1
|
Oliveira AMS, Santos AM, Nascimento Júnior JAC, Júnior CCS, Brito JRLR, dos Santos JS, Shanmugam S, dos Passos Menezes P, Frank LA, Serafini MR. Pharmaceutical technological trends containing flavonoids: a patent review. Future Med Chem 2025; 17:363-379. [PMID: 39835701 PMCID: PMC11792795 DOI: 10.1080/17568919.2025.2453408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025] Open
Abstract
Flavonoids such as silibinin, hesperetin, and phloretin exhibit well-documented biological activities, including anti-inflammatory, cytoprotective, anticarcinogenic, and antioxidant effects. However, their clinical application remains limited due to challenges such as poor aqueous solubility, low bioavailability, and restricted intestinal absorption, which can significantly reduce their pharmacological efficacy. This review analyzed patents related to innovative pharmaceutical technologies for flavonoids. The analysis used databases from the World Intellectual Property Organization and the European Patent Office. Following a comprehensive screening process, 38 patents were selected for detailed examination. These patents highlighted numerous studies on novel formulations, characterizations, and proprietary conditions. This review highlights technologies, such as nanocapsules, nanoemulsions, solid dispersions, phospholipid carriers, inclusion complexes, microemulsions, and other advanced systems, which enhance bioactive molecules' water solubility and stability. Consequently, these technologies improve permeability and absorption through the intended administration route, demonstrating the potential of flavonoids as promising candidates for various treatments, particularly when integrated into pharmaceutical technologies.
Collapse
Affiliation(s)
- Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | | | | | | | | | - Saravanan Shanmugam
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | | | - Luiza Abrahão Frank
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
- Núcleo de Terapias Nanotecnológicas (NTnano), Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Brazil
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Brazil
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, Brazil
| |
Collapse
|
2
|
Rafi Z, Khan H, Husain A, Khanam A, Alafnan A, Alobaida A, Shahab U, Ahmad I, Ahmad S. Food contamination and the emerging application of nanobiosensors in food safety. J Food Sci 2025; 90:e70073. [PMID: 39949290 DOI: 10.1111/1750-3841.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/19/2025] [Accepted: 01/30/2025] [Indexed: 05/09/2025]
Abstract
This review article focuses on efficient strategies for detecting food contamination, particularly through the use of nanobiosensors. It begins with an overview of biosensors, highlighting their basic components and underlying mechanisms. The article then explores the advancements driven by nanotechnology, specifically examining key nanomaterials-such as nanoparticles, nanowires, and nanotubes-that play a crucial role in sensor development. A comprehensive analysis of the diverse applications of nanobiosensors in the food industry follows, including their use in detecting foodborne pathogens, toxins, and other harmful contaminants. The integration of nanobiosensors with Internet of Things technologies is also discussed, emphasizing the potential of smart packaging solutions for real-time monitoring and data analysis. The article critically assesses the challenges and prospects of nanobiosensor applications, addressing issues such as sensor sensitivity, specificity, cost-effectiveness, and regulatory concerns. Furthermore, emerging trends and future directions are explored, particularly the shift toward more sustainable and eco-friendly sensor technologies. The review concludes by emphasizing the transformative impact of nanobiosensors in enhancing food safety, quality control, and innovation across the food industry. By offering a thorough examination of current technologies and potential future developments, this article aims to contribute to the continued evolution of nanobiosensor applications in food safety.
Collapse
Affiliation(s)
- Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, India
| | - Hamda Khan
- Department of Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Arbab Husain
- Department of Biotechnology & Life Sciences, Mangalayatan University, Aligarh, India
| | - Afreen Khanam
- Department of Biotechnology & Life Sciences, Mangalayatan University, Aligarh, India
| | - Ahmed Alafnan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail City, Saudi Arabia
| | - Ahmed Alobaida
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail City, Saudi Arabia
| | - Uzma Shahab
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail City, Saudi Arabia
| | - Irfan Ahmad
- Central Labs, King Khalid University, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail City, Saudi Arabia
| |
Collapse
|
3
|
Heikal YM, Shweqa NS, Abdelmigid HM, Alyamani AA, Soliman HM, El-Naggar NEA. Assessment of the Biocontrol Efficacy of Silver Nanoparticles Synthesized by Trichoderma asperellum Against Infected Hordeum vulgare L. Germination. Life (Basel) 2024; 14:1560. [PMID: 39768268 PMCID: PMC11676777 DOI: 10.3390/life14121560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the biosynthesis, statistical optimization, characterization, and biocontrol activity of silver nanoparticles (AgNPs) produced by newly isolated Trichoderma sp. The Trichoderma asperellum strain TA-3N was identified based on the ITS gene sequence, together with its phenotypic characteristics (GenBank accession number: OM321439). The color change from light yellow to brown after the incubation period indicates AgNPs biosynthesis. The UV spectrum revealed a single peak with the maximum absorption at 453 nm, indicating that T. asperellum produces AgNPs effectively. A Rotatable Central Composite Design (RCCD) was used to optimize the biosynthesis of AgNPs using the aqueous mycelial-free filtrate of T. asperellum. The optimal conditions for maximum AgNPs biosynthesis (156.02 µg/mL) were predicted theoretically using the desirability function tool and verified experimentally. The highest biosynthetic produced AgNPs by T. asperellum reached 160.3 µg/mL using AgNO3 concentration of 2 mM/mL, initial pH level of 6, incubation time of 60 h, and biomass weight of 6 g/100 mL water. SEM and TEM imaging revealed uniform spherical shape particles that varied in size between 8.17 and 17.74 nm. The synthesized AgNPs have a Zeta potential value of -9.51 mV. FTIR analysis provided insights into the surface composition of AgNPs, identifying various functional groups such as N-H, -OH, C-H, C=O, and the amide I bond in proteins. Cytotoxicity and genotoxicity assays demonstrated that AgNPs in combination with T. asperellum can mitigate the toxic effects of Fusarium oxysporum on barley. This intervention markedly enhanced cell division rates and decreased chromosomal irregularities. The results indicate that AgNPs synthesized by T. asperellum show the potential as an eco-friendly and efficient method for controlling plant diseases. Further studies are necessary to investigate their possible use in the agricultural sector.
