1
|
Li D, Hudetz AG. Anesthesia alters complexity of spontaneous and stimulus-related neuronal firing patterns in rat visual cortex. Neuroscience 2025; 565:440-456. [PMID: 39631661 DOI: 10.1016/j.neuroscience.2024.11.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Complexity of neuronal firing patterns may serve as an indicator of sensory information processing across different states of consciousness. Recent studies have shown that spontaneous changes in brain states can occur during general anesthesia, which may influence neuronal complexity and the state of consciousness. In this study, we investigated how the firing patterns of cortical neurons, both at rest and during visual stimulation, are affected by spontaneously changing brain states under varying levels of anesthesia. Extracellular unit activity was measured in the primary visual cortex of unrestrained rats as the inhaled concentration of desflurane was incrementally reduced to 6%, 4%, 2%, and 0%. Using dimensionality reduction and density-based clustering on individual unit activities, we identified five distinct population states, which underwent dynamic transitions independent of the anesthetic level during both resting and stimulus conditions. One population state that occurred mainly in deep anesthesia exhibited a paradoxically increased number of active neurons and asynchronous spiking, suggesting a spontaneous reversal towards an awake-like condition. However, this was contradicted by the observation of low neuronal complexity in both spontaneous and stimulus-related spike activity, which more closely aligns with unconsciousness. Our findings reveal that transient neuronal states with distinct spiking patterns can emerge in visual cortex at constant anesthetic concentrations. The reduced complexity in states associated with deep anesthesia likely indicates a disruption of conscious sensory information processing.
Collapse
Affiliation(s)
- Duan Li
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony G Hudetz
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Grødem S, Thompson EH, Røe MB, Vatne GH, Nymoen Nystuen I, Buccino A, Otterstad T, Hafting T, Fyhn M, Lensjø KK. Differential impacts of germline and adult aggrecan knockout in PV+ neurons on perineuronal nets and PV+ neuronal function. Mol Psychiatry 2025:10.1038/s41380-025-02894-5. [PMID: 39837996 DOI: 10.1038/s41380-025-02894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Perineuronal nets (PNNs) are a condensed form of extracellular matrix primarily found around parvalbumin-expressing (PV+) interneurons. The postnatal maturation of PV+ neurons is accompanied with the formation of PNNs and reduced plasticity. Alterations in PNN and PV+ neuron function have been described for mental disorders such as schizophrenia and autism. The formation of PNNs is highly dependent on aggrecan, a proteoglycan encoded by the ACAN gene, but it remains unknown if it is produced by the PV+ neurons themselves. Thus, we established a knockout (KO) mouse model (ACANflx/PVcre) and an adeno-associated virus to specifically eliminate aggrecan production from PV+ neurons, in the germline or adult animals, respectively. The germline KO (ACANflx/PVcre) eliminated the expression of PNNs labeled by Wisteria floribunda agglutinin (WFA), the most commonly used PNN marker. Surprisingly, electrophysiological properties of PV+ interneurons and ocular dominance plasticity of adult ACANflx/PVcre mice were similar to controls. In contrast, AAV-mediated ACAN knockout in adult mice increased ocular dominance plasticity. Moreover, in vivo Chondroitinase ABC treatment of KO mice resulted in reduced firing rate of PV+ cells and increased frequency of spontaneous excitatory postsynaptic currents (sEPSC), a phenotype associated with chABC treatment of WT animals. These findings suggest that compensatory mechanisms may be activated during development in response to the germline loss of aggrecan. Indeed, qPCR of bulk tissue indicates that other PNN components, including neurocan and tenascin-R, are expressed at higher levels in the KO animals. Finally, behavioral testing revealed that ACANflx/PVcre mice had similar long-term memory as controls in the Morris water maze. However, they employed bolder search strategies during spatial learning and showed lower level of anxiety-related behavior in an open field and zero maze.
Collapse
Affiliation(s)
- Sverre Grødem
- Department of Bioscience, University of Oslo, Oslo, Norway
| | | | | | | | | | - Alessio Buccino
- Department of Bioscience, University of Oslo, Oslo, Norway
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | | | - Torkel Hafting
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marianne Fyhn
- Department of Bioscience, University of Oslo, Oslo, Norway
| | - Kristian Kinden Lensjø
- Department of Bioscience, University of Oslo, Oslo, Norway.
- Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Gosselin E, Bagur S, Bathellier B. Massive perturbation of sound representations by anesthesia in the auditory brainstem. SCIENCE ADVANCES 2024; 10:eado2291. [PMID: 39423272 PMCID: PMC11488538 DOI: 10.1126/sciadv.ado2291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Anesthesia modifies sensory representations in the thalamo-cortical circuit but is considered to have a milder impact on peripheral sensory processing. Here, tracking the same neurons across wakefulness and isoflurane or ketamine medetomidine anesthesia, we show that the amplitude and sign of single neuron responses to sounds are massively modified by anesthesia in the cochlear nucleus of the brainstem, the first relay of the auditory system. The reorganization of activity is so profound that decoding of sound representation under anesthesia is not possible based on awake activity. However, population-level parameters, such as average tuning strength and population decoding accuracy, are weakly affected by anesthesia, explaining why its effect has previously gone unnoticed when comparing independently sampled neurons. Together, our results indicate that the functional organization of the auditory brainstem largely depends on the network state and is ill-defined under anesthesia. This demonstrates a remarkable sensitivity of an early sensory stage to anesthesia, which is bound to disrupt downstream processing.
Collapse
Affiliation(s)
- Etienne Gosselin
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Sophie Bagur
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Brice Bathellier
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation Pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| |
Collapse
|
4
|
Hudetz AG. Microstimulation reveals anesthetic state-dependent effective connectivity of neurons in cerebral cortex. Front Neurosci 2024; 18:1387098. [PMID: 39035779 PMCID: PMC11258030 DOI: 10.3389/fnins.2024.1387098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Complex neuronal interactions underlie cortical information processing that can be compromised in altered states of consciousness. Here intracortical microstimulation was applied to investigate anesthetic state-dependent effective connectivity of neurons in rat visual cortex in vivo. Methods Extracellular activity was recorded at 32 sites in layers 5/6 while stimulating with charge-balanced discrete pulses at each electrode in random order. The same stimulation pattern was applied at three levels of anesthesia with desflurane and in wakefulness. Spikes were sorted and classified by their waveform features as putative excitatory and inhibitory neurons. Network motifs were identified in graphs of effective connectivity constructed from monosynaptic cross-correlograms. Results Microstimulation caused early (<10 ms) increase followed by prolonged (11-100 ms) decrease in spiking of all neurons throughout the electrode array. The early response of excitatory but not inhibitory neurons decayed rapidly with distance from the stimulation site over 1 mm. Effective connectivity of neurons with significant stimulus response was dense in wakefulness and sparse under anesthesia. The number of network motifs, especially those of higher order, increased rapidly as the anesthesia was withdrawn indicating a substantial increase in network connectivity as the animals woke up. Conclusion The results illuminate the impact of anesthesia on functional integrity of local cortical circuits affecting the state of consciousness.
Collapse
Affiliation(s)
- Anthony G Hudetz
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Nagayama S, Hasegawa-Ishii S, Kikuta S. Anesthetized animal experiments for neuroscience research. Front Neural Circuits 2024; 18:1426689. [PMID: 38884008 PMCID: PMC11177690 DOI: 10.3389/fncir.2024.1426689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Brain research has progressed with anesthetized animal experiments for a long time. Recent progress in research techniques allows us to measure neuronal activity in awake animals combined with behavioral tasks. The trends became more prominent in the last decade. This new research style triggers the paradigm shift in the research of brain science, and new insights into brain function have been revealed. It is reasonable to consider that awake animal experiments are more ideal for understanding naturalistic brain function than anesthetized ones. However, the anesthetized animal experiment still has advantages in some experiments. To take advantage of the anesthetized animal experiments, it is important to understand the mechanism of anesthesia and carefully handle the obtained data. In this minireview, we will shortly summarize the molecular mechanism of anesthesia in animal experiments, a recent understanding of the neuronal activities in a sensory system in the anesthetized animal brain, and consider the advantages and disadvantages of the anesthetized and awake animal experiments. This discussion will help us to use both research conditions in the proper manner.
