and the area under the curve (AUClung) were calculated from 0 to 5 min after start of the PET scan as measures of pulmonary MRP1 activity. Co-administration of MK571 resulted in a pronounced decrease in kE,lung (25-fold, p < 0.0001) and an increase in AUClung (5.3-fold, p < 0.0001) when compared with vehicle-treated animals. In contrast, in budesonide-treated animals kE,lung and AUClung were not significantly different from the vehicle group. Our results show that i.t. aerosolized budesonide at an approximately 5 times higher dose than the maximum clinical dose leads to no change in pulmonary MRP1 activity, suggesting a lack of an effect of inhaled budesonide treatment on the MRP1-mediated cellular detoxifying capacity of the lungs. However, the strong effect observed for MK571 raises the possibility for the occurrence of transporter-mediated drug-drug interactions at the pulmonary epithelium with inhaled medicines.
Collapse
Affiliation(s)
- Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna Austria.
| | - Irene Hernández-Lozano
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Lena Zachhuber
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna Austria.
| | - Thomas Filip
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, 1090 Vienna, Austria; Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Mathilde Löbsch
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, 1090 Vienna, Austria.
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna Austria.
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna Austria.
| |
Collapse
|
7
|
Mairinger S, Hernández-Lozano I, Filip T, Löbsch M, Stanek J, Zeitlinger M, Hacker M, Tournier N, Wanek T, Ehrhardt C, Langer O. Influence of P-glycoprotein on pulmonary disposition of the model substrate [ 11C]metoclopramide assessed by PET imaging in rats. Eur J Pharm Sci 2023; 183:106404. [PMID: 36773747 DOI: 10.1016/j.ejps.2023.106404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
In the lungs, the membrane transporter P-glycoprotein (P-gp) is expressed in the apical (i.e. lumen-facing) membrane of airway epithelial cells and in the luminal (blood-facing) membrane of pulmonary capillary endothelial cells. To better understand the influence of P-gp on the pulmonary disposition of inhaled P-gp substrate drugs, we measured the intrapulmonary pharmacokinetics of the intratracheally (i.t.) aerosolized model P-gp substrate [11C]metoclopramide in presence and absence of P-gp activity by means of positron emission tomography (PET) imaging in rats. Data were compared to data previously acquired with the model P-gp substrates (R)-[11C]verapamil and [11C]N-desmethyl-loperamide, using the same experimental set-up. Groups of wild-type rats, either untreated or treated with the P-gp inhibitor tariquidar, and Abcb1a/b(-/-) rats underwent 90-min dynamic PET scans after i.t. aerosolization of [11C]metoclopramide. Lung exposure to [11C]metoclopramide was expressed as the area under the right lung concentration-time curve (AUClung). AUClung values were significantly higher in Abcb1a/b(-/-) rats (1.8-fold, p ≤ 0.0001) and in tariquidar-treated wild-type rats (1.6-fold, p ≤ 0.01) than in untreated wild-type rats. This differed from previously obtained results with (R)-[11C]verapamil and [11C]N-desmethyl-loperamide, which showed decreased exposure in the rat lung in absence of P-gp activity. Our results suggest that transepithelial transfer of [11C]metoclopramide was not or only to a small extent affected by P-gp activity, presumably due to the compound's high passive permeability. The increased lung retention of [11C]metoclopramide may be due to decreased P-gp-mediated clearance into the blood in absence of P-gp activity in capillary endothelial cells. The overall effect of P-gp on the lung exposure to inhaled P-gp substrate drugs may, thus, be determined by a balance of opposing effects at the pulmonary epithelium and endothelium.
Collapse
Affiliation(s)
- Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Thomas Filip
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, 1090 Vienna, Austria; Center for Biomedical Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Mathilde Löbsch
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Stanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale (BIOMAPS), Université Paris-Saclay, CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Thomas Wanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
8
|
Sake JA, Selo MA, Burtnyak L, Dähnhardt HE, Helbet C, Mairinger S, Langer O, Kelly VP, Ehrhardt C. Knockout of ABCC1 in NCI-H441 cells reveals CF to be a suboptimal substrate to study MRP1 activity in organotypic in vitro models. Eur J Pharm Sci 2023; 181:106364. [PMID: 36563915 DOI: 10.1016/j.ejps.2022.106364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Multidrug resistance-associated protein 1 (MRP1/ABCC1) is an efflux transporter responsible for the extrusion of endogenous substances as well as xenobiotics and their respective metabolites. Its high expression levels in lung tissue imply a key role in pulmonary drug disposition. Moreover, its association with inflammatory lung diseases underline MRP1's relevance in drug development and precision-medicine. With the aim to develop a tool to better understand MRP1's role in drug disposition and lung disease, we generated an ABCC1-/- clone based on the human distal lung epithelial cell line NCI-H441 via a targeted CRISPR/Cas9 approach. Successful knockout (KO) of MRP1 was confirmed by qPCR, immunoblot and Sanger sequencing. To assess potential compensatory upregulation of transporters with a similar substrate recognition pattern as MRP1, expression levels of MRP2-9 as well as OAT1-4, 6, 7 and 10 were measured. Functional transporter activity was determined via release studies with two prodrug/substrate pairs, i.e. 5(6)-carboxyfluorescein (CF; formed from its diacetate prodrug) and S-(6-(7-methylpurinyl))glutathione (MPG; formed from its prodrug 6-bromo-7-methylpurine, BMP), respectively. Lastly, transepithelial electrical resistance (TEER) of monolayers of the KO clone were compared with wildtype (WT) NCI-H441 cells. Of eight initially generated clones, the M2 titled clone showed complete absence of mRNA and protein in accordance with the designed genome edit. In transport studies using the substrate CF, however, no differences between the KO clone and WT NCI-H441 cells were observed, whilst no differences in expression of potential compensatory transporters was noted. On the other hand, when using BMP/MPG, the release of MPG was reduced to 11.5% in the KO clone. Based on these results, CF appears to be a suboptimal probe for the study of MRP1 function, particularly in organotypic in vitro and ex vivo models. Our ABCC1-/- NCI-H441 clone further retained the ability to form electrically tight barriers, making it a useful model to study MRP1 function in vitro.
Collapse
Affiliation(s)
- Johannes A Sake
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland
| | - Mohammed Ali Selo
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland; Faculty of Pharmacy, University of Kufa, Al-Najaf, Iraq
| | - Lyubomyr Burtnyak
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Henriette E Dähnhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland
| | - Camelia Helbet
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland
| | - Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Panoz Institute, Dublin 2, Ireland.
| |
Collapse
|
9
|
Gyimesi G, Hediger MA. Transporter-Mediated Drug Delivery. Molecules 2023; 28:molecules28031151. [PMID: 36770817 PMCID: PMC9919865 DOI: 10.3390/molecules28031151] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Transmembrane transport of small organic and inorganic molecules is one of the cornerstones of cellular metabolism. Among transmembrane transporters, solute carrier (SLC) proteins form the largest, albeit very diverse, superfamily with over 400 members. It was recognized early on that xenobiotics can directly interact with SLCs and that this interaction can fundamentally determine their efficacy, including bioavailability and intertissue distribution. Apart from the well-established prodrug strategy, the chemical ligation of transporter substrates to nanoparticles of various chemical compositions has recently been used as a means to enhance their targeting and absorption. In this review, we summarize efforts in drug design exploiting interactions with specific SLC transporters to optimize their therapeutic effects. Furthermore, we describe current and future challenges as well as new directions for the advanced development of therapeutics that target SLC transporters.
Collapse
|
10
|
Mairinger S, Hernández-Lozano I, Zeitlinger M, Ehrhardt C, Langer O. Nuclear medicine imaging methods as novel tools in the assessment of pulmonary drug disposition. Expert Opin Drug Deliv 2022; 19:1561-1575. [PMID: 36255136 DOI: 10.1080/17425247.2022.2137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Drugs for the treatment of respiratory diseases are commonly administered by oral inhalation. Yet surprisingly little is known about the pulmonary pharmacokinetics of inhaled molecules. Nuclear medicine imaging techniques (i.e. planar gamma scintigraphy, single-photon emission computed tomography [SPECT] and positron emission tomography [PET]) enable the noninvasive dynamic measurement of the lung concentrations of radiolabeled drugs or drug formulations. This review discusses the potential of nuclear medicine imaging techniques in inhalation biopharmaceutical research. AREAS COVERED (i) Planar gamma scintigraphy studies with radiolabeled inhalation formulations to assess initial pulmonary drug deposition; (ii) imaging studies with radiolabeled drugs to assess their intrapulmonary pharmacokinetics; (iii) receptor occupancy studies to quantify the pharmacodynamic effect of inhaled drugs. EXPERT OPINION Imaging techniques hold potential to bridge the knowledge gap between animal models and humans with respect to the pulmonary disposition of inhaled drugs. However, beyond the mere assessment of the initial lung deposition of inhaled formulations with planar gamma scintigraphy, imaging techniques have rarely been employed in pulmonary drug development. This may be related to several technical challenges encountered with such studies. Considering the wealth of information that can be obtained with imaging studies their use in inhalation biopharmaceutics should be further investigated.
