1
|
Han B, Wang W, Wu H, Hu J, Sun L, Zhu Y, Cheng AG, Sun H. Global prevalence of the mitochondrial MT-RNR1 A1555G variant in non-syndromic hearing loss: A systematic review and meta-analysis. Neuroscience 2025; 570:16-26. [PMID: 39970981 DOI: 10.1016/j.neuroscience.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Non-syndromic sensorineural hearing loss (NSHL) significantly affects quality of life and is often associated with the MT-RNR1 A1555G variant. This meta-analysis investigated the global prevalence of the A1555G variant, considering factors such as age of onset and aminoglycoside exposure. A systematic review of 97 studies published between 2000 and the present included 31,013 participants. The overall prevalence of the A1555G variant was 3.37 %, with higher rates in East Asia. Subgroup analysis revealed variant frequencies of 7.24 % in postlingual deafness cases and 1.45 % in prelingual cases. Familial cases and those with aminoglycoside exposure showed significantly higher prevalence rates (9.2 % vs. 1.9 %). These findings underscore the variant's critical role in NSHL etiology and the necessity of incorporating genetic screening into clinical practices, especially for patients with aminoglycoside exposure.
Collapse
Affiliation(s)
- Baoai Han
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wenqing Wang
- Wuhan Zhongyuan Electronics Group Co. LTD, Wuhan 430205, China
| | - Han Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Juanjuan Hu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liu Sun
- Department of Otolaryngology-Head and Neck Surgery, Wuhan Eighth Hospital, 1288 Jianshe Avenue, Wuhan 430012, P.R. China
| | - Yun Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94304, United States.
| | - Haiying Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Abbasi Z, Jafari Khamirani H, Tabei SMB, Manoochehri J, Dianatpour M, Dastgheib SA. EPS8 variant causes deafness, autosomal recessive 102 (DFNB102) and literature review. Hum Genome Var 2023; 10:1. [PMID: 36635257 PMCID: PMC9837036 DOI: 10.1038/s41439-023-00229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023] Open
Abstract
Pathogenic variants in the EPS8 gene result in nonsyndromic hearing loss. This gene encodes the EPS8 protein in cochlear inner hair cells and performs critical roles in stimulating actin polymerization and bundling. Thus far, only four pathogenic variations in EPS8 have been described. In this study, we report the fifth pathogenic variant in the EPS8 gene in an Iranian patient with DFNB102. Furthermore, we review literature cases with EPS8 mutations.
Collapse
Affiliation(s)
- Zahra Abbasi
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Seyed Mohammad Bagher Tabei
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Manoochehri
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
3
|
Wang L, Wang X, Cai X, Qiang R. Study of mitochondrial DNA A1555G and C1494T mutations in a large cohort of women individuals. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:222-225. [PMID: 29790807 DOI: 10.1080/24701394.2018.1475477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Mammalian mitochondrial A1555G and C1494T mutations are the most common causes of aminoglycoside-induced and non-syndromic hearing loss. However, these two mutations always are studied in the subject of pedigrees analysis. In the present study, we aimed to investigate the genetic characteristic of the A1555G and C1494T mutations on the population-level sampling, and to study the A1555G pattern of maternal transmission in three heteroplasmic families. Four thousand two hundred and ten unrelated women with normal hearing were enrolled as subjects. We used a mutation detection kit to screen the prevalence of these two mutations and used denaturing high performance liquid chromatography (DHPLC) and DNA sequencing to detect three A1555G heteroplasmic pedigrees. The carrier rate of A1555G was 0.33%, and the carrier rate of C1494T was 0.02% in our cohort, but the rate of heteroplasmy in A1555G mutant carriers reached 21.4%. Mitochondrial A1555G mutation rate was significantly decreased during maternal transmission of the mutant. Strong purifying selection may determine the fate of mtDNA A1555G in the transmission of human population.