Collapse
Affiliation(s)
- Shin Nagayama
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sanae Hasegawa-Ishii
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, Mitaka, Japan
| | - Shu Kikuta
- Department of Otorhinolaryngology, Medical School of Nihon University, Tokyo, Japan
| |
Collapse
|
6
|
Hudetz AG. Microstimulation reveals anesthetic state-dependent effective connectivity of neurons in cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591664. [PMID: 38746366 PMCID: PMC11092428 DOI: 10.1101/2024.04.29.591664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Complex neuronal interactions underlie cortical information processing that can be compromised in altered states of consciousness. Here intracortical microstimulation was applied to investigate the state-dependent effective connectivity of neurons in rat visual cortex in vivo. Extracellular activity was recorded at 32 sites in layers 5/6 while stimulating with charge-balanced discrete pulses at each electrode in random order. The same stimulation pattern was applied at three levels of anesthesia with desflurane and in wakefulness. Spikes were sorted and classified by their waveform features as putative excitatory and inhibitory neurons. Microstimulation caused early (<10ms) increase followed by prolonged (11-100ms) decrease in spiking of all neurons throughout the electrode array. The early response of excitatory but not inhibitory neurons decayed rapidly with distance from the stimulation site over 1mm. Effective connectivity of neurons with significant stimulus response was dense in wakefulness and sparse under anesthesia. Network motifs were identified in graphs of effective connectivity constructed from monosynaptic cross-correlograms. The number of motifs, especially those of higher order, increased rapidly as the anesthesia was withdrawn indicating a substantial increase in network connectivity as the animals woke up. The results illuminate the impact of anesthesia on functional integrity of local circuits affecting the state of consciousness.
Collapse
|
7
|
Nivinsky Margalit S, Slovin H. Encoding luminance surfaces in the visual cortex of mice and monkeys: difference in responses to edge and center. Cereb Cortex 2024; 34:bhae165. [PMID: 38652553 DOI: 10.1093/cercor/bhae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Luminance and spatial contrast provide information on the surfaces and edges of objects. We investigated neural responses to black and white surfaces in the primary visual cortex (V1) of mice and monkeys. Unlike primates that use their fovea to inspect objects with high acuity, mice lack a fovea and have low visual acuity. It thus remains unclear whether monkeys and mice share similar neural mechanisms to process surfaces. The animals were presented with white or black surfaces and the population responses were measured at high spatial and temporal resolution using voltage-sensitive dye imaging. In mice, the population response to the surface was not edge-dominated with a tendency to center-dominance, whereas in monkeys the response was edge-dominated with a "hole" in the center of the surface. The population response to the surfaces in both species exhibited suppression relative to a grating stimulus. These results reveal the differences in spatial patterns to luminance surfaces in the V1 of mice and monkeys and provide evidence for a shared suppression process relative to grating.
Collapse
Affiliation(s)
- Shany Nivinsky Margalit
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Hamutal Slovin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
8
|
Tanabe S, Lee H, Wang S, Hudetz AG. Spontaneous and Visual Stimulation Evoked Firing Sequences Are Distinct Under Desflurane Anesthesia. Neuroscience 2023; 528:54-63. [PMID: 37473851 DOI: 10.1016/j.neuroscience.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Recurring spike sequences are thought to underlie cortical computations and may be essential for information processing in the conscious state. How anesthesia at graded levels may influence spontaneous and stimulus-related spike sequences in visual cortex has not been fully elucidated. We recorded extracellular single-unit activity in the rat primary visual cortex in vivo during wakefulness and three levels of anesthesia produced by desflurane. The latencies of spike sequences within 0-200 ms from the onset of spontaneous UP states and visual flash-evoked responses were compared. During wakefulness, spike latency patterns linked to the local field potential theta cycle were similar to stimulus-evoked patterns. Under desflurane anesthesia, spontaneous UP state sequences differed from flash-evoked sequences due to the recruitment of low-firing excitatory neurons to the UP state. Flash-evoked spike sequences showed higher reliability and longer latency when stimuli were applied during DOWN states compared to UP states. At deeper levels, desflurane altered both UP state and flash-evoked spike sequences by selectively suppressing inhibitory neuron firing. The results reveal desflurane-induced complex changes in cortical firing sequences that may influence visual information processing.