Collapse
Affiliation(s)
- Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Visigalli R, Rotoli BM, Ferrari F, Di Lascia M, Riccardi B, Puccini P, Dall’Asta V, Barilli A. Expression and Function of ABC Transporters in Human Alveolar Epithelial Cells. Biomolecules 2022; 12:biom12091260. [PMID: 36139099 PMCID: PMC9496151 DOI: 10.3390/biom12091260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
ATP-binding cassette (ABC) transporters are a large superfamily of membrane transporters that facilitate the translocation of different substrates. While ABC transporters are clearly expressed in various tumor cells where they can play a role in drug extrusion, the presence of these transporters in normal lung tissues is still controversial. Here, we performed an analysis of ABC transporters in EpiAlveolarTM, a recently developed model of human alveoli, by defining the expression and activity of MDR1, BCRP, and MRPs. Immortalized primary epithelial cells hAELVi (human alveolar epithelial lentivirus-immortalized cells) were employed for comparison. Our data underline a close homology between these two models, where none of the ABC transporters here studied are expressed on the apical membrane and only MRP1 is clearly detectable and functional at the basolateral side. According to these findings, we can conclude that other thus-far-unidentified transporter/s involved in drug efflux from alveolar epithelium deserve investigations.
Collapse
Affiliation(s)
- Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Maria Di Lascia
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Department, Chiesi Farmaceutici, 43122 Parma, Italy
| | - Benedetta Riccardi
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Department, Chiesi Farmaceutici, 43122 Parma, Italy
| | - Paola Puccini
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Department, Chiesi Farmaceutici, 43122 Parma, Italy
| | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
- Correspondence:
| |
Collapse
|
12
|
Mairinger S, Hernández-Lozano I, Filip T, Sauberer M, Löbsch M, Stanek J, Wanek T, Sake JA, Pekar T, Ehrhardt C, Langer O. Impact of P-gp and BCRP on pulmonary drug disposition assessed by PET imaging in rats. J Control Release 2022; 349:109-117. [PMID: 35798092 DOI: 10.1016/j.jconrel.2022.06.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two efflux transporters which are expressed in the apical (i.e. airway lumen-facing) membranes of lung epithelial cells. To assess the influence of P-gp and BCRP on the pulmonary disposition of inhaled drugs, we performed positron emission tomography (PET) imaging in rats after intratracheal aerosolization of two model P-gp/BCRP substrate radiotracers (i.e. [11C]erlotinib and [11C]tariquidar). We studied rat groups in which both transporters were active (i.e. wild-type rats), either of the two transporters was inactive (Abcb1a/b(-/-) and Abcg2(-/-) rats) or both transporters were inactive (Abcg2(-/-) rats in which pulmonary P-gp activity was inhibited by treatment with unlabeled tariquidar). PET-measured lung distribution data were compared with brain-to-plasma radioactivity concentration ratios measured in a gamma counter at the end of the PET scan. For [11C]erlotinib, lung exposure (AUClungs) was moderately but not significantly increased in Abcb1a/b(-/-) rats (1.6-fold) and Abcg2(-/-) rats (1.5-fold), and markedly (3.6-fold, p < 0.0001) increased in tariquidar-treated Abcg2(-/-) rats, compared to wild-type rats. Similarly, the brain uptake of [11C]erlotinib was substantially (4.5-fold, p < 0.0001) increased when both P-gp and BCRP activities were impaired. For [11C]tariquidar, differences in AUClungs between groups pointed into a similar direction as for [11C]erlotinib, but were less pronounced and lacked statistical significance. Our study demonstrates functional P-gp and BCRP activity in vivo in the lungs and further suggests functional redundancy between P-gp and BCRP in limiting the pulmonary uptake of a model P-gp/BCRP substrate, analogous to the blood-brain barrier. Our results suggest that pulmonary efflux transporters are important for the efficacy and safety of inhaled drugs and that their modulation may be exploited in order to improve the pharmacokinetic and pharmacodynamic performance of pulmonary delivered drugs.
Collapse
Affiliation(s)
- Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Thomas Filip
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
| | - Michael Sauberer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Mathilde Löbsch
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, Vienna, Austria
| | - Johann Stanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Wanek
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Johannes A Sake
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Thomas Pekar
- Biomedical Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Wölfl-Duchek M, Mairinger S, Hernández-Lozano I, Filip T, Zoufal V, Löbsch M, Stanek J, Kuntner C, Wanek T, Bauer M, Pahnke J, Langer O. Use of PET Imaging to Assess the Efficacy of Thiethylperazine to Stimulate Cerebral MRP1 Transport Activity in Wild-Type and APP/PS1-21 Mice. Int J Mol Sci 2022; 23:6514. [PMID: 35742960 PMCID: PMC9224167 DOI: 10.3390/ijms23126514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Multidrug resistance-associated protein 1 (MRP1, encoded by the ABCC1 gene) may contribute to the clearance of amyloid-beta (Aβ) peptides from the brain into the blood and stimulation of MRP1 transport activity may be a therapeutic approach to enhance brain Aβ clearance. In this study, we assessed the effect of thiethylperazine, an antiemetic drug which was shown to stimulate MRP1 activity in vitro and to decrease Aβ load in a rapid β-amyloidosis mouse model (APP/PS1-21), on MRP1 transport activity by means of positron emission tomography (PET) imaging with the MRP1 tracer 6-bromo-7-[11C]methylpurine. Groups of wild-type, APP/PS1-21 and Abcc1(-/-) mice underwent PET scans before and after a 5-day oral treatment period with thiethylperazine (15 mg/kg, once daily). The elimination rate constant of radioactivity (kelim) was calculated from time-activity curves in the brain and the lungs as a measure of tissue MRP1 activity. Treatment with thiethylperazine had no significant effect on MRP1 activity in the brain and the lungs of wild-type and APP/PS1-21 mice. This may either be related to a lack of an MRP1-stimulating effect of thiethylperazine in vivo or to other factors, such as substrate-dependent MRP1 stimulation, insufficient target tissue exposure to thiethylperazine or limited sensitivity of the PET tracer to measure MRP1 stimulation.
Collapse
Affiliation(s)
- Michael Wölfl-Duchek
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.W.-D.); (S.M.); (I.H.-L.); (M.B.)
| | - Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.W.-D.); (S.M.); (I.H.-L.); (M.B.)
- Department of Biomedical Imaging und Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (C.K.); (T.W.)
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.); (V.Z.); (M.L.)
| | - Irene Hernández-Lozano
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.W.-D.); (S.M.); (I.H.-L.); (M.B.)
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.); (V.Z.); (M.L.)
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, 1090 Vienna, Austria
| | - Viktoria Zoufal
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.); (V.Z.); (M.L.)
| | - Mathilde Löbsch
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.); (V.Z.); (M.L.)
- Core Facility Laboratory Animal Breeding and Husbandry, Medical University of Vienna, 1090 Vienna, Austria
| | - Johann Stanek
- Department of Biomedical Imaging und Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (C.K.); (T.W.)
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.); (V.Z.); (M.L.)
| | - Claudia Kuntner
- Department of Biomedical Imaging und Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (C.K.); (T.W.)
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.); (V.Z.); (M.L.)
| | - Thomas Wanek
- Department of Biomedical Imaging und Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (C.K.); (T.W.)
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.); (V.Z.); (M.L.)
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.W.-D.); (S.M.); (I.H.-L.); (M.B.)
| | - Jens Pahnke
- Department of Neuro-/Pathology, Oslo University Hospital (OUS), University of Oslo (UiO), 0424 Oslo, Norway;
- LIED, University of Lübeck, 23562 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia, 1586 Rīga, Latvia
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria; (M.W.-D.); (S.M.); (I.H.-L.); (M.B.)
- Department of Biomedical Imaging und Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, 1090 Vienna, Austria; (J.S.); (C.K.); (T.W.)
