1
|
Lannoo MJ, Stiles RM. The Use of Cognition by Amphibians Confronting Environmental Change: Examples from the Behavioral Ecology of Crawfish Frogs ( Rana areolata). Animals (Basel) 2025; 15:736. [PMID: 40076019 PMCID: PMC11898707 DOI: 10.3390/ani15050736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Amphibian conservation concerns frequently center on the idea of 'saving' them, with the underlying assumption they are the passive victims of anthropogenic environmental change. But this approach ignores the physiological, biochemical, and behavioral flexibility amphibians have employed since they first evolved ~365 million years ago. One overlooked advantage amphibians possess in the struggle for survival, and one humans might use in their efforts to conserve them, is their brains share the same blueprint as human brains, which allows them to acquire knowledge and understanding through experiences-in other words, amphibians have cognitive capabilities that assist them in their effort to survive. Here, we use four examples from our work on the behavioral ecology of Crawfish Frogs (Rana areolata) to form hypotheses about how cognition affects amphibian reaction to environmental and social change. The first two examples describe Crawfish Frog responses to seasonality and reproductive status, the third details their reaction to ecological disturbance, and the fourth describes how their response to the same stimulus changes with growth/age. In each example, we detail the neuronal circuitry thought to be involved and hypothesize the role of cognition. We propose that as one component of our fight to conserve amphibians, researchers should consider the full range of anatomical, physiological, biochemical, and behavioral features amphibians themselves employ in their defense, which are features responsible for their historical evolutionary success up until the Anthropocene. Further, we submit that acknowledging amphibians possess cognitive abilities can enrich interpretations of not only behavioral and ecological observations but also of neuroanatomical and neurophysiological results.
Collapse
Affiliation(s)
- Michael J. Lannoo
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Rm 135 Holmstedt Hall-ISU, Terre Haute, IN 47809, USA
| | - Rochelle M. Stiles
- San Francisco Zoological Society, 1 Zoo Road, San Francisco, CA 94132, USA;
| |
Collapse
|
2
|
Ye D, Walsh JT, Junker IP, Ding Y. Changes in the cellular makeup of motor patterning circuits drive courtship song evolution in Drosophila. Curr Biol 2024; 34:2319-2329.e6. [PMID: 38688283 DOI: 10.1016/j.cub.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024]
Abstract
How evolutionary changes in genes and neurons encode species variation in complex motor behaviors is largely unknown. Here, we develop genetic tools that permit a neural circuit comparison between the model species Drosophila melanogaster and the closely related species D. yakuba, which has undergone a lineage-specific loss of sine song, one of the two major types of male courtship song in Drosophila. Neuroanatomical comparison of song-patterning neurons called TN1 across the phylogeny demonstrates a link between the loss of sine song and a reduction both in the number of TN1 neurons and the neurites supporting the sine circuit connectivity. Optogenetic activation confirms that TN1 neurons in D. yakuba have lost the ability to drive sine song, although they have maintained the ability to drive the singing wing posture. Single-cell transcriptomic comparison shows that D. yakuba specifically lacks a cell type corresponding to TN1A neurons, the TN1 subtype that is essential for sine song. Genetic and developmental manipulation reveals a functional divergence of the sex determination gene doublesex in D. yakuba to reduce TN1 number by promoting apoptosis. Our work illustrates the contribution of motor patterning circuits and cell type changes in behavioral evolution and uncovers the evolutionary lability of sex determination genes to reconfigure the cellular makeup of neural circuits.
Collapse
Affiliation(s)
- Dajia Ye
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin T Walsh
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Mangiamele LA, Dawn A, LeCure KM, Mantica GE, Racicot R, Fuxjager MJ, Preininger D. How new communication behaviors evolve: Androgens as modifiers of neuromotor structure and function in foot-flagging frogs. Horm Behav 2024; 161:105502. [PMID: 38382227 DOI: 10.1016/j.yhbeh.2024.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
How diverse animal communication signals have arisen is a question that has fascinated many. Xenopus frogs have been a model system used for three decades to reveal insights into the neuroendocrine mechanisms and evolution of vocal diversity. Due to the ease of studying central nervous system control of the laryngeal muscles in vitro, Xenopus has helped us understand how variation in vocal communication signals between sexes and between species is produced at the molecular, cellular, and systems levels. Yet, it is becoming easier to make similar advances in non-model organisms. In this paper, we summarize our research on a group of frog species that have evolved a novel hind limb signal known as 'foot flagging.' We have previously shown that foot flagging is androgen dependent and that the evolution of foot flagging in multiple unrelated species is accompanied by the evolution of higher androgen hormone sensitivity in the leg muscles. Here, we present new preliminary data that compare patterns of androgen receptor expression and neuronal cell density in the lumbar spinal cord - the neuromotor system that controls the hind limb - between foot-flagging and non-foot-flagging frog species. We then relate our work to prior findings in Xenopus, highlighting which patterns of hormone sensitivity and neuroanatomical structure are shared between the neuromotor systems underlying Xenopus vocalizations and foot-flagging frogs' limb movement and which appear to be species-specific. Overall, we aim to illustrate the power of drawing inspiration from experiments in model organisms, in which the mechanistic details have been worked out, and then applying these ideas to a non-model species to reveal new details, further complexities, and fresh hypotheses.