Collapse
Affiliation(s)
- Sean Tanabe
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Heonsoo Lee
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Shiyong Wang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Anthony G Hudetz
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48105, USA.
| |
Collapse
|
9
|
Margalit SN, Golomb NG, Tsur O, Ben Yehoshua E, Raz A, Slovin H. Spatiotemporal patterns of population response in the visual cortex under isoflurane: from wakefulness to loss of consciousness. Cereb Cortex 2022; 32:5512-5529. [PMID: 35169840 DOI: 10.1093/cercor/bhac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
Anesthetic drugs are widely used in medicine and research to mediate loss of consciousness (LOC). Isoflurane is a commonly used anesthetic drug; however, its effects on cortical sensory processing, in particular around LOC, are not well understood. Using voltage-sensitive dye imaging, we measured visually evoked neuronal population response from the visual cortex in awake and anesthetized mice at 3 increasing concentrations of isoflurane, thus controlling the level of anesthesia from wakefulness to deep anesthesia. At low concentration of isoflurane, the effects on neuronal measures were minor relative to the awake condition. These effects augmented with increasing isoflurane concentration, while around LOC point, they showed abrupt and nonlinear changes. At the network level, we found that isoflurane decreased the stimulus-evoked intra-areal spatial spread of local neural activation, previously reported to be mediated by horizontal connections, and also reduced intra-areal synchronization of neuronal population. The synchronization between different visual areas decreased with higher isoflurane levels. Isoflurane reduced the population response amplitude and prolonged their latencies while higher visual areas showed increased vulnerability to isoflurane concentration. Our results uncover the changes in neural activity and synchronization at isoflurane concentrations leading to LOC and suggest reverse hierarchical shutdown of cortical areas.
Collapse
Affiliation(s)
- Shany Nivinsky Margalit
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Neta Gery Golomb
- Department of Anesthesiology, Rambam Health Care Campus, Haifa, 3109601, Israel and The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Omer Tsur
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Eve Ben Yehoshua
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Aeyal Raz
- Department of Anesthesiology, Rambam Health Care Campus, Haifa, 3109601, Israel and The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Hamutal Slovin
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
10
|
Bharioke A, Munz M, Brignall A, Kosche G, Eizinger MF, Ledergerber N, Hillier D, Gross-Scherf B, Conzelmann KK, Macé E, Roska B. General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons. Neuron 2022; 110:2024-2040.e10. [PMID: 35452606 PMCID: PMC9235854 DOI: 10.1016/j.neuron.2022.03.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 10/30/2021] [Accepted: 03/28/2022] [Indexed: 12/27/2022]
Abstract
General anesthetics induce loss of consciousness, a global change in behavior. However, a corresponding global change in activity in the context of defined cortical cell types has not been identified. Here, we show that spontaneous activity of mouse layer 5 pyramidal neurons, but of no other cortical cell type, becomes consistently synchronized in vivo by different general anesthetics. This heightened neuronal synchrony is aperiodic, present across large distances, and absent in cortical neurons presynaptic to layer 5 pyramidal neurons. During the transition to and from anesthesia, changes in synchrony in layer 5 coincide with the loss and recovery of consciousness. Activity within both apical and basal dendrites is synchronous, but only basal dendrites’ activity is temporally locked to somatic activity. Given that layer 5 is a major cortical output, our results suggest that brain-wide synchrony in layer 5 pyramidal neurons may contribute to the loss of consciousness during general anesthesia. Activity of layer 5 PNs synchronizes globally in different anesthetics Other mouse cortical cell types show no consistent increase in synchrony Changes in layer 5 synchrony coincide with the loss and recovery of consciousness Basal, but not apical, layer 5 dendrites are in synchrony with somas
Collapse
Affiliation(s)
- Arjun Bharioke
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Martin Munz
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Alexandra Brignall
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Georg Kosche
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Max Ferdinand Eizinger
- Max von Pettenkofer-Institute, Virology, Medical Faculty and Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Nicole Ledergerber
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Hillier
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Brigitte Gross-Scherf
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute, Virology, Medical Faculty and Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
11
|