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; (T.F.); (V.Z.); (M.L.)
| |
Collapse
|
14
|
Hernández-Lozano I, Mairinger S, Filip T, Sauberer M, Wanek T, Stanek J, Sake JA, Pekar T, Ehrhardt C, Langer O. PET imaging to assess the impact of P-glycoprotein on pulmonary drug delivery in rats. J Control Release 2021; 342:44-52. [PMID: 34971693 DOI: 10.1016/j.jconrel.2021.12.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/26/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Several drugs approved for inhalation for the treatment of pulmonary diseases are substrates of the adenosine triphosphate-binding cassette (ABC) transporter P-glycoprotein (P-gp). P-gp is expressed in the apical membrane of pulmonary epithelial cells and could play a role in modulating the pulmonary absorption and distribution of inhaled drugs, thereby potentially contributing to variability in therapeutic response and/or systemic side effects. We developed a new in vivo experimental approach to assess the functional impact of P-gp on the pulmonary delivery of inhaled drugs in rats. By using positron emission tomography (PET) imaging, we measured the intrapulmonary pharmacokinetics of the model P-gp substrates (R)-[11C]verapamil ([11C]VPM) and [11C]-N-desmethyl-loperamide ([11C]dLOP) administered by intratracheal aerosolization in three rat groups: wild-type, Abcb1a/b(-/-) and wild-type treated with the P-gp inhibitor tariquidar. Lung exposure (AUClung_right) to [11C]VPM was 64% and 50% lower (p < 0.05) in tariquidar-treated and in Abcb1a/b(-/-) rats, respectively, compared to untreated wild-type rats. For [11C]dLOP, AUClung_right was 59% and 34% lower (p < 0.05) in tariquidar-treated and in Abcb1a/b(-/-) rats, respectively. Our results show that P-gp can affect the pulmonary disposition of inhaled P-gp substrates, whereby a decrease in P-gp activity may lead to lower lung exposure and potentially to a decrease in therapeutic efficacy. Our study highlights the potential of PET imaging with intratracheally aerosolized radiotracers to assess the impact of membrane transporters on pulmonary drug delivery, in rodents and potentially also in humans.
Collapse
Affiliation(s)
| | - Severin Mairinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Johannes A Sake
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Thomas Pekar
- Biomedical Sciences, University of Applied Sciences Wiener Neustadt, Wiener Neustadt, Austria
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
15
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
16
|
Drivers of absolute systemic bioavailability after oral pulmonary inhalation in humans. Eur J Pharm Biopharm 2021; 164:36-53. [PMID: 33895293 DOI: 10.1016/j.ejpb.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 11/23/2022]
Abstract
There are few studies in humans dealing with the relationship between physico-chemical properties of drugs and their systemic bioavailability after administration via oral inhalation route (Fpulm). Getting further insight in the determinants of Fpulm after oral pulmonary inhalation could be of value for drugs considered for a systemic delivery as a result of poor oral bioavailability, as well as for drugs considered for a local delivery to anticipate their undesirable systemic effects. To better delineate the parameters influencing the systemic delivery after oral pulmonary inhalation in humans, we studied the influence of physico-chemical and permeability properties obtained in silico on the rate and extent of Fpulm in a series of 77 compounds with or without marketing approval for pulmonary delivery, and intended either for local or for systemic delivery. Principal component analysis (PCA) showed mainly that Fpulm was positively correlated with Papp and negatively correlated with %TPSA, without a significant influence of solubility and ionization fraction, and no apparent link with lipophilicity and drug size parameters. As a result of the small sample set, the performance of the different models as predictive of Fpulm were quite average with random forest algorithm displaying the best performance. As a whole, the different models captured between 50 and 60% of the variability with a prediction error of less than 20%. Tmax data suggested a significant positive influence of lipophilicity on absorption rate while charge apparently had no influence. A significant linear relationship between Cmax and dose (R2 = "0.79) highlighted that Cmax was primarily dependent on dose and absorption rate and could be used to estimate Cmax in humans for new inhaled drugs.
Collapse
|
17
|
Nguyen JP, Kim Y, Cao Q, Hirota JA. Interactions between ABCC4/MRP4 and ABCC7/CFTR in human airway epithelial cells in lung health and disease. Int J Biochem Cell Biol 2021; 133:105936. [PMID: 33529712 DOI: 10.1016/j.biocel.2021.105936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022]
Abstract
ATP binding cassette (ABC) transporters are present in all three domains of life - Archaea, Bacteria, and Eukarya. The conserved nature is a testament to the importance of these transporters in regulating endogenous and exogenous substrates required for life to exist. In humans, 49 ABC transporters have been identified to date with broad expression in different lung cell types with multiple transporter family members contributing to lung health and disease. The ABC transporter most commonly known to be linked to lung pathology is ABCC7, also known as cystic fibrosis transmembrane conductance regulator - CFTR. Closely related to the CFTR genomic sequence is ABCC4/multi-drug resistance protein-4. Genomic proximity is shared with physical proximity, with ABCC4 and CFTR physically coupled in cell membrane microenvironments of epithelial cells to orchestrate functional consequences of cyclic-adenosine monophosphate (cAMP)-dependent second messenger signaling and extracellular transport of endogenous and exogenous substrates. The present concise review summarizes the emerging data defining a role of the (ABCC7/CFTR)-ABCC4 macromolecular complex in human airway epithelial cells as a physiologically important pathway capable of impacting endogenous and exogenous mediator transport and ion transport in both lung health and disease.
Collapse
Affiliation(s)
- Jenny P Nguyen
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada
| | - Yechan Kim
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada
| | - Quynh Cao
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada
| | - Jeremy A Hirota
- Department of Medicine, McMaster University, Canada; Firestone Institute for Respiratory Health, St. Joseph's Hospital, Canada; McMaster Immunology Research Centre, McMaster University, Canada; Department of Biology, University of Waterloo, Canada; Department of Medicine, University of British Columbia, Canada.
| |
Collapse
|
18
|
Thubelihle Ndebele R, Yao Q, Shi YN, Zhai YY, Xu HL, Lu CT, Zhao YZ. Progress in the Application of Nano- and Micro-based Drug Delivery Systems in Pulmonary Drug Delivery. BIO INTEGRATION 2021. [DOI: 10.15212/bioi-2021-0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nanotechnology is associated with the development of particles in the nano-size range that can be used in a wide range of applications in the medical field. It has gained more importance in the pharmaceutical research field particularly in drug delivery, as it results in enhanced therapeutic drug performance, improved drug solubility, targeted drug delivery to the specific sites, minimized side effects, and prolonged drug retention time in the targeted site. To date, the application of nanotechnology continues to offer several benefits in the treatment of various chronic diseases and results in remarkable improvements in treatment outcomes. The use of nano-based delivery systems such as liposomes, micelles, and nanoparticles in pulmonary drug delivery have shown to be a promising strategy in achieving drug deposition and maintained controlled drug release in the lungs. They have been widely used to minimize the risks of drug toxicity in vivo. In this review, recent advances in the application of nano- and micro-based delivery systems in pulmonary drug delivery for the treatment of various pulmonary diseases, such as lung cancer, asthma, and chronic obstructive pulmonary disease, are highlighted. Limitations in the application of these drug delivery systems and some key strategies in improving their formulation properties to overcome challenges encountered in drug delivery are also discussed.
Collapse
Affiliation(s)
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yan-Nan Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuan-Yuan Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - He-Lin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Cui-Tao Lu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ying-Zheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
19
|
Organic Cation Transporters in the Lung-Current and Emerging (Patho)Physiological and Pharmacological Concepts. Int J Mol Sci 2020; 21:ijms21239168. [PMID: 33271927 PMCID: PMC7730617 DOI: 10.3390/ijms21239168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Organic cation transporters (OCT) 1, 2 and 3 and novel organic cation transporters (OCTN) 1 and 2 of the solute carrier 22 (SLC22) family are involved in the cellular transport of endogenous compounds such as neurotransmitters, l-carnitine and ergothioneine. OCT/Ns have also been implicated in the transport of xenobiotics across various biological barriers, for example biguanides and histamine receptor antagonists. In addition, several drugs used in the treatment of respiratory disorders are cations at physiological pH and potential substrates of OCT/Ns. OCT/Ns may also be associated with the development of chronic lung diseases such as allergic asthma and chronic obstructive pulmonary disease (COPD) and, thus, are possible new drug targets. As part of the Special Issue "Physiology, Biochemistry and Pharmacology of Transporters for Organic Cations", this review provides an overview of recent findings on the (patho)physiological and pharmacological functions of organic cation transporters in the lung.