Collapse
Affiliation(s)
- Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America.
| | - AllexAndrya Dawn
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Kerry M LeCure
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Gina E Mantica
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Riccardo Racicot
- Department of Biological Sciences, Smith College, Northampton, MA 01063, United States of America
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, United States of America
| | - Doris Preininger
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria; Vienna Zoo, Vienna, Austria
| |
Collapse
|
4
|
Ye D, Walsh JT, Junker IP, Ding Y. Changes in the cellular makeup of motor patterning circuits drive courtship song evolution in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576861. [PMID: 38328135 PMCID: PMC10849698 DOI: 10.1101/2024.01.23.576861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
How evolutionary changes in genes and neurons encode species variation in complex motor behaviors are largely unknown. Here, we develop genetic tools that permit a neural circuit comparison between the model species Drosophila melanogaster and the closely-related species D. yakuba, who has undergone a lineage-specific loss of sine song, one of the two major types of male courtship song in Drosophila. Neuroanatomical comparison of song patterning neurons called TN1 across the phylogeny demonstrates a link between the loss of sine song and a reduction both in the number of TN1 neurons and the neurites serving the sine circuit connectivity. Optogenetic activation confirms that TN1 neurons in D. yakuba have lost the ability to drive sine song, while maintaining the ability to drive the singing wing posture. Single-cell transcriptomic comparison shows that D. yakuba specifically lacks a cell type corresponding to TN1A neurons, the TN1 subtype that is essential for sine song. Genetic and developmental manipulation reveals a functional divergence of the sex determination gene doublesex in D. yakuba to reduce TN1 number by promoting apoptosis. Our work illustrates the contribution of motor patterning circuits and cell type changes in behavioral evolution, and uncovers the evolutionary lability of sex determination genes to reconfigure the cellular makeup of neural circuits.
Collapse
Affiliation(s)
- Dajia Ye
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Justin T Walsh
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian P Junker
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Phylogenetic analyses of 5-hydroxytryptamine 3 (5-HT3) receptors in Metazoa. PLoS One 2023; 18:e0281507. [PMID: 36857360 PMCID: PMC9977066 DOI: 10.1371/journal.pone.0281507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/24/2023] [Indexed: 03/02/2023] Open
Abstract
The 5-hydroxytrptamine 3 (5-HT3) receptor is a member of the 'Cys-loop' family and the only pentameric ligand gated ion channel among the serotonin receptors. 5-HT3 receptors play an important role in controlling growth, development, and behaviour in animals. Several 5-HT3 receptor antagonists are used to treat diseases (e.g., irritable bowel syndrome, nausea and emesis). Humans express five different subunits (A-E) enabling a variety of heteromeric receptors to form but all contain 5HT3A subunits. However, the information available about the 5-HT3 receptor subunit occurrence among the metazoan lineages is minimal. In the present article we searched for 5-HT3 receptor subunit homologs from different phyla in Metazoa. We identified more than 1000 5-HT3 receptor subunits in Metazoa in different phyla and undertook simultaneous phylogenetic analysis of 526 5HT3A, 358 5HT3B, 239 5HT3C, 70 5HT3D, and 173 5HT3E sequences. 5-HT3 receptor subunits were present in species belonging to 11 phyla: Annelida, Arthropoda, Chordata, Cnidaria, Echinodermata, Mollusca, Nematoda, Orthonectida, Platyhelminthes, Rotifera and Tardigrada. All subunits were most often identified in Chordata phylum which was strongly represented in searches. Using multiple sequence alignment, we investigated variations in the ligand binding region of the 5HT3A subunit protein sequences in the metazoan lineage. Several critical amino acid residues important for ligand binding (common structural features) are commonly present in species from Nematoda and Platyhelminth gut parasites through to Chordata. Collectively, this better understanding of the 5-HT3 receptor evolutionary patterns raises possibilities of future pharmacological challenges facing Metazoa including effects on parasitic and other species in ecosystems that contain 5-HT3 receptor ligands.
Collapse
|
6
|
Kelley DB. Convergent and divergent neural circuit architectures that support acoustic communication. Front Neural Circuits 2022; 16:976789. [PMID: 36466364 PMCID: PMC9712726 DOI: 10.3389/fncir.2022.976789] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Vocal communication is used across extant vertebrates, is evolutionarily ancient, and been maintained, in many lineages. Here I review the neural circuit architectures that support intraspecific acoustic signaling in representative anuran, mammalian and avian species as well as two invertebrates, fruit flies and Hawaiian crickets. I focus on hindbrain motor control motifs and their ties to respiratory circuits, expression of receptors for gonadal steroids in motor, sensory, and limbic neurons as well as divergent modalities that evoke vocal responses. Hindbrain and limbic participants in acoustic communication are highly conserved, while forebrain participants have diverged between anurans and mammals, as well as songbirds and rodents. I discuss the roles of natural and sexual selection in driving speciation, as well as exaptation of circuit elements with ancestral roles in respiration, for producing sounds and driving rhythmic vocal features. Recent technical advances in whole brain fMRI across species will enable real time imaging of acoustic signaling partners, tying auditory perception to vocal production.