Collapse
Affiliation(s)
- Lin Wang
- a Northwest Women's and Children's Hospital , Xi'an , PR China
| | - Xiaobin Wang
- a Northwest Women's and Children's Hospital , Xi'an , PR China
| | - Xiaolong Cai
- b Shaanxi Provincial People's Hospital , Xi'an , PR China
| | - Rong Qiang
- a Northwest Women's and Children's Hospital , Xi'an , PR China
| |
Collapse
|
4
|
Chow YP, Abdul Murad NA, Mohd Rani Z, Khoo JS, Chong PS, Wu LL, Jamal R. Exome sequencing identifies SLC26A4, GJB2, SCARB2 and DUOX2 mutations in 2 siblings with Pendred syndrome in a Malaysian family. Orphanet J Rare Dis 2017; 12:40. [PMID: 28222800 PMCID: PMC5320863 DOI: 10.1186/s13023-017-0575-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/20/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Pendred syndrome (PDS, MIM #274600) is an autosomal recessive disorder characterized by congenital sensorineural hearing loss and goiter. In this study, we describing the possible PDS causal mutations in a Malaysian family with 2 daughters diagnosed with bilateral hearing loss and hypothyroidism. METHODS AND RESULTS Whole exome sequencing was performed on 2 sisters with PDS and their unaffected parents. Our results showed that both sisters inherited monoallelic mutations in the 2 known PDS genes, SLC26A4 (ENST00000265715:c.1343C > T, p.Ser448Leu) and GJB2 (ENST00000382844:c.368C > A, p.Thr123Asn) from their father, as well as another deafness-related gene, SCARB2 (ENST00000264896:c.914C > T, p.Thr305Met) from their mother. We postulated that these three heterozygous mutations in combination may be causative to deafness, and warrants further investigation. Furthermore, we also identified a compound heterozygosity involving the DUOX2 gene (ENST00000603300:c.1588A > T:p.Lys530* and c.3329G > A:p.Arg1110Gln) in both sisters which are inherited from both parents and may be correlated with early onset of goiter. All the candidate mutations were predicted deleterious by in silico tools. CONCLUSIONS In summary, we proposed that PDS in this family could be a polygenic disorder which possibly arises from a combination of heterozygous mutations in SLC26A4, GJB2 and SCARB2 which associated with deafness, as well as compound heterozygous DUOX2 mutations which associated with thyroid dysfunction.
Collapse
Affiliation(s)
- Yock-Ping Chow
- UKM Medical Molecular Biology Institute (UMBI), Chancellor Tuanku Muhriz Hospital, UKM Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Molecular Biology Institute (UMBI), Chancellor Tuanku Muhriz Hospital, UKM Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Zamzureena Mohd Rani
- UKM Medical Molecular Biology Institute (UMBI), Chancellor Tuanku Muhriz Hospital, UKM Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Jia-Shiun Khoo
- Codon Genomics S/B, No 26, Jalan Dutamas 7, Taman Dutamas, Balakong, 43200 Seri Kembangan, Selangor Malaysia
| | - Pei-Sin Chong
- Codon Genomics S/B, No 26, Jalan Dutamas 7, Taman Dutamas, Balakong, 43200 Seri Kembangan, Selangor Malaysia
| | - Loo-Ling Wu
- Department of Pediatrics, Chancellor Tuanku Muhriz Hospital, UKM Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Chancellor Tuanku Muhriz Hospital, UKM Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
- Department of Pediatrics, Chancellor Tuanku Muhriz Hospital, UKM Medical Centre, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Mittal R, Grati M, Sedlacek M, Yuan F, Chang Q, Yan D, Lin X, Kachar B, Farooq A, Chapagain P, Zhang Y, Liu XZ. Characterization of ATPase Activity of P2RX2 Cation Channel. Front Physiol 2016; 7:186. [PMID: 27252659 PMCID: PMC4878533 DOI: 10.3389/fphys.2016.00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022] Open
Abstract
P2X purinergic receptors are plasma membrane ATP-dependent cation channels that are broadly distributed in the mammalian tissues. P2RX2 is a modulator of auditory sensory hair cell mechanotransduction and plays an important role in hair cell tolerance to noise. In this study, we demonstrate for the first time in vitro and in cochlear neuroepithelium, that P2RX2 possesses the ATPase activity. We observed that the P2RX2 V60L human deafness mutation alters its ability to bind ATP, while the G353R has no effect on ATP binding or hydrolysis. A non-hydrolysable ATP assay using HEK293 cells suggests that ATP hydrolysis plays a significant role in the opening and gating of the P2RX2 ion channel. Moreover, the results of structural modeling of the molecule was in agreement with our experimental observations. These novel findings suggest the intrinsic ATPase activity of P2RX2 and provide molecular insights into the channel opening.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine Miami, FL, USA
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Miloslav Sedlacek
- Laboratory of Cell Structure and Dynamics, Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA
| | - Fenghua Yuan
- Department of Biochemistry, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Qing Chang
- Department of Otolaryngology, Emory University Atlanta, GA, USA
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine Miami, FL, USA
| | - Xi Lin
- Department of Otolaryngology, Emory University Atlanta, GA, USA
| | - Bechara Kachar
- Laboratory of Cell Structure and Dynamics, Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA
| | - Amjad Farooq
- Department of Biochemistry, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Prem Chapagain
- Department of Physics, Florida International University Miami, FL, USA
| | - Yanbin Zhang