Collapse
|
20
|
Cidem A, Bradbury P, Traini D, Ong HX. Modifying and Integrating in vitro and ex vivo Respiratory Models for Inhalation Drug Screening. Front Bioeng Biotechnol 2020; 8:581995. [PMID: 33195144 PMCID: PMC7644812 DOI: 10.3389/fbioe.2020.581995] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/06/2020] [Indexed: 01/03/2023] Open
Abstract
For the past 50 years, the route of inhalation has been utilized to administer therapies to treat a variety of respiratory and pulmonary diseases. When compared with other drug administration routes, inhalation offers a targeted, non-invasive approach to deliver rapid onset of drug action to the lung, minimizing systemic drug exposure and subsequent side effects. However, despite advances in inhaled therapies, there is still a need to improve the preclinical screening and the efficacy of inhaled therapeutics. Innovative in vitro models of respiratory physiology to determine therapeutic efficacy of inhaled compounds have included the use of organoids, micro-engineered lung-on-chip systems and sophisticated bench-top platforms to enable a better understanding of pulmonary mechanisms at the molecular level, rapidly progressing inhaled therapeutic candidates to the clinic. Furthermore, the integration of complementary ex vivo models, such as precision-cut lung slices (PCLS) and isolated perfused lung platforms have further advanced preclinical drug screening approaches by providing in vivo relevance. In this review, we address the challenges and advances of in vitro models and discuss the implementation of ex vivo inhaled drug screening models. Specifically, we address the importance of understanding human in vivo pulmonary mechanisms in assessing strategies of the preclinical screening of drug efficacy, toxicity and delivery of inhaled therapeutics.
Collapse
Affiliation(s)
- Aylin Cidem
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia
| | - Peta Bradbury
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Daniela Traini
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Hui Xin Ong
- Respiratory Technology, Woolcock Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
21
|
Selo MA, Delmas AS, Springer L, Zoufal V, Sake JA, Clerkin CG, Huwer H, Schneider-Daum N, Lehr CM, Nickel S, Langer O, Ehrhardt C. Tobacco Smoke and Inhaled Drugs Alter Expression and Activity of Multidrug Resistance-Associated Protein-1 (MRP1) in Human Distal Lung Epithelial Cells in vitro. Front Bioeng Biotechnol 2020; 8:1030. [PMID: 33015009 PMCID: PMC7505930 DOI: 10.3389/fbioe.2020.01030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance-associated protein-1 (MRP1/ABCC1) is highly expressed in human lung tissues. Recent studies suggest that it significantly affects the pulmonary disposition of its substrates, both after pulmonary and systemic administration. To better understand the molecular mechanisms involved, we studied the expression, subcellular localization and activity of MRP1 in freshly isolated human alveolar epithelial type 2 (AT2) and type 1-like (AT1-like) cells in primary culture, and in the NCI-H441 cell line. Moreover, the effect of cigarette smoke extract (CSE) and a series of inhaled drugs on MRP1 abundance and activity was investigated in vitro. MRP1 expression levels were measured by q-PCR and immunoblot in AT2 and AT1-like cells from different donors and in several passages of the NCI-H441 cell line. The subcellular localization of the transporter was studied by confocal laser scanning microscopy and cell surface protein biotinylation. MRP1 activity was assessed by bidirectional transport and efflux experiments using the MRP1 substrate, 5(6)-carboxyfluorescein [CF; formed intracellularly from 5(6)-carboxyfluorescein-diacetate (CFDA)] in AT1-like and NCI-H441 cell monolayers. Furthermore, the effect of CSE as well as several bronchodilators and inhaled corticosteroids on MRP1 abundance and CF efflux was investigated. MRP1 protein abundance increased upon differentiation from AT2 to AT1-like phenotype, however, ABCC1 gene levels remained unchanged. MRP1 abundance in NCI-H441 cells were comparable to those found in AT1-like cells. The transporter was detected primarily in basolateral membranes of both cell types which was consistent with net basolateral efflux of CF. Likewise, bidirectional transport studies showed net apical-to-basolateral transport of CF which was sensitive to the MRP1 inhibitor MK-571. Budesonide, beclomethasone dipropionate, salbutamol sulfate, and CSE decreased CF efflux in a concentration-dependent manner. Interestingly, CSE increased MRP1 abundance, whereas budesonide, beclomethasone dipropionate, salbutamol sulfate did not have such effect. CSE and inhaled drugs can reduce MRP1 activity in vitro, which implies the transporter being a potential drug target in the treatment of chronic obstructive pulmonary disease (COPD). Moreover, MRP1 expression level, localization and activity were comparable in human AT1-like and NCI-H441 cells. Therefore, the cell line can be a useful alternative in vitro model to study MRP1 in distal lung epithelium.
Collapse
Affiliation(s)
- Mohammed Ali Selo
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Faculty of Pharmacy, University of Kufa, Al-Najaf, Iraq
| | - Anne-Sophie Delmas
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lisa Springer
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Viktoria Zoufal
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Johannes A Sake
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caoimhe G Clerkin
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Völklingen Heart Centre, Völklingen, Germany
| | - Nicole Schneider-Daum
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Sabrina Nickel
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Oliver Langer
- Preclinical Molecular Imaging, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.,Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.,Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Suitability and functional characterization of two Calu-3 cell models for prediction of drug permeability across the airway epithelial barrier. Int J Pharm 2020; 585:119484. [PMID: 32485216 DOI: 10.1016/j.ijpharm.2020.119484] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
The Calu-3 cell line has been largely investigated as a physiological and pharmacological model of the airway epithelial barrier. Its suitability for prediction of drug permeability across the airway epithelia, however, has not been yet evaluated by using large enough set of model drugs. We evaluated two Calu-3 cell models (air-liquid and liquid-liquid) for drug permeability prediction based on the recent regulatory guidelines on showing suitability of in vitro permeability methods for drug permeability classification. Bidirectional permeability assays using 22 model drugs and several zero permeability markers, as well as using ABC transporter substrates were conducted. Functional activity of P-gp, but not of BCRP was revealed. The potential of the Calu-3 cells to be used as a model of the nasal epithelial barrier, despite their different anatomical origin, has been demonstrated by the obtained excellent correlation with the fully differentiated 3D human nasal epithelial model (MucilAir™) for 11 model drugs, as well as by the good correlation obtained with the human nasal epithelial cell line RPMI 2650. In addition, the permeability values determined in the two Calu-3 models correlated well with the intestinal permeability model Caco-2.
Collapse
|
23
|
Rotoli BM, Barilli A, Visigalli R, Ferrari F, Frati C, Lagrasta CA, Di Lascia M, Riccardi B, Puccini P, Dall’Asta V. Characterization of ABC Transporters in EpiAirway™, a Cellular Model of Normal Human Bronchial Epithelium. Int J Mol Sci 2020; 21:ijms21093190. [PMID: 32366035 PMCID: PMC7247561 DOI: 10.3390/ijms21093190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
The ATP-binding cassette (ABC) transporters P-glycoprotein (MDR1/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1), and breast cancer resistance protein (BCRP/ABCG2) play a crucial role in the translocation of a broad range of drugs; data about their expression and activity in lung tissue are controversial. Here, we address their expression, localization and function in EpiAirway™, a three-dimensional (3D)-model of human airways; Calu-3 cells, a representative in vitro model of bronchial epithelium, are used for comparison. Transporter expression has been evaluated with RT-qPCR and Western blot, the localization with immunocytochemistry, and the activity by measuring the apical-to-basolateral and basolateral-to-apical fluxes of specific substrates in the presence of inhibitors. EpiAirway™ and Calu-3 cells express high levels of MRP1 on the basolateral membrane, while they profoundly differ in terms of BCRP and MDR1: BCRP is detected in EpiAirway™, but not in Calu-3 cells, while MDR1 is expressed and functional only in fully-differentiated Calu-3; in EpiAirway™, MDR1 expression and activity are undetectable, consistently with the absence of the protein in specimens from human healthy bronchi. In summary, EpiAirway™ appears to be a promising tool to study the mechanisms of drug delivery in the bronchial epithelium and to clarify the role of ABC transporters in the modulation of the bioavailability of administered drugs.