Collapse
|
7
|
Suarez LE, Yovel Y, van den Heuvel MP, Sporns O, Assaf Y, Lajoie G, Misic B. A connectomics-based taxonomy of mammals. eLife 2022; 11:e78635. [PMID: 36342363 PMCID: PMC9681214 DOI: 10.7554/elife.78635] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Mammalian taxonomies are conventionally defined by morphological traits and genetics. How species differ in terms of neural circuits and whether inter-species differences in neural circuit organization conform to these taxonomies is unknown. The main obstacle to the comparison of neural architectures has been differences in network reconstruction techniques, yielding species-specific connectomes that are not directly comparable to one another. Here, we comprehensively chart connectome organization across the mammalian phylogenetic spectrum using a common reconstruction protocol. We analyse the mammalian MRI (MaMI) data set, a database that encompasses high-resolution ex vivo structural and diffusion MRI scans of 124 species across 12 taxonomic orders and 5 superorders, collected using a unified MRI protocol. We assess similarity between species connectomes using two methods: similarity of Laplacian eigenspectra and similarity of multiscale topological features. We find greater inter-species similarities among species within the same taxonomic order, suggesting that connectome organization reflects established taxonomic relationships defined by morphology and genetics. While all connectomes retain hallmark global features and relative proportions of connection classes, inter-species variation is driven by local regional connectivity profiles. By encoding connectomes into a common frame of reference, these findings establish a foundation for investigating how neural circuits change over phylogeny, forging a link from genes to circuits to behaviour.
Collapse
Affiliation(s)
- Laura E Suarez
- Montréal Neurological Institute, McGill UniversityMontrealCanada
- Mila - Quebec Artificial Intelligence InstituteMontrealCanada
| | - Yossi Yovel
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv UniversityTel AvivIsrael
| | - Martijn P van den Heuvel
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Olaf Sporns
- Psychological and Brain Sciences, Indiana UniversityBloomingtonUnited States
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv UniversityTel AvivIsrael
| | | | - Bratislav Misic
- Montréal Neurological Institute, McGill UniversityMontrealCanada
| |
Collapse
|
8
|
Roberts RJV, Pop S, Prieto-Godino LL. Evolution of central neural circuits: state of the art and perspectives. Nat Rev Neurosci 2022; 23:725-743. [DOI: 10.1038/s41583-022-00644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
|
9
|
Keifer J. Emergence of In Vitro Preparations and Their Contribution to Understanding the Neural Control of Behavior in Vertebrates. J Neurophysiol 2022; 128:511-526. [PMID: 35946803 DOI: 10.1152/jn.00142.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the longstanding goals of the field of neuroscience is to understand the neural control of behavior in both invertebrate and vertebrate species. A series of early discoveries showed that certain motor patterns like locomotion could be generated by neuronal circuits without sensory feedback or descending control systems. These were called fictitious, or "fictive", motor programs because they could be expressed by neurons in the absence of movement. This finding lead investigators to isolate central nervous system tissue and maintain it in a dish in vitro to better study mechanisms of motor pattern generation. A period of rapid development of in vitro preparations from invertebrate species that could generate fictive motor programs from the activity of central pattern generating circuits (CPGs) emerged that was gradually followed by the introduction of such preparations from vertebrates. Here, I will review some of the notable in vitropreparations from both mammalian and non-mammalian vertebrate species developed to study the neural circuits underlying a variety of complex behaviors. This approach has been instrumental in delineating not only the cellular substrates underlying locomotion, respiration, scratching, and other behaviors, but also mechanisms underlying the modifiability of motor pathways through synaptic plasticity. In vitro preparations have had a significant impact on the field of motor systems neuroscience and the expansion of our understanding of how nervous systems control behavior. The field is ready for further advancement of this approach to explore neural substrates for variations in behavior generated by social and seasonal context, and the environment.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
10
|
Schwark RW, Fuxjager MJ, Schmidt MF. Proposing a neural framework for the evolution of elaborate courtship displays. eLife 2022; 11:e74860. [PMID: 35639093 PMCID: PMC9154748 DOI: 10.7554/elife.74860] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/06/2022] [Indexed: 11/15/2022] Open
Abstract
In many vertebrates, courtship occurs through the performance of elaborate behavioral displays that are as spectacular as they are complex. The question of how sexual selection acts upon these animals' neuromuscular systems to transform a repertoire of pre-existing movements into such remarkable (if not unusual) display routines has received relatively little research attention. This is a surprising gap in knowledge, given that unraveling this extraordinary process is central to understanding the evolution of behavioral diversity and its neural control. In many vertebrates, courtship displays often push the limits of neuromuscular performance, and often in a ritualized manner. These displays can range from songs that require rapid switching between two independently controlled 'voice boxes' to precisely choreographed acrobatics. Here, we propose a framework for thinking about how the brain might not only control these displays, but also shape their evolution. Our framework focuses specifically on a major midbrain area, which we view as a likely important node in the orchestration of the complex neural control of behavior used in the courtship process. This area is the periaqueductal grey (PAG), as studies suggest that it is both necessary and sufficient for the production of many instinctive survival behaviors, including courtship vocalizations. Thus, we speculate about why the PAG, as well as its key inputs, might serve as targets of sexual selection for display behavior. In doing so, we attempt to combine core ideas about the neural control of behavior with principles of display evolution. Our intent is to spur research in this area and bring together neurobiologists and behavioral ecologists to more fully understand the role that the brain might play in behavioral innovation and diversification.
