1
|
Chen S, Segers V, Zhang Q, Zhang Q, Ding H, Li F. Lower Extremity Kinematic and Kinetic Characteristics as Effects on Running Economy of Recreational Runners. Med Sci Sports Exerc 2024; 56:1368-1377. [PMID: 38547400 DOI: 10.1249/mss.0000000000003438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
PURPOSE This study aimed to determine associations between running economy (RE) and running sagittal plane kinematic and kinetic parameters. METHOD A total of 30 male recreational runners (age: 21.21 ± 1.22 yr, V̇O 2max : 54.61 ± 5.42 mL·kg -1 ·min -1 ) participated in two separate test sessions. In the first session, the participant's body composition and RE at 10 and 12 km·h -1 were measured. In the second session, measurements were taken for the sagittal plane of hip, knee, and ankle angles and range of motion (ROM), as well as ground reaction force. RESULTS Moderate correlations were found between lower energy costs at 12 km·h -1 and smaller hip flexion at toe-off ( r = 0.373) as well as smaller peak hip flexion during stance ( r = 0.397). During the swing phase, lower energy costs at 10 km·h -1 were moderately correlated with smaller peak knee flexion and smaller knee flexion and extension ROM ( r = 0.366-0.443). Lower energy costs at 12 km·h -1 were moderately correlated with smaller peak hip and knee flexion as well as knee extension ROM ( r = 0.369-0.427). In terms of kinetics, there was a moderate correlation between higher energy costs at 10 km·h -1 and larger peak active force, as well as larger peak braking and propulsion force ( r = -0.470-0.488). Lower energy costs at 12 km·h -1 were moderately to largely correlated with smaller peak impact and braking force ( r = 0.486 and -0.500, respectively). Regarding the statistical parametric mapping analysis, most outcomes showed associations with RE at 10 km·h -1 , including knee flexion (42.5%-65.5% of the gait cycle), ankle plantarflexion (32.5%-36% of the gait cycle), active force (30.5%-35% of the stance phase), and propulsion force (68%-72.5% of the stance phase). Lower energy costs at 12 km·h -1 were correlated with smaller hip flexion (5.5%-12% and 66.5%-74%) and smaller knee flexion (57%-57.5%) during the running gait cycle. CONCLUSIONS This study indicates that biomechanical factors are associated with RE in recreational runners. To design effective training methods to improve RE, coaches and runners should focus on the sagittal plane kinematics of the hip, knee, and ankle, as well as lower vertical and horizontal kinetic parameters.
Collapse
Affiliation(s)
- Shiqin Chen
- School of Athletic Performance, Shanghai University of Sport, Shanghai, CHINA
| | - Veerle Segers
- Department of Movement and Sports Sciences, Ghent University, Ghent, BELGIUM
| | | | - Qin Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai, CHINA
| | - Haiyong Ding
- School of Physical Education, Shanghai University of Sport, Shanghai, CHINA
| | | |
Collapse
|
2
|
van Oeveren BT, de Ruiter CJ, Beek PJ, van Dieën JH. The biomechanics of running and running styles: a synthesis. Sports Biomech 2024; 23:516-554. [PMID: 33663325 DOI: 10.1080/14763141.2021.1873411] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
Running movements are parametrised using a wide variety of devices. Misleading interpretations can be avoided if the interdependencies and redundancies between biomechanical parameters are taken into account. In this synthetic review, commonly measured running parameters are discussed in relation to each other, culminating in a concise, yet comprehensive description of the full spectrum of running styles. Since the goal of running movements is to transport the body centre of mass (BCoM), and the BCoM trajectory can be derived from spatiotemporal parameters, we anticipate that different running styles are reflected in those spatiotemporal parameters. To this end, this review focuses on spatiotemporal parameters and their relationships with speed, ground reaction force and whole-body kinematics. Based on this evaluation, we submit that the full spectrum of running styles can be described by only two parameters, namely the step frequency and the duty factor (the ratio of stance time and stride time) as assessed at a given speed. These key parameters led to the conceptualisation of a so-called Dual-axis framework. This framework allows categorisation of distinctive running styles (coined 'Stick', 'Bounce', 'Push', 'Hop', and 'Sit') and provides a practical overview to guide future measurement and interpretation of running biomechanics.