Collapse
Affiliation(s)
- Yasmin M. Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Nada S. Shweqa
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Hala M. Abdelmigid
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Amal A. Alyamani
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Hoda M. Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt;
| |
Collapse
|
4
|
Shweqa NS, El-Naggar NEA, Abdelmigid HM, Alyamani AA, Elshafey N, El-Shall H, Heikal YM, Soliman HM. Green Fabrication of Silver Nanoparticles, Statistical Process Optimization, Characterization, and Molecular Docking Analysis of Their Antimicrobial Activities onto Cotton Fabrics. J Funct Biomater 2024; 15:354. [PMID: 39728154 PMCID: PMC11728425 DOI: 10.3390/jfb15120354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, sports, military the textile industry etc. This study details the biosynthesis and characterization of silver nanoparticles (AgNPs) using the aqueous mycelial-free filtrate of Aspergillus flavus. The formation of AgNPs was indicated by a brown color in the extracellular filtrate and confirmed by UV-Vis spectroscopy with a peak at 426 nm. The Box-Behnken design (BBD) is used to optimize the physicochemical parameters affecting AgNPs biosynthesis. The desirability function was employed to theoretically predict the optimal conditions for the biosynthesis of AgNPs, which were subsequently experimentally validated. Through the desirability function, the optimal conditions for the maximum predicted value for the biosynthesized AgNPs (235.72 µg/mL) have been identified as follows: incubation time (58.12 h), initial pH (7.99), AgNO3 concentration (4.84 mM/mL), and temperature (34.84 °C). Under these conditions, the highest experimental value of AgNPs biosynthesis was 247.53 µg/mL. Model validation confirmed the great accuracy of the model predictions. Scanning electron microscopy (SEM) revealed spherical AgNPs measuring 8.93-19.11 nm, which was confirmed by transmission electron microscopy (TEM). Zeta potential analysis indicated a positive surface charge (+1.69 mV), implying good stability. X-ray diffraction (XRD) confirmed the crystalline nature, while energy-dispersive X-ray spectroscopy (EDX) verified elemental silver (49.61%). FTIR findings indicate the presence of phenols, proteins, alkanes, alkenes, aliphatic and aromatic amines, and alkyl groups which play significant roles in the reduction, capping, and stabilization of AgNPs. Cotton fabrics embedded with AgNPs biosynthesized using the aqueous mycelial-free filtrate of Aspergillus flavus showed strong antimicrobial activity. The disc diffusion method revealed inhibition zones of 15, 12, and 17 mm against E. coli (Gram-negative), S. aureus (Gram-positive), and C. albicans (yeast), respectively. These fabrics have potential applications in protective clothing, packaging, and medical care. In silico modeling suggested that the predicted compound derived from AgNPs on cotton fabric could inhibit Penicillin-binding proteins (PBPs) and Lanosterol 14-alpha-demethylase (L-14α-DM), with binding energies of -4.7 and -5.2 Kcal/mol, respectively. Pharmacokinetic analysis and sensitizer prediction indicated that this compound merits further investigation.