Collapse
Affiliation(s)
- Ryan W Schwark
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
- Neuroscience Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown UniversityProvidenceUnited States
| | - Marc F Schmidt
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
- Neuroscience Graduate Group, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
11
|
Chen Z, Liu Y, Liang R, Cui C, Zhu Y, Zhang F, Zhang J, Chen X. Comparative transcriptome analysis provides insights into the molecular mechanisms of high-frequency hearing differences between the sexes of Odorrana tormota. BMC Genomics 2022; 23:296. [PMID: 35410120 PMCID: PMC9004125 DOI: 10.1186/s12864-022-08536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Acoustic communication is important for the survival and reproduction of anurans and masking background noise is a critical factor for their effective acoustic communication. Males of the concave-eared frog (Odorrana tormota) have evolved an ultrasonic communication capacity to avoid masking by the widespread background noise of local fast-flowing streams, whereas females exhibit no ultrasonic sensitivity. However, the molecular mechanisms underlying the high-frequency hearing differences between the sexes of O. tormota are still poorly understood. Results In this study, we sequenced the brain transcriptomes of male and female O. tormota, and compared their differential gene expression. A total of 4,605 differentially expressed genes (DEGs) between the sexes of O. tormota were identified and eleven of them were related to auditory based on the annotation and enrichment analysis. Most of these DEGs in males showed a higher expression trend than females in both quantity and expression quantity. The highly expressed genes in males were relatively concentrated in neurogenesis, signal transduction, ion transport and energy metabolism, whereas the up-expressed genes in females were mainly related to the growth and development regulation of specific auditory cells. Conclusions The transcriptome of male and female O. tormota has been sequenced and de novo assembled, which will provide gene reference for further genomic studies. In addition, this is the first research to reveal the molecular mechanisms of sex differences in ultrasonic hearing between the sexes of O. tormota and will provide new insights into the genetic basis of the auditory adaptation in amphibians during their transition from water to land. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08536-2.
Collapse
Affiliation(s)
- Zhuo Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.,The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, China
| | - Yao Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Rui Liang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chong Cui
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yanjun Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Fang Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Jie Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
| | - Xiaohong Chen
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China. .,The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, China.
| |
Collapse
|
12
|
Gupta S, Alluri RK, Rose GJ, Bee MA. Neural basis of acoustic species recognition in a cryptic species complex. J Exp Biol 2021; 224:jeb243405. [PMID: 34796902 PMCID: PMC10658901 DOI: 10.1242/jeb.243405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/12/2021] [Indexed: 11/20/2022]
Abstract
Sexual traits that promote species recognition are important drivers of reproductive isolation, especially among closely related species. Identifying neural processes that shape species differences in recognition is crucial for understanding the causal mechanisms of reproductive isolation. Temporal patterns are salient features of sexual signals that are widely used in species recognition by several taxa, including anurans. Recent advances in our understanding of temporal processing by the anuran auditory system provide an opportunity to investigate the neural basis of species-specific recognition. The anuran inferior colliculus consists of neurons that are selective for temporal features of calls. Of potential relevance are auditory neurons known as interval-counting neurons (ICNs) that are often selective for the pulse rate of conspecific advertisement calls. Here, we tested the hypothesis that ICNs mediate acoustic species recognition by exploiting the known differences in temporal selectivity in two cryptic species of gray treefrog (Hyla chrysoscelis and Hyla versicolor). We examined the extent to which the threshold number of pulses required to elicit behavioral responses from females and neural responses from ICNs was similar within each species but potentially different between the two species. In support of our hypothesis, we found that a species difference in behavioral pulse number thresholds closely matched the species difference in neural pulse number thresholds. However, this relationship held only for ICNs that exhibited band-pass tuning for conspecific pulse rates. Together, these findings suggest that differences in temporal processing of a subset of ICNs provide a mechanistic explanation for reproductive isolation between two cryptic treefrog species.
Collapse
Affiliation(s)
- Saumya Gupta
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
| | - Rishi K. Alluri
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary J. Rose
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark A. Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
- Graduate Program in Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Barker AJ. Brains and speciation: Control of behavior. Curr Opin Neurobiol 2021; 71:158-163. [PMID: 34847485 DOI: 10.1016/j.conb.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
As organisms invade new ecological niches, new species are formed. Simultaneously, behavioral repertoires diverge to adapt to new environments and reproductive partners. Such behavioral modifications require changes in underlying neural circuitry and thus speciation events provide a unique advantage for studying brain evolution: allowing for direct comparisons between homologous neural circuits with distinct functional outputs. Here, I will consider how speciation events can reveal common motifs within brain evolution focusing on recent research across a wide range of phyla.
Collapse
Affiliation(s)
- Alison J Barker
- Max-Planck-Institute for Brain Research, Max-Planck-Institut fur Hirnforschung, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Gerhardt HC, Tucker MA, von Twickel A, Walkowiak W. Anuran Vocal Communication: Effects of Genome Size, Cell Number and Cell Size. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:137-146. [PMID: 34788770 DOI: 10.1159/000520913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/06/2021] [Indexed: 11/19/2022]
Abstract
Significant variation in genome size occurs among anuran amphibians and can affect cell size and number. In the gray treefrog complex in North America increases in cell size in autotriploids of the diploid (Hyla chrysoscelis) altered the temporal structure of mate-attracting vocalizations and auditory selectivity for these properties. Here we show that the tetraploid species (Hyla versicolor) also has significantly fewer brain neurons than H. chrysoscelis. With regard to cell size in tissues involved in vocal communication, spinal motor neurons were larger in tetraploids than in diploids and comparable to differences in erythrocyte size; smaller increases were found in one of the three auditory centers in the torus semicircularis. Future studies should address questions about how environmental conditions during development affect cell numbers and size and the causal relationships between these cellular changes and the vocal communication system.