Collapse
Affiliation(s)
- Ben T van Oeveren
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Cornelis J de Ruiter
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Peter J Beek
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jaap H van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Elmer DJ, Asbill HW. Effect of cross-slope angle on running economy and gait characteristics at moderate running velocity. Eur J Appl Physiol 2024; 124:1259-1266. [PMID: 37993733 DOI: 10.1007/s00421-023-05358-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE Outdoor running surfaces are designed with a cross-slope, which can alter kinetic and kinematic gait parameters. The purpose of this study was to evaluate running economy, gait characteristics, and muscle activation while running on a surface with cross-slopes similar to those encountered on roads and trails. METHODS Eleven recreational runners (females n = 6) completed 5-min running trials on a treadmill at 10 km h-1 with cross-slopes of 0, 1.15, 2.29, and 6 deg in a randomized order. RESULTS There were no significant differences in VO2, HR, RER, or VE across cross-slope conditions. Compared to 0 deg of cross-slope, ground contact time and duty factor increased at 2.29 and 6 deg, with significant decreases in absolute and relative flight times. Rear foot angles increased in the upslope leg at 2.29 and 6 deg cross-slopes and decreased in the downslope leg at 6 deg compared to 0 deg of cross-slope, with differences between legs for the 2.29 and 6 deg conditions. Knee flexion at foot strike increased in the upslope leg at a 6 deg cross-slope. Vastus lateralis, biceps femoris, gastrocnemius, and tibialis anterior activation were not affected by the cross-slope conditions. While cross-slopes up to 6 deg result in changes to some gait kinematics, these effects do not impact running economy at moderate running velocity.
Collapse
Affiliation(s)
- David J Elmer
- Department of Kinesiology, Berry College, 2277 Martha Berry Hwy, Mount Berry, GA, 30149, USA.
| | - Henry W Asbill
- Department of Kinesiology, Berry College, 2277 Martha Berry Hwy, Mount Berry, GA, 30149, USA
| |
Collapse
|
4
|
Zandbergen MA, Buurke JH, Veltink PH, Reenalda J. Quantifying and correcting for speed and stride frequency effects on running mechanics in fatiguing outdoor running. Front Sports Act Living 2023; 5:1085513. [PMID: 37139307 PMCID: PMC10150107 DOI: 10.3389/fspor.2023.1085513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/23/2023] [Indexed: 05/05/2023] Open
Abstract
Measuring impact-related quantities in running is of interest to improve the running technique. Many quantities are typically measured in a controlled laboratory setting, even though most runners run in uncontrolled outdoor environments. While monitoring running mechanics in an uncontrolled environment, a decrease in speed or stride frequency can mask fatigue-related changes in running mechanics. Hence, this study aimed to quantify and correct the subject-specific effects of running speed and stride frequency on changes in impact-related running mechanics during a fatiguing outdoor run. Seven runners ran a competitive marathon while peak tibial acceleration and knee angles were measured with inertial measurement units. Running speed was measured through sports watches. Median values over segments of 25 strides throughout the marathon were computed and used to create subject-specific multiple linear regression models. These models predicted peak tibial acceleration, knee angles at initial contact, and maximum stance phase knee flexion based on running speed and stride frequency. Data were corrected for individual speed and stride frequency effects during the marathon. The speed and stride frequency corrected and uncorrected data were divided into ten stages to investigate the effect of marathon stage on mechanical quantities. This study showed that running speed and stride frequency explained, on average, 20%-30% of the variance in peak tibial acceleration, knee angles at initial contact, and maximum stance phase knee angles while running in an uncontrolled setting. Regression coefficients for speed and stride frequency varied strongly between subjects. Speed and stride frequency corrected peak tibial acceleration, and maximum stance phase knee flexion increased throughout the marathon. At the same time, uncorrected maximum stance phase knee angles showed no significant differences between marathon stages due to a decrease in running speed. Hence, subject-specific effects of changes in speed and stride frequency influence the interpretation of running mechanics and are relevant when monitoring, or comparing the gait pattern between runs in uncontrolled environments.