Collapse
Affiliation(s)
- Nada S. Shweqa
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt;
| | - Hala M. Abdelmigid
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Amal A. Alyamani
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Naglaa Elshafey
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt;
| | - Hadeel El-Shall
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt;
| | - Yasmin M. Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Hoda M. Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| |
Collapse
|
5
|
El-Naggar NEA, Shweqa NS, Abdelmigid HM, Alyamani AA, Elshafey N, Soliman HM, Heikal YM. Myco-Biosynthesis of Silver Nanoparticles, Optimization, Characterization, and In Silico Anticancer Activities by Molecular Docking Approach against Hepatic and Breast Cancer. Biomolecules 2024; 14:1170. [PMID: 39334936 PMCID: PMC11429812 DOI: 10.3390/biom14091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
This study explored the green synthesis of silver nanoparticles (AgNPs) using the extracellular filtrate of Fusarium oxysporum as a reducing agent and evaluated their antitumor potential through in vitro and in silico approaches. The biosynthesis of AgNPs was monitored by visual observation of the color change and confirmed by UV-Vis spectroscopy, revealing a characteristic peak at 418 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses showed spherical nanoparticles ranging from 6.53 to 21.84 nm in size, with stable colloidal behavior and a negative zeta potential of -15.5 mV. Selected area electron diffraction (SAED) confirmed the crystalline nature of the AgNPs, whereas energy-dispersive X-ray (EDX) indicated the presence of elemental silver at 34.35%. A face-centered central composite design (FCCD) was employed to optimize the biosynthesis process, yielding a maximum AgNPs yield of 96.77 µg/mL under the optimized conditions. The antitumor efficacy of AgNPs against MCF-7 and HepG2 cancer cell lines was assessed, with IC50 values of 35.4 µg/mL and 7.6 µg/mL, respectively. Molecular docking revealed interactions between Ag metal and key amino acids of BCL-2 (B-cell lymphoma-2) and FGF19 (fibroblast growth factor 19), consistent with in vitro data. These findings highlight the potential of biologically derived AgNPs as promising therapeutic agents for cancer treatment and demonstrate the utility of these methods for understanding the reaction mechanisms and optimizing nanomaterial synthesis.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City 21934, Egypt;
| | - Nada S. Shweqa
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Hala M. Abdelmigid
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Amal A. Alyamani
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (H.M.A.); (A.A.A.)
| | - Naglaa Elshafey
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt;
| | - Hoda M. Soliman
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| | - Yasmin M. Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (N.S.S.); (H.M.S.)
| |
Collapse
|
6
|
Farasati
Far B, Safaei M, Nahavandi R, Gholami A, Naimi-Jamal MR, Tamang S, Ahn JE, Ramezani Farani M, Huh YS. Hydrogel Encapsulation Techniques and Its Clinical Applications in Drug Delivery and Regenerative Medicine: A Systematic Review. ACS OMEGA 2024; 9:29139-29158. [PMID: 39005800 PMCID: PMC11238230 DOI: 10.1021/acsomega.3c10102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 07/16/2024]
Abstract
Hydrogel encapsulation is a promising carrier for cell and drug delivery due to its ability to protect the encapsulated entities from harsh physiological conditions and enhance their therapeutic efficacy and bioavailability. However, there is not yet consensus on the optimal hydrogel type, encapsulation method, and clinical application. Therefore, a systematic review of hydrogel encapsulation techniques and their potential for clinical application is needed to provide a comprehensive and up-to-date overview. In this systematic review, we searched electronic databases for articles published between 2008 and 2023 that described the encapsulation of cells or drug molecules within hydrogels. Herein, we identified 9 relevant studies that met the inclusion and exclusion criteria of our study. Our analysis revealed that the physicochemical properties of the hydrogel, such as its porosity, swelling behavior, and degradation rate, play a critical role in the encapsulation of cells or drug molecules. Furthermore, the encapsulation method, including physical, chemical, or biological methods, can affect the encapsulated entities' stability, bioavailability, and therapeutic efficacy. Challenges of hydrogel encapsulation include poor control over the release of encapsulated entities, limited shelf life, and potential immune responses. Future directions of hydrogel encapsulation include the development of novel hydrogel and encapsulation methods and the integration of hydrogel encapsulation with other technologies, such as 3D printing and gene editing. In conclusion, this review is useful for researchers, clinicians, and policymakers who are interested in this field of drug delivery and regenerative medicine that can serve as a guide for the future development of novel technologies that can be applied into clinical practice.
Collapse
Affiliation(s)
- Bahareh Farasati
Far
- Department
of Chemistry, Iran University of Science
and Technology, Tehran 13114-16846, Iran
| | - Maryam Safaei
- Department
of Pharmacology, Faculty of Pharmacy, Eastern
Mediterranean University, via Mersin 10, Famagusta, TR. North Cyprus 99628, Turkey
| | - Reza Nahavandi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Amir Gholami
- Faculty
of Medicine, Kurdistan University of Medical
Science, Sanandaj 6618634683, Iran
| | | | - Sujina Tamang
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Jung Eun Ahn
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Marzieh Ramezani Farani
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Yun Suk Huh
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| |
Collapse
|
7
|
Elsaygh J, Zaher A, Parikh MA, Frishman WH, Peterson SJ. Nanotechnology: The Future for Diagnostic and Therapeutic Intervention in Cardiovascular Diseases is Here. Cardiol Rev 2024:00045415-990000000-00281. [PMID: 38814069 DOI: 10.1097/crd.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
With advances in technology and medicine over the last 3 decades, cardiovascular medicine has evolved tremendously. Nanotechnology provides a promising future in personalized precision medicine. In this review, we delve into the current and prospective applications of nanotechnology and nanoparticles in cardiology. Nanotechnology has allowed for point-of-care testing such as high-sensitivity troponins, as well as more precise cardiac imaging. This review is focused on 3 diseases within cardiology: coronary artery disease, heart failure, and valvular heart disease. The use of nanoparticles in coronary stents has shown success in preventing in-stent thrombosis, as well as using nanosized drug delivery medications to prevent neointimal proliferation in a way that spares systemic toxicity. In addition, by using nanoparticles as drug delivery systems, nanotechnology can be utilized in the delivery of goal-directed medical therapy in heart failure patients. It has also been shown to improve cell therapy in this patient population by helping in cell retention of grafts. Finally, the use of nanoparticles in the manufacturing of bioprosthetic valves provides a promising future for the longevity and success of cardiac valve repair and replacement.