Collapse
Affiliation(s)
- H Carl Gerhardt
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Mitch A Tucker
- Division of Biological Sciences, University of Missouri, Columbia, Missouri, USA
| | | | | |
Collapse
|
15
|
Milsom WK, Kinkead R, Hedrick MS, Gilmour K, Perry S, Gargaglioni L, Wang T. Evolution of vertebrate respiratory central rhythm generators. Respir Physiol Neurobiol 2021; 295:103781. [PMID: 34481078 DOI: 10.1016/j.resp.2021.103781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/03/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
Tracing the evolution of the central rhythm generators associated with ventilation in vertebrates is hindered by a lack of information surrounding key transitions. To begin with, central rhythm generation has been studied in detail in only a few species from four vertebrate groups, lamprey, anuran amphibians, turtles, and mammals (primarily rodents). Secondly, there is a lack of information regarding the transition from water breathing fish to air breathing amniotes (reptiles, birds, and mammals). Specifically, the respiratory rhythm generators of fish appear to be single oscillators capable of generating both phases of the respiratory cycle (expansion and compression) and projecting to motoneurons in cranial nerves innervating bucco-pharyngeal muscles. In the amniotes we find oscillators capable of independently generating separate phases of the respiratory cycle (expiration and inspiration) and projecting to pre-motoneurons in the ventrolateral medulla that in turn project to spinal motoneurons innervating thoracic and abdominal muscles (reptiles, birds, and mammals). Studies of the one group of amphibians that lie at this transition (the anurans), raise intriguing possibilities but, for a variety of reasons that we explore, also raise unanswered questions. In this review we summarize what is known about the rhythm generating circuits associated with breathing that arise from the different rhombomeric segments in each of the different vertebrate classes. Assuming oscillating circuits form in every pair of rhombomeres in every vertebrate during development, we trace what appears to be the evolutionary fate of each and highlight the questions that remain to be answered to properly understand the evolutionary transitions in vertebrate central respiratory rhythm generation.
Collapse
Affiliation(s)
- W K Milsom
- Department of Zoology, University of British Columbia, Canada.
| | - R Kinkead
- Département de Pédiatrie, Université Laval, Canada
| | - M S Hedrick
- Department of Biological Sciences, California State University, Hayward, CA, USA
| | - K Gilmour
- Department of Biology, University of Ottawa, Canada
| | - S Perry
- Department of Biology, University of Ottawa, Canada
| | - L Gargaglioni
- Departamento de Morfologia e Fisiologia Animal, UNESP, Jaboticabal, Brazil
| | - T Wang
- Department of Zoophysiology, Aarhus University, Denmark
| |
Collapse
|
16
|
Iyer AA, Briggman KL. Amphibian behavioral diversity offers insights into evolutionary neurobiology. Curr Opin Neurobiol 2021; 71:19-28. [PMID: 34481981 DOI: 10.1016/j.conb.2021.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022]
Abstract
Recent studies have served to emphasize the unique placement of amphibians, composed of more than 8000 species, in the evolution of the brain. We provide an overview of the three amphibian orders and their respective ecologies, behaviors, and brain anatomy. Studies have probed the origins of independently evolved parental care strategies in frogs and the biophysical principles driving species-specific differences in courtship vocalization patterns. Amphibians are also important models for studying the central control of movement, especially in the context of the vertebrate origin of limb-based locomotion. By highlighting the versatility of amphibians, we hope to see a further adoption of anurans, urodeles, and gymnophionans as model systems for the evolution and neural basis of behavior across vertebrates.
Collapse
Affiliation(s)
- Aditya A Iyer
- Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, Bonn, Germany
| | - Kevin L Briggman
- Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, Bonn, Germany.
| |
Collapse
|
17
|
Yamaguchi A. Ex Vivo Brain Preparation to Analyze Vocal Pathways of Xenopus Frogs. Cold Spring Harb Protoc 2021; 2021:pdb.prot106872. [PMID: 33827966 DOI: 10.1101/pdb.prot106872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Understanding the neural basis of behavior is a challenging task for technical reasons. Most methods of recording neural activity require animals to be immobilized, but neural activity associated with most behavior cannot be recorded from an anesthetized, immobilized animal. Using amphibians, however, there has been some success in developing in vitro brain preparations that can be used for electrophysiological and anatomical studies. Here, we describe an ex vivo frog brain preparation from which fictive vocalizations (the neural activity that would have produced vocalizations had the brain been attached to the muscle) can be elicited repeatedly. When serotonin is applied to the isolated brains of male and female African clawed frogs, Xenopus laevis, laryngeal nerve activity that is a facsimile of those that underlie sex-specific vocalizations in vivo can be readily recorded. Recently, this preparation was successfully used in other species within the genus including Xenopus tropicalis and Xenopus victorianus This preparation allows a variety of techniques to be applied including extracellular and intracellular electrophysiological recordings and calcium imaging during vocal production, surgical and pharmacological manipulation of neurons to evaluate their impact on motor output, and tract tracing of the neural circuitry. Thus, the preparation is a powerful tool with which to understand the basic principles that govern the production of coherent and robust motor programs in vertebrates.
Collapse
Affiliation(s)
- Ayako Yamaguchi
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112-0840, USA
| |
Collapse
|
18
|
Schuppe ER, Rutter AR, Roberts TJ, Fuxjager MJ. Evolutionary and Biomechanical Basis of Drumming Behavior in Woodpeckers. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.649146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding how and why behavioral traits diversify during the course of evolution is a longstanding goal of organismal biologists. Historically, this topic is examined from an ecological perspective, where behavioral evolution is thought to occur in response to selection pressures that arise through different social and environmental factors. Yet organismal physiology and biomechanics also play a role in this process by defining the types of behavioral traits that are more or less likely to arise. Our paper explores the interplay between ecological, physiological, and mechanical factors that shape the evolution of an elaborate display in woodpeckers called the drum. Individuals produce this behavior by rapidly hammering their bill on trees in their habitat, and it serves as an aggressive signal during territorial encounters. We describe how different components of the display—namely, speed (bill strikes/beats sec–1), length (total number of beats), and rhythm—differentially evolve likely in response to sexual selection by male-male competition, whereas other components of the display appear more evolutionarily static, possibly due to morphological or physiological constraints. We synthesize research related to principles of avian muscle physiology and ecology to guide inferences about the biomechanical basis of woodpecker drumming. Our aim is to introduce the woodpecker as an ideal study system to study the physiological basis of behavioral evolution and how it relates to selection born through different ecological factors.
Collapse
|
19
|
Krienen FM, Goldman M, Zhang Q, C H Del Rosario R, Florio M, Machold R, Saunders A, Levandowski K, Zaniewski H, Schuman B, Wu C, Lutservitz A, Mullally CD, Reed N, Bien E, Bortolin L, Fernandez-Otero M, Lin JD, Wysoker A, Nemesh J, Kulp D, Burns M, Tkachev V, Smith R, Walsh CA, Dimidschstein J, Rudy B, S Kean L, Berretta S, Fishell G, Feng G, McCarroll SA. Innovations present in the primate interneuron repertoire. Nature 2020; 586:262-269. [PMID: 32999462 PMCID: PMC7957574 DOI: 10.1038/s41586-020-2781-z] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/01/2020] [Indexed: 12/18/2022]
Abstract
Primates and rodents, which descended from a common ancestor around 90 million years ago1, exhibit profound differences in behaviour and cognitive capacity; the cellular basis for these differences is unknown. Here we use single-nucleus RNA sequencing to profile RNA expression in 188,776 individual interneurons across homologous brain regions from three primates (human, macaque and marmoset), a rodent (mouse) and a weasel (ferret). Homologous interneuron types-which were readily identified by their RNA-expression patterns-varied in abundance and RNA expression among ferrets, mice and primates, but varied less among primates. Only a modest fraction of the genes identified as 'markers' of specific interneuron subtypes in any one species had this property in another species. In the primate neocortex, dozens of genes showed spatial expression gradients among interneurons of the same type, which suggests that regional variation in cortical contexts shapes the RNA expression patterns of adult neocortical interneurons. We found that an interneuron type that was previously associated with the mouse hippocampus-the 'ivy cell', which has neurogliaform characteristics-has become abundant across the neocortex of humans, macaques and marmosets but not mice or ferrets. We also found a notable subcortical innovation: an abundant striatal interneuron type in primates that had no molecularly homologous counterpart in mice or ferrets. These interneurons expressed a unique combination of genes that encode transcription factors, receptors and neuropeptides and constituted around 30% of striatal interneurons in marmosets and humans.
Collapse
Affiliation(s)
- Fenna M Krienen
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Melissa Goldman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qiangge Zhang
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ricardo C H Del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marta Florio
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert Machold
- NYU Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Arpiar Saunders
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kirsten Levandowski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heather Zaniewski
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Benjamin Schuman
- NYU Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
| | - Carolyn Wu
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alyssa Lutservitz
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Christopher D Mullally
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nora Reed
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elizabeth Bien
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura Bortolin
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marian Fernandez-Otero
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jessica D Lin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Kulp
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monika Burns
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Richard Smith
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Christopher A Walsh
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Jordane Dimidschstein
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bernardo Rudy
- NYU Neuroscience Institute, Langone Medical Center, New York University, New York, NY, USA
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, USA
| | - Leslie S Kean
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Sabina Berretta
- Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Gord Fishell
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
20
|
Barkan CL, Zornik E. Inspiring song: The role of respiratory circuitry in the evolution of vertebrate vocal behavior. Dev Neurobiol 2020; 80:31-41. [PMID: 32329162 DOI: 10.1002/dneu.22752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/18/2022]
Abstract
Vocalization is a common means of communication across vertebrates, but the evolutionary origins of the neural circuits controlling these behaviors are not clear. Peripheral mechanisms of sound production vary widely: fish produce sounds with a swimbladder or pectoral fins; amphibians, reptiles, and mammalians vocalize using a larynx; birds vocalize with a syrinx. Despite the diversity of vocal effectors across taxa, there are many similarities in the neural circuits underlying the control of these organs. Do similarities in vocal circuit structure and function indicate that vocal behaviors first arose in a single common ancestor, or have similar neural circuits arisen independently multiple times during evolution? In this review, we describe the hindbrain circuits that are involved in vocal production across vertebrates. Given that vocalization depends on respiration in most tetrapods, it is not surprising that vocal and respiratory hindbrain circuits across distantly related species are anatomically intermingled and functionally linked. Such vocal-respiratory circuit integration supports the hypothesis that vocal evolution involved the expansion and functional diversification of breathing circuits. Recent phylogenetic analyses, however, suggest vocal behaviors arose independently in all major tetrapod clades, indicating that similarities in vocal control circuits are the result of repeated co-options of respiratory circuits in each lineage. It is currently unknown whether vocal circuits across taxa are made up of homologous neurons, or whether vocal neurons in each lineage arose from developmentally and evolutionarily distinct progenitors. Integrative comparative studies of vocal neurons across brain regions and taxa will be required to distinguish between these two scenarios.