Collapse
Affiliation(s)
- Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
- Correspondence: ; Tel.: +39-0521-033785
| | - Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| | - Caterina Frati
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (C.F.); (C.A.L.)
| | - Costanza Annamaria Lagrasta
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (C.F.); (C.A.L.)
| | - Maria Di Lascia
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo Francesco Belloli, 43122 Parma, Italy; (M.D.L.); (B.R.); (P.P.)
| | - Benedetta Riccardi
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo Francesco Belloli, 43122 Parma, Italy; (M.D.L.); (B.R.); (P.P.)
| | - Paola Puccini
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo Francesco Belloli, 43122 Parma, Italy; (M.D.L.); (B.R.); (P.P.)
| | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| |
Collapse
|
24
|
Mairinger S, Sake JA, Lozano IH, Filip T, Sauberer M, Stanek J, Wanek T, Ehrhardt C, Langer O. Assessing the Activity of Multidrug Resistance–Associated Protein 1 at the Lung Epithelial Barrier. J Nucl Med 2020; 61:1650-1657. [DOI: 10.2967/jnumed.120.244038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/19/2020] [Indexed: 01/26/2023] Open
|
25
|
OCTN2-Mediated Acetyl-l-Carnitine Transport in Human Pulmonary Epithelial Cells In Vitro. Pharmaceutics 2019; 11:pharmaceutics11080396. [PMID: 31394757 PMCID: PMC6723908 DOI: 10.3390/pharmaceutics11080396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/24/2022] Open
Abstract
The carnitine transporter OCTN2 is associated with asthma and other inflammatory diseases. The aims of this work were (i) to determine carnitine uptake into freshly isolated human alveolar type I (ATI)-like epithelial cells in primary culture, (ii) to compare the kinetics of carnitine uptake between respiratory epithelial in vitro cell models, and (iii) to establish whether any cell line was a suitable model for studies of carnitine transport at the air-blood barrier. Levels of time-dependent [3H]-acetyl-l-carnitine uptake were similar in ATI-like, NCl-H441, and Calu-3 epithelial cells, whereas uptake into A549 cells was ~5 times higher. Uptake inhibition was more pronounced by OCTN2 modulators, such as l-Carnitine and verapamil, in ATI-like primary epithelial cells compared to NCl-H441 and Calu-3 epithelial cells. Our findings suggest that OCTN2 is involved in the cellular uptake of acetyl-l-carnitine at the alveolar epithelium and that none of the tested cell lines are optimal surrogates for primary cells.
Collapse
|
26
|
Krohn M, Zoufal V, Mairinger S, Wanek T, Paarmann K, Brüning T, Eiriz I, Brackhan M, Langer O, Pahnke J. Generation and Characterization of an Abcc1 Humanized Mouse Model ( hABCC1flx/flx ) with Knockout Capability. Mol Pharmacol 2019; 96:138-147. [PMID: 31189668 DOI: 10.1124/mol.119.115824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/03/2019] [Indexed: 01/18/2023] Open
Abstract
ATP-binding cassette (ABC) transporters such as ABCB1 (P-glycoprotein), ABCC1 (MRP1), and ABCG2 (BCRP) are well known for their role in rendering cancer cells resistant to chemotherapy. Additionally, recent research provided evidence that, along with other ABC transporters (ABCA1 and ABCA7), they might be cornerstones to tackle neurodegenerative diseases. Overcoming chemoresistance in cancer, understanding drug-drug interactions, and developing efficient and specific drugs that alter ABC transporter function are hindered by a lack of in vivo research models, which are fully predictive for humans. Hence, the humanization of ABC transporters in mice has become a major focus in pharmaceutical and neurodegenerative research. Here, we present a characterization of the first Abcc1 humanized mouse line. To preserve endogenous expression profiles, we chose to generate a knockin mouse model that leads to the expression of a chimeric protein that is fully human except for one amino acid. We found robust mRNA and protein expression within all major organs analyzed (brain, lung, spleen, and kidney). Furthermore, we demonstrate the functionality of the expressed human ABCC1 protein in brain and lungs using functional positron emission tomography imaging in vivo. Through the introduction of loxP sites, we additionally enabled this humanized mouse model for highly sophisticated studies involving cell type-specific transporter ablation. Based on our data, the presented mouse model appears to be a promising tool for the investigation of cell-specific ABCC1 function. It can provide a new basis for better translation of preclinical research.
Collapse
Affiliation(s)
- Markus Krohn
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Viktoria Zoufal
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Severin Mairinger
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Thomas Wanek
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Kristin Paarmann
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Thomas Brüning
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Ivan Eiriz
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Mirjam Brackhan
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Oliver Langer
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| | - Jens Pahnke
- Department of Neuro-/Pathology and Oslo University Hospital, University of Oslo, Oslo, Norway (M.K., K.P., T.B., I.E., M.B., J.P.); Biomedical Systems, Center for Health & Bioresources, Austrian Institute of Technology, Seibersdorf, Austria (V.Z., S.M., T.W., O.L.); Department of Clinical Pharmacology and Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria (O.L.); Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany (J.P.); Leibniz-Institute of Plant Biochemistry, Halle, Germany (J.P.); and Department of Pharmacology, Medical Faculty, University of Latvia, Rīga, Latvia (J.P.)
| |
Collapse
|
27
|
Mercier C, Jacqueroux E, He Z, Hodin S, Constant S, Perek N, Boudard D, Delavenne X. Pharmacological characterization of the 3D MucilAir™ nasal model. Eur J Pharm Biopharm 2019; 139:186-196. [PMID: 30951820 DOI: 10.1016/j.ejpb.2019.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023]
Abstract
The preclinical evaluation of nasally administered drug candidates requires screening studies based on in vitro models of the nasal mucosa. The aim of this study was to evaluate the morpho-functional characteristics of the 3D MucilAir™ nasal model with a pharmacological focus on [ATP]-binding cassette (ABC) efflux transporters. We initially performed a phenotypic characterization of the MucilAir™ model and assessed its barrier properties by immunofluorescence (IF), protein mass spectrometry and examination of histological sections. We then focused on the functional expression of the ABC transporters P-glycoprotein (P-gp), multidrug resistance associated protein (MRP)1, MRP2 and breast cancer resistance protein (BCRP) in bidirectional transport experiments. The MucilAir™ model comprises a tight, polarized, pseudo-stratified nasal epithelium composed of fully differentiated ciliated, goblet and basal cells. These ABC transporters were all expressed by the cell membranes. P-gp and BCRP were both functional and capable of actively effluxing substrates. The MucilAir™ model could consequently represent a potent tool for evaluating the interaction of nasally administered drugs with ABC transporters.
Collapse
Affiliation(s)
- Clément Mercier
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France.
| | - Elodie Jacqueroux
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France.
| | - Zhiguo He
- Université de Lyon, Saint-Etienne F-42023, France; Laboratoire de biologie, d'ingénierie et d'imagerie de la greffe de cornée, BiiGC, EA2521 Saint-Etienne, France.
| | - Sophie Hodin
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France.
| | - Samuel Constant
- Epithelix Sàrl, 14 chemin des aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland.
| | - Nathalie Perek
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France.
| | - Delphine Boudard
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France; UF6725 Cytologie et Histologie Rénale, CHU de Saint-Etienne, Saint-Etienne, France.
| | - Xavier Delavenne
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France; Université de Lyon, Saint-Etienne F-42023, France; Laboratoire de Pharmacologie Toxicologie Gaz du sang, CHU de Saint-Etienne, Saint-Etienne, France.
| |
Collapse
|
28
|
Zoufal V, Mairinger S, Krohn M, Wanek T, Filip T, Sauberer M, Stanek J, Traxl A, Schuetz JD, Kuntner C, Pahnke J, Langer O. Influence of Multidrug Resistance-Associated Proteins on the Excretion of the ABCC1 Imaging Probe 6-Bromo-7-[ 11C]Methylpurine in Mice. Mol Imaging Biol 2019; 21:306-316. [PMID: 29942989 PMCID: PMC6449286 DOI: 10.1007/s11307-018-1230-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Multidrug resistance-associated proteins (MRPs) mediate the hepatobiliary and renal excretion of many drugs and drug conjugates. The positron emission tomography (PET) tracer 6-bromo-7-[11C]methylpurine is rapidly converted in tissues by glutathione-S-transferases into its glutathione conjugate, and has been used to measure the activity of Abcc1 in the brain and the lungs of mice. Aim of this work was to investigate if the activity of MRPs in excretory organs can be measured with 6-bromo-7-[11C]methylpurine. PROCEDURES We performed PET scans with 6-bromo-7-[11C]methylpurine in groups of wild-type, Abcc4(-/-) and Abcc1(-/-) mice, with and without pre-treatment with the prototypical MRP inhibitor MK571. RESULTS 6-Bromo-7-[11C]methylpurine-derived radioactivity predominantly underwent renal excretion. In blood, MK571 treatment led to a significant increase in the AUC and a decrease in the elimination rate constant of radioactivity (kelimination,blood). In the kidneys, there were significant decreases in the rate constant for radioactivity uptake from the blood (kuptake,kidney), kelimination,kidney, and the rate constant for tubular secretion of radioactivity (kurine). Experiments in Abcc4(-/-) mice indicated that Abcc4 contributed to renal excretion of 6-bromo-7-[11C]methylpurine-derived radioactivity. CONCLUSIONS Our data suggest that 6-bromo-7-[11C]methylpurine may be useful to assess the activity of MRPs in the kidneys as well as in other organs (brain, lungs), although further work is needed to identify the MRP subtypes involved in the disposition of 6-bromo-7-[11C]methylpurine-derived radioactivity.
