1
|
Wang YC, Zhu HH, He LC, Yao YT, Zhang L, Xue XL, Li JY, Zhang L, Song B, Shi CH, Li YS, Gao Y, Yang JH, Xu YM. Proteome Profiling of Serum Reveals Pathological Mechanisms and Biomarker Candidates for Cerebral Small Vessel Disease. Transl Stroke Res 2025:10.1007/s12975-025-01332-6. [PMID: 39934548 DOI: 10.1007/s12975-025-01332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Cerebral small vessel disease (CSVD) is a global brain disorder that is characterized by a series of clinical, neuroimaging, and neuropathological manifestations. However, the molecular pathophysiological mechanisms of CSVD have not been thoroughly investigated. Liquid chromatography-tandem mass spectrometry-based proteomics has broad application prospects in biomedicine. It is used to elucidate disease-related molecular processes and pathophysiological pathways, thus providing an important opportunity to explore the pathophysiological mechanisms of CSVD. Serum samples were obtained from 96 participants (58 with CSVD and 38 controls) consecutively recruited from The First Affiliated Hospital of Zhengzhou University. After removing high-abundance proteins, the serum samples were analyzed using high-resolution mass spectrometry. Bioinformatics methods were used for in-depth analysis of the obtained proteomic data, and the results were verified experimentally. Compared with the control group, 52 proteins were differentially expressed in the sera of the CSVD group. Furthermore, analyses indicated the involvement of these differentially expressed proteins in CSVD through participation in the overactivation of complement and coagulation cascades and dysregulation of insulin-like growth factor-binding proteins. The proteomic biomarker panel identified by the machine learning model combined with clinical features is expected to facilitate the diagnosis of CSVD (AUC = 0.947, 95% CI = 0.895-0.978). The study is the most in-depth study on CSVD proteomics to date and suggests that the overactivation of the complement cascade and the dysregulation of IGFBP on- IGF may be closely correlated with the occurrence and progression of CSVD, offering the potential to develop peripheral blood biomarkers and providing new insights into the biological basis of CSVD.
Collapse
Affiliation(s)
- Yun-Chao Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Hang-Hang Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Liu-Chang He
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Ya-Ting Yao
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Lei Zhang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Xin-Li Xue
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Jing-Yi Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Li Zhang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Chang-He Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Yu-Sheng Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China.
| | - Jing-Hua Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China.
| | - Yu-Ming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- National Health Commission Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, China.
- The First Affiliated Hospital of Zhengzhou University, 1 Jian-She East Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
2
|
Tian HY, Lei YX, Zhou JT, Liu LJ, Yang T, Zhou Y, Ge JW, Xu C, Mei ZG. Insight into interplay between PANoptosis and autophagy: novel therapeutics in ischemic stroke. Front Mol Neurosci 2025; 17:1482015. [PMID: 39846000 PMCID: PMC11751022 DOI: 10.3389/fnmol.2024.1482015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay. While mounting evidence hints at a crosstalk between these two processes in IS, the underlying mechanisms remain elusive. Therefore, this review delves into and dissects the intricate mechanisms that underpin the intersection of PANoptosis and autophagy in this devastating condition. In conclusion, the crosstalk between PANoptosis and autophagy in IS presents a promising target for the development of novel stroke therapies. Understanding the interplay between these two pathways offers a much-needed insight into the underlying mechanisms of IS and opens the possibility for new therapeutic strategies.
Collapse
Affiliation(s)
- He-Yan Tian
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Yun-Xing Lei
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Jing-Tao Zhou
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Long-Jun Liu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| | - Jin-Wen Ge
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
- Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Chen Xu
- School of Medical Technology and Nursing, Shenzhen Polytechnic University, Shenzhen, China
| | - Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Zohdy YM, Garzon-Muvdi T, Grossberg JA, Barrow DL, Howard BM, Pradilla G, Kobeissy FH, Tomlinson S, Alawieh AM. Complement inhibition targets a rich-club within the neuroinflammatory network after stroke to improve radiographic and functional outcomes. J Neuroinflammation 2025; 22:1. [PMID: 39754245 PMCID: PMC11699776 DