1
|
Feeney SP, McCarthy JM, Petruconis CR, Tudor JC. Sleep loss is a metabolic disorder. Sci Signal 2025; 18:eadp9358. [PMID: 40198749 DOI: 10.1126/scisignal.adp9358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 03/12/2025] [Indexed: 04/10/2025]
Abstract
Sleep loss dysregulates cellular metabolism and energy homeostasis. Highly metabolically active cells, such as neurons, enter a catabolic state during periods of sleep loss, which consequently disrupts physiological functioning. Specific to the central nervous system, sleep loss results in impaired synaptogenesis and long-term memory, effects that are also characteristic of neurodegenerative diseases. In this review, we describe how sleep deprivation increases resting energy expenditure, leading to the development of a negative energy balance-a state with insufficient metabolic resources to support energy expenditure-in highly active cells like neurons. This disruption of energetic homeostasis alters the balance of metabolites, including adenosine, lactate, and lipid peroxides, such that energetically costly processes, such as synapse formation, are attenuated. During sleep loss, metabolically active cells shunt energetic resources away from those processes that are not acutely essential, like memory formation, to support cell survival. Ultimately, these findings characterize sleep loss as a metabolic disorder.
Collapse
Affiliation(s)
- Sierra P Feeney
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jordan M McCarthy
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Cecilia R Petruconis
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jennifer C Tudor
- Department of Biology, College of Arts and Sciences, Saint Joseph's University, Philadelphia, PA 19131, USA
| |
Collapse
|
2
|
Nardi L, Bicker F, Maier J, Waisman A, Schmeisser MJ. Role of CYLD in brain physiology and pathology. J Mol Med (Berl) 2025; 103:255-263. [PMID: 39945824 PMCID: PMC11880164 DOI: 10.1007/s00109-025-02521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
A common hallmark of several neuropsychiatric conditions is an altered protein homeostasis. In this context, ubiquitination has emerged as one of the most important post-translational modifications, regulating various intracellular processes such as protein degradation, autophagy, protein activation, and protein-protein interactions. Ubiquitination can be reversed by the activity of several deubiquitinating enzymes (DUBs), and it is of utmost importance that both processes remain in balance. Understanding the extent to which this system is involved in specific brain disorders opens up new possibilities for treating a broader spectrum of patients by targeting this central hub. In recent years, the attention to one of those DUBs, called CYLD, has increased sharply, but with relatively little focus on the central nervous system (CNS): 55 results for "CYLD Brain" vs. 895 results for "CYLD" in total (NCBI Pubmed search, 17.01.2025). Thus, we aim to provide a first overview of the new findings from the past decade specifically related to the role of CYLD in the physiology and pathology of the CNS.
Collapse
Affiliation(s)
- Leonardo Nardi
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Frank Bicker
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jannik Maier
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Ari Waisman
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-Universitys, Mainz, Germany
| | - Michael J Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.
| |
Collapse
|
3
|
Miao J, Zhang Y, Su C, Zheng Q, Guo J. Insulin-Like Growth Factor Signaling in Alzheimer's Disease: Pathophysiology and Therapeutic Strategies. Mol Neurobiol 2025; 62:3195-3225. [PMID: 39240280 PMCID: PMC11790777 DOI: 10.1007/s12035-024-04457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia among the elderly population, posing a significant public health challenge due to limited therapeutic options that merely delay cognitive decline. AD is associated with impaired energy metabolism and reduced neurotrophic signaling. The insulin-like growth factor (IGF) signaling pathway, crucial for central nervous system (CNS) development, metabolism, repair, cognition, and emotion regulation, includes IGF-1, IGF-2, IGF-1R, IGF-2R, insulin receptor (IR), and six insulin-like growth factor binding proteins (IGFBPs). Research has identified abnormalities in IGF signaling in individuals with AD and AD models. Dysregulated expression of IGFs, receptors, IGFBPs, and disruptions in downstream phosphoinositide 3-kinase-protein kinase B (PI3K/AKT) and mitogen-activated protein kinase (MAPK) pathways collectively increase AD susceptibility. Studies suggest modulating the IGF pathway may ameliorate AD pathology and cognitive decline. This review explores the CNS pathophysiology of IGF signaling in AD progression and assesses the potential of targeting the IGF system as a novel therapeutic strategy. Further research is essential to elucidate how aberrant IGF signaling contributes to AD development, understand underlying molecular mechanisms, and evaluate the safety and efficacy of IGF-based treatments.
Collapse
Affiliation(s)
- Jie Miao
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yanli Zhang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Department of Neurology, Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), Taiyuan, 030001, Shanxi, China
| | - Chen Su
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiandan Zheng
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
4
|
Si L, An Y, Zhou J, Lai Y. Neuroprotective effects of baicalin and baicalein on the central nervous system and the underlying mechanisms. Heliyon 2025; 11:e41002. [PMID: 39758400 PMCID: PMC11699331 DOI: 10.1016/j.heliyon.2024.e41002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Baicalin and baicalein are the primary flavonoids derived from the desiccated root of Scutellaria baicalensis, which is a member of the Lamiaceae family; these flavonoids have diverse pharmacological properties and show significant potential for the management of central nervous system disorders. Multiple studies have indicated that these substances effectively reduce the severity of illnesses such as depression, stroke, and degenerative disorders of the central nervous system by exerting antioxidant and anti-inflammatory effects, regulating programmed cell death, and reducing mitochondrial malfunction. Recent studies have highlighted the connection between the accumulation of iron and the ability of baicalein to protect the nervous system. Given the diverse therapeutic effects of baicalein, this review aims to thoroughly investigate the regulatory pharmacological mechanisms through which baicalein influences the development of central nervous system disorders. By elucidating these mechanisms, this review contributes to the development of therapeutic approaches that target disorders of the central nervous system.
Collapse
Affiliation(s)
- Lujia Si
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yupu An
- Acupunture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiahang Zhou
- College of Humanities and Social Sciences, North University of China, Taiyuan, China
| | - Yu Lai
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Chen R, Lu X, Xiao A, Ma J. Role of insulin-like growth factor-2 in Alzheimer's disease induced memory impairment and underlying mechanisms. Front Cell Neurosci 2025; 18:1520253. [PMID: 39830039 PMCID: PMC11739150 DOI: 10.3389/fncel.2024.1520253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent type of dementia. Treatments for AD do not reverse the loss of brain function; rather, they decrease the rate of cognitive deterioration. Current treatments are ineffective in part because they do not address neurotrophic mechanisms, which are believed to be critical for functional recovery. Given that structural losses are assumed to be the root cause of cognitive impairment in AD, strengthening neurotrophic pathways may be a useful preventative therapeutic approach. Insulin-like growth factor-2 (IGF2), which is widely expressed in the central nervous system (CNS), has emerged as a crucial mechanism of synaptic plasticity and learning and memory, and many studies have indicated that this neurotrophic peptide is a viable candidate for treating and preventing AD-induced cognitive decline. An increase in IGF2 levels improves memory in healthy animals and alleviates several symptoms associated with neurodegenerative disorders. These effects are primarily caused by the IGF2 receptor, which is widely expressed in neurons and controls protein trafficking, synthesis, and degradation. However, the use of IGF2 as a potential target for the development of novel pharmaceuticals to treat AD-induced memory impairment needs further investigation. We compiled recent studies on the role of IGF2 in AD-associated memory issues and summarized the current knowledge regarding IGF2 expression and function in the brain, specifically in AD-induced memory impairment.
Collapse
Affiliation(s)
- Ruiqi Chen
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xing Lu
- Department of Gynecological Nursing, West China Second Hospital, Sichuan University, Chengdu, China
| | - Anqi Xiao
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Junpeng Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
- Department of Neurosurgery, West China Tianfu Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Wiens KR, Wasti N, Ulloa OO, Klegeris A. Diversity of Microglia-Derived Molecules with Neurotrophic Properties That Support Neurons in the Central Nervous System and Other Tissues. Molecules 2024; 29:5525. [PMID: 39683685 DOI: 10.3390/molecules29235525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Microglia, the brain immune cells, support neurons by producing several established neurotrophic molecules including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Modern analytical techniques have identified numerous phenotypic states of microglia, each associated with the secretion of a diverse set of substances, which likely include not only canonical neurotrophic factors but also other less-studied molecules that can interact with neurons and provide trophic support. In this review, we consider the following eight such candidate cytokines: oncostatin M (OSM), leukemia inhibitory factor (LIF), activin A, colony-stimulating factor (CSF)-1, interleukin (IL)-34, growth/differentiation factor (GDF)-15, fibroblast growth factor (FGF)-2, and insulin-like growth factor (IGF)-2. The available literature provides sufficient evidence demonstrating murine cells produce these cytokines and that they exhibit neurotrophic activity in at least one neuronal model. Several distinct types of neurotrophic activity are identified that only partially overlap among the cytokines considered, reflecting either their distinct intrinsic properties or lack of comprehensive studies covering the full spectrum of neurotrophic effects. The scarcity of human-specific studies is another significant knowledge gap revealed by this review. Further studies on these potential microglia-derived neurotrophic factors are warranted since they may be used as targeted treatments for diverse neurological disorders.
Collapse
Affiliation(s)
- Kennedy R Wiens
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Naved Wasti
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Omar Orlando Ulloa
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| | - Andis Klegeris
- Laboratory of Cellular and Molecular Pharmacology, Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
7
|
Ramires Júnior OV, Silveira JS, Gusso D, Krupp Prauchner GR, Ferrary Deniz B, Almeida WD, Pereira LO, Wyse AT. Homocysteine decreases VEGF, EGF, and TrkB levels and increases CCL5/RANTES in the hippocampus: Neuroprotective effects of rivastigmine and ibuprofen. Chem Biol Interact 2024; 403:111260. [PMID: 39357784 DOI: 10.1016/j.cbi.2024.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Abstract
Homocysteine (Hcy) is produced through methionine transmethylation. Elevated Hcy levels are termed Hyperhomocysteinemia (HHcy) and represent a risk factor for neurodegenerative conditions such as Alzheimer's disease. This study aimed to explore the impact of mild HHcy and the neuroprotective effects of ibuprofen and rivastigmine via immunohistochemical analysis of glial markers (Iba-1 and GFAP). Additionally, we assessed levels of vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), chemokine ligand 5 (CCL5/RANTES), CX3C chemokine ligand 1 (CX3CL1), and the NGF/p75NTR/tropomyosin kinase B (TrkB) pathway in the hippocampus of adult rats. Mild chronic HHcy was induced chemically in Wistar rats by subcutaneous administration of Hcy (4 mg/kg body weight) twice daily for 30 days. Rivastigmine (0.5 mg/kg) and ibuprofen (40 mg/kg) were administered intraperitoneally once daily. Results revealed elevated levels of CCL5/RANTES and reduced levels of VEGF, EGF, and TrkB in the hippocampus of HHcy-exposed rats. Rivastigmine mitigated the neurotoxic effects of HHcy by increasing TrkB and VEGF levels. Conversely, ibuprofen attenuated CCL5/RANTES levels against the neurotoxicity of HHcy, significantly reducing this chemokine's levels. HHcy-induced neurochemical impairment in the hippocampus may jeopardize neurogenesis, synapse formation, axonal transport, and inflammatory balance, leading to neurodegeneration. Treatments with rivastigmine and ibuprofen alleviated some of these detrimental effects. Reversing HHcy-induced damage through these compounds could serve as a potential neuroprotective strategy against brain damage.