Orczyk JJ, Barczak A, Costa-Faidella J, Kajikawa Y. Cross Laminar Traveling Components of Field Potentials due to Volume Conduction of Non-Traveling Neuronal Activity in Macaque Sensory Cortices. J Neurosci 2021; 41:7578-7590. [PMID: 34321312 PMCID: PMC8425975 DOI: 10.1523/jneurosci.3225-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Field potentials (FPs) reflect neuronal activities in the brain, and often exhibit traveling peaks across recording sites. While traveling FPs are interpreted as propagation of neuronal activity, not all studies directly reveal such propagating patterns of neuronal activation. Neuronal activity is associated with transmembrane currents that form dipoles and produce negative and positive fields. Thereby, FP components reverse polarity between those fields and have minimal amplitudes at the center of dipoles. Although their amplitudes could be smaller, FPs are never flat even around these reversals. What occurs around the reversal has not been addressed explicitly, although those are rationally in the middle of active neurons. We show that sensory FPs around the reversal appeared with peaks traveling across cortical laminae in macaque sensory cortices. Interestingly, analyses of current source density did not depict traveling patterns but lamina-delimited current sinks and sources. We simulated FPs produced by volume conduction of a simplified 2 dipoles' model mimicking sensory cortical laminar current source density components. While FPs generated by single dipoles followed the temporal patterns of the dipole moments without traveling peaks, FPs generated by concurrently active dipole moments appeared with traveling components in the vicinity of dipoles by superimposition of individually non-traveling FPs generated by single dipoles. These results indicate that not all traveling FP are generated by traveling neuronal activity, and that recording positions need to be taken into account to describe FP peak components around active neuronal populations.SIGNIFICANCE STATEMENT Field potentials (FPs) generated by neuronal activity in the brain occur with fields of opposite polarity. Likewise, in the cerebral cortices, they have mirror-imaged waveforms in upper and lower layers. We show that FPs appear like traveling across the cortical layers. Interestingly, the traveling FPs occur without traveling components of current source density, which represents transmembrane currents associated with neuronal activity. These seemingly odd findings are explained using current source density models of multiple dipoles. Concurrently active, non-traveling dipoles produce FPs as mixtures of FPs produced by individual dipoles, and result in traveling FP waveforms as the mixing ratio depends on the distances from those dipoles. The results suggest that not all traveling FP components are associated with propagating neuronal activity.
Collapse
Affiliation(s)
- John J Orczyk
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Annamaria Barczak
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Jordi Costa-Faidella
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Catalonia 08035, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia 08035, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain, Barcelona, Catalonia 08950
| | - Yoshinao Kajikawa
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
12
|
Wright NC, Borden PY, Liew YJ, Bolus MF, Stoy WM, Forest CR, Stanley GB. Rapid Cortical Adaptation and the Role of Thalamic Synchrony during Wakefulness. J Neurosci 2021; 41:5421-5439. [PMID: 33986072 PMCID: PMC8221593 DOI: 10.1523/jneurosci.3018-20.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/18/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Rapid sensory adaptation is observed across all sensory systems, and strongly shapes sensory percepts in complex sensory environments. Yet despite its ubiquity and likely necessity for survival, the mechanistic basis is poorly understood. A wide range of primarily in vitro and anesthetized studies have demonstrated the emergence of adaptation at the level of primary sensory cortex, with only modest signatures in earlier stages of processing. The nature of rapid adaptation and how it shapes sensory representations during wakefulness, and thus the potential role in perceptual adaptation, is underexplored, as are the mechanisms that underlie this phenomenon. To address these knowledge gaps, we recorded spiking activity in primary somatosensory cortex (S1) and the upstream ventral posteromedial (VPm) thalamic nucleus in the vibrissa pathway of awake male and female mice, and quantified responses to whisker stimuli delivered in isolation and embedded in an adapting sensory background. We found that cortical sensory responses were indeed adapted by persistent sensory stimulation; putative excitatory neurons were profoundly adapted, and inhibitory neurons only modestly so. Further optogenetic manipulation experiments and network modeling suggest this largely reflects adaptive changes in synchronous thalamic firing combined with robust engagement of feedforward inhibition, with little contribution from synaptic depression. Taken together, these results suggest that cortical adaptation in the regime explored here results from changes in the timing of thalamic input, and the way in which this differentially impacts cortical excitation and feedforward inhibition, pointing to a prominent role of thalamic gating in rapid adaptation of primary sensory cortex.SIGNIFICANCE STATEMENT Rapid adaptation of sensory activity strongly shapes representations of sensory inputs across all sensory pathways over the timescale of seconds, and has profound effects on sensory perception. Despite its ubiquity and theoretical role in the efficient encoding of complex sensory environments, the mechanistic basis is poorly understood, particularly during wakefulness. In this study in the vibrissa pathway of awake mice, we show that cortical representations of sensory inputs are strongly shaped by rapid adaptation, and that this is mediated primarily by adaptive gating of the thalamic inputs to primary sensory cortex and the differential way in which these inputs engage cortical subpopulations of neurons.