- Department of Biochemistry, University of Miami Leonard M. Miller School of Medicine Miami, FL, USA
| | - Xue Z Liu
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, USA; Department of Biochemistry, University of Miami Leonard M. Miller School of MedicineMiami, FL, USA; Department of Otolaryngology, Central South University, Xiangya HospitalChangsha, China
| |
Collapse
|
6
|
Pique LM, Brennan ML, Davidson CJ, Schaefer F, Greinwald J, Schrijver I. Mutation analysis of the SLC26A4, FOXI1 and KCNJ10 genes in individuals with congenital hearing loss. PeerJ 2014; 2:e384. [PMID: 24860705 PMCID: PMC4017815 DOI: 10.7717/peerj.384] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 04/25/2014] [Indexed: 01/05/2023] Open
Abstract
Pendred syndrome (PDS) and DFNB4 comprise a phenotypic spectrum of sensorineural hearing loss disorders that typically result from biallelic mutations of the SLC26A4 gene. Although PDS and DFNB4 are recessively inherited, sequencing of the coding regions and splice sites of SLC26A4 in individuals suspected to be affected with these conditions often fails to identify two mutations. We investigated the potential contribution of large SLC26A4 deletions and duplications to sensorineural hearing loss (SNHL) by screening 107 probands with one known SLC26A4 mutation by Multiplex Ligation-dependent Probe Amplification (MLPA). A heterozygous deletion, spanning exons 4-6, was detected in only one individual, accounting for approximately 1% of the missing mutations in our cohort. This low frequency is consistent with previously published MLPA results. We also examined the potential involvement of digenic inheritance in PDS/DFNB4 by sequencing the coding regions of FOXI1 and KCNJ10. Of the 29 probands who were sequenced, three carried nonsynonymous variants including one novel sequence change in FOXI1 and two polymorphisms in KCNJ10. We performed a review of prior studies and, in conjunction with our current data, conclude that the frequency of FOXI1 (1.4%) and KCNJ10 (3.6%) variants in PDS/DFNB4 individuals is low. Our results, in combination with previously published reports, indicate that large SLC26A4 deletions and duplications as well as mutations of FOXI1 and KCNJ10 play limited roles in the pathogenesis of SNHL and suggest that other genetic factors likely contribute to the phenotype.
Collapse
Affiliation(s)
- Lynn M Pique
- Department of Pathology, Stanford University Medical Center , Stanford, CA , USA
| | - Marie-Luise Brennan
- Department of Pediatrics, Stanford University Medical Center , Stanford, CA , USA
| | | | - Frederick Schaefer
- Molecular Genetics, Center for Genetic Testing at Saint Francis Hospital , Tulsa, OK , USA
| | - John Greinwald
- Divisions of Human Genetics and Otolaryngology, Cincinnati Children's Hospital Medical Center , Cincinnati, OH , USA
| | - Iris Schrijver
- Department of Pathology, Stanford University Medical Center , Stanford, CA , USA ; Department of Pediatrics, Stanford University Medical Center , Stanford, CA , USA
| |
Collapse
|
7
|
Yan D, Tekin M, Blanton SH, Liu XZ. Next-generation sequencing in genetic hearing loss. Genet Test Mol Biomarkers 2013; 17:581-7. [PMID: 23738631 DOI: 10.1089/gtmb.2012.0464] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The advent of the $1000 genome has the potential to revolutionize the identification of genes and their mutations underlying genetic disorders. This is especially true for extremely heterogeneous Mendelian conditions such as deafness, where the mutation, and indeed the gene, may be private. The recent technological advances in target-enrichment methods and next generation sequencing offer a unique opportunity to break through the barriers of limitations imposed by gene arrays. These approaches now allow for the complete analysis of all known deafness-causing genes and will result in a new wave of discoveries of the remaining genes for Mendelian disorders. In this review, we describe commonly used genomic technologies as well as the application of these technologies to the genetic diagnosis of hearing loss (HL) and to the discovery of novel genes for syndromic and nonsyndromic HL.
Collapse
Affiliation(s)
- Denise Yan
- Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
8
|
Nogueira C, Coutinho M, Pereira C, Tessa A, Santorelli FM, Vilarinho L. Molecular investigation of pediatric portuguese patients with sensorineural hearing loss. GENETICS RESEARCH INTERNATIONAL 2011; 2011:587602. [PMID: 22567359 PMCID: PMC3335713 DOI: 10.4061/2011/587602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/27/2011] [Indexed: 12/02/2022]
Abstract
The understanding of the molecular genetics in sensorineural hearing loss (SNHL) has advanced rapidly during the last decade, but the molecular etiology of hearing impairment in the Portuguese population has not been investigated thoroughly. To provide appropriate genetic testing and counseling to families, we analyzed the whole mitochondrial genome in 95 unrelated children with SNHL (53 nonsyndromic and 42 syndromic) and searched for variations in two frequent genes, GJB2 and GJB6, in the non-syndromic patients. Mutations in mtDNA were detected in 4.2% of the cases, including a hitherto undescribed change in the mtDNA-tRNATrp gene (namely, m.5558A>G). We also identified mono- or biallelic GJB2 mutations in 20 of 53 non-syndromic cases and also detected two novel mutations (p.P70R and p.R127QfsX84). Our data further reinforce the notion that genetic heterogeneity is paramount in children with SNHL.