Collapse
Affiliation(s)
- Osmar Vieira Ramires Júnior
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Josiane Silva Silveira
- Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Darlan Gusso
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Gustavo Ricardo Krupp Prauchner
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil
| | - Bruna Ferrary Deniz
- Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Fisiologia e Farmacologia, Instiruto de Biologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wellington de Almeida
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lenir Orlandi Pereira
- Program in Neurosciences, ICBS, Federal Universityof Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Ciências Morfológicas, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Angela Ts Wyse
- Program in Biological Sciences: Biochemistry, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Neuroprotection and Neurometabolic Diseases, Department of Biochemistry, ICBS, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Zip code 90035003, Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Kaltschmidt B, Czaniera NJ, Schulten W, Kaltschmidt C. NF-κB in Alzheimer's Disease: Friend or Foe? Opposite Functions in Neurons and Glial Cells. Int J Mol Sci 2024; 25:11353. [PMID: 39518906 PMCID: PMC11545113 DOI: 10.3390/ijms252111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a devasting neurodegenerative disease afflicting mainly glutamatergic neurons together with a massive neuroinflammation mediated by the transcription factor NF-κB. A 65%-plus increase in Alzheimer's patients by 2050 might be a major threat to society. Hallmarks of AD are neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau and amyloid beta (Aβ) plaques. Here, we review the potential involvement of transcription factor NF-κB by hereditary mutations of the tumor necrosis factor pathway in AD patients. One of the greatest genetic risk factors is APOE4. Recently, it was shown that the APOE4 allele functions as a null allele in human astrocytes not repressing NF-κB anymore. Moreover, NF-κB seems to be involved in the repair of DNA double-strand breaks during healthy learning and memory, a function blunted in AD. NF-κB could be a friend to healthy neurons by repressing apoptosis and necroptosis. But a loss of neuronal NF-κB and activation of glial NF-κB in AD makes it a foe of neuronal survival. Hopeful therapies include TNFR2 receptor bodies relieving the activation of glial NF-κB by TNFα.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), 33615 Bielefeld, Germany
| | - Nele Johanne Czaniera
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
| | - Wiebke Schulten
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
| | - Christian Kaltschmidt
- Department of Cell Biology, University of Bielefeld, 33615 Bielefeld, Germany; (N.J.C.); (W.S.); (C.K.)
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Ferrari RR, Fantini V, Garofalo M, Di Gerlando R, Dragoni F, Rizzo B, Spina E, Rossi M, Calatozzolo C, Profka X, Ceroni M, Guaita A, Davin A, Gagliardi S, Poloni TE. A Map of Transcriptomic Signatures of Different Brain Areas in Alzheimer's Disease. Int J Mol Sci 2024; 25:11117. [PMID: 39456899 PMCID: PMC11508373 DOI: 10.3390/ijms252011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that progressively involves brain regions with an often-predictable pattern. Damage to the brain appears to spread and worsen with time, but the molecular mechanisms underlying the region-specific distribution of AD pathology at different stages of the disease are still under-investigated. In this study, a whole-transcriptome analysis was carried out on brain samples from the hippocampus (HI), temporal and parietal cortices (TC and PC, respectively), cingulate cortex (CG), and substantia nigra (SN) of six subjects with a definite AD diagnosis and three healthy age-matched controls in duplicate. The transcriptomic results showed a greater number of differentially expressed genes (DEGs) in the TC (1571) and CG (1210) and a smaller number of DEGs in the HI (206), PC (109), and SN (60). Furthermore, the GSEA showed a difference between the group of brain areas affected early (HI and TC) and the group of areas that were subsequently involved (PC, CG, and SN). Notably, in the HI and TC, there was a significant downregulation of shared DEGs primarily involved in synaptic transmission, while in the PC, CG, and SN, there was a significant downregulation of genes primarily involved in protein folding and trafficking. The course of AD could follow a definite time- and severity-related pattern that arises from protein misfolding, as observed in the PC, CG, and SN, and leads to synaptic impairment, as observed in the HI and TC. Therefore, a map of the molecular and biological processes involved in AD pathogenesis may be traced. This could aid in the discovery of novel biological targets in order to develop effective and well-timed therapeutic approaches.
Collapse
Affiliation(s)
- Riccardo Rocco Ferrari
- Department of Brain and Behavioral Sciences, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
| | - Valentina Fantini
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
- Laboratory of Translational Research, Azienda USL-IRCCS of Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
| | - Maria Garofalo
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Rosalinda Di Gerlando
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Via Adolfo Ferrata 9, 27100 Pavia, Italy
| | - Francesca Dragoni
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Erica Spina
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
| | - Michele Rossi
- Unity of Biostatistics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Xhulja Profka
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Mauro Ceroni
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Antonio Guaita
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
| | - Annalisa Davin
- Laboratory of Neurobiology and Neurogenetics, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (V.F.); (E.S.); (A.G.)
| | - Stella Gagliardi
- Molecular Biology and Transcriptomic Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy; (M.G.); (R.D.G.); (F.D.); (B.R.); (S.G.)
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi Cenci Foundation, Corso San Martino 10, 20081 Abbiategrasso, Italy; (C.C.); (X.P.); (M.C.); (T.E.P.)
- Department of Rehabilitation, ASP Golgi-Redaelli, Piazza E. Samek Lodovici 5, 20081 Abbiategrasso, Italy
| |
Collapse
|
10
|
Noh MH, Kang JM, Miller AA, Nguyen G, Huang M, Shim JS, Bueso-Perez AJ, Murphy SA, Rivera-Caraballo KA, Otani Y, Kim E, Yoo SH, Yan Y, Banasavadi-Siddegowda Y, Nakashima H, Chiocca EA, Kaur B, Zhao Z, Lee TJ, Yoo JY. Targeting IGF2 to reprogram the tumor microenvironment for enhanced viro-immunotherapy. Neuro Oncol 2024; 26:1602-1616. [PMID: 38853689 PMCID: PMC11376453 DOI: 10.1093/neuonc/noae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The FDA approval of oncolytic herpes simplex-1 virus (oHSV) therapy underscores its therapeutic promise and safety as a cancer immunotherapy. Despite this promise, the current efficacy of oHSV is significantly limited to a small subset of patients largely due to the resistance in tumor and tumor microenvironment (TME). METHODS RNA sequencing (RNA-Seq) was used to identify molecular targets of oHSV resistance. Intracranial human and murine glioma or breast cancer brain metastasis (BCBM) tumor-bearing mouse models were employed to elucidate the mechanism underlying oHSV therapy-induced resistance. RESULTS Transcriptome analysis identified IGF2 as one of the top-secreted proteins following oHSV treatment. Moreover, IGF2 expression was significantly upregulated in 10 out of 14 recurrent GBM patients after treatment with oHSV, rQNestin34.5v.2 (71.4%; P = .0020) (ClinicalTrials.gov, NCT03152318). Depletion of IGF2 substantially enhanced oHSV-mediated tumor cell killing in vitro and improved survival of mice bearing BCBM tumors in vivo. To mitigate the oHSV-induced IGF2 in the TME, we constructed a novel oHSV, oHSV-D11mt, secreting a modified IGF2R domain 11 (IGF2RD11mt) that acts as IGF2 decoy receptor. Selective blocking of IGF2 by IGF2RD11mt significantly increased cytotoxicity, reduced oHSV-induced neutrophils/PMN-MDSCs infiltration, and reduced secretion of immune suppressive/proangiogenic cytokines, while increased CD8 + cytotoxic T lymphocytes (CTLs) infiltration, leading to enhanced survival in GBM or BCBM tumor-bearing mice. CONCLUSIONS This is the first study reporting that oHSV-induced secreted IGF2 exerts a critical role in resistance to oHSV therapy, which can be overcome by oHSV-D11mt as a promising therapeutic advance for enhanced viro-immunotherapy.
Collapse
Affiliation(s)
- Min Hye Noh
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jin Muk Kang
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- Department of Pediatric Hematology & Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Alexandra A Miller
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Grace Nguyen
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Minxin Huang
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ji Seon Shim
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Alberto J Bueso-Perez
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sara A Murphy
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Georgia Cancer Center and Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Kimberly A Rivera-Caraballo
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Georgia Cancer Center and Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eunju Kim
- Department of Food and Nutriton, Kongju National University, Yesan, Chungnam, South Korea
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yuanqing Yan
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yeshavanth Banasavadi-Siddegowda
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Maryland, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, Maryland, USA
| | - Balveen Kaur
- Georgia Cancer Center and Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tae Jin Lee
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ji Young Yoo
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Science, Houston, Texas, USA
- Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
11
|
Wang M, Wei T, Yu C, Li R, Yin Y, Yang H, Di R, Xia X, Qin Q, Tang Y. Integrative Metabolomics and Whole Transcriptome Sequencing Reveal Role for TREM2 in Metabolism Homeostasis in Alzheimer's Disease. Mol Neurobiol 2024; 61:4188-4202. [PMID: 38066402 DOI: 10.1007/s12035-023-03840-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/27/2023] [Indexed: 07/11/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia worldwide. Dysregulation of various metabolism pathways may mediate the development of AD pathology and cognitive dysfunction. Variants of triggering receptor expressed on myeloid cells-2 (TREM2) are known to increase the risk of developing AD. TREM2 plays a role in AD development by maintaining cellular energy and biosynthesis, but the precise mechanism through which it accomplishes this is unknown. Metabolomic analysis of hippocampal tissue from APP/PS1 and APP/PS1-TREM2 knockout (KO) mice found that TREM2 KO was associated with abnormalities in several metabolism pathways, and the effect was particularly pronounced in lipid metabolism and glucose metabolism pathways. Consistently, transcriptomic analysis of these mice determined that most differentially expressed genes were involved in energy metabolism pathways. We screened seven differentially expressed genes in APP/PS1-TREM2 KO mice that may influence AD development by altering energy metabolism. Integrative analysis of the metabolomic and transcriptomic profiles showed that TREM2 may regulate lipid metabolism and sphingolipid metabolism by affecting lipoprotein lipase (LPL) expression, thereby influencing AD progression. Our results prompt further studies of the interactions among TREM2, LPL, glucolipid metabolism, and sphingolipid metabolism in AD to identify new diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Meng Wang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Tao Wei
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Chaoji Yu
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Ruiyang Li
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yunsi Yin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Hanchen Yang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Run Di
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Xinyi Xia
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Qi Qin
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China.
| | - Yi Tang
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
- National Center for Neurological Disorders, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
12
|
González-Flores D, Márquez A, Casimiro I. Oxidative Effects in Early Stages of Embryo Development Due to Alcohol Consumption. Int J Mol Sci 2024; 25:4100. [PMID: 38612908 PMCID: PMC11012856 DOI: 10.3390/ijms25074100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Alcohol, a widely consumed drug, exerts significant toxic effects on the human organism. This review focuses on its impact during fetal development, when it leads to a spectrum of disorders collectively termed Fetal Alcohol Spectrum Disorders (FASD). Children afflicted by FASD exhibit distinct clinical manifestations, including facial dysmorphism, delayed growth, and neurological and behavioral disorders. These behavioral issues encompass diminished intellectual capacity, memory impairment, and heightened impulsiveness. While the precise mechanisms underlying alcohol-induced fetal damage remain incompletely understood, research indicates a pivotal role for reactive oxygen species (ROS) that are released during alcohol metabolism, inciting inflammation at the cerebral level. Ethanol metabolism amplifies the generation of oxidant molecules, inducing through alterations in enzymatic and non-enzymatic systems responsible for cellular homeostasis. Alcohol consumption disrupts endogenous enzyme activity and fosters lipid peroxidation in consumers, potentially affecting the developing fetus. Addressing this concern, administration of metformin during the prenatal period, corresponding to the third trimester of human pregnancy, emerges as a potential therapeutic intervention for mitigating FASD. This proposed approach holds promise for ameliorating the adverse effects of alcohol exposure on fetal development and warrants further investigation.