Collapse
Affiliation(s)
- Jude Elsaygh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Anas Zaher
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
| | - Manish A Parikh
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| | | | - Stephen J Peterson
- From the Department of Medicine, New York Presbyterian Brooklyn Methodist Hospital, Brooklyn, NY
- Weill Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
8
|
U Din M, Batool A, Ashraf RS, Yaqub A, Rashid A, U Din NM. Green Synthesis and Characterization of Biologically Synthesized and Antibiotic-Conjugated Silver Nanoparticles followed by Post-Synthesis Assessment for Antibacterial and Antioxidant Applications. ACS OMEGA 2024; 9:18909-18921. [PMID: 38708285 PMCID: PMC11064210 DOI: 10.1021/acsomega.3c08927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 05/07/2024]
Abstract
The paper presents the antibacterial and antioxidant activities of silver nanoparticles (AgNPs) when conjugated with two antibiotics levofloxacin and ciprofloxacin as well as biologically synthesized nanoparticles from Moringa oleifera and Curcuma longa. Leaves of Moringa and powder of Curcuma were used in the green synthesis of silver nanoparticles. Ultraviolet-visible spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) were used for the characterization of the synthesized silver nanoparticles. Comparison of levofloxacin and ciprofloxacin and their conjugated AgNPs was also studied for antibacterial and antioxidant activity. The synthesis of Moringa-AgNPs, turmeric-AgNPs, levofloxacin-AgNPs, and ciprofloxacin-AgNPs was confirmed by UV spectroscopy. An absorption peak value of 400-450 nm was observed, and light to dark brown color indicated the synthesis of AgNPs. Moringa-AgNPs revealed high antioxidant activity (80.3 ± 3.14) among all of the synthesized AgNPs. Lev-AgNPs displayed the highest zone of inhibition for Staphylococcus aureus, while in Escherichia coli, Cip-AgNPs showed high antibacterial activity. Furthermore, AgNPs synthesized using green methods exhibit high and efficient antimicrobial activities against two food-borne pathogens. Biologically synthesized nanoparticles exhibited antibacterial activity against E. coli (13.73 ± 0.46 with Tur-AgNPs and 13.53 ± 0.32 with Mor-AgNPs) and S. aureus (14.16 ± 0.24 with Tur-AgNPs and 13.36 ± 0.77 with Mor-AgNPs) by using a well diffusion method with significant shrinkage and damage of the bacterial cell wall, whereas antibiotic-conjugated nanoparticles showed high antibacterial activity compared to biologically synthesized nanoparticles with 14.4 ± 0.37 for Cip-AgNPs and 13.93 ± 0.2 for Lev-AgNPs for E. coli and 13.3 ± 0.43 for Cip-AgNPs and 14.33 ± 0.12 for Lev-AgNPs for S. aureus. The enhanced efficiency of conjugated silver nanoparticles is attributed to their increased surface area compared to larger particles. Conjugation of different functional groups contributes to improved reactivity, creating active sites for catalytic reactions. Additionally, the precise control over the size and shape of green-synthesized nanoparticles further augments their catalytic and antibiotic activities.