Collapse
Affiliation(s)
- Viktoria Zoufal
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Severin Mairinger
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Markus Krohn
- Department of Neuro-/Pathology, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
| | - Thomas Wanek
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Thomas Filip
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Michael Sauberer
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Johann Stanek
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alexander Traxl
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - John D Schuetz
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Claudia Kuntner
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jens Pahnke
- Department of Neuro-/Pathology, University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- LIED, University of Lübeck, Lübeck, Germany
- Leibniz-Institute of Plant Biochemistry, Halle, Germany
| | - Oliver Langer
- Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria.
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
do Amaral LH, do Carmo FA, Amaro MI, de Sousa VP, da Silva LCRP, de Almeida GS, Rodrigues CR, Healy AM, Cabral LM. Development and Characterization of Dapsone Cocrystal Prepared by Scalable Production Methods. AAPS PharmSciTech 2018; 19:2687-2699. [PMID: 29968042 DOI: 10.1208/s12249-018-1101-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022] Open
Abstract
In this study, the formation of caffeine/dapsone (CAF/DAP) cocrystals by scalable production methods, such as liquid-assisted grinding (LAG) and spray drying, was investigated in the context of the potential use of processed cocrystal powder for pulmonary delivery. A CAF/DAP cocrystal (1:1 M ratio) was successfully prepared by slow evaporation from both acetone and ethyl acetate. Acetone, ethyl acetate, and ethanol were all successfully used to prepare cocrystals by LAG and spray drying. The powders obtained were characterized by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), thermogravimetry (TGA), and Fourier transform infrared spectroscopy (FTIR). Laser diffraction analysis indicated a median particle size (D50) for spray-dried powders prepared from acetone, ethanol, and ethyl acetate of 5.4 ± 0.7, 5.2 ± 0.1, and 5.1 ± 0.0 μm respectively, which are appropriate sizes for pulmonary delivery by means of a dry powder inhaler. The solubility of the CAF/DAP cocrystal in phosphate buffer pH 7.4, prepared by spray drying using acetone, was 506.5 ± 31.5 μg/mL, while pure crystalline DAP had a measured solubility of 217.1 ± 7.8 μg/mL. In vitro cytotoxicity studies using Calu-3 cells indicated that the cocrystals were not toxic at concentrations of 0.1 and of 1 mM of DAP, while an in vitro permeability study suggested caffeine may contribute to the permeation of DAP by hindering the efflux effect. The results obtained indicate that the CAF/DAP cocrystal, particularly when prepared by the spray drying method, represents a possible suitable approach for inhalation formulations with applications in pulmonary pathologies.
Collapse
|
30
|
Bradbury P, Traini D, Ammit AJ, Young PM, Ong HX. Repurposing of statins via inhalation to treat lung inflammatory conditions. Adv Drug Deliv Rev 2018; 133:93-106. [PMID: 29890243 DOI: 10.1016/j.addr.2018.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
Despite many therapeutic advancements over the past decade, the continued rise in chronic inflammatory lung diseases incidence has driven the need to identify and develop new therapeutic strategies, with superior efficacy to treat these diseases. Statins are one class of drug that could potentially be repurposed as an alternative treatment for chronic lung diseases. They are currently used to treat hypercholesterolemia by inhibiting the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, that catalyses the rate limiting step in the mevalonate biosynthesis pathway, a key intermediate in cholesterol metabolism. Recent research has identified statins to have other protective pleiotropic properties including anti-inflammatory, anti-oxidant, muco-inhibitory effects that may be beneficial for the treatment of chronic inflammatory lung diseases. However, clinical studies have yielded conflicting results. This review will summarise some of the current evidences for statins pleiotropic effects that could be applied for the treatment of chronic inflammatory lung diseases, their mechanisms of actions, and the potential to repurpose statins as an inhaled therapy, including a detailed discussion on their different physical-chemical properties and how these characteristics could ultimately affect treatment efficacies. The repurposing of statins from conventional anti-cholesterol oral therapy to inhaled anti-inflammatory formulation is promising, as it provides direct delivery to the airways, reduced risk of side effects, increased bioavailability and tailored physical-chemical properties for enhanced efficacy.
Collapse
|
31
|
Mercier C, Hodin S, He Z, Perek N, Delavenne X. Pharmacological Characterization of the RPMI 2650 Model as a Relevant Tool for Assessing the Permeability of Intranasal Drugs. Mol Pharm 2018; 15:2246-2256. [PMID: 29709196 DOI: 10.1021/acs.molpharmaceut.8b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The RPMI 2650 cell line has been described as a potent model of the human nasal mucosa. Nevertheless, pharmacological data are still insufficient, and the role of drug efflux transporters has not been fully elucidated. We therefore pursued the pharmacological characterization of this model, initially investigating the expression of four well-known adenosine triphosphate [ATP]-binding cassette (ABC) transporters (P-glycoprotein (P-gp), multidrug resistance associated protein (MRP)1, MRP2, and breast cancer resistance protein (BCRP)) by means of ELISA and immunofluorescence staining. The functional activity of the selected transporters was assessed by accumulation studies based on specific substrates and inhibitors. We then performed standardized bidirectional transport experiments under air-liquid interface (ALI) culture conditions, using four therapeutic compounds of local intranasal relevance in upper airway diseases. Protein expression of P-gp, MRP1, MRP2, and BCRP was detected at the membrane of the RPMI 2650 cells. In addition, all four transporters exhibited functional activity at the cellular level. In the bidirectional transport experiments, the RPMI 2650 model was able to accurately discriminate the four therapeutic compounds according to their physicochemical properties. The ABC transporters tested did not play a major role in the efflux of these compounds at the barrier level. In conclusion, the RPMI 2650 model represents a promising tool for assessing the nasal absorption of drugs on the basis of preclinical pharmacological data.
Collapse
Affiliation(s)
- Clément Mercier
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France
| | - Sophie Hodin
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France
| | - Zhiguo He
- Université de Lyon , Saint-Etienne F-42023 , France.,Laboratoire de Biologie, d'Ingénierie et d'Imagerie de la Greffe de Cornée , BiiGC , EA2521 Saint-Etienne , France
| | - Nathalie Perek
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France
| | - Xavier Delavenne
- Dysfonction Vasculaire et Hémostase , INSERM, U1059 , Saint-Etienne CS 82301 , France.,Université de Lyon , Saint-Etienne F-42023 , France.,Laboratoire de Pharmacologie Toxicologie Gaz du sang , CHU de Saint-Etienne , Saint-Etienne CS 82301 , France
| |
Collapse
|
32
|
Abstract
Transporter systems involved in the permeation of drugs and solutes across biological membranes are recognized as key determinants of pharmacokinetics. Typically, the action of membrane transporters on drug exposure to tissues in living organisms is inferred from invasive procedures, which cannot be applied in humans. In recent years, imaging methods have greatly progressed in terms of instruments, synthesis of novel imaging probes as well as tools for data analysis. Imaging allows pharmacokinetic parameters in different tissues and organs to be obtained in a non-invasive or minimally invasive way. The aim of this overview is to summarize the current status in the field of molecular imaging of drug transporters. The overview is focused on human studies, both for the characterization of transport systems for imaging agents as well as for the determination of drug pharmacokinetics, and makes reference to animal studies where necessary. We conclude that despite certain methodological limitations, imaging has a great potential to study transporters at work in humans and that imaging will become an important tool, not only in drug development but also in medicine. Imaging allows the mechanistic aspects of transport proteins to be studied, as well as elucidating the influence of genetic background, pathophysiological states and drug-drug interactions on the function of transporters involved in the disposition of drugs.