Collapse
Affiliation(s)
| | - Erik Zornik
- Biology Department, Reed College, Portland, OR, USA
| |
Collapse
|
21
|
Kéver L, Bass AH, Parmentier E, Chagnaud BP. Neuroanatomical and neurophysiological mechanisms of acoustic and weakly electric signaling in synodontid catfish. J Comp Neurol 2020; 528:2602-2619. [PMID: 32266714 PMCID: PMC7496807 DOI: 10.1002/cne.24920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/31/2022]
Abstract
To what extent do modifications in the nervous system and peripheral effectors contribute to novel behaviors? Using a combination of morphometric analysis, neuroanatomical tract‐tracing, and intracellular neuronal recording, we address this question in a sound‐producing and a weakly electric species of synodontid catfish, Synodontis grandiops, and Synodontis nigriventris, respectively. The same peripheral mechanism, a bilateral pair of protractor muscles associated with vertebral processes (elastic spring mechanism), is involved in both signaling systems. Although there were dramatic species differences in several morphometric measures, electromyograms provided strong evidence that simultaneous activation of paired protractor muscles accounts for an individual sound and electric discharge pulse. While the general architecture of the neural network and the intrinsic properties of the motoneuron population driving each target was largely similar, differences could contribute to species‐specific patterns in electromyograms and the associated pulse repetition rate of sounds and electric discharges. Together, the results suggest that adaptive changes in both peripheral and central characters underlie the transition from an ancestral sound to a derived electric discharge producing system, and thus the evolution of a novel communication channel among synodontid catfish. Similarities with characters in other sonic and weakly electric teleost fish provide a striking example of convergent evolution in functional adaptations underlying the evolution of the two signaling systems among distantly related taxa.
Collapse
Affiliation(s)
- Loïc Kéver
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, Liège, Belgium
| | - Andrew H Bass
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Eric Parmentier
- Laboratoire de Morphologie Fonctionnelle et Evolutive, Université de Liège, Liège, Belgium
| | - Boris P Chagnaud
- Department Biology II, Ludwig-Maximilians-University Munich, Planegg, Germany.,Institute for Biology, Karl-Franzens-University Graz, Graz, Austria
| |
Collapse
|
22
|
Kelley DB, Ballagh IH, Barkan CL, Bendesky A, Elliott TM, Evans BJ, Hall IC, Kwon YM, Kwong-Brown U, Leininger EC, Perez EC, Rhodes HJ, Villain A, Yamaguchi A, Zornik E. Generation, Coordination, and Evolution of Neural Circuits for Vocal Communication. J Neurosci 2020; 40:22-36. [PMID: 31896561 PMCID: PMC6939475 DOI: 10.1523/jneurosci.0736-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
In many species, vocal communication is essential for coordinating social behaviors including courtship, mating, parenting, rivalry, and alarm signaling. Effective communication requires accurate production, detection, and classification of signals, as well as selection of socially appropriate responses. Understanding how signals are generated and how acoustic signals are perceived is key to understanding the neurobiology of social behaviors. Here we review our long-standing research program focused on Xenopus, a frog genus which has provided valuable insights into the mechanisms and evolution of vertebrate social behaviors. In Xenopus laevis, vocal signals differ between the sexes, through development, and across the genus, reflecting evolutionary divergence in sensory and motor circuits that can be interrogated mechanistically. Using two ex vivo preparations, the isolated brain and vocal organ, we have identified essential components of the vocal production system: the sexually differentiated larynx at the periphery, and the hindbrain vocal central pattern generator (CPG) centrally, that produce sex- and species-characteristic sound pulse frequencies and temporal patterns, respectively. Within the hindbrain, we have described how intrinsic membrane properties of neurons in the vocal CPG generate species-specific vocal patterns, how vocal nuclei are connected to generate vocal patterns, as well as the roles of neurotransmitters and neuromodulators in activating the circuit. For sensorimotor integration, we identified a key forebrain node that links auditory and vocal production circuits to match socially appropriate vocal responses to acoustic features of male and female calls. The availability of a well supported phylogeny as well as reference genomes from several species now support analysis of the genetic architecture and the evolutionary divergence of neural circuits for vocal communication. Xenopus thus provides a vertebrate model in which to study vocal communication at many levels, from physiology, to behavior, and from development to evolution. As one of the most comprehensively studied phylogenetic groups within vertebrate vocal communication systems, Xenopus provides insights that can inform social communication across phyla.
Collapse
Affiliation(s)
- Darcy B Kelley
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027,
| | - Irene H Ballagh
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Zoology, University of British Columbia, Vancouver V6T132, Canada
| | - Charlotte L Barkan
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
| | - Andres Bendesky
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Taffeta M Elliott
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Psychology and Education, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801
| | - Ben J Evans
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Ian C Hall
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Benedictine University, Lisle, Illinois 60532
| | - Young Mi Kwon
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Ecology, Evolution and Environmental Biology and Zuckerman Mind, Brain, Behavior Institute, Columbia University, New York, New York 10027
| | - Ursula Kwong-Brown
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Elizabeth C Leininger
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Division of Natural Sciences, New College of Florida, Sarasota, Florida 34243
| | - Emilie C Perez
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Heather J Rhodes
- Department of Biology, Boston University, Boston, Massachusetts 02215
- Department of Biology, Denison University, Granville, Ohio 43023, and
| | - Avelyne Villain
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
| | - Ayako Yamaguchi
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| | - Erik Zornik
- Department of Biological Sciences and Program in Neurobiology and Behavior, Columbia University, New York, New York 10027
- Department of Biology, Reed College, Portland, Oregon 97202
- Department of Biology, Boston University, Boston, Massachusetts 02215
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
23
|
Sotelo MI, Bingman VP, Muzio RN. The Mating Call of the Terrestrial Toad, Rhinella arenarum, as a Cue for Spatial Orientation and Its Associated Brain Activity. BRAIN, BEHAVIOR AND EVOLUTION 2019; 94:7-17. [PMID: 31770764 DOI: 10.1159/000504122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 11/19/2022]
Abstract
Acoustic communication is essential for reproduction and predator avoidance in many anuran species. For example, mating calls are generally produced by males and represent a conspicuous communication signal employed during the breeding season. Although anuran mating calls have been largely studied to analyze content and phonotaxis toward choruses, they are rarely discussed as sources of information guiding spatial behavior in broader contexts. This is striking if we consider that previous studies have shown anurans to be impressive navigators. In the current study, we investigated whether terrestrial toad (Rhinella arenarum) males can use a mating call as a spatial cue to locate a water reward in a laboratory maze. Male toads could indeed learn the location of a reward guided by a mating call. This navigational ability, as indicated by c-Fos, was associated with greater neuronal activity in the telencephalic hippocampal formation (HF; also referred to in amphibians as medial pallium), the medial septum (MS), and the central amygdala (CeA). HF and MS are telencephalic structures associated with spatial navigation in mammals and other vertebrates. The CeA, by contrast, has been studied in the context of acoustic processing and communication in other amphibian species. The results are discussed in the framework of an evolutionary conserved, HF-septal spatial-cognitive network shared by amphibians and mammals.