Collapse
Affiliation(s)
- Célia Nogueira
- Genetics Department, Medical Genetics Center, National Institute of Health (INSA), Praça Pedro Nunes 88, 4099-028 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
9
|
Rodriguez-Paris J, Pique L, Colen T, Roberson J, Gardner P, Schrijver I. Genotyping with a 198 mutation arrayed primer extension array for hereditary hearing loss: assessment of its diagnostic value for medical practice. PLoS One 2010; 5:e11804. [PMID: 20668687 PMCID: PMC2909915 DOI: 10.1371/journal.pone.0011804] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/02/2010] [Indexed: 11/18/2022] Open
Abstract
Molecular diagnostic testing of individuals with congenital sensorineural hearing loss typically begins with DNA sequencing of the GJB2 gene. If the cause of the hearing loss is not identified in GJB2, additional testing can be ordered. However, the step-wise analysis of several genes often results in a protracted diagnostic process. The more comprehensive Hereditary Hearing Loss Arrayed Primer Extension microarray enables analysis of 198 mutations across eight genes (GJB2, GJB6, GJB3, GJA1, SLC26A4, SLC26A5, MTRNR1 and MTTS1) in a single test. To evaluate the added diagnostic value of this microarray for our ethnically diverse patient population, we tested 144 individuals with congenital sensorineural hearing loss who were negative for biallelic GJB2 or GJB6 mutations. The array successfully detected all GJB2 changes previously identified in the study group, confirming excellent assay performance. Additional mutations were identified in the SLC26A4, SLC26A5 and MTRNR1 genes of 12/144 individuals (8.3%), four of whom (2.8%) had genotypes consistent with pathogenicity. These results suggest that the current format of this microarray falls short of adding diagnostic value beyond the customary testing of GJB2, perhaps reflecting the array's limitations on the number of mutations included for each gene, but more likely resulting from unknown genetic contributors to this phenotype. We conclude that mutations in other hearing loss associated genes should be incorporated in the array as knowledge of the etiology of hearing loss evolves. Such future modification of the flexible configuration of the Hereditary Hearing Loss Arrayed Primer Extension microarray would improve its impact as a diagnostic tool.
Collapse
Affiliation(s)
- Juan Rodriguez-Paris
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Lynn Pique
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tahl Colen
- California Ear Institute, Palo Alto, California, United States of America
| | - Joseph Roberson
- California Ear Institute, Palo Alto, California, United States of America
| | - Phyllis Gardner
- Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Iris Schrijver
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Rodriguez-Paris J, Schrijver I. The digenic hypothesis unraveled: the GJB6 del(GJB6-D13S1830) mutation causes allele-specific loss of GJB2 expression in cis. Biochem Biophys Res Commun 2009; 389:354-9. [PMID: 19723508 DOI: 10.1016/j.bbrc.2009.08.152] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
Abstract
Connexin 26 and connexin 30 are the major connexins expressed in the cochlea, where they are co-localized and form heteromeric gap junctions. Mutations in the GJB2 gene, which encodes connexin 26, are the most common cause of prelingual non-syndromic sensorineural hearing loss. The large del(GJB6-D13S1830) mutation which involves GJB6 (connexin 30), causes hearing loss in homozygous individuals, or when compound heterozygous with a GJB2 mutation. Until now, it remained unresolved whether this phenomenon results from digenic inheritance or because of lack of GJB2 mRNA expression. After RNA extraction from buccal epithelium, a tissue known to express connexin 26 as well as connexin 30, allele-specific expression of GJB2 was investigated by reverse-transcriptase PCR and restriction digestions in three unrelated individuals compound heterozygous for a GJB2 mutation and del(GJB6-D13S1830). Each proband carried a different sequence change in GJB2. The mutated GJB2 allele in trans with del(GJB6-D13S1830) was expressed in all three individuals whereas the GJB2 allele located in cis with the deletion was not expressed at all. Thus, mutations in these two genes do not cause hearing loss through a digenic mechanism of inheritance alone, as was postulated previously, but instead GJB2 expression is abolished through an effect in cis with the deletion. Our study provides unequivocal support for the hypothesis that del(GJB6-D13S1830) eliminates a putative cis-regulatory element located within the deleted region.
Collapse
Affiliation(s)
- Juan Rodriguez-Paris
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|