Collapse
Affiliation(s)
- David González-Flores
- Department of Anatomy, Cell Biology and Zoology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Antonia Márquez
- Department of Anatomy, Cell Biology and Zoology, Faculty of Medicine and Health Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - Ilda Casimiro
- Department of Anatomy, Cell Biology and Zoology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain;
| |
Collapse
|
13
|
Pandey K, Bessières B, Sheng SL, Taranda J, Osten P, Sandovici I, Constancia M, Alberini CM. Neuronal activity drives IGF2 expression from pericytes to form long-term memory. Neuron 2023; 111:3819-3836.e8. [PMID: 37788670 PMCID: PMC10843759 DOI: 10.1016/j.neuron.2023.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Investigations of memory mechanisms have been, thus far, neuron centric, despite the brain comprising diverse cell types. Using rats and mice, we assessed the cell-type-specific contribution of hippocampal insulin-like growth factor 2 (IGF2), a polypeptide regulated by learning and required for long-term memory formation. The highest level of hippocampal IGF2 was detected in pericytes, the multi-functional mural cells of the microvessels that regulate blood flow, vessel formation, the blood-brain barrier, and immune cell entry into the central nervous system. Learning significantly increased pericytic Igf2 expression in the hippocampus, particularly in the highly vascularized stratum lacunosum moleculare and stratum moleculare layers of the dentate gyrus. Igf2 increases required neuronal activity. Regulated hippocampal Igf2 knockout in pericytes, but not in fibroblasts or neurons, impaired long-term memories and blunted the learning-dependent increase of neuronal immediate early genes (IEGs). Thus, neuronal activity-driven signaling from pericytes to neurons via IGF2 is essential for long-term memory.
Collapse
Affiliation(s)
- Kiran Pandey
- Center for Neural Science, New York University, New York, NY 10003, USA
| | | | - Susan L Sheng
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Julian Taranda
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ionel Sandovici
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Miguel Constancia
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Institute of Metabolic Science, Addenbrookes Hospital, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
14
|
Zhang M, Zhang Y, Xu Q, Crawford J, Qian C, Wang GH, Qian J, Dong XZ, Pletnikov MV, Liu CM, Zhou FQ. Neuronal Histone Methyltransferase EZH2 Regulates Neuronal Morphogenesis, Synaptic Plasticity, and Cognitive Behavior in Mice. Neurosci Bull 2023; 39:1512-1532. [PMID: 37326884 PMCID: PMC10533778 DOI: 10.1007/s12264-023-01074-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/09/2023] [Indexed: 06/17/2023] Open
Abstract
The histone methyltransferase enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2)-mediated trimethylation of histone H3 lysine 27 (H3K27me3) regulates neural stem cell proliferation and fate specificity through silencing different gene sets in the central nervous system. Here, we explored the function of EZH2 in early post-mitotic neurons by generating a neuron-specific Ezh2 conditional knockout mouse line. The results showed that a lack of neuronal EZH2 led to delayed neuronal migration, more complex dendritic arborization, and increased dendritic spine density. Transcriptome analysis revealed that neuronal EZH2-regulated genes are related to neuronal morphogenesis. In particular, the gene encoding p21-activated kinase 3 (Pak3) was identified as a target gene suppressed by EZH2 and H3K27me3, and expression of the dominant negative Pak3 reversed Ezh2 knockout-induced higher dendritic spine density. Finally, the lack of neuronal EZH2 resulted in impaired memory behaviors in adult mice. Our results demonstrated that neuronal EZH2 acts to control multiple steps of neuronal morphogenesis during development, and has long-lasting effects on cognitive function in adult mice.
Collapse
Affiliation(s)
- Mei Zhang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Yong Zhang
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Qian Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Joshua Crawford
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Cheng Qian
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Guo-Hua Wang
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Xin-Zhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Chang-Mei Liu
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA.
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| |
Collapse
|
15
|
Alberini CM. IGF2 in memory, neurodevelopmental disorders, and neurodegenerative diseases. Trends Neurosci 2023; 46:488-502. [PMID: 37031050 PMCID: PMC10192130 DOI: 10.1016/j.tins.2023.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/27/2023] [Accepted: 03/12/2023] [Indexed: 04/08/2023]
Abstract
Insulin-like growth factor 2 (IGF2) emerged as a critical mechanism of synaptic plasticity and learning and memory. Deficits in IGF2 in the brain, serum, or cerebrospinal fluid (CSF) are associated with brain diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Increasing IGF2 levels enhances memory in healthy animals and reverses numerous symptoms in laboratory models of aging, neurodevelopmental disorders, and neurodegenerative diseases. These effects occur via the IGF2 receptor (IGF2R) - a receptor that is highly expressed in neurons and regulates protein trafficking, synthesis, and degradation. Here, I summarize the current knowledge regarding IGF2 expression and functions in the brain, particularly in memory, and propose a novel conceptual model for IGF2/IGF2R mechanisms of action in brain health and diseases.
Collapse
|
16
|
Liu Y, Yuan Y, Yan Y, Wang R, Wang Z, Liu X, Zhang Y, Hua J, Wang Y, Zhao L. Mitochondrial pyruvate carrier 1 alleviates hypoxic-ischemic brain injury in rats. Life Sci 2023; 325:121686. [PMID: 37030616 DOI: 10.1016/j.lfs.2023.121686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
AIMS Mitochondrial dysfunction is a critical pathological change in cerebral ischemia. Mitochondrial pyruvate carrier 1 (MPC1) is a mitochondrial inner membrane protein carrier participating in pyruvate transport. The work is aiming to figure out the effect of MPC1 on cerebral ischemia. MAIN METHODS Bilateral internal carotid artery embolization (BICAO) rats model and cells model from oxygen glucose deprivation/reoxygenation (OGD/R) were used to simulate cerebral ischemia in vivo and in vitro. The effect of MPC1 on cerebral ischemia was detected by imaging, behavioral test, immunofluorescence, flow cytometry, transmission electron microscopy, Western blot and RT-Q-PCR. RNA-sequence (RNA-seq) was applied to explore the potential molecular mechanisms underlying the role of MPC1 in cerebral ischemia. KEY FINDING After BICAO or OGD/R treatment, MPC1 expression in ischemic cortical neurons was significantly decreased, and MPC1 deficiency significantly reduced cerebral blood flow, decreased locomotion activities, and exacerbated neuronal injury. Moreover, MPC1 deficiency obviously aggravated oxidative stress, structural disruption and dysfunction of mitochondria, autophagy and calcium overload of ischemic cortical neurons. Interestingly, MPC1 overexpression remarkably reversed neuronal loss and persisting neuronal deficits induced by OGD. Using RNA-seq, 38 MPC1-associated differentially expressed genes were involved in oxidative stress, autophagy and calcium overload. Our results further confirmed that MPC1 could alleviate autophagy via the PI3K/Akt/mTOR pathway in the ischemic cortical neurons. SIGNIFICANCE MPC1 may exert neuroprotective effects by attenuating oxidative stress, mitochondrial dysfunction, calcium overload and autophagy during cerebral ischemia. MPC1-related genes identified by RNA-seq may be a novel therapeutic target for cerebral ischemia.
Collapse
Affiliation(s)
- Yue Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuan Yuan
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Yan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ruyue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaohui Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao Liu
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jianyu Hua
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Fitzgerald GS, Chuchta TG, McNay EC. Insulin‐like growth factor‐2 is a promising candidate for the treatment and prevention of Alzheimer's disease. CNS Neurosci Ther 2023; 29:1449-1469. [PMID: 36971212 PMCID: PMC10173726 DOI: 10.1111/cns.14160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Current AD treatments slow the rate of cognitive decline, but do not restore lost function. One reason for the low efficacy of current treatments is that they fail to target neurotrophic processes, which are thought to be essential for functional recovery. Bolstering neurotrophic processes may also be a viable strategy for preventative treatment, since structural losses are thought to underlie cognitive decline in AD. The challenge of identifying presymptomatic patients who might benefit from preventative treatment means that any such treatment must meet a high standard of safety and tolerability. The neurotrophic peptide insulin-like growth factor-2 (IGF2) is a promising candidate for both treating and preventing AD-induced cognitive decline. Brain IGF2 expression declines in AD patients. In rodent models of AD, exogenous IGF2 modulates multiple aspects of AD pathology, resulting in (1) improved cognitive function; (2) stimulation of neurogenesis and synaptogenesis; and, (3) neuroprotection against cholinergic dysfunction and beta amyloid-induced neurotoxicity. Preclinical evidence suggests that IGF2 is likely to be safe and tolerable at therapeutic doses. In the preventative treatment context, the intranasal route of administration is likely to be the preferred method for achieving the therapeutic effect without risking adverse side effects. For patients already experiencing AD dementia, routes of administration that deliver IGF2 directly access the CNS may be necessary. Finally, we discuss several strategies for improving the translational validity of animal models used to study the therapeutic potential of IGF2.
Collapse
Affiliation(s)
| | | | - E C McNay
- University at Albany, Albany, New York, USA
| |
Collapse
|
18
|
Li X, Xu M, Bi R, Tan LW, Yao YG, Zhang DF. Common and rare variants of EGF increase the genetic risk of Alzheimer's disease as revealed by targeted sequencing of growth factors in Han Chinese. Neurobiol Aging 2023; 123:170-181. [PMID: 36437134 DOI: 10.1016/j.neurobiolaging.2022.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease with high heritability. Growth factors (GFs) might contribute to the development of AD due to their broad effects on neuronal system. We herein aimed to investigate the role of rare and common variants of GFs in genetic susceptibility of AD. We screened 23 GFs in 6324 individuals using targeted sequencing. A rare-variant-based burden test and common-variant-based single-site association analyses were performed to identify AD-associated GF genes and variants. The burden test showed an enrichment of rare missense variants (p = 6.08 × 10-4) in GF gene-set in AD patients. Among the GFs, EGF showed the strongest signal of enrichment, especially for loss-of-function variants (p = 0.0019). A common variant rs4698800 of EGF showed significant associations with AD risk (p = 3.24 × 10-5, OR = 1.26). The risk allele of rs4698800 was associated with an increased EGF expression, whereas EGF was indeed upregulated in AD brain. These findings suggested EGF as a novel risk gene for AD.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Rui Bi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Wen Tan
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Deng-Feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, and KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Disease, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
19
|
Yuk KH, Lee SM, Bae WR, Park JY, Woo SW, Song P, Jeong IC, Kim JS, Moon HY. Distinct effect of exercise modes on mood-related behavior in mice. Biochem Biophys Res Commun 2023; 646:36-43. [PMID: 36701893 DOI: 10.1016/j.bbrc.2023.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/11/2022] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Exercise can afford several benefits to combat mood disorders in both rodents and humans. Engagement in various physical activities upregulates levels of neurotrophic factors in several brain regions and improves mental health. However, the type of exercise that regulates mood and the underlying mechanisms in the brain remain elusive. Herein, we performed two distinct types of exercise and RNA sequencing analyses to investigate the effect of exercise on mood-related behaviors and explain the distinct patterns of gene expression. Specifically, resistance exercise exhibited reduced immobility time in the forced swim test when compared with both no exercise and treadmill exercise (in the aerobic training [AT] group). Interestingly, anxiety-like behaviors in the open field and nest-building tests were ameliorated in the AT group when compared with those in the control group; however, this was not observed in the RT group. To elucidate the mechanism underlying these different behavioral changes caused by distinct exercise types, we examined the shift in the gene expression pattern in the hippocampus, a brain region that plays a critical role in regulating mood. We discovered that 38 and 40 genes were altered in the AT and RT groups, respectively, compared with the control group. Both exercises regulated 16 common genes. Compared with the control group, mitogen-activated protein kinase (MAPK) was enriched in the AT group and phosphatidylinositol-3-kinase (PI3K)/AKT and neurotrophin signaling pathways were enriched in the RT group, as determined by bioinformatics pathway analysis. PCR results revealed that Cebpβ expression was increased in AT group, and Dcx expression was upregulated in both groups. Our findings indicate that different exercise types may exert substantially distinct effects on mood-like behaviors. Accordingly, appropriate types of exercise can be undertaken based on the mood disorder to be regulated.