Collapse
Affiliation(s)
- Marit A. Zandbergen
- Department of Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, Netherlands
- Department of Rehabilitation Technology, Roessingh Research and Development, Enschede, Netherlands
- Correspondence: Marit A. Zandbergen
| | - Jaap H. Buurke
- Department of Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, Netherlands
- Department of Rehabilitation Technology, Roessingh Research and Development, Enschede, Netherlands
| | - Peter H. Veltink
- Department of Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, Netherlands
| | - Jasper Reenalda
- Department of Biomedical Signals and Systems, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, Netherlands
- Department of Rehabilitation Technology, Roessingh Research and Development, Enschede, Netherlands
| |
Collapse
|
5
|
Reliability and validity of 2-dimensional video analysis for a running task: A systematic review. Phys Ther Sport 2022; 58:16-33. [DOI: 10.1016/j.ptsp.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
|
6
|
Performance and Submaximal Adaptations to Additional Speed-Endurance Training Vs. Continuous Moderate-Intensity Aerobic Training in Male Endurance Athletes. J Hum Kinet 2022; 83:277-285. [PMID: 36157945 PMCID: PMC9465764 DOI: 10.2478/hukin-2022-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined performance and submaximal adaptations to additional treadmill-based speed-endurance training (SET) vs. continuous moderate-intensity aerobic training (MIT) twice / week. Twenty-two male endurance athletes were tested before and after 10-week SET (6-12 × 30-s sprints separated by 3-min rest intervals) and MIT (2040 min continuous running at ~70% maximal oxygen uptake [V̇O2max]). The SET group attained greater acute heart rate (HR) and blood lactate responses than the MIT group (d = 0.86–0.91). The SET group improved performance in a time-to-exhaustion trial, V̇O2max, and lactate threshold (d = 0.50–0.73), whereas no training-induced changes were observed in the MIT group. Additionally, the SET group reduced oxygen uptake, mean HR and improved running economy (d = 0.53–0.86) during running at 10 and 12 km·h-1. Additional SET imposes greater physiological demands than MIT resulting in superior performance adaptations and reduced energy cost in endurance athletes.
Collapse
|
7
|
Relationship between Running Spatiotemporal Kinematics and Muscle Performance in Well-Trained Youth Female Athletes. A Cross-Sectional Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168869. [PMID: 34444618 PMCID: PMC8392471 DOI: 10.3390/ijerph18168869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
The purpose of this cross-sectional study was to analyse the relationship of neuromuscular performance and spatiotemporal parameters in 18 adolescent distance athletes (age, 15.5 ± 1.1 years). Using the OptoGait system, the power, rhythm, reactive strength index, jump flying time, and jump height of the squat jump, countermovement jump, and eight maximal hoppings test (HT8max) and the contact time (CT), flying time (FT), step frequency, stride angle, and step length of running at different speeds were measured. Maturity offset was determined based on anthropometric variables. Analysis of variance (ANOVA) of repeated measurements showed a reduction in CT (p < 0.000) and an increase in step frequency, step length, and stride angle (p < 0.001), as the velocity increased. The HT8max test showed significant correlations with very large effect sizes between neuromuscular performance variables (reactive strength index, power, jump flying time, jump height, and rhythm) and both step frequency and step length. Multiple linear regression found this relationship after adjusting spatiotemporal parameters with neuromuscular performance variables. Some variables of neuromuscular performance, mainly in reactive tests, were the predictors of spatiotemporal parameters (CT, FT, stride angle, and VO). Rhythm and jump flying time in the HT8max test and power in the countermovement jump test are parameters that can predict variables associated with running biomechanics, such as VO, CT, FT, and stride angle.