Collapse
Affiliation(s)
- Mehwish
Mohy U Din
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Andleeb Batool
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Raja Shahid Ashraf
- Department
of Chemistry, Institute of Chemical Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Atif Yaqub
- Department
of Zoology, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Aneeba Rashid
- Department
of Botany, Dr. Nazir Ahmad Institute of Biological Sciences, Government College University, Lahore, 54000 Lahore, Pakistan
| | - Nazish Mohy U Din
- Sustainable
Development Study Center, Government College
University, Lahore, 54000 Lahore, Pakistan
| |
Collapse
|
9
|
Kokkinis S, Singh M, Paudel KR, De Rubis G, Bani Saeid A, Jessamine V, Datsyuk J, Singh SK, Vishwas S, Adams J, Hansbro PM, Oliver B, Gupta G, Dureja H, Dua K. Plant-based therapeutics for chronic obstructive pulmonary diseases: Nanoformulation strategies to overcome delivery challenges. FOOD BIOSCI 2024; 58:103761. [DOI: 10.1016/j.fbio.2024.103761] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Manzoor S, Aziz K, Raza H, Manzoor S, Khan MI, Naz A, Shanableh A, A M Salih A, Elboughdiri N. Tailoring Vanadium-Based Magnetic Catalyst by In Situ Encapsulation of Tungsten Disulfide and Applications in Abatement of Multiple Pollutants. ACS OMEGA 2023; 8:48966-48974. [PMID: 38162758 PMCID: PMC10753748 DOI: 10.1021/acsomega.3c06580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024]
Abstract
A magnetic nanocomposite of tungsten and vanadium was employed as a catalyst for the mitigation of water contaminants, including a carcinogenic dye (Congo red, CR), a widely used pesticide (glyphosate), and the bacterial strain Escherichia coli. Additionally, it was subjected to several characterization techniques. X-ray diffraction spectroscopy examination validated the synthesized nanoparticles' crystalline nature, and scanning electron microscopy and energy-dispersive X-ray analysis were employed to examine the morphology and elemental composition of the catalyst. The use of thermogravimetric analysis enabled the elaboration of the thermal behavior of tungsten sulfide-vanadium decorated with Fe2O3 nanoparticles. The experiments were conducted under visible light conditions. The highest levels of photodegradation of 96.24 ± 2.5% for CR and 98 ± 1.8% for glyphosate were observed following a 180 min exposure to visible light at pH values of 6 and 8, respectively. The quantum yields for CR and Gly were calculated to be 9.2 × 10-3 and 4.9 × 10-4 molecules photon-1, respectively. The findings from the scavenger analysis suggest the involvement of hydroxyl radicals in the degradation mechanism. The study evaluated the inhibition of E. coli growth when exposed to a concentration of 0.1 g/10 mL of the photocatalyst, utilizing a 1 mL sample of the bacterial strain. The successful elimination of CR and glyphosate from water-based solutions, along with the subsequent antibacterial experiments, has substantiated the efficacy of the photocatalyst in the field of environmental remediation.
Collapse
Affiliation(s)
- Suryyia Manzoor
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60000, Pakistan
| | - Khalid Aziz
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60000, Pakistan
| | - Hina Raza
- Faculty
of Pharmacy, Bahauddin Zakariya Unviersity, Multan 60000, Pakistan
| | - Shamaila Manzoor
- Department
of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina, Bratislava 842 48, Slovakia
| | - Muhammad Imran Khan
- Research
Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab
Emirates
| | - Asma Naz
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60000, Pakistan
| | - Abdallah Shanableh
- Research
Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab
Emirates
| | - Alsamani A M Salih
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box
2440, Ha’il 81441, Saudi Arabia
- Department
of Chemical Engineering, Faculty of Engineering, Al Neelain University, Khartoum 12702, Sudan
| | - Noureddine Elboughdiri
- Chemical
Engineering Department, College of Engineering, University of Ha’il, P.O. Box
2440, Ha’il 81441, Saudi Arabia
- Chemical
Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| |
Collapse
|
11
|
Szczyglewska P, Feliczak-Guzik A, Nowak I. Nanotechnology-General Aspects: A Chemical Reduction Approach to the Synthesis of Nanoparticles. Molecules 2023; 28:4932. [PMID: 37446593 PMCID: PMC10343226 DOI: 10.3390/molecules28134932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The role of nanotechnology is increasingly important in our society. Through it, scientists are acquiring the ability to understand the structure and properties of materials and manipulate them at the scale of atoms and molecules. Nanomaterials are at the forefront of the rapidly growing field of nanotechnology. The synthesis of nanostructured materials, especially metallic nanoparticles, has attracted tremendous interest over the past decade due to their unique properties, making these materials excellent and indispensable in many areas of human activity. These special properties can be attributed to the small size and large specific surface area of nanoparticles, which are very different from those of bulk materials. Nanoparticles of different sizes and shapes are needed for many applications, so a variety of protocols are required to produce monodisperse nanoparticles with controlled morphology. The purpose of this review is firstly to introduce the reader to the basic aspects related to the field of nanotechnology and, secondly, to discuss metallic nanoparticles in greater detail. This article explains the basic concepts of nanotechnology, introduces methods for synthesizing nanoparticles, and describes their types, properties, and possible applications. Of many methods proposed for the synthesis of metal nanoparticles, a chemical reduction is usually preferred because it is easy to perform, cost-effective, efficient, and also allows control of the structural parameters through optimization of the synthesis conditions. Therefore, a chemical reduction method is discussed in more detail-each factor needed for the synthesis of nanoparticles by chemical reduction is described in detail, i.e., metal precursors, solvents, reducing agents, and stabilizers. The methods that are used to characterize nanomaterials are described. Finally, based on the available literature collection, it is shown how changing the synthesis parameters/methods affects the final characteristics of nanoparticles.
Collapse
Affiliation(s)
- Paulina Szczyglewska
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Agnieszka Feliczak-Guzik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | | |
Collapse
|
12
|
Nirmala MJ, Kizhuveetil U, Johnson A, G B, Nagarajan R, Muthuvijayan V. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv 2023; 13:8606-8629. [PMID: 36926304 PMCID: PMC10013677 DOI: 10.1039/d2ra07863e] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer is known as the most dangerous disease in the world in terms of mortality and lack of effective treatment. Research on cancer treatment is still active and of great social importance. Since 1930, chemotherapeutics have been used to treat cancer. However, such conventional treatments are associated with pain, side effects, and a lack of targeting. Nanomedicines are an emerging alternative due to their targeting, bioavailability, and low toxicity. Nanoparticles target cancer cells via active and passive mechanisms. Since FDA approval for Doxil®, several nano-therapeutics have been developed, and a few have received approval for use in cancer treatment. Along with liposomes, solid lipid nanoparticles, polymeric nanoparticles, and nanoemulsions, even newer techniques involving extracellular vesicles (EVs) and thermal nanomaterials are now being researched and implemented in practice. This review highlights the evolution and current status of cancer therapy, with a focus on clinical/pre-clinical nanomedicine cancer studies. Insight is also provided into the prospects in this regard.
Collapse
Affiliation(s)
- M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Uma Kizhuveetil
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Athira Johnson
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Balaji G
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Ramamurthy Nagarajan
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600 036 India
| |
Collapse
|
13
|
Arvind Ahire S, Ashok Bachhav A, Bhavsing Pawar T, Sonu Jagdale B, Vitthal Patil A, Bhimrao Koli P. The augmentation of nanotechnology era: A concise review on fundamental concepts of nanotechnology and applications in material science and technology. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
14
|
Kaningini GA, Azizi S, Nyoni H, Mudau FN, Mohale KC, Maaza M. Green synthesis and characterization of zinc oxide nanoparticles using bush tea (Athrixia phylicoides DC) natural extract: assessment of the synthesis process. F1000Res 2022; 10:1077. [PMID: 36212902 PMCID: PMC9520229 DOI: 10.12688/f1000research.73272.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 11/20/2022] Open
Abstract
Background: Nanoparticles are globally synthesized for their antimicrobial, anti-inflammatory, wound healing, catalytic, magnetic, optical, and electronic properties that have put them at the forefront of a wide variety of studies. Among them, zinc oxide (ZnO) has received much consideration due to its technological and medicinal applications. In this study, we report on the synthesis process of ZnO nanoparticles using Athrixia phylicoides DC natural extract as a reducing agent. Methods: Liquid chromatography–mass spectrometry (LC-MS) was used to identify the compounds responsible for the synthesis of ZnO nanoparticles. Structural, morphological and optical properties of the synthesized nanoparticles have been characterized through X-ray diffraction (XRD), Ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). Results: LC-MS results showed that different flavonoids and polyphenols, as well as Coumarin, an aromatic compound, reacted with the precursor to form ZnO nanoparticles. XRD and UV-Vis analysis confirmed the synthesis of ZnO nanoparticles, with a spherical shape showed in SEM images. The quasi-spherical ZnO crystals had an average crystallite size of 24 nm. EDS and FTIR analysis confirmed that the powders were pure with no other phase or impurity. Conclusions: This study successfully demonstrated that the natural plant extract of A. phylicoides DC. can be used in the bio-reduction of zinc nitrate hexahydrate to prepare pure ZnO nanoparticles, thus, extending the use of this plant to an industrial level.
Collapse
Affiliation(s)
- Gabriel Amani Kaningini
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology
College of Graduates Studies University of South Africa, Muckleneuk Ridge,
Pretoria, 392, South Africa
- Nanosciences African Network (NANOAFNET) iThemba LABS-National
Research Foundation, 1 Old Faure Road, Somerset West, Western Cape, 7129 PO Box
722, South Africa
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology
College of Graduates Studies University of South Africa, Muckleneuk Ridge,
Pretoria, 392, South Africa
- Nanosciences African Network (NANOAFNET) iThemba LABS-National
Research Foundation, 1 Old Faure Road, Somerset West, Western Cape, 7129 PO Box
722, South Africa
| | - Hlengilizwe Nyoni
- Nanotechnology and Water Sustainability Research (NanoWS) Unit,
College of Science Engineering and Technology, University of South Africa,
Johannesburg, 1709, South Africa
| | - Fhatuwani Nixwel Mudau
- Department of Agriculture and Animal Health, College of
Agriculture and Environmental Sciences, University of South Africa, Private Bag
X6, Florida, 1710, South Africa
| | - Keletso Cecilia Mohale
- Department of Agriculture and Animal Health, College of
Agriculture and Environmental Sciences, University of South Africa, Private Bag
X6, Florida, 1710, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology
College of Graduates Studies University of South Africa, Muckleneuk Ridge,
Pretoria, 392, South Africa
- Nanosciences African Network (NANOAFNET) iThemba LABS-National
Research Foundation, 1 Old Faure Road, Somerset West, Western Cape, 7129 PO Box
722, South Africa
| |
Collapse
|
15
|
Maluin FN, Katas H. Chitosan functionalization of metal- and carbon-based nanomaterials as an approach toward sustainability tomorrow. Nanotoxicology 2022; 16:425-449. [PMID: 35867661 DOI: 10.1080/17435390.2022.2090025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The growing number of nanomaterials-based-products ranging from agriculture to cosmetics to medical, and so on, increases the amount of exposure, compelling researchers to include safety and health protocols in each developed nano-product to ensure consumer safety. As a result, emphasizing the importance of novel nanomaterials' toxicological and safety profiles, as well as their product quality enhancement, is critical. As a result, research efforts must be directed toward developing new nanomaterials in a safer-by-design manner. Chitosan functionalization is an excellent option for this because it is already known for its nontoxicity, biodegradability, and biocompatibility. In this review, we hope to uncover the toxicological consequences of nanomaterials and the potential role of chitosan functionalization in mitigating them. This is an effort to create an environmentally friendly and safe nano-product, ensuring tomorrow's sustainability.