Collapse
Affiliation(s)
- Ki Hoon Yuk
- Dept. of Physical Education, Seoul National University, South Korea
| | - Sun Min Lee
- Dept. of Physical Education, Seoul National University, South Korea
| | - Woo Ri Bae
- Dept. of Physical Education, Seoul National University, South Korea
| | - Jae Yeon Park
- Dept. of Physical Education, Seoul National University, South Korea
| | - Song Won Woo
- Dept. of Physical Education, Seoul National University, South Korea
| | - Parkyong Song
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, 50612, South Korea
| | - In Cheol Jeong
- School of Artificial Intelligence Convergence, Hallym University, Chuncheon, South Korea
| | - Ji-Seok Kim
- Department of Physical Education, Gyeongsang National University, Jinju, South Korea
| | - Hyo Youl Moon
- Dept. of Physical Education, Seoul National University, South Korea; Institute of Sport Science, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea; Institute on Aging, Seoul National University, Seoul, South Korea.
| |
Collapse
|
20
|
Caron NS, Haqqani AS, Sandhu A, Aly AE, Findlay Black H, Bone JN, McBride JL, Abulrob A, Stanimirovic D, Leavitt BR, Hayden MR. Cerebrospinal fluid biomarkers for assessing Huntington disease onset and severity. Brain Commun 2022; 4:fcac309. [PMID: 36523269 PMCID: PMC9746690 DOI: 10.1093/braincomms/fcac309] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/02/2022] [Accepted: 11/23/2022] [Indexed: 08/27/2023] Open
Abstract
The identification of molecular biomarkers in CSF from individuals affected by Huntington disease may help improve predictions of disease onset, better define disease progression and could facilitate the evaluation of potential therapies. The primary objective of our study was to investigate novel CSF protein candidates and replicate previously reported protein biomarker changes in CSF from Huntington disease mutation carriers and healthy controls. Our secondary objective was to compare the discriminatory potential of individual protein analytes and combinations of CSF protein markers for stratifying individuals based on the severity of Huntington disease. We conducted a hypothesis-driven analysis of 26 pre-specified protein analytes in CSF from 16 manifest Huntington disease subjects, eight premanifest Huntington disease mutation carriers and eight healthy control individuals using parallel-reaction monitoring mass spectrometry. In addition to reproducing reported changes in previously investigated CSF biomarkers (NEFL, PDYN, and PENK), we also identified novel exploratory CSF proteins (C1QB, CNR1, GNAL, IDO1, IGF2, and PPP1R1B) whose levels were altered in Huntington disease mutation carriers and/or across stages of disease. Moreover, we report strong associations of select CSF proteins with clinical measures of disease severity in manifest Huntington disease subjects (C1QB, CNR1, NEFL, PDYN, PPP1R1B, and TTR) and with years to predicted disease onset in premanifest Huntington disease mutation carriers (ALB, C4B, CTSD, IGHG1, and TTR). Using receiver operating characteristic curve analysis, we identified PENK as being the most discriminant CSF protein for stratifying Huntington disease mutation carriers from controls. We also identified exploratory multi-marker CSF protein panels that improved discrimination of premanifest Huntington disease mutation carriers from controls (PENK, ALB and NEFL), early/mid-stage Huntington disease from premanifest mutation carriers (PPP1R1B, TTR, CHI3L1, and CTSD), and late-stage from early/mid-stage Huntington disease (CNR1, PPP1R1B, BDNF, APOE, and IGHG1) compared with individual CSF proteins. In this study, we demonstrate that combinations of CSF proteins can outperform individual markers for stratifying individuals based on Huntington disease mutation status and disease severity. Moreover, we define exploratory multi-marker CSF protein panels that, if validated, may be used to improve the accuracy of disease-onset predictions, complement existing clinical and imaging biomarkers for monitoring the severity of Huntington disease, and potentially for assessing therapeutic response in clinical trials. Additional studies with CSF collected from larger cohorts of Huntington disease mutation carriers are needed to replicate these exploratory findings.
Collapse
Affiliation(s)
- Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Akshdeep Sandhu
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Amirah E Aly
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jeffrey N Bone
- BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Jodi L McBride
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | - Abedelnasser Abulrob
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Danica Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| |
Collapse
|
21
|
Yasuoka A, Nagai T, Lee S, Miyaguchi H, Saito Y, Abe K, Asakura T. Mastication stimuli enhance the learning ability of weaning-stage rats, altering the hippocampal neuron transcriptome and micromorphology. Front Behav Neurosci 2022; 16:1006359. [PMID: 36263297 PMCID: PMC9574334 DOI: 10.3389/fnbeh.2022.1006359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mastication stimuli are known to relieve senile dementia in human and animal studies. However, few studies have focused on its effect on weaning-stage animals and the underlying molecular processes. In this study, 3-week-old male rats were raised on a powdered (P-group) or chow (C-group) diet for 8 days, and their behavior was examined using the Y-maze and novel object recognition tests. In the Y-maze test, the C-group rats showed a larger alternation ratio than the P-group rats. In the novel object recognition test, the C-group rats exhibited a significantly larger discrimination index for novel objects than for familiar objects, but the P-group rats did not. We then compared the hippocampal neuron morphology and transcriptome between the groups. C-group rats exhibited larger dendrite branch numbers in the apical dendrites of pyramidal cells in the cornu ammonis 1 (CA1) region and a larger spine density in the basal dendrites of CA1 neurons than the P-group rats. Using DNA microarray analysis, we identified 621 (P < C) and 96 (P > C) genes that were differentially expressed between the groups. These genes were enriched in functional terms related to dendrite growth and included the Igf2, RhoA, and Rho GEF genes, most of which were upregulated in the C-group. These results suggest that the mastication stimuli during the weaning period can enhance the learning ability of rats by increasing the dendrite branches of hippocampal CA1 neurons and by regulating genes related to dendrite growth.
Collapse
Affiliation(s)
- Akihito Yasuoka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Human Nutrition, Seitoku University, Chiba, Japan
| | - Toshitada Nagai
- Department of Applied Biological Science, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Seonmi Lee
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hitonari Miyaguchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Tomiko Asakura,
| |
Collapse
|
22
|
Liu P, Li Y, Wang W, Bai Y, Jia H, Yuan Z, Yang Z. Role and mechanisms of the NF-ĸB signaling pathway in various developmental processes. Biomed Pharmacother 2022; 153:113513. [DOI: 10.1016/j.biopha.2022.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022] Open
|
23
|
Kaltschmidt B, Helweg LP, Greiner JFW, Kaltschmidt C. NF-κB in neurodegenerative diseases: Recent evidence from human genetics. Front Mol Neurosci 2022; 15:954541. [PMID: 35983068 PMCID: PMC9380593 DOI: 10.3389/fnmol.2022.954541] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The transcription factor NF-κB is commonly known to drive inflammation and cancer progression, but is also a crucial regulator of a broad range of cellular processes within the mammalian nervous system. In the present review, we provide an overview on the role of NF-κB in the nervous system particularly including its constitutive activity within cortical and hippocampal regions, neuroprotection as well as learning and memory. Our discussion further emphasizes the increasing role of human genetics in neurodegenerative disorders, namely, germline mutations leading to defects in NF-κB-signaling. In particular, we propose that loss of function mutations upstream of NF-κB such as ADAM17, SHARPIN, HOIL, or OTULIN affect NF-κB-activity in Alzheimer’s disease (AD) patients, in turn driving anatomical defects such as shrinkage of entorhinal cortex and the limbic system in early AD. Similarly, E3 type ubiquitin ligase PARKIN is positively involved in NF-κB signaling. PARKIN loss of function mutations are most frequently observed in Parkinson’s disease patients. In contrast to AD, relying on germline mutations of week alleles and a disease development over decades, somatic mutations affecting NF-κB activation are commonly observed in cells derived from glioblastoma multiforme (GBM), the most common malignant primary brain tumor. Here, our present review particularly sheds light on the mutual exclusion of either the deletion of NFKBIA or amplification of epidermal growth factor receptor (EGFR) in GBM, both resulting in constitutive NF-κB-activity driving tumorigenesis. We also discuss emerging roles of long non-coding RNAs such as HOTAIR in suppressing phosphorylation of IκBα in the context of GBM. In summary, the recent progress in the genetic analysis of patients, particularly those suffering from AD, harbors the potential to open up new vistas for research and therapy based on TNFα/NF-κB pathway and neuroprotection.
Collapse
Affiliation(s)
- Barbara Kaltschmidt
- Department of Molecular Neurobiology, Bielefeld University, Bielefeld, Germany
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
- *Correspondence: Barbara Kaltschmidt,
| | - Laureen P. Helweg
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| | - Johannes F. W. Greiner
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld, Ostwestfalen-Lippe (OWL) (FBMB E.V.), Bielefeld, Germany
- Department of Cell Biology, Biological Faculty, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
24
|
IGF2: Development, Genetic and Epigenetic Abnormalities. Cells 2022; 11:cells11121886. [PMID: 35741015 PMCID: PMC9221339 DOI: 10.3390/cells11121886] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
In the 30 years since the first report of parental imprinting in insulin-like growth factor 2 (Igf2) knockout mouse models, we have learnt much about the structure of this protein, its role and regulation. Indeed, many animal and human studies involving innovative techniques have shed light on the complex regulation of IGF2 expression. The physiological roles of IGF-II have also been documented, revealing pleiotropic tissue-specific and developmental-stage-dependent action. Furthermore, in recent years, animal studies have highlighted important interspecies differences in IGF-II function, gene expression and regulation. The identification of human disorders due to impaired IGF2 gene expression has also helped to elucidate the major role of IGF-II in growth and in tumor proliferation. The Silver-Russell and Beckwith-Wiedemann syndromes are the most representative imprinted disorders, as they constitute both phenotypic and molecular mirrors of IGF2-linked abnormalities. The characterization of patients with either epigenetic or genetic defects altering IGF2 expression has confirmed the central role of IGF-II in human growth regulation, particularly before birth, and its effects on broader body functions, such as metabolism or tumor susceptibility. Given the long-term health impact of these rare disorders, it is important to understand the consequences of IGF2 defects in these patients.
Collapse
|
25
|
Zhao R, Wu X, Bi XY, Yang H, Zhang Q. Baicalin attenuates blood-spinal cord barrier disruption and apoptosis through PI3K/Akt signaling pathway after spinal cord injury. Neural Regen Res 2022; 17:1080-1087. [PMID: 34558536 PMCID: PMC8552841 DOI: 10.4103/1673-5374.324857] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
Baicalin is a natural active ingredient isolated from Scutellariae Radix that can cross the blood-brain barrier and exhibits neuroprotective effects on multiple central nervous system diseases. However, the mechanism behind the neuroprotective effects remains unclear. In this study, rat models of spinal cord injury were established using a modified Allen's impact method and then treated with intraperitoneal injection of Baicalin. The results revealed that Baicalin greatly increased the Basso, Beattie, Bresnahan Locomotor Rating Scale score, reduced blood-spinal cord barrier permeability, decreased the expression of Bax, Caspase-3, and nuclear factor κB, increased the expression of Bcl-2, and reduced neuronal apoptosis and pathological spinal cord injury. SH-SY5Y cell models of excitotoxicity were established by application of 10 mM glutamate for 12 hours and then treated with 40 µM Baicalin for 48 hours to investigate the mechanism of action of Baicalin. The results showed that Baicalin reversed tight junction protein expression tendencies (occludin and ZO-1) and apoptosis-related protein expression (Bax, Bcl-2, Caspase-3, and nuclear factor-κB), and also led to up-regulation of PI3K and Akt phosphorylation. These effects on Bax, Bcl-2, and Caspase-3 were blocked by pretreatment with the PI3K inhibitor LY294002. These findings suggest that Baicalin can inhibit blood-spinal cord barrier permeability after spinal cord injury and reduce neuronal apoptosis, possibly by activating the PI3K/Akt signaling pathway. This study was approved by Animal Ethics Committee of Xi'an Jiaotong University on March 6, 2014.