Collapse
|
8
|
Barenie Ms Rd MJ, Freemas Ms JA, Baranauskas PhD MN, Goss Msk CS, Freeman Ms KL, Chen Ms X, Dickinson Ms SL, Fly PhD Cfs AD, Kawata PhD K, Chapman PhD Facsm RF, Mickleborough PhD TD. Effectiveness of a combined New Zealand green-lipped mussel and Antarctic krill oil supplement on markers of exercise-induced muscle damage and inflammation in untrained men. J Diet Suppl 2020; 19:184-211. [PMID: 33292022 DOI: 10.1080/19390211.2020.1853649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Green-lipped mussel oil (PCSO-524®) has been shown to attenuate signs and symptoms of exercise-induced muscle damage (EIMD), and krill oil has been shown to have a protective effect against cytokine-induced tissue degradation. The purpose of this study was to compare the effects of PCSO-524® and ESPO-572® (75% PCSO-524® and 25% krill oil) on signs and symptoms of EIMD. Fifty-one untrained men consumed 600 mg/d of PCSO-524® (n = 24) or ESPO-572® (n = 27) for 26 d prior to and 72 h following a downhill running bout. Delayed onset muscle soreness (DOMS), pressure pain threshold, limb swelling, range of motion (ROM), isometric torque, and blood markers of inflammation and muscle damage were assessed at baseline, 24, 48 and 72 h post-eccentric exercise. ESPO-572® was 'at least as good as' PCSO-524® and both blends were superior (p < 0.05) to placebo in lessening the increase in DOMS at 24, 48, 72 h. ESPO-572® and PCSO-524® were protective against joint ROM loss compared to placebo (p < 0.05) at 48 and 72 h. Notably, at 24 and 48 h, joint ROM was higher in the ESPO-572® compared to the PCSO-524® group (p < 0.05). No differences between the two blends for the other markers were found. ESPO-572® is 'at least as good' as PCSO-524® in reducing markers of muscle damage and soreness following eccentric exercise and was superior to PCSO-524® in protecting against the loss in joint ROM during recovery. Our data support the use of ESPO-572®, a combination of green-lipped mussel and krill oil, in mitigating the deleterious effects of EIMD.
Collapse
Affiliation(s)
- Matthew J Barenie Ms Rd
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Jessica A Freemas Ms
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Marissa N Baranauskas PhD
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Curtis S Goss Msk
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Kadie L Freeman Ms
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Xiwei Chen Ms
- School of Public Health, Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Stephanie L Dickinson Ms
- School of Public Health, Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Alyce D Fly PhD Cfs
- School of Public Health, Department of Applied Health Science, Nutrition Sciences Laboratory, Indiana University, Bloomington, IN, USA
| | - Keisuke Kawata PhD
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Robert F Chapman PhD Facsm
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Timothy D Mickleborough PhD
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| |
Collapse
|
9
|
Hanley B, Bissas A, Merlino S. Men's and Women's World Championship Marathon Performances and Changes With Fatigue Are Not Explained by Kinematic Differences Between Footstrike Patterns. Front Sports Act Living 2020; 2:102. [PMID: 33345091 PMCID: PMC7739599 DOI: 10.3389/fspor.2020.00102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/06/2020] [Indexed: 11/21/2022] Open
Abstract
World-class marathon runners make initial contact with the rearfoot, midfoot or forefoot. This novel study analyzed kinematic similarities and differences between rearfoot and non-rearfoot strikers within the men's and women's 2017 IAAF World Championship marathons across the last two laps. Twenty-eight men and 28 women, equally divided by footstrike pattern, were recorded at 29.5 and 40 km (laps 3 and 4, respectively) using two high-definition cameras (50 Hz). The videos were digitized to derive spatiotemporal and joint kinematic data, with additional footage (120 Hz) used to identify footstrike patterns. There was no difference in running speed, step length or cadence between rearfoot and non-rearfoot strikers during either lap in both races, and these three key variables decreased in athletes of either footstrike pattern to a similar extent between laps. Men slowed more than women between laps, and overall had greater reductions in step length and cadence. Rearfoot strikers landed with their foot farther in front of the center of mass (by 0.02-0.04 m), with non-rearfoot strikers relying more on flight distance for overall step length. Male rearfoot strikers had more extended knees, dorsiflexed ankles and hyperextended shoulders at initial contact than non-rearfoot strikers, whereas female rearfoot strikers had more flexed hips and extended knees at initial contact. Very few differences were found at midstance and toe-off. Rearfoot and non-rearfoot striking techniques were therefore mostly indistinguishable except at initial contact, and any differences that did occur were very small. The spatiotemporal variables that differed between footstrike patterns were not associated with faster running speeds and, ultimately, neither footstrike pattern prevented reductions in running speeds. The only joint angle measured at a specific gait event to change with fatigue was midswing knee flexion angle in men. Coaches should thus note that encouraging marathon runners to convert from rearfoot to non-rearfoot striking is unlikely to provide any performance benefits, and that training the fatigue resistance of key lower limb muscle-tendon units to avoid decreases in step length and cadence are more useful in preventing reductions in speed during the later stages of the race.