Collapse
Affiliation(s)
- Nathaniel C Wright
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Peter Y Borden
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Yi Juin Liew
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia 30332 and Beijing University, Beijing China 100871
| | - Michael F Bolus
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - William M Stoy
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Craig R Forest
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| |
Collapse
|
13
|
Jeong UJ, Lee J, Chou N, Kim K, Shin H, Chae U, Yu HY, Cho IJ. A minimally invasive flexible electrode array for simultaneous recording of ECoG signals from multiple brain regions. LAB ON A CHIP 2021; 21:2383-2397. [PMID: 33955442 DOI: 10.1039/d1lc00117e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The minimal invasiveness of electrocorticography (ECoG) enabled its widespread use in clinical areas as well as in neuroscience research. However, most existing ECoG arrays require that the entire surface area of the brain that is to be recorded be exposed through a large craniotomy. We propose a device that overcomes this limitation, i.e., a minimally invasive, polyimide-based flexible array of electrodes that can enable the recording of ECoG signals in multiple regions of the brain with minimal exposure of the surface of the brain. Magnetic force-assisted positioning of a flexible electrode array enables recording from distant brain regions with a small cranial window. Also, a biodegradable organic compound used for attaching a magnet on the electrodes allows simple retrieval of the magnet. We demonstrate with an in vivo chronic recording that an implanted ECoG electrode array can record ECoG signals from the visual cortex and the motor cortex during a rat's free behavior. Our results indicate that the proposed device induced minimal damage to the animal. We expect the proposed device to be utilized for experiments for large-scale brain circuit analyses as well as clinical applications for intra-operative monitoring of epileptic activity.
Collapse
Affiliation(s)
- Ui-Jin Jeong
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. and School of Electrical Engineering, Korea University, Seoul, Republic of Korea
| | - Jungpyo Lee
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| | - Namsun Chou
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| | - Kanghwan Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
| | - Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. and Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Uikyu Chae
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. and School of Electrical Engineering, Korea University, Seoul, Republic of Korea
| | - Hyun-Yong Yu
- School of Electrical Engineering, Korea University, Seoul, Republic of Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea. and Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea and School of Electrical and Electronics Engineering, Yonsei University, Seoul, Republic of Korea and Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
14
|
Sorrenti V, Cecchetto C, Maschietto M, Fortinguerra S, Buriani A, Vassanelli S. Understanding the Effects of Anesthesia on Cortical Electrophysiological Recordings: A Scoping Review. Int J Mol Sci 2021; 22:1286. [PMID: 33525470 PMCID: PMC7865872 DOI: 10.3390/ijms22031286] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/28/2022] Open
Abstract
General anesthesia in animal experiments is an ethical must and is required for all the procedures that are likely to cause more than slight or momentary pain. As anesthetics are known to deeply affect experimental findings, including electrophysiological recordings of brain activity, understanding their mechanism of action is of paramount importance. It is widely recognized that the depth and type of anesthesia introduce significant bias in electrophysiological measurements by affecting the shape of both spontaneous and evoked signals, e.g., modifying their latency and relative amplitude. Therefore, for a given experimental protocol, it is relevant to identify the appropriate anesthetic, to minimize the impact on neuronal circuits and related signals under investigation. This review focuses on the effect of different anesthetics on cortical electrical recordings, examining their molecular mechanisms of action, their influence on neuronal microcircuits and, consequently, their impact on cortical measurements.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical & Pharmacological Sciences, University of Padova, 35131 Padova, Italy
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Claudia Cecchetto
- Optical Neuroimaging Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan;
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| | - Marta Maschietto
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
| | | | - Alessandro Buriani
- Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy;
| | - Stefano Vassanelli
- Department of Biomedical Sciences, Section of Physiology, University of Padova, via F. Marzolo 3, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, via Orus 2/B, 35131 Padova, Italy
| |
Collapse
|
15
|
Lee H, Tanabe S, Wang S, Hudetz AG. Differential Effect of Anesthesia on Visual Cortex Neurons with Diverse Population Coupling. Neuroscience 2020; 458:108-119. [PMID: 33309966 DOI: 10.1016/j.neuroscience.2020.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Cortical neurons display diverse firing patterns and synchronization properties. How anesthesia alters the firing response of different neuron groups relevant for sensory information processing is unclear. Here we investigated the graded effect of anesthesia on spontaneous and visual flash-induced spike activity of different neuron groups classified based on their spike waveform, firing rate, and population coupling (the extent neurons conform to population spikes). Single-unit activity was measured from multichannel extracellular recordings in deep layers of primary visual cortex of freely moving rats in wakefulness and at three concentrations of desflurane. Anesthesia generally decreased firing rate and increased population coupling and burstiness of neurons. Population coupling and firing rate became more correlated and the pairwise correlation between neurons became more predictable by their population coupling in anesthesia. During wakefulness, visual stimulation increased firing rate; this effect was the largest and the most prolonged in neurons that exhibited high population coupling and high firing rate. During anesthesia, the early increase in firing rate (20-150 ms post-stimulus) of these neurons was suppressed, their spike timing was delayed and split into two peaks. The late response (200-400 ms post-stimulus) of all neurons was also suppressed. We conclude that anesthesia alters the visual response of primarily high-firing highly coupled neurons, which may interfere with visual sensory processing. The increased association of population coupling and firing rate during anesthesia suggests a decrease in sensory information content.