Collapse
Affiliation(s)
- Rui Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, Shaanxi Province, China
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi Province, China
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xue Wu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, Shaanxi Province, China
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi Province, China
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xue-Yuan Bi
- Department of Pharmacy, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Hao Yang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, Shaanxi Province, China
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Qian Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xi’an, Shaanxi Province, China
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi Province, China
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
26
|
Wang Y, Liu Y, Yuan Y, Zhang Y, Luo Y, Han S, Yan Y, Wang Z, Liu X, Zhao L. Downregulation of mitochondrial pyruvate carrier 2 aggravates neuronal injury in the cortex following cerebral ischemia in rat. Brain Res Bull 2022; 185:193-202. [DOI: 10.1016/j.brainresbull.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/18/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
|
27
|
Restrepo-Lozano JM, Pokhvisneva I, Wang Z, Patel S, Meaney MJ, Silveira PP, Flores C. Corticolimbic DCC gene co-expression networks as predictors of impulsivity in children. Mol Psychiatry 2022; 27:2742-2750. [PMID: 35388180 PMCID: PMC9156406 DOI: 10.1038/s41380-022-01533-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Inhibitory control deficits are prevalent in multiple neuropsychiatric conditions. The communication- as well as the connectivity- between corticolimbic regions of the brain are fundamental for eliciting inhibitory control behaviors, but early markers of vulnerability to this behavioral trait are yet to be discovered. The gradual maturation of the prefrontal cortex (PFC), in particular of the mesocortical dopamine innervation, mirrors the protracted development of inhibitory control; both are present early in life, but reach full maturation by early adulthood. Evidence suggests the involvement of the Netrin-1/DCC signaling pathway and its associated gene networks in corticolimbic development. Here we investigated whether an expression-based polygenic score (ePRS) based on corticolimbic-specific DCC gene co-expression networks associates with impulsivity-related phenotypes in community samples of children. We found that lower ePRS scores associate with higher measurements of impulsive choice in 6-year-old children tested in the Information Sampling Task and with impulsive action in 6- and 10-year-old children tested in the Stop Signal Task. We also found the ePRS to be a better overall predictor of impulsivity when compared to a conventional PRS score comparable in size to the ePRS (4515 SNPs in our discovery cohort) and derived from the latest GWAS for ADHD. We propose that the corticolimbic DCC-ePRS can serve as a novel type of marker for impulsivity-related phenotypes in children. By adopting a systems biology approach based on gene co-expression networks and genotype-gene expression (rather than genotype-disease) associations, these results further validate our methodology to construct polygenic scores linked to the overall biological function of tissue-specific gene networks.
Collapse
Affiliation(s)
- Jose M. Restrepo-Lozano
- grid.14709.3b0000 0004 1936 8649Integrated Program in Neuroscience, McGill University, Montreal, QC Canada ,grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada
| | - Irina Pokhvisneva
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Zihan Wang
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Sachin Patel
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada
| | - Michael J. Meaney
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada ,grid.452264.30000 0004 0530 269XSingapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore, Singapore
| | - Patricia P. Silveira
- grid.412078.80000 0001 2353 5268Douglas Mental Health University Institute, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, QC Canada ,grid.14709.3b0000 0004 1936 8649Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC Canada
| | - Cecilia Flores
- Douglas Mental Health University Institute, Montreal, QC, Canada. .,Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada. .,Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
28
|
Concina G, Renna A, Milano L, Manassero E, Stabile F, Sacchetti B. Expression of IGF-2 Receptor in the Auditory Cortex Improves the Precision of Recent Fear Memories and Maintains Detailed Remote Fear Memories Over Time. Cereb Cortex 2021; 31:5381-5395. [PMID: 34145441 DOI: 10.1093/cercor/bhab165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic memories may become less precise over time and lead to the development of fear responses to novel stimuli, a process referred to as time-dependent fear generalization. The conditions that cause the growth of fear generalization over time are poorly understood. Here, we found that, in male rats, the level of discrimination at the early time point contributes to determining whether fear generalization will develop with the passage of time or not, suggesting a link between the precision of recent memory and the stability of remote engrams. We also found that the expression of insulin-like growth factor 2 receptor in layer 2/3 of the auditory cortex is linked to the precision of recent memories and to the stability of remote engrams and the development of fear generalization over time. These findings provide new insights on the neural mechanisms that underlie the time-dependent development of fear generalization that may occur over time after a traumatic event.
Collapse
Affiliation(s)
- Giulia Concina
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| | - Annamaria Renna
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| | - Luisella Milano
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| | - Eugenio Manassero
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| | - Francesca Stabile
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| | - Benedetto Sacchetti
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, I-10125 Turin, Italy
| |
Collapse
|
29
|
Sarkar D, Shariq M, Dwivedi D, Krishnan N, Naumann R, Bhalla US, Ghosh HS. Adult brain neurons require continual expression of the schizophrenia-risk gene Tcf4 for structural and functional integrity. Transl Psychiatry 2021; 11:494. [PMID: 34564703 PMCID: PMC8464606 DOI: 10.1038/s41398-021-01618-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023] Open
Abstract
The schizophrenia-risk gene Tcf4 has been widely studied in the context of brain development using mouse models of haploinsufficiency, in utero knockdown and embryonic deletion. However, Tcf4 continues to be abundantly expressed in adult brain neurons where its functions remain unknown. Given the importance of Tcf4 in psychiatric diseases, we investigated its role in adult neurons using cell-specific deletion and genetic tracing in adult animals. Acute loss of Tcf4 in adult excitatory neurons in vivo caused hyperexcitability and increased dendritic complexity of neurons, effects that were distinct from previously observed effects in embryonic-deficiency models. Interestingly, transcriptomic analysis of genetically traced adult-deleted FACS-sorted Tcf4-knockout neurons revealed that Tcf4 targets in adult neurons are distinct from those in the embryonic brain. Meta-analysis of the adult-deleted neuronal transcriptome from our study with the existing datasets of embryonic Tcf4 deficiencies revealed plasma membrane and ciliary genes to underlie Tcf4-mediated structure-function regulation specifically in adult neurons. The profound changes both in the structure and excitability of adult neurons upon acute loss of Tcf4 indicates that proactive regulation of membrane-related processes underlies the functional and structural integrity of adult neurons. These findings not only provide insights for the functional relevance of continual expression of a psychiatric disease-risk gene in the adult brain but also identify previously unappreciated gene networks underpinning mature neuronal regulation during the adult lifespan.
Collapse
Affiliation(s)
- Dipannita Sarkar
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology, Bangalore, 560064 India
| | - Mohammad Shariq
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India ,grid.502290.cThe University of Trans-Disciplinary Health Sciences and Technology, Bangalore, 560064 India
| | - Deepanjali Dwivedi
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Nirmal Krishnan
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Ronald Naumann
- grid.419537.d0000 0001 2113 4567MPI of Molecular Cell Biology and Genetics, Dresden, 01307 Germany
| | - Upinder Singh Bhalla
- grid.22401.350000 0004 0502 9283National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065 India
| | - Hiyaa Singhee Ghosh
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India.
| |
Collapse
|
30
|
Kaltschmidt C, Greiner JFW, Kaltschmidt B. The Transcription Factor NF-κB in Stem Cells and Development. Cells 2021; 10:2042. [PMID: 34440811 PMCID: PMC8391683 DOI: 10.3390/cells10082042] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022] Open
Abstract
NF-κB (nuclear factor kappa B) belongs to a family of transcription factors known to regulate a broad range of processes such as immune cell function, proliferation and cancer, neuroprotection, and long-term memory. Upcoming fields of NF-κB research include its role in stem cells and developmental processes. In the present review, we discuss one role of NF-κB in development in Drosophila, Xenopus, mice, and humans in accordance with the concept of evo-devo (evolutionary developmental biology). REL domain-containing proteins of the NF-κB family are evolutionarily conserved among these species. In addition, we summarize cellular phenotypes such as defective B- and T-cell compartments related to genetic NF-κB defects detected among different species. While NF-κB proteins are present in nearly all differentiated cell types, mouse and human embryonic stem cells do not contain NF-κB proteins, potentially due to miRNA-dependent inhibition. However, the mesodermal and neuroectodermal differentiation of mouse and human embryonic stem cells is hampered upon the repression of NF-κB. We further discuss NF-κB as a crucial regulator of differentiation in adult stem cells such as neural crest-derived and mesenchymal stem cells. In particular, c-REL seems to be important for neuronal differentiation and the neuroprotection of human adult stem cells, while RELA plays a crucial role in osteogenic and mesodermal differentiation.
Collapse
Affiliation(s)
- Christian Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Johannes F. W. Greiner
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
| | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany; (C.K.); (J.F.W.G.)
- Molecular Neurobiology, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
31
|
Zhou L, Li J, Liu J, Wang A, Liu Y, Yu H, Ouyang H, Pang D. Investigation of the lncRNA THOR in Mice Highlights the Importance of Noncoding RNAs in Mammalian Male Reproduction. Biomedicines 2021; 9:biomedicines9080859. [PMID: 34440063 PMCID: PMC8389704 DOI: 10.3390/biomedicines9080859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
THOR is a highly conserved testis-specific long noncoding RNA (lncRNA). The interaction between THOR and the development of the male reproductive system remains unclear. Herein, CRISPR/Cas9 technology was used to establish a stable THOR-deficient mouse model, and the relationship between THOR and the fertility of adult male mice was investigated. The male mice in which THOR was deleted were smaller than the WT male mice. Moreover, their survival rate was reduced by 60%, their fertility was reduced by 50%, their testicular size and sperm motility were reduced by 50%, their testicular cell apoptosis was increased by 7-fold, and their ratio of female-to-male offspring was imbalanced (approximately 1:3). Furthermore, to elucidate the mechanisms of male reproductive system development, the mRNA levels of THOR targets were measured by qRT-PCR. Compared with WT mice, the THOR-deficient mice exhibited significantly decreased mRNA levels of IGF2BP1, c-MYC, IGF1, and IGF2. MEK-ERK signaling pathway expression was downregulated as determined by Western blot. We found that THOR targeted the MER-ERK signaling pathway downstream of IGF2 by binding to IGF2BP1 and affected testicular and sperm development in male mice. These results may also provide perspectives for exploring the roles of lncRNAs in human reproductive development and the pathogenesis and potential therapeutic targets of infertility.
Collapse
Affiliation(s)
- Lin Zhou
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Jianing Li
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Jinsong Liu
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Anbei Wang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Ying Liu
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Hao Yu
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
- Chongqing Research Institute, Jilin University, Chongqing 401123, China
- Correspondence: (H.O.); (D.P.)
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun 130062, China; (L.Z.); (J.L.); (J.L.); (A.W.); (Y.L.); (H.Y.)
- Correspondence: (H.O.); (D.P.)
| |
Collapse
|
32
|
|
33
|
Mockenhaupt K, Gonsiewski A, Kordula T. RelB and Neuroinflammation. Cells 2021; 10:1609. [PMID: 34198987 PMCID: PMC8307460 DOI: 10.3390/cells10071609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation within the central nervous system involves multiple cell types that coordinate their responses by secreting and responding to a plethora of inflammatory mediators. These factors activate multiple signaling cascades to orchestrate initial inflammatory response and subsequent resolution. Activation of NF-κB pathways in several cell types is critical during neuroinflammation. In contrast to the well-studied role of p65 NF-κB during neuroinflammation, the mechanisms of RelB activation in specific cell types and its roles during neuroinflammatory response are less understood. In this review, we summarize the mechanisms of RelB activation in specific cell types of the CNS and the specialized effects this transcription factor exerts during neuroinflammation.