Collapse
Affiliation(s)
- María I Sotelo
- Department of Psychology, Literature, Science and Art (LSA), University of Michigan, Ann Arbor, Michigan, USA,
| | - Verner P Bingman
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, Ohio, USA
| | - Rubén N Muzio
- Instituto de Biología y Medicina Experimental (IBYME-CONICET) and Facultad de, Psicología, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
24
|
Barkan CL, Zornik E. Feedback to the future: motor neuron contributions to central pattern generator function. ACTA ACUST UNITED AC 2019; 222:222/16/jeb193318. [PMID: 31420449 DOI: 10.1242/jeb.193318] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Motor behaviors depend on neural signals in the brain. Regardless of where in the brain behavior patterns arise, the central nervous system sends projections to motor neurons, which in turn project to and control temporally appropriate muscle contractions; thus, motor neurons are traditionally considered the last relay from the central nervous system to muscles. However, in an array of species and motor systems, an accumulating body of evidence supports a more complex role of motor neurons in pattern generation. These studies suggest that motor neurons not only relay motor patterns to the periphery, but directly contribute to pattern generation by providing feedback to upstream circuitry. In spinal and hindbrain circuits in a variety of animals - including flies, worms, leeches, crustaceans, rodents, birds, fish, amphibians and mammals - studies have indicated a crucial role for motor neuron feedback in maintaining normal behavior patterns dictated by the activity of a central pattern generator. Hence, in this Review, we discuss literature examining the role of motor neuron feedback across many taxa and behaviors, and set out to determine the prevalence of motor neuron participation in motor circuits.
Collapse
Affiliation(s)
| | - Erik Zornik
- Biology Department, Reed College, Portland, OR 97202, USA
| |
Collapse
|
25
|
Neural Evolution of Context-Dependent Fly Song. Curr Biol 2019; 29:1089-1099.e7. [PMID: 30880014 DOI: 10.1016/j.cub.2019.02.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/21/2018] [Accepted: 02/05/2019] [Indexed: 01/06/2023]
Abstract
It is unclear where in the nervous system evolutionary changes tend to occur. To localize the source of neural evolution that has generated divergent behaviors, we developed a new approach to label and functionally manipulate homologous neurons across Drosophila species. We examined homologous descending neurons that drive courtship song in two species that sing divergent song types and localized relevant evolutionary changes in circuit function downstream of the intrinsic physiology of these descending neurons. This evolutionary change causes different species to produce divergent motor patterns in similar social contexts. Artificial stimulation of these descending neurons drives multiple song types, suggesting that multifunctional properties of song circuits may facilitate rapid evolution of song types.
Collapse
|
26
|
Kwong-Brown U, Tobias ML, Elias DO, Hall IC, Elemans CPH, Kelley DB. The return to water in ancestral Xenopus was accompanied by a novel mechanism for producing and shaping vocal signals. eLife 2019; 8:e39946. [PMID: 30618379 PMCID: PMC6324873 DOI: 10.7554/elife.39946] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
Listeners locate potential mates using species-specific vocal signals. As tetrapods transitioned from water to land, lungs replaced gills, allowing expiration to drive sound production. Some frogs then returned to water. Here we explore how air-driven sound production changed upon re-entry to preserve essential acoustic information on species identity in the secondarily aquatic frog genus Xenopus. We filmed movements of cartilage and muscles during evoked sound production in isolated larynges. Results refute the current theory for Xenopus vocalization, cavitation, and favor instead sound production by mechanical excitation of laryngeal resonance modes following rapid separation of laryngeal arytenoid discs. Resulting frequency resonance modes (dyads) are intrinsic to the larynx rather than due to neuromuscular control. Dyads are a distinctive acoustic signature. While their component frequencies overlap across species, their ratio is shared within each Xenopus clade providing information on species identity that could facilitate both conspecific localization and ancient species divergence. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Ursula Kwong-Brown
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Martha L Tobias
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Damian O Elias
- Department of Environmental Science, Policy and ManagementUniversity of California, BerkeleyBerkeleyUnited States
| | - Ian C Hall
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| | - Coen PH Elemans
- Department of BiologyUniversity of Southern DenmarkCampusvejDenmark
| | - Darcy B Kelley
- Department of Biological SciencesColumbia UniversityNew YorkUnited States
| |
Collapse
|