Collapse
Affiliation(s)
- Nicolas Tournier
- Imagerie Moléculaire In Vivo, IMIV, CEA, Inserm, CNRS, Univ. Paris-Sud, Université Paris Saclay, CEA-SHFJ, Orsay, France
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Biomedical Systems, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Seibersdorf, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Active Mediated Transport of Chloramphenicol and Thiamphenicol in a Calu-3 Lung Epithelial Cell Model. J Pharm Sci 2018; 107:1178-1184. [DOI: 10.1016/j.xphs.2017.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/15/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022]
|
34
|
Carrier-mediated uptake of clonidine in cultured human lung cells. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:361-369. [DOI: 10.1007/s00210-018-1467-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/09/2018] [Indexed: 01/07/2023]
|
35
|
Inhalation Biopharmaceutics: Progress Towards Comprehending the Fate of Inhaled Medicines. Pharm Res 2017; 34:2451-2453. [DOI: 10.1007/s11095-017-2304-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 11/25/2022]
|
36
|
Bäckman P, Arora S, Couet W, Forbes B, de Kruijf W, Paudel A. Advances in experimental and mechanistic computational models to understand pulmonary exposure to inhaled drugs. Eur J Pharm Sci 2017; 113:41-52. [PMID: 29079338 DOI: 10.1016/j.ejps.2017.10.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 11/19/2022]
Abstract
Prediction of local exposure following inhalation of a locally acting pulmonary drug is central to the successful development of novel inhaled medicines, as well as generic equivalents. This work provides a comprehensive review of the state of the art with respect to multiscale computer models designed to provide a mechanistic prediction of local and systemic drug exposure following inhalation. The availability and quality of underpinning in vivo and in vitro data informing the computer based models is also considered. Mechanistic modelling of local exposure has the potential to speed up and improve the chances of successful inhaled API and product development. Although there are examples in the literature where this type of modelling has been used to understand and explain local and systemic exposure, there are two main barriers to more widespread use. There is a lack of generally recognised commercially available computational models that incorporate mechanistic modelling of regional lung particle deposition and drug disposition processes to simulate free tissue drug concentration. There is also a need for physiologically relevant, good quality experimental data to inform such modelling. For example, there are no standardized experimental methods to characterize the dissolution of solid drug in the lungs or measure airway permeability. Hence, the successful application of mechanistic computer models to understand local exposure after inhalation and support product development and regulatory applications hinges on: (i) establishing reliable, bio-relevant means to acquire experimental data, and (ii) developing proven mechanistic computer models that combine: a mechanistic model of aerosol deposition and post-deposition processes in physiologically-based pharmacokinetic models that predict free local tissue concentrations.
Collapse
Affiliation(s)
| | - Sumit Arora
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - William Couet
- School of Medicine and Pharmacy, University of Poitiers, Poitiers, France
| | | | | | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| |
Collapse
|
37
|
Ehrhardt C, Bäckman P, Couet W, Edwards C, Forbes B, Fridén M, Gumbleton M, Hosoya KI, Kato Y, Nakanishi T, Takano M, Terasaki T, Yumoto R. Current Progress Toward a Better Understanding of Drug Disposition Within the Lungs: Summary Proceedings of the First Workshop on Drug Transporters in the Lungs. J Pharm Sci 2017; 106:2234-2244. [DOI: 10.1016/j.xphs.2017.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/31/2022]
|
38
|
Gukasyan HJ, Uchiyama T, Kim KJ, Ehrhardt C, Wu SK, Borok Z, Crandall ED, Lee VHL. Oligopeptide Transport in Rat Lung Alveolar Epithelial Cells is Mediated by Pept2. Pharm Res 2017; 34:2488-2497. [PMID: 28831683 DOI: 10.1007/s11095-017-2234-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022]
Abstract
PURPOSE Studies were conducted in primary cultured rat alveolar epithelial cell monolayers to characterize peptide transporter expression and function. METHODS Freshly isolated rat lung alveolar epithelial cells were purified and cultured on permeable support with and without keratinocyte growth factor (KGF). Messenger RNA and protein expression of Pept1 and Pept2 in alveolar epithelial type I- and type II-like cell monolayers (±KGF, resp.) were examined by RT-PCR and Western blotting. 3H-Glycyl-sarcosine (3H-gly-sar) transmonolayer flux and intracellular accumulation were evaluated in both cell types. RESULTS RT-PCR showed expression of Pept2, but not Pept1, mRNA in both cell types. Western blot analysis revealed presence of Pept2 protein in type II-like cells, and less in type I-like cells. Bi-directional transmonolayer 3H-gly-sar flux lacked asymmetry in transport in both types of cells. Uptake of 3H-gly-sar from apical fluid of type II-like cells was 7-fold greater than that from basolateral fluid, while no significant differences were observed from apical vs. basolateral fluid of type I-like cells. CONCLUSIONS This study confirms the absence of Pept1 from rat lung alveolar epithelium in vitro. Functional Pept2 expression in type II-like cell monolayers suggests its involvement in oligopeptide lung disposition, and offers rationale for therapeutic development of di/tripeptides, peptidomimetics employing pulmonary drug delivery.
Collapse
Affiliation(s)
- Hovhannes J Gukasyan
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
- Allergan plc, Irvine, California, USA
| | - Tomomi Uchiyama
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
- Oozora Pharmacy, Hamamatsu, Shizuoka, Japan
| | - Kwang-Jin Kim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
- Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Sharon K Wu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
- Amgen, Inc., Thousand Oaks, California, USA
| | - Zea Borok
- Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Edward D Crandall
- Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Mork Family Department of Chemical Engineering and Materials Science, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Vincent H L Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA.
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, 8/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T. Hong Kong SAR, China.
| |
Collapse
|
39
|
Abstract
Inhalational route for drug delivery and desired effects has been known since centuries. This lung-targeted therapy has benefited asthmatics and those with chronic respiratory problems. The technique has evolved greatly from crude pots and pipes to modern sophisticated drug-dispensing devices. This mode is effective, rapid and safe. Its outcome, however, is majorly determined by drug formulation, device structure and patient's coordinating skill. In spite of great advances in this field, more efforts are required to meet the unmet needs. This noninvasive mode is being increasingly studied for transfer of drugs for systemic action with promising results. The present article is an attempt to capture the recent development and progress in this field and review relevant newer patents.
Collapse
|
40
|
Grégoire N, Aranzana-Climent V, Magréault S, Marchand S, Couet W. Clinical Pharmacokinetics and Pharmacodynamics of Colistin. Clin Pharmacokinet 2017; 56:1441-1460. [DOI: 10.1007/s40262-017-0561-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Mukherjee M, Cingolani E, Pritchard DI, Bosquillon C. Enhanced expression of Organic Cation Transporters in bronchial epithelial cell layers following insults associated with asthma - Impact on salbutamol transport. Eur J Pharm Sci 2017; 106:62-70. [PMID: 28549677 DOI: 10.1016/j.ejps.2017.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/10/2017] [Accepted: 05/23/2017] [Indexed: 01/11/2023]
Abstract
Increasing evidence suggests Organic Cation Transporters (OCT) might facilitate the absorption of inhaled bronchodilators, including salbutamol, across the lung epithelium. This is essentially scarred and inflamed in asthma. Accordingly, the impact of epithelial insults relevant to asthma on OCT expression and salbutamol transport was evaluated in air-liquid interfaced layers of the human broncho-epithelial cell line Calu-3. These were physically injured and allowed to recover for 48h or exposed to the pro-inflammatory stimulant lipopolysaccharide (LPS) for 48h and the aeroallergen house dust mite (HDM) for 8h twice over 48h. Increases in transporter expression were measured following each treatment, with the protein levels of the OCTN2 subtype consistently raised by at least 50%. Interestingly, OCT upregulation upon LPS and HDM challenges were dependent on an inflammatory event occurring in the cell layers. Salbutamol permeability was higher in LPS exposed layers than in their untreated counterparts and in both cases, was sensitive to the OCT inhibitor tetraethylammonium. This study is the first to show epithelial injury, inflammation and allergen abuse upregulate OCT in bronchial epithelial cells, which might have an impact on the absorption of their substrates in diseased lungs.