Collapse
Affiliation(s)
| | | | - Tomasz Kordula
- Department of Biochemistry and Molecular Biology, School of Medicine and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VI 23298, USA; (K.M.); (A.G.)
| |
Collapse
|
34
|
Corne R, Besson V, Ait Si Slimane S, Coutan M, Palhas MLC, Shen FX, Marchand-Leroux C, Ogier M, Mongeau R. Insulin-like Growth Factors may be Markers of both Traumatic Brain Injury and Fear-Related Stress. Neuroscience 2021; 466:205-221. [PMID: 33895341 DOI: 10.1016/j.neuroscience.2021.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Insulin-like growth factors (IGF) are potent neurotrophic and neurorepair factors that were recently proposed as biomarkers of traumatic brain injury (TBI) and associated psychiatric comorbidities, in particular post-traumatic stress disorder (PSTD). We tested the hypothesis that the IGF system is differentially deregulated in the acute and early chronic stages of TBI, and under acute stress. Plasma and brain IGF1 and IGF2 levels were evaluated in mice 3 weeks and 3 days after a controlled cortical impact (CCI)-induced mild-to-moderate TBI. The effects of conditioned fear on IGF levels and its interaction with TBI (TBI followed, 3 weeks later, by fear-inducing procedures) were also evaluated. In the plasma, IGF1 decreased 3 weeks post-TBI only (-9%), whereas IGF2 remained unaffected. In the brain, IGF1 increased only in the cortex and hippocampus at 3 weeks post-TBI (up to +650%). At 3 days, surpringly, this increase was more diffuse and more important in sham (craniotomized) animals. Additionally, IGF2 immunostaining in brain ventricles was reorganized in TBI animals at both post-TBI stages. Conditioned fear exposure did not influence the effects of early chronic TBI on plasma IGF1 levels, but reduced plasma IGF2 (-6%) levels. It also dampened the effects of TBI on brain IGF systems, but brain IGF1 level and IGF2 tissue distribution remained statistically different from controls under these conditions. In co-exposed animals, DNA methylation increased at the hippocampal Igf1 gene promoter. These results show that blood IGF1 and IGF2 are most reduced in the early chronic phase of TBI and after exposure to a stressful event, and that the brain IGF system is up-regulated after TBI, and more so in the acute phase.
Collapse
Affiliation(s)
- Rémi Corne
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Valérie Besson
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; UMR_S1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Sofiane Ait Si Slimane
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Mathieu Coutan
- Institut de Recherche Biomédicale de Armées, 1 place du Général Valérie André, 91223 Brétigny sur Orge Cedex, France
| | - Marta L C Palhas
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Fang Xue Shen
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Catherine Marchand-Leroux
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; UMR_S1144 Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Michaël Ogier
- Institut de Recherche Biomédicale de Armées, 1 place du Général Valérie André, 91223 Brétigny sur Orge Cedex, France
| | - Raymond Mongeau
- EA4475 Pharmacologie de la Circulation Cérébrale, Université Paris Descartes, 4 avenue de l'Observatoire, 75006 Paris, France; CNRS ERL 3649 T3S-1124 - UMR-S 1124 - Addictions, Pharmacology and Therapy, Université Paris Descartes, 45, rue des Saint-Pères, 75006 Paris, France.
| |
Collapse
|
35
|
Potiris A, Manousopoulou A, Zouridis A, Sarli PM, Pervanidou P, Eliades G, Perrea DN, Deligeoroglou E, Garbis SD, Eleftheriades M. The Effect of Prenatal Food Restriction on Brain Proteome in Appropriately Grown and Growth Restricted Male Wistar Rats. Front Neurosci 2021; 15:665354. [PMID: 33935642 PMCID: PMC8079747 DOI: 10.3389/fnins.2021.665354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Fetal growth restriction (FGR) has been associated with a higher risk of developing adverse perinatal outcomes and distinct neurodevelopmental and neurobehavioral disorders. The aim of the present study was to investigate the impact of prenatal food restriction on the brain proteome in both FGR and appropriately grown rats and to identify potential pathways connecting maternal malnutrition with altered brain development. Methods Ten time-dated pregnant Wistar rats were housed individually at their 12th day of gestation. On the 15th day of gestation, the rats were randomly divided into two groups, namely the food restricted one (n = 6) and the control group (n = 4). From days 15 to 21 the control group had unlimited access to food and the food restricted group was given half the amount of food that was on average consumed by the control group, based on measurements taken place the day before. On the 21st day of gestation, all rats delivered spontaneously and after birth all newborn pups of the food restricted group were weighed and matched as appropriately grown (non-FGR) or growth restricted (FGR) and brain tissues were immediately collected. A multiplex experiment was performed analyzing brain tissues from 4 FGR, 4 non-FGR, and 3 control male offspring. Differentially expressed proteins (DEPs) were subjected to bioinformatics analysis in order to identify over-represented processes. Results Proteomic analysis resulted in the profiling of 3,964 proteins. Gene ontology analysis of the common DEPs using DAVID (https://david.ncifcrf.gov/) showed significant enrichment for terms related to cellular morphology, learning, memory and positive regulation of NF-kappaB signaling. Ingenuity Pathway Analysis showed significant induction of inflammation in FGR pups, whereas significant induction of cell migration and cell spreading were observed in non-FGR pups. Conclusion This study demonstrated that in both FGR and non-FGR neonates, a range of adaptive neurodevelopmental processes takes place, which may result in altered cellular morphology, chronic stress, poor memory and learning outcomes. Furthermore, this study highlighted that not only FGR, but also appropriately grown pups, which have been exposed to prenatal food deprivation may be at increased risk for impaired cognitive and developmental outcomes.
Collapse
Affiliation(s)
- Anastasios Potiris
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Manousopoulou
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Andreas Zouridis
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polyxeni-Maria Sarli
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Pervanidou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Eliades
- Biomaterials Laboratory, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Deligeoroglou
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros D Garbis
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
36
|
Beletskiy A, Chesnokova E, Bal N. Insulin-Like Growth Factor 2 As a Possible Neuroprotective Agent and Memory Enhancer-Its Comparative Expression, Processing and Signaling in Mammalian CNS. Int J Mol Sci 2021; 22:ijms22041849. [PMID: 33673334 PMCID: PMC7918606 DOI: 10.3390/ijms22041849] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
A number of studies performed on rodents suggest that insulin-like growth factor 2 (IGF-2) or its analogs may possibly be used for treating some conditions like Alzheimer’s disease, Huntington’s disease, autistic spectrum disorders or aging-related cognitive impairment. Still, for translational research a comparative knowledge about the function of IGF-2 and related molecules in model organisms (rats and mice) and humans is necessary. There is a number of important differences in IGF-2 signaling between species. In the present review we emphasize species-specific patterns of IGF-2 expression in rodents, humans and some other mammals, using, among other sources, publicly available transcriptomic data. We provide a detailed description of Igf2 mRNA expression regulation and pre-pro-IGF-2 protein processing in different species. We also summarize the function of IGF-binding proteins. We describe three different receptors able to bind IGF-2 and discuss the role of IGF-2 signaling in learning and memory, as well as in neuroprotection. We hope that comprehensive understanding of similarities and differences in IGF-2 signaling between model organisms and humans will be useful for development of more effective medicines targeting IGF-2 receptors.
Collapse
|
37
|
Woods C, Marques-Lopes J, Contoreggi NH, Milner TA, Pickel VM, Wang G, Glass MJ. Tumor Necrosis Factor α Receptor Type 1 Activation in the Hypothalamic Paraventricular Nucleus Contributes to Glutamate Signaling and Angiotensin II-Dependent Hypertension. J Neurosci 2021; 41:1349-1362. [PMID: 33303682 PMCID: PMC7888211 DOI: 10.1523/jneurosci.2360-19.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
There are significant neurogenic and inflammatory influences on blood pressure, yet the role played by each of these processes in the development of hypertension is unclear. Tumor necrosis factor α (TNFα) has emerged as a critical modulator of blood pressure and neural plasticity; however, the mechanism by which TNFα signaling contributes to the development of hypertension is uncertain. We present evidence that following angiotensin II (AngII) infusion the TNFα type 1 receptor (TNFR1) plays a key role in heightened glutamate signaling in the hypothalamic paraventricular nucleus (PVN), a key central coordinator of blood pressure control. Fourteen day administration of a slow-pressor dose of AngII in male mice was associated with transcriptional and post-transcriptional (increased plasma membrane affiliation) regulation of TNFR1 in the PVN. Further, TNFR1 was shown to be critical for elevated NMDA-mediated excitatory currents in sympathoexcitatory PVN neurons following AngII infusion. Finally, silencing PVN TNFR1 prevented the increase in systolic blood pressure induced by AngII. These findings indicate that TNFR1 modulates a cellular pathway involving an increase in NMDA-mediated currents in the PVN following AngII infusion, suggesting a mechanism whereby TNFR1 activation contributes to hypertension via heightened hypothalamic glutamate-dependent signaling.SIGNIFICANCE STATEMENT Inflammation is critical for the emergence of hypertension, yet the mechanisms by which inflammatory mediators contribute to this dysfunction are not clearly defined. We show that tumor necrosis factor α receptor 1 (TNFR1) in the paraventricular hypothalamic nucleus (PVN), a critical neuroregulator of cardiovascular function, plays an important role in the development of hypertension in mice. In the PVN, TNFR1 expression and plasma membrane localization are upregulated during hypertension induced by angiotensin II (AngII). Further, TNFR1 activation was essential for NMDA signaling and the heightening NMDA currents during hypertension. Finally, TNFR1 silencing in the PVN inhibits elevated blood pressure induced by AngII. These results point to a critical role for hypothalamic TNFR1 signaling in hypertension.
Collapse
Affiliation(s)
- Clara Woods
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
- Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10065
| | - Virginia M Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| | - Michael J Glass
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
38
|
Guan SZ, Fu YJ, Zhao F, Liu HY, Chen XH, Qi FQ, Liu ZH, Ng TB. The mechanism of enriched environment repairing the learning and memory impairment in offspring of prenatal stress by regulating the expression of activity-regulated cytoskeletal-associated and insulin-like growth factor-2 in hippocampus. Environ Health Prev Med 2021; 26:8. [PMID: 33451279 PMCID: PMC7811238 DOI: 10.1186/s12199-020-00929-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/27/2020] [Indexed: 01/03/2023] Open
Abstract
Background Prenatal stress can cause neurobiological and behavioral defects in offspring; environmental factors play a crucial role in regulating the development of brain and behavioral; this study was designed to test and verify whether an enriched environment can repair learning and memory impairment in offspring rats induced by prenatal stress and to explore its mechanism involving the expression of insulin-like growth factor-2 (IGF-2) and activity-regulated cytoskeletal-associated protein (Arc) in the hippocampus of the offspring. Methods Rats were selected to establish a chronic unpredictable mild stress (CUMS) model during pregnancy. Offspring were weaned on 21st day and housed under either standard or an enriched environment. The learning and memory ability were tested using Morris water maze and Y-maze. The expression of IGF-2 and Arc mRNA and protein were respectively measured by using RT-PCR and Western blotting. Results There was an elevation in the plasma corticosterone level of rat model of maternal chronic stress during pregnancy. Maternal stress’s offspring exposed to an enriched environment could decrease their plasma corticosterone level and improve their weight. The offspring of maternal stress during pregnancy exhibited abnormalities in Morris water maze and Y-maze, which were improved in an enriched environment. The expression of IGF-2, Arc mRNA, and protein in offspring of maternal stress during pregnancy was boosted and some relationships existed between these parameters after being exposed enriched environment. Conclusions The learning and memory impairment in offspring of prenatal stress can be rectified by the enriched environment, the mechanism of which is related to the decreasing plasma corticosterone and increasing hippocampal IGF-2 and Arc of offspring rats following maternal chronic stress during pregnancy.