Collapse
Affiliation(s)
- Heonsoo Lee
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean Tanabe
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shiyong Wang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G Hudetz
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Georgiev DD, Kolev SK, Cohen E, Glazebrook JF. Computational capacity of pyramidal neurons in the cerebral cortex. Brain Res 2020; 1748:147069. [DOI: 10.1016/j.brainres.2020.147069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
|
17
|
Carton-Leclercq A, Lecas S, Chavez M, Charpier S, Mahon S. Neuronal excitability and sensory responsiveness in the thalamo-cortical network in a novel rat model of isoelectric brain state. J Physiol 2020; 599:609-629. [PMID: 33095909 DOI: 10.1113/jp280266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
KEY POINTS The neuronal and network properties that persist during an isoelectric coma remain largely unknown. We developed a new in vivo rat model to assess cell excitability and sensory responsiveness in the thalamo-cortical pathway during an isoflurane-induced isoelectric brain state. The isoelectric electrocorticogram reflected a complete interruption of spontaneous synaptic and firing activities in cortical and thalamic neurons. Cell excitability and sensory responses in the thalamo-cortical network persisted at a reduced level in the isoelectric condition and returned to control values after resumption of background brain activity. These findings could lead to a reassessment of the functional status of the drug-induced isoelectric state: a latent state in which individual neurons and networks retain to some extent the ability of being activated by external inputs. ABSTRACT The neuronal and network properties that persist in an isoelectric brain completely deprived of spontaneous electrical activity remain largely unexplored. Here, we developed a new in vivo rat model to examine cell excitability and sensory responsiveness in somatosensory thalamo-cortical networks during the interruption of endogenous brain activity induced by high doses of isoflurane. Electrocorticograms (ECoGs) from the barrel cortex were captured simultaneously with either intracellular recordings of subjacent cortical pyramidal neurons or extracellular records of the related thalamo-cortical neurons. Isoelectric ECoG periods reflected the disappearance of spontaneous synaptic and firing activities in cortical and thalamic neurons. This was associated with a sustained membrane hyperpolarization and a reduced intrinsic excitability in deep-layer cortical neurons, without significant changes in their membrane input resistance. Concomitantly, we found that whisker-evoked potentials in the ECoG and synaptic responses in cortical neurons were attenuated in amplitude and increased in latency. Impaired responsiveness in the barrel cortex paralleled with a lowering of the sensory-induced firing in thalamic cells. The return of endogenous brain electrical activities, after reinstatement of a control isoflurane concentration, led to the recovery of cortical neurons excitability and sensory responsiveness. These findings demonstrate the persistence of a certain level of cell excitability and sensory integration in the isoelectric state and the full recovery of cortico-thalamic functions after restoration of internal cerebral activities.