Collapse
Affiliation(s)
- Farhatun Najat Maluin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Streaming Electrification of C60 Fullerene Doped Insulating Liquids for Power Transformers Applications. ENERGIES 2022. [DOI: 10.3390/en15072496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Long-term and fault-free operation of power transformers depends on the electrical strength of the insulation system and effective heat dissipation. Forced circulation of the insulating liquid is used to increase the cooling capacity. A negative effect of such a solution is the creation of the phenomenon of streaming electrification, which in unfavorable conditions may lead to damage to the insulating system of the transformer. This paper presents results of research confirming the possibility of using fullerene C60 to reduce the phenomenon of streaming electrification generated by the flow of liquid dielectrics. The volume charge density qw was used as a material indicator to determine the electrostatic charging tendency (ECT) of nanofluids. This parameter was determined from the Abedian-Sonin electrification model on the basis of electrification current measurements and selected physicochemical and electrical properties of the liquid. The electrification current was measured in a flow system with an aluminum pipe of 4 mm diameter and 400 mm length. All measurements were carried out at a temperature of 20 °C. The influence of flow velocity (from 0.34 m/s to 1.75 m/s) and C60 concentration (25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L and 350 mg/L) was analyzed on the electrification of fresh and aged Trafo En mineral oil, as well as Midel 1204 natural ester and Midel 7131 synthetic ester. The density, kinematic viscosity, dielectric constant, and conductivity were also determined. A negative effect of the C60 doping on the electrostatic properties of fresh mineral oil was demonstrated. For other liquids, fullerene C60 can be used as an inhibitor of the streaming electrification process. Based on the analysis of the qw parameter, the optimum concentration of C60 (from 100 mg/L to 200 mg/L) resulting in the highest reduction of the electrification phenomenon in nanofluids was identified.
Collapse
|
17
|
Cognitive Behavioral Model of an Operation Crew in the Main Control Room of a Nuclear Power Plant Based on a State-Oriented Procedure. Processes (Basel) 2022. [DOI: 10.3390/pr10020182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The team’s cognitive behavior plays a crucial role in dealing with accidents at nuclear power plants. Herein, the main behaviors of reactor operators and coordinators in performing accident management were analyzed in executing a state-oriented procedure. According to these cognitive behavioral characteristics, we established cognitive behavioral models of accident management procedures. After that, a cognitive behavioral model was established for the team in the main control room of the nuclear power plant based on the two models, which is expected to provide support to the optimization of a corresponding Human Reliability Analysis model.
Collapse
|
18
|
Kulpa-Koterwa A, Ossowski T, Niedziałkowski P. Functionalized Fe 3O 4 Nanoparticles as Glassy Carbon Electrode Modifiers for Heavy Metal Ions Detection-A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7725. [PMID: 34947318 PMCID: PMC8709283 DOI: 10.3390/ma14247725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/11/2021] [Accepted: 12/12/2021] [Indexed: 01/15/2023]
Abstract
Over the past few decades, nanoparticles of iron oxide Fe3O4 (magnetite) gained significant attention in both basic studies and many practical applications. Their unique properties such as superparamagnetism, low toxicity, synthesis simplicity, high surface area to volume ratio, simple separation methodology by an external magnetic field, and renewability are the reasons for their successful utilisation in environmental remediation, biomedical, and agricultural applications. Moreover, the magnetite surface modification enables the successful binding of various analytes. In this work, we discuss the usage of core-shell nanoparticles and nanocomposites based on Fe3O4 for the modification of the GC electrode surface. Furthermore, this review focuses on the heavy metal ions electrochemical detection using Fe3O4-based nanoparticles-modified electrodes. Moreover, the most frequently used electrochemical methods, such as differential pulse anodic stripping voltammetry and measurement conditions, including deposition potential, deposition time, and electrolyte selection, are discussed.