Collapse
Affiliation(s)
- Manali Mukherjee
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - E Cingolani
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - D I Pritchard
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - C Bosquillon
- School of Pharmacy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
| |
Collapse
|
42
|
Expression and Activity of Breast Cancer Resistance Protein (BCRP/ABCG2) in Human Distal Lung Epithelial Cells In Vitro. Pharm Res 2017; 34:2477-2487. [DOI: 10.1007/s11095-017-2172-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/27/2017] [Indexed: 12/19/2022]
|
43
|
Dolberg AM, Reichl S. Activity of Multidrug Resistance-Associated Proteins 1-5 (MRP1-5) in the RPMI 2650 Cell Line and Explants of Human Nasal Turbinate. Mol Pharm 2017; 14:1577-1590. [PMID: 28291371 DOI: 10.1021/acs.molpharmaceut.6b00838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The profound influence of ATP-binding cassette (ABC) transporters on the disposition of numerous drugs has led to increased interest in characterizing their expression profiles in various epithelial and endothelial barriers. The present work examined the presence and functional activity of five ABC efflux proteins, i.e., MRP 1-5, in freshly isolated human nasal epithelial cells and two in vitro models based on the human RPMI 2650 cell line. To evaluate the expression patterns of MRP1, MRP2, MRP3, MRP4, and MRP5 at the mRNA and protein levels in the ex vivo model and the differently cultured RPMI 2650 cells, reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analysis, and indirect immunofluorescence staining were used. The functionality of the MRP transporters in the three models was assessed using efflux experiments and accumulation assays with the respective substrates and inhibitors. The mRNA and protein expression of all selected ABC transporters was detected in excised human nasal mucosa as well as in the corresponding cell culture models. Moreover, the functional expression of the MRP transport proteins was demonstrated in the three models for the first time. Therefore, the potential impact of multidrug resistance-associated proteins 1-5 on drug disposition after intranasal administration may be taken into consideration for future developments. The specimens of human nasal turbinate exhibited slightly lower efflux capacities of MRP1, MRP3, and MRP5 in relation to the submerged and ALI-cultured RPMI 2650 cells, but showed a promising comparability to both in vitro models concerning the activity of MRP2 and MRP4. In this regard, the different RPMI 2650 cell culture models will be able to provide useful experimental data in the preclinical phase to estimate the interaction of particular efflux transporters with drug candidates for nasal application.
Collapse
Affiliation(s)
- Anne M Dolberg
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig , Braunschweig 38106, Germany
| | - Stephan Reichl
- Institut für Pharmazeutische Technologie, Technische Universität Braunschweig , Braunschweig 38106, Germany.,Zentrum für Pharmaverfahrenstechnik, Technische Universität Braunschweig , Braunschweig 38106, Germany
| |
Collapse
|
44
|
Ufuk A, Assmus F, Francis L, Plumb J, Damian V, Gertz M, Houston JB, Galetin A. In Vitro and in Silico Tools To Assess Extent of Cellular Uptake and Lysosomal Sequestration of Respiratory Drugs in Human Alveolar Macrophages. Mol Pharm 2017; 14:1033-1046. [PMID: 28252969 DOI: 10.1021/acs.molpharmaceut.6b00908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accumulation of respiratory drugs in human alveolar macrophages (AMs) has not been extensively studied in vitro and in silico despite its potential impact on therapeutic efficacy and/or occurrence of phospholipidosis. The current study aims to characterize the accumulation and subcellular distribution of drugs with respiratory indication in human AMs and to develop an in silico mechanistic AM model to predict lysosomal accumulation of investigated drugs. The data set included 9 drugs previously investigated in rat AM cell line NR8383. Cell-to-unbound medium concentration ratio (Kp,cell) of all drugs (5 μM) was determined to assess the magnitude of intracellular accumulation. The extent of lysosomal sequestration in freshly isolated human AMs from multiple donors (n = 5) was investigated for clarithromycin and imipramine (positive control) using an indirect in vitro method (±20 mM ammonium chloride, NH4Cl). The AM cell parameters and drug physicochemical data were collated to develop an in silico mechanistic AM model. Three in silico models differing in their description of drug membrane partitioning were evaluated; model (1) relied on octanol-water partitioning of drugs, model (2) used in vitro data to account for this process, and model (3) predicted membrane partitioning by incorporating AM phospholipid fractions. In vitro Kp,cell ranged >200-fold for respiratory drugs, with the highest accumulation seen for clarithromycin. A good agreement in Kp,cell was observed between human AMs and NR8383 (2.45-fold bias), highlighting NR8383 as a potentially useful in vitro surrogate tool to characterize drug accumulation in AMs. The mean Kp,cell of clarithromycin (81, CV = 51%) and imipramine (963, CV = 54%) were reduced in the presence of NH4Cl by up to 67% and 81%, respectively, suggesting substantial contribution of lysosomal sequestration and intracellular binding in the accumulation of these drugs in human AMs. The in vitro data showed variability in drug accumulation between individual human AM donors due to possible differences in lysosomal abundance, volume, and phospholipid content, which may have important clinical implications. Consideration of drug-acidic phospholipid interactions significantly improved the performance of the in silico models; use of in vitro Kp,cell obtained in the presence of NH4Cl as a surrogate for membrane partitioning (model (2)) captured the variability in clarithromycin and imipramine Kp,cell observed in vitro and showed the best ability to predict correctly positive and negative lysosomotropic properties. The developed mechanistic AM model represents a useful in silico tool to predict lysosomal and cellular drug concentrations based on drug physicochemical data and system specific properties, with potential application to other cell types.
Collapse
Affiliation(s)
- Ayşe Ufuk
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Frauke Assmus
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Laura Francis
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Jonathan Plumb
- Respiratory and Allergy Clinical Research Facility, University Hospital of South Manchester , Manchester, U.K
| | - Valeriu Damian
- Computational Modeling Sciences, DDS, GlaxoSmithKline , Upper Merion, Pennsylvania 19406, United States
| | - Michael Gertz
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K.,Pharmaceutical Sciences, pRED, Roche Innovation Center , Basel, Switzerland
| | - J Brian Houston
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester , Manchester, U.K
| |
Collapse
|
45
|
Bäckström E, Boger E, Lundqvist A, Hammarlund-Udenaes M, Fridén M. Lung Retention by Lysosomal Trapping of Inhaled Drugs Can Be Predicted In Vitro With Lung Slices. J Pharm Sci 2016; 105:3432-3439. [DOI: 10.1016/j.xphs.2016.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 08/19/2016] [Accepted: 08/19/2016] [Indexed: 11/30/2022]
|
46
|
Pozzoli M, Ong HX, Morgan L, Sukkar M, Traini D, Young PM, Sonvico F. Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products. Eur J Pharm Biopharm 2016; 107:223-33. [PMID: 27418393 DOI: 10.1016/j.ejpb.2016.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/08/2016] [Accepted: 07/08/2016] [Indexed: 01/24/2023]
Abstract
The aim of this study was to incorporate an optimized RPMI2650 nasal cell model into a 3D printed model of the nose to test deposition and permeation of drugs intended for use in the nose. The nasal cell model was optimized for barrier properties in terms of permeation marker and mucus production. RT-qPCR was used to determine the xenobiotic transporter gene expression of RPMI 2650 cells in comparison with primary nasal cells. After 14days in culture, the cells were shown to produce mucus, and to express TEER (define) values and sodium fluorescein permeability consistent with values reported for excised human nasal mucosa. In addition, good correlation was found between RPMI 2650 and primary nasal cell transporter expression values. The purpose-built 3D printed model of the nose takes the form of an expansion chamber with inserts for cells and an orifice for insertion of a spray drug delivery device. This model was validated against the FDA glass chamber with cascade impactors that is currently approved for studies of nasal products. No differences were found between the two apparatus. The apparatus including the nasal cell model was used to test a commercial nasal product containing budesonide (Rhinocort, AstraZeneca, Australia). Drug deposition and transport studies on RPMI 2650 were successfully performed. The new 3D printed apparatus that incorporates cells can be used as valid in vitro model to test nasal products in conditions that mimic the delivery from nasal devices in real life conditions.
Collapse
Affiliation(s)
- Michele Pozzoli
- Graduate School of Health - Pharmacy, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia
| | - Lucy Morgan
- Concord Repatriation General Hospital, Sydney Medical School-Concord Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Maria Sukkar
- Graduate School of Health - Pharmacy, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia
| | - Paul M Young
- Respiratory Technology, The Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, University of Sydney, 431 Glebe Point Road, Glebe, NSW 2037, Australia
| | - Fabio Sonvico
- Graduate School of Health - Pharmacy, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; Department of Pharmacy, University of Parma, 27A, Parco area delle Scienze, Parma 43124, Italy.
| |
Collapse
|