Collapse
Affiliation(s)
- Su-Zhen Guan
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.,Department of Occupational Health and Environmental Health, College of Public Health, Xinjiang Medical University, Urumqi, 830011, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - You-Juan Fu
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Feng Zhao
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Hong-Ya Liu
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Xiao-Hui Chen
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Fa-Qiu Qi
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Zhi-Hong Liu
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China. .,Key Laboratory of Environmental Factors and Chronic Disease Control, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
39
|
Tsai CL, Erickson KI, Sun HS, Kuo YM, Pai MC. A cross-sectional examination of a family history of Alzheimer's disease and ApoE epsilon 4 on physical fitness, molecular biomarkers, and neurocognitive performance. Physiol Behav 2020; 230:113268. [PMID: 33383402 DOI: 10.1016/j.physbeh.2020.113268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/30/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The present study examined whether the ɛ4 allele of the apolipoprotein E (ApoE) gene impacts molecular biomarkers and neurocognitive performance among individuals at genetic risk for developing Alzheimer's disease (AD). The correlations between physical fitness and molecular/neurocognitive indices were also explored. METHODS Fasting blood samples were collected from 162 individuals with a family history of AD (ADFH). There were twenty-two carriers of the ApoE-4 variant (ApoE-4 group). For comparison purposes we randomly selected 22 non-ɛ4 carriers (non-ApoE-4 group) from the ADFH individuals. Circulating inflammatory cytokines (e.g., TNF-α, IL-1β, IL-6, IL-8, and IL-15), neuroprotective growth factors (e.g., BDNF, IGF-1, IGF-2, VEGF, and FGF-2), and Amyloid-β peptides (e.g., Aβ1-40 and Aβ1-42), neurocognitive performance [e.g., behavior and brain even-related potentials (ERP)] during a task-switching paradigm, as well as physical fitness scores were measured. RESULTS The ApoE-4 group relative to the non-ApoE-4 group was similar with respect to molecular biomarkers, physical fitness, and most measures of neurocognitive performance. However, ADFH individuals that were ɛ4 carriers exhibited significantly higher local switching accuracy costs, worse accuracy as well as smaller ERP P3 amplitudes for the memory-switching condition. Importantly, cardiorespiratory fitness levels were significantly correlated with accuracy for most task-switching conditions, and levels of BDNF, Aβ1-40, and Aβ1-42 collapsed across the two groups even when controlling for the age co-variable, while the ApoE-4 group revealed similar pattern of results. CONCLUSIONS These data suggest that individuals with ADFH that were carriers of the ApoE-4 variant performed worse on the task-switching paradigm and that this could be due to compromised task-set and memory updating processes. Physical exercise interventions aimed to enhance cardiorespiratory fitness levels could be a potential AD prevention strategy for ameliorating cognitive function and reducing the accumulation of the Aβ peptides in this high risk group.
Collapse
Affiliation(s)
- Chia-Liang Tsai
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Taiwan.
| | - Kirk I Erickson
- Department of Psychology, University of Pittsburgh, USA; Discipline of Exercise Science, College of Science, Health, Engineering and Education, Murdoch University, Western Australia
| | - H-Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan; Alzheimer's Disease Research Center, National Cheng Kung University Hospital, Taiwan.
| |
Collapse
|
40
|
García-Huerta P, Troncoso-Escudero P, Wu D, Thiruvalluvan A, Cisternas-Olmedo M, Henríquez DR, Plate L, Chana-Cuevas P, Saquel C, Thielen P, Longo KA, Geddes BJ, Lederkremer GZ, Sharma N, Shenkman M, Naphade S, Sardi SP, Spichiger C, Richter HG, Court FA, Tshilenge KT, Ellerby LM, Wiseman RL, Gonzalez-Billault C, Bergink S, Vidal RL, Hetz C. Insulin-like growth factor 2 (IGF2) protects against Huntington's disease through the extracellular disposal of protein aggregates. Acta Neuropathol 2020; 140:737-764. [PMID: 32642868 PMCID: PMC8513574 DOI: 10.1007/s00401-020-02183-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/06/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022]
Abstract
Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species.
Collapse
Affiliation(s)
- Paula García-Huerta
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile
| | - Paulina Troncoso-Escudero
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
| | - Di Wu
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Arun Thiruvalluvan
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marisol Cisternas-Olmedo
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
| | - Daniel R Henríquez
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Department of Cell Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Lars Plate
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pedro Chana-Cuevas
- Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Cristian Saquel
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
| | - Peter Thielen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, 02115, USA
| | | | | | - Gerardo Z Lederkremer
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Neeraj Sharma
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Marina Shenkman
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- George Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Swati Naphade
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - S Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi, 49 New York Avenue, Framingham, MA, 01701, USA
| | - Carlos Spichiger
- Faculty of Sciences, Institute of Biochemistry and Microbiology, University Austral of Chile, Valdivia, Chile
| | - Hans G Richter
- Faculty of Medicine, Institute of Anatomy, Histology and Pathology, University Austral of Chile, Valdivia, Chile
| | - Felipe A Court
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | | | - Lisa M Ellerby
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Christian Gonzalez-Billault
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Department of Cell Biology, Faculty of Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rene L Vidal
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Center for Integrative Biology, Faculty of Sciences, University Mayor, Santiago, Chile.
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute, University of Chile, Santiago, Chile.
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Sector B, Second Floor, Faculty of Medicine, University of Chile, Independencia 1027, P.O. Box 70086, Santiago, Chile.
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| |
Collapse
|
41
|
Baratta AM, Rathod RS, Plasil SL, Seth A, Homanics GE. Exposure to drugs of abuse induce effects that persist across generations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 156:217-277. [PMID: 33461664 PMCID: PMC8167819 DOI: 10.1016/bs.irn.2020.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Substance use disorders are highly prevalent and continue to be one of the leading causes of disability in the world. Notably, not all people who use addictive drugs develop a substance use disorder. Although substance use disorders are highly heritable, patterns of inheritance cannot be explained purely by Mendelian genetic mechanisms. Vulnerability to developing drug addiction depends on the interplay between genetics and environment. Additionally, evidence from the past decade has pointed to the role of epigenetic inheritance in drug addiction. This emerging field focuses on how environmental perturbations, including exposure to addictive drugs, induce epigenetic modifications that are transmitted to the embryo at fertilization and modify developmental gene expression programs to ultimately impact subsequent generations. This chapter highlights intergenerational and transgenerational phenotypes in offspring following a history of parental drug exposure. Special attention is paid to parental preconception exposure studies of five drugs of abuse (alcohol, cocaine, nicotine, cannabinoids, and opiates) and associated behavioral and physiological outcomes in offspring. The highlighted studies demonstrate that parental exposure to drugs of abuse has enduring effects that persist into subsequent generations. Understanding the contribution of epigenetic inheritance in drug addiction may provide clues for better treatments and therapies for substance use disorders.
Collapse
Affiliation(s)
- Annalisa M Baratta
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Richa S Rathod
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sonja L Plasil
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amit Seth
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Gregg E Homanics
- Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| |
Collapse
|
42
|
Vafaee F, Zarifkar A, Emamghoreishi M, Namavar MR, Shirzad S, Ghazavi H, Mahdavizadeh V. Insulin-Like Growth Factor 2 (IGF-2) Regulates Neuronal Density and IGF-2 Distribution Following Hippocampal Intracerebral Hemorrhage. J Stroke Cerebrovasc Dis 2020; 29:105128. [PMID: 32912509 DOI: 10.1016/j.jstrokecerebrovasdis.2020.105128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The insulin-like growth factor 2 (IGF-2) is a growth factor and anti-inflammatory cytokine that plays a crucial role in memory consolidation. However, the precise role of this factor in acute brain damage is still unclear. The present study aimed to evaluate the variations in hippocampal IGF-2 distribution on different days and investigate the effect of recombinant IGF-2 on memory cell density, and IGF-2 distribution following acute hippocampal damage resulting from intracerebral hemorrhage (ICH). METHODS ICH was induced by injection of 100 μL of autologous blood into the left hippocampus of 72 male Sprague-Dawley rats. Recombinant IGF-2 was injected into the damaged hippocampus 30 min post-induction of ICH in the ICH-IGF-2 group. Then, on postoperative days 1, 3, 7, and 14, samples of brain tissue were collected to perform histopathological and immunohistochemical examinations. RESULTS The stereological study indicated that the volume of the hippocampus and the number of neurons had a significant reduction, and the infarct volume had a significant increase following ICH. Following the injection of IGF-2, a significant improvement was observed in stereological studies. Immunohistochemical data showed that IGF-2 distribution increased in the hippocampus on different days after ICH, and IGF-2 injection led to a dramatic reduction in this distribution. CONCLUSIONS In summary, the gradual increase of endogenous IGF-2 as growth and anti-inflammatory factor following hemorrhagic stroke reveals a critical role of this factor in brain recovery after injury. Moreover, the injection of IGF-2 can prevent cell death and alleviate the damage caused by the hemorrhagic stroke.
Collapse
Affiliation(s)
- Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Asadollah Zarifkar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Masoumeh Emamghoreishi
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Reza Namavar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Histomorphometry and Stereology Research center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shima Shirzad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Ghazavi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Mahdavizadeh
- Student Research committee, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Lee H, Jang D, Jeon J, Cho C, Choi S, Han SJ, Oh E, Nam J, Park CH, Shin YS, Yun SP, Yang S, Kang LJ. Seomae mugwort and jaceosidin attenuate osteoarthritic cartilage damage by blocking IκB degradation in mice. J Cell Mol Med 2020; 24:8126-8137. [PMID: 32529755 PMCID: PMC7348148 DOI: 10.1111/jcmm.15471] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 12/16/2022] Open
Abstract
Seomae mugwort, a Korean native variety of Artemisia argyi, exhibits physiological effects against various diseases. However, its effects on osteoarthritis (OA) are unclear. In this study, a Seomae mugwort extract prevented cartilage destruction in an OA mouse model. In vitro and ex vivo analyses revealed that the extract suppressed MMP3, MMP13, ADAMTS4 and ADAMTS5 expression induced by IL-1β, IL-6 and TNF-α and inhibited the loss of extracellular sulphated proteoglycans. In vivo analysis revealed that oral administration of the extract suppressed DMM-induced cartilage destruction. We identified jaceosidin in Seomae mugwort and showed that this compound decreased MMP3, MMP13, ADAMTS4 and ADAMTS5 expression levels, similar to the action of the Seomae mugwort extract in cultured chondrocytes. Interestingly, jaceosidin and eupatilin combined had similar effects to Seomae mugwort in the DMM-induced OA model. Induction of IκB degradation by IL-1β was blocked by the extract and jaceosidin, whereas JNK phosphorylation was only suppressed by the extract. These results suggest that the Seomae mugwort extract and jaceosidin can attenuate cartilage destruction by suppressing MMPs, ADAMTS4/5 and the nuclear factor-κB signalling pathway by blocking IκB degradation. Thus, the findings support the potential application of Seomae mugwort, and particularly jaceosidin, as natural therapeutics for OA.