Collapse
Affiliation(s)
- Amanda Kulpa-Koterwa
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| | | | - Paweł Niedziałkowski
- Department of Analytical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland;
| |
Collapse
|
19
|
Advances in nano-biomaterials and their applications in biomedicine. Emerg Top Life Sci 2021; 5:169-176. [PMID: 33825835 DOI: 10.1042/etls20200333] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 01/26/2023]
Abstract
Nanotechnology has received considerable attention and interest over the past few decades in the field of biomedicine due to the wide range of applications it provides in disease diagnosis, drug design and delivery, biomolecules detection, tissue engineering and regenerative medicine. Ultra-small size and large surface area of nanomaterials prove to be greatly advantageous for their biomedical applications. Moreover, the physico-chemical and thus, the biological properties of nanomaterials can be manipulated depending on the application. However, stability, efficacy and toxicity of nanoparticles remain challenge for researchers working in this area. This mini-review highlights the recent advances of various types of nanoparticles in biomedicine and will be of great value to researchers in the field of materials science, chemistry, biology and medicine.
Collapse
|
20
|
Green Synthesis and Antimicrobial Potential of Silver Nanoparticles with Boerhavia procumbens Extract. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.42] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
21
|
Application of Organic-Inorganic Hybrids in Chemical Analysis, Bio- and Environmental Monitoring. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Organic-inorganic hybrids (OIH) are considered to be a powerful platform for applications in many research and industrial fields. This review highlights the application of OIH for chemical analysis, biosensors, and environmental monitoring. A methodology toward metrological traceability measurement and standardization of OIH and demonstration of the role of mathematical modeling in biosensor design are also presented. The importance of the development of novel types of OIH for biosensing applications is highlighted. Finally, current trends in nanometrology and nanobiosensors are presented.
Collapse
|
22
|
Auría-Soro C, Nesma T, Juanes-Velasco P, Landeira-Viñuela A, Fidalgo-Gomez H, Acebes-Fernandez V, Gongora R, Almendral Parra MJ, Manzano-Roman R, Fuentes M. Interactions of Nanoparticles and Biosystems: Microenvironment of Nanoparticles and Biomolecules in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1365. [PMID: 31554176 PMCID: PMC6835394 DOI: 10.3390/nano9101365] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Abstract
Nanotechnology is a multidisciplinary science covering matters involving the nanoscale level that is being developed for a great variety of applications. Nanomedicine is one of these attractive and challenging uses focused on the employment of nanomaterials in medical applications such as drug delivery. However, handling these nanometric systems require defining specific parameters to establish the possible advantages and disadvantages in specific applications. This review presents the fundamental factors of nanoparticles and its microenvironment that must be considered to make an appropriate design for medical applications, mainly: (i) Interactions between nanoparticles and their biological environment, (ii) the interaction mechanisms, (iii) and the physicochemical properties of nanoparticles. On the other hand, the repercussions of the control, alter and modify these parameters in the biomedical applications. Additionally, we briefly report the implications of nanoparticles in nanomedicine and precision medicine, and provide perspectives in immunotherapy, which is opening novel applications as immune-oncology.
Collapse
Affiliation(s)
- Carlota Auría-Soro
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Tabata Nesma
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Helena Fidalgo-Gomez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Vanessa Acebes-Fernandez
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Rafael Gongora
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - María Jesus Almendral Parra
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, University of Salamanca, 37008 Salamanca, Spain.
| | - Raúl Manzano-Roman
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
- Proteomics Unit. Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain.
| |
Collapse
|
23
|
Afzali M, Parivar K, Roodbari N, Badiei A. Study of Nano-Graphene Oxide Effects on the Number of Kupffer Cells and Megakaryocytes in Liver of NMRI Strain Mouse Embryo in Vivo. CURRENT WORLD ENVIRONMENT 2015; 10:713-718. [DOI: 10.12944/cwe.10.special-issue1.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To investigate the effects of nano-graphene oxide on the number of kupffer cells and megakaryocytes, in vivo method was applied. In this study, four groups of livers including control, sham, experimental group 1 (using a dose of 17 mg/kg), experimental group 2 (using a dose of 5.5 mg/kg), were investigated. On day 9 of gestation, control group without the effect of graphene oxide, sham group with injection of water as graphene oxide solvent and experimental groups with injection of graphene oxide (1.2 nm particles) with doses of 17 and 5.5 mg/kg mouse weight were examined. Then, on day 15 of gestation, embryos were removed from the mother`s body and their livers were amputated. The statistical results obtained by counting the number of kupffer cells and megakaryocytes in experimental groups that received nano graphene oxide, showed significant changes as compared with the sham and control groups. In the dose of 17 mg/kg there was a significant increase (P<0.001) in the number of kupffer cells and significant increase in the dose of 5.5 mg/kg (P<0.05) in the number of megakaryocytes. These findings showed the destructive effect of nano-graphene oxide on the development of liver in the condition of in vivo.
Collapse
Affiliation(s)
- Mahsa Afzali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nasim Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Badiei
- Department of Chemistry, University of Tehran, School of Sciences, Tehran, Iran
| |
Collapse
|