Collapse
Affiliation(s)
- Brian Hanley
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
| | - Athanassios Bissas
- Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
- School of Sport and Exercise, University of Gloucestershire, Gloucester, United Kingdom
| | | |
Collapse
|
10
|
Moran MF, Wager JC. Influence of Gait Retraining on Running Economy: A Review and Potential Applications. Strength Cond J 2020. [DOI: 10.1519/ssc.0000000000000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Van Hooren B, Goudsmit J, Restrepo J, Vos S. Real-time feedback by wearables in running: Current approaches, challenges and suggestions for improvements. J Sports Sci 2019; 38:214-230. [PMID: 31795815 DOI: 10.1080/02640414.2019.1690960] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Injuries and lack of motivation are common reasons for discontinuation of running. Real-time feedback from wearables can reduce discontinuation by reducing injury risk and improving performance and motivation. There are however several limitations and challenges with current real-time feedback approaches. We discuss these limitations and challenges and provide a framework to optimise real-time feedback for reducing injury risk and improving performance and motivation. We first discuss the reasons why individuals run and propose that feedback targeted to these reasons can improve motivation and compliance. Secondly, we review the association of running technique and running workload with injuries and performance and we elaborate how real-time feedback on running technique and workload can be applied to reduce injury risk and improve performance and motivation. We also review different feedback modalities and motor learning feedback strategies and their application to real-time feedback. Briefly, the most effective feedback modality and frequency differ between variables and individuals, but a combination of modalities and mixture of real-time and delayed feedback is most effective. Moreover, feedback promoting perceived competence, autonomy and an external focus can improve motivation, learning and performance. Although the focus is on wearables, the challenges and practical applications are also relevant for laboratory-based gait retraining.
Collapse
Affiliation(s)
- Bas Van Hooren
- School of Sport Studies, Fontys University of Applied Sciences, Eindhoven, The Netherlands.,Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jos Goudsmit
- School of Sport Studies, Fontys University of Applied Sciences, Eindhoven, The Netherlands.,Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Juan Restrepo
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Steven Vos
- School of Sport Studies, Fontys University of Applied Sciences, Eindhoven, The Netherlands.,Department of Industrial Design, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Broatch JR, Brophy-Williams N, Phillips EJ, O'Bryan SJ, Halson SL, Barnes S, Bishop DJ. Compression Garments Reduce Muscle Movement and Activation during Submaximal Running. Med Sci Sports Exerc 2019; 52:685-695. [PMID: 31592978 PMCID: PMC7034367 DOI: 10.1249/mss.0000000000002182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose The purpose of this study was to investigate the effectiveness of sports compression tights in reducing muscle movement and activation during running. Methods A total of 27 recreationally active males were recruited across two separate studies. For study 1, 13 participants (mean ± SD = 84.1 ± 9.4 kg, 22 ± 3 yr) completed two 4-min treadmill running bouts (2 min at 12 and 15 km·h−1) under two conditions: a no-compression control (CON1) and compression (COMP). For study 2, 14 participants (77.8 ± 8.4 kg, 27 ± 5 yr) completed four 9-min treadmill running bouts (3 min at 8, 10, and 12 km·h−1) under four conditions: a no-compression control (CON2) and three different commercially available compression tights (2XU, Nike, and Under Armor). Using Vicon 3D motion capture technology, lower limb muscle displacement was investigated in both study 1 (thigh and calf) and study 2 (vastus lateralis + medialis [VAS]; lateral + medial gastrocnemius [GAS]). In addition, study 2 investigated the effects of compression on soft tissue vibrations (root-mean-square of resultant acceleration, RMS Ar), muscle activation (iEMG), and running economy (oxygen consumption, V˙O2) during treadmill running. Results Wearing compression during treadmill running reduced thigh and calf muscle displacement as compared with no compression (both studies), which was evident across all running speeds. Compression also reduced RMS Ar and iEMG during treadmill running, but it had no effect on running economy (study 2). Conclusion Lower limb compression garments are effective in reducing muscle displacement, soft tissue vibrations, and muscle activation associated with the impact forces experienced during running.
Collapse
Affiliation(s)
| | | | | | | | | | - Shannon Barnes
- Institute for Health and Sport (iHeS), Victoria University, VIC, AUSTRALIA
| | | |
Collapse
|