Collapse
Affiliation(s)
- Hyemi Lee
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Dain Jang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Jimin Jeon
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Chanmi Cho
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Sangil Choi
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Seong Jae Han
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Eunjeong Oh
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Jiho Nam
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Chan Hum Park
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Korea
| | - Yu Su Shin
- Department of Medicinal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, Korea
| | - Seung Pil Yun
- Department of Pharmacology and Convergence Medical Science, Institute of Health Science, School of Medicine, Gyeongsang National University, Jinju, Korea
| | - Siyoung Yang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| | - Li-Jung Kang
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Korea.,Department of Pharmacology, Ajou University School of Medicine, Suwon, Korea.,CIRNO, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
44
|
Yang YJ, Luo T, Zhao Y, Jiang SZ, Xiong JW, Zhan JQ, Yu B, Yan K, Wei B. Altered insulin-like growth factor-2 signaling is associated with psychopathology and cognitive deficits in patients with schizophrenia. PLoS One 2020; 15:e0226688. [PMID: 32191705 PMCID: PMC7081987 DOI: 10.1371/journal.pone.0226688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/03/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Schizophrenia is linked with abnormal brain neurodevelopment, on which IGF-2 (insulin-like growth factor-2) has a great impact. The purpose of this study was to assess the levels of serum IGF-2 and its binding proteins IGFBP-3 and IGFBP-7 in schizophrenia patients and the associations of these proteins with schizophrenia psychopathology and cognitive deficits. METHODS Thirty-two schizophrenia patients and 30 healthy controls were recruited. The PANSS and a neurocognitive test battery were used to assess schizophrenic symptomatology and cognition, respectively. Serum IGF-2, IGFBP-3 and IGFBP-7 levels were determined using ELISA. RESULTS The schizophrenia patients had a much lower content of serum IGF-2, IGFBP-3 and IGFBP-7 than controls. For the patients, IGF-2 levels were negatively correlated with the PANSS negative scores and positively associated with working memory, attention, and executive function. The correlations between IGF-2 and the PANSS negative scores, working memory or executive function were still significant after controlling for age, sex, education level, BMI, illness history and age of onset. No significant associations of IGFBP-3 or IGFBP-7 with the PANSS scores and cognitive function were observed in the patients. CONCLUSIONS Our study demonstrates that serum IGF-2 was significantly correlated with negative and cognitive symptoms in patients with schizophrenia, suggesting that altered IGF-2 signaling may be implicated in the psychopathology and cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Yuan-Jian Yang
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Tao Luo
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Ying Zhao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Shu-Zhen Jiang
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Jian-Wen Xiong
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Jin-Qiong Zhan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Bin Yu
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Kun Yan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
| | - Bo Wei
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang, P.R. China
- * E-mail:
| |
Collapse
|
45
|
Luo Y, Liu Z, Luo S, Wang X, Tao L. The developmental and experience-dependent expression of IGF-2 in mice visual cortex. Neurosci Lett 2020; 721:134828. [PMID: 32044392 DOI: 10.1016/j.neulet.2020.134828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/21/2019] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Abstract
The circuitry associated with the visual cortex is particularly sensitive to experiences during the early stages of life, which are collectively known as critical periods. Critical period of ocular dominance plasticity is regulated by both environmental and genetic factors. Previous studies demonstrated that IGF-1 significantly influenced the regulation of visual cortex synaptic plasticity. IGF-2 can reportedly regulate synapse formation, dendritic spine maturation, and memory consolidation in rodents. Association between IGF-2 and the regulation of visual cortex synaptic plasticity remains unclear. Here, we first aimed to elucidate the normal expression patterns of IGF-2 and its laminar expression pattern during the process of visual cortex development in mice. This confirmed that IGF-2 may influence the regulation of ocular dominance plasticity in mice. We further elucidated the role of IGF-2 in the regulation of visual cortex synaptic plasticity by examining the effect of monocular deprivation (MD) on IGF-2 expression in the visual cortex. Interestingly, we observed that MD remarkably reduced IGF-2 expression in the visual cortex. Rodents reared in an enriched environment, with enhanced sensory, motor, and social experiences, were capable of effectively accelerating the development of the visual system and could restore normal visual acuity. Although the enriched environment facilitated the restoration of normal visual acuity in the MD mice, IGF-2 expression levels in the visual cortex remained unchanged. Therefore, we considered the possibility that IGF-2 may have a different role with regard to the modulation of plasticity in the visual cortex of the mice, which we aim to study in the future.
Collapse
Affiliation(s)
- Yulin Luo
- Department of Ophthalmology, Hunan Children's Hospital, Changsha 410007, China.
| | - Zhenghai Liu
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China
| | - Shishi Luo
- Clinical Anatomy and Reproductive Medicine Application Institute, University of South China, Hengyang 421001, China
| | - Xilang Wang
- Department of Ophthalmology, Hunan Children's Hospital, Changsha 410007, China
| | - Lijuan Tao
- Department of Ophthalmology, Hunan Children's Hospital, Changsha 410007, China
| |
Collapse
|
46
|
Vosberg DE, Leyton M, Flores C. The Netrin-1/DCC guidance system: dopamine pathway maturation and psychiatric disorders emerging in adolescence. Mol Psychiatry 2020; 25:297-307. [PMID: 31659271 PMCID: PMC6974431 DOI: 10.1038/s41380-019-0561-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
Axon guidance molecules direct growing axons toward their targets, assembling the intricate wiring of the nervous system. One of these molecules, Netrin-1, and its receptor, DCC (deleted in colorectal cancer), has profound effects, in laboratory animals, on the adolescent expansion of mesocorticolimbic pathways, particularly dopamine. Now, a rapidly growing literature suggests that (1) these same alterations could occur in humans, and (2) genetic variants in Netrin-1 and DCC are associated with depression, schizophrenia, and substance use. Together, these findings provide compelling evidence that Netrin-1 and DCC influence mesocorticolimbic-related psychopathological states that emerge during adolescence.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
- Population Neuroscience and Developmental Neuroimaging, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
47
|
Pardo M, Cheng Y, Sitbon YH, Lowell JA, Grieco SF, Worthen RJ, Desse S, Barreda-Diaz A. Insulin growth factor 2 (IGF2) as an emergent target in psychiatric and neurological disorders. Review. Neurosci Res 2019; 149:1-13. [PMID: 30389571 DOI: 10.1016/j.neures.2018.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/05/2018] [Accepted: 10/29/2018] [Indexed: 12/23/2022]
Abstract
Insulin-like growth factor 2 (IGF2) is abundantly expressed in the central nervous system (CNS). Recent evidence highlights the role of IGF2 in the brain, sustained by data showing its alterations as a common feature across a variety of psychiatric and neurological disorders. Previous studies emphasize the potential role of IGF2 in psychiatric and neurological conditions as well as in memory impairments, targeting IGF2 as a pro-cognitive agent. New research on animal models supports that upcoming investigations should explore IGF2's strong promising role as a memory enhancer. The lack of effective treatments for cognitive disturbances as a result of psychiatric diseases lead to further explore IGF2 as a promising target for the development of new pharmacology for the treatment of memory dysfunctions. In this review, we aim at gathering all recent relevant studies and findings on the role of IGF2 in the development of psychiatric diseases that occur with cognitive problems.
Collapse
Affiliation(s)
- M Pardo
- University of Miami Miller School of Medicine, Department of Neurology, Miami, FL, USA.
| | - Y Cheng
- University of California Los Angeles, Neurology Department, Los Angeles, CA, USA.
| | - Y H Sitbon
- University of Miami Miller School of Medicine, Department of Molecular and Cellular Pharmacology, Miami, FL, USA.
| | - J A Lowell
- University of Miami, Department of Psychiatry & Behavioral Sciences, Miami, FL, USA.
| | - S F Grieco
- University of California, Department of Anatomy and Neurobiology, Irvine, CA, USA.
| | - R J Worthen
- University of Miami, Department of Psychiatry & Behavioral Sciences, Miami, FL, USA.
| | - S Desse
- University of Miami, Department of Psychiatry & Behavioral Sciences, Miami, FL, USA.
| | - A Barreda-Diaz
- University of Miami Miller School of Medicine, Department of Neurology, Miami, FL, USA.
| |
Collapse
|
48
|
Kukushkin NV, Williams SP, Carew TJ. Neurotropic and modulatory effects of insulin-like growth factor II in Aplysia. Sci Rep 2019; 9:14379. [PMID: 31591438 PMCID: PMC6779898 DOI: 10.1038/s41598-019-50923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 09/12/2019] [Indexed: 01/19/2023] Open
Abstract
Insulin-like growth factor II (IGF2) enhances memory in rodents via the mannose-6-phosphate receptor (M6PR), but the underlying mechanisms remain poorly understood. We found that human IGF2 produces an enhancement of both synaptic transmission and neurite outgrowth in the marine mollusk Aplysia californica. These findings were unexpected since Aplysia lack the mammal-specific affinity between insulin-like ligands and M6PR. Surprisingly, this effect was observed in parallel with a suppression of neuronal excitability in a well-understood circuit that supports several temporally and mechanistically distinct forms of memory in the defensive withdrawal reflex, suggesting functional coordination between excitability and memory formation. We hypothesize that these effects represent behavioral adaptations to feeding that are mediated by the endogenous Aplysia insulin-like system. Indeed, the exogenous application of a single recombinant insulin-like peptide cloned from the Aplysia CNS cDNA replicated both the enhancement of synaptic transmission, the reduction of excitability, and promoted clearance of glucose from the hemolymph, a hallmark of bona fide insulin action.
Collapse
Affiliation(s)
| | | | - Thomas James Carew
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY, 10003, USA.
| |
Collapse
|
49
|
Greiner JFW, Merten M, Kaltschmidt C, Kaltschmidt B. Sexual dimorphisms in adult human neural, mesoderm-derived, and neural crest-derived stem cells. FEBS Lett 2019; 593:3338-3352. [PMID: 31529465 DOI: 10.1002/1873-3468.13606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022]
Abstract
Sexual dimorphisms contribute, at least in part, to the severity and occurrence of a broad range of neurodegenerative, cardiovascular, and bone disorders. In addition to hormonal factors, increasing evidence suggests that stem cell-intrinsic mechanisms account for sex-specific differences in human physiology and pathology. Here, we discuss sex-related intrinsic mechanisms in adult stem cell populations, namely mesoderm-derived stem cells, neural stem cells (NSCs), and neural crest-derived stem cells (NCSCs), and their implications for stem cell differentiation and regeneration. We particularly focus on sex-specific differences in stem cell-mediated bone regeneration, in neuronal development, and in NSC-mediated neuroprotection. Moreover, we review our own recently published observations regarding the sex-dependent role of NF-κB-p65 in neuroprotection of human NCSC-derived neurons and sex differences in NCSC-related disorders, so-called neurocristopathies. These observations are in accordance with the increasing evidence pointing toward sex-specific differences in neurocristopathies and degenerative diseases like Parkinson's disease or osteoporosis. All findings discussed here indicate that sex-specific variability in stem cell biology may become a crucial parameter for the design of future treatment strategies.
Collapse
Affiliation(s)
| | - Madlen Merten
- Molecular Neurobiology, Bielefeld University, Germany
| | | | - Barbara Kaltschmidt
- Department of Cell Biology, Bielefeld University, Germany.,Molecular Neurobiology, Bielefeld University, Germany
| |
Collapse
|
50
|
Dresselhaus EC, Meffert MK. Cellular Specificity of NF-κB Function in the Nervous System. Front Immunol 2019; 10:1043. [PMID: 31143184 PMCID: PMC6520659 DOI: 10.3389/fimmu.2019.01043] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Nuclear Factor Kappa B (NF-κB) is a ubiquitously expressed transcription factor with key functions in a wide array of biological systems. While the role of NF-κB in processes, such as host immunity and oncogenesis has been more clearly defined, an understanding of the basic functions of NF-κB in the nervous system has lagged behind. The vast cell-type heterogeneity within the central nervous system (CNS) and the interplay between cell-type specific roles of NF-κB contributes to the complexity of understanding NF-κB functions in the brain. In this review, we will focus on the emerging understanding of cell-autonomous regulation of NF-κB signaling as well as the non-cell-autonomous functional impacts of NF-κB activation in the mammalian nervous system. We will focus on recent work which is unlocking the pleiotropic roles of NF-κB in neurons and glial cells (including astrocytes and microglia). Normal physiology as well as disorders of the CNS in which NF-κB signaling has been implicated will be discussed with reference to the lens of cell-type specific responses.
Collapse
Affiliation(s)
- Erica C Dresselhaus
- Department of Biological Chemistry and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mollie K Meffert
- Department of Biological Chemistry and Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|