Collapse
Affiliation(s)
- Antoine Carton-Leclercq
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Sarah Lecas
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Sorbonne University, UPMC Université Paris, Paris, France
| | - Mario Chavez
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Stéphane Charpier
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France.,Sorbonne University, UPMC Université Paris, Paris, France
| | - Séverine Mahon
- Institut du Cerveau, ICM, INSERM UMRS 1127, CNRS UMR 7225, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
18
|
Totah NK, Logothetis NK, Eschenko O. Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Res 2019; 1709:50-66. [DOI: 10.1016/j.brainres.2018.12.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 11/30/2022]
|
19
|
Lombardo JA, Macellaio MV, Liu B, Palmer SE, Osborne LC. State dependence of stimulus-induced variability tuning in macaque MT. PLoS Comput Biol 2018; 14:e1006527. [PMID: 30312315 PMCID: PMC6211771 DOI: 10.1371/journal.pcbi.1006527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 11/01/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022] Open
Abstract
Behavioral states marked by varying levels of arousal and attention modulate some properties of cortical responses (e.g. average firing rates or pairwise correlations), yet it is not fully understood what drives these response changes and how they might affect downstream stimulus decoding. Here we show that changes in state modulate the tuning of response variance-to-mean ratios (Fano factors) in a fashion that is neither predicted by a Poisson spiking model nor changes in the mean firing rate, with a substantial effect on stimulus discriminability. We recorded motion-sensitive neurons in middle temporal cortex (MT) in two states: alert fixation and light, opioid anesthesia. Anesthesia tended to lower average spike counts, without decreasing trial-to-trial variability compared to the alert state. Under anesthesia, within-trial fluctuations in excitability were correlated over longer time scales compared to the alert state, creating supra-Poisson Fano factors. In contrast, alert-state MT neurons have higher mean firing rates and largely sub-Poisson variability that is stimulus-dependent and cannot be explained by firing rate differences alone. The absence of such stimulus-induced variability tuning in the anesthetized state suggests different sources of variability between states. A simple model explains state-dependent shifts in the distribution of observed Fano factors via a suppression in the variance of gain fluctuations in the alert state. A population model with stimulus-induced variability tuning and behaviorally constrained information-limiting correlations explores the potential enhancement in stimulus discriminability by the cortical population in the alert state. The brain controls behavior fluidly in a wide variety of cognitive contexts that alter the precision of neural responses. We examine how neural variability changes versus the mean response as a function of the stimulus and the behavioral state. We show that this scaled variability can have qualitatively different stimulus tuning in different behavioral contexts. In alert primates, scaled variability is tuned to the direction of motion of a visual stimulus and decreases around the preferred direction of each neuron. Under anesthesia, neurons show flat scaled variability tuning and, overall, responses are significantly more variable. We develop a simple model that includes a parameter describing firing rate gain fluctuations that can explain these changes. Our results suggest that tuned decreases in scaled variability during wakefulness may be mediated by an active process that suppresses synchronization and makes information transmission more reliable.
Collapse
Affiliation(s)
- Joseph A. Lombardo
- Computational Neuroscience Graduate Program, University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew V. Macellaio
- Neurobiology Graduate Program, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Bing Liu
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Stephanie E. Palmer
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
- Department of Physics, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (SEP); (LCO)
| | - Leslie C. Osborne
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (SEP); (LCO)
| |
Collapse
|
20
|
Totah NK, Neves RM, Panzeri S, Logothetis NK, Eschenko O. The Locus Coeruleus Is a Complex and Differentiated Neuromodulatory System. Neuron 2018; 99:1055-1068.e6. [PMID: 30122373 DOI: 10.1016/j.neuron.2018.07.037] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/25/2018] [Accepted: 07/20/2018] [Indexed: 01/22/2023]
Abstract
Diffuse projections of locus coeruleus (LC) neurons and evidence of synchronous spiking have long been perceived as features of global neuromodulation. Recent studies demonstrated the possibility of targeted modulation by subsets of LC neurons. Non-global neuromodulation depends on target specificity and the differentiated spatiotemporal dynamics within LC. Here, we characterized interactions between 3,164 LC cell pairs in the rat LC under urethane anesthesia. Spike count correlations were near zero and only a small proportion of unit pairs had synchronized spontaneous (15%) or evoked (16%) discharge. We identified infra-slow (0.01-1 Hz) fluctuations of LC unit spike rate, which were also asynchronous across the population. Despite overall sparse population synchrony, we report the existence of LC ensembles and relate them to forebrain projection targets. We also show that spike waveform width was related to ensemble membership, propensity for synchronization, and interactions with cortex. Our findings suggest a partly differentiated and target-specific noradrenergic signal.
Collapse
Affiliation(s)
- Nelson K Totah
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076 Tuebingen, Germany.
| | - Ricardo M Neves
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076 Tuebingen, Germany
| | - Stefano Panzeri
- Laboratory of Neural Computation, Istituto Italiano di Tecnologia, Corso Bettini 31, 38068 Rovereto, Italy
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076 Tuebingen, Germany; Division of Imaging Science and Biomedical Engineering, University of Manchester, M13 9PT Manchester, UK
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 8, 72076 Tuebingen, Germany.
| |
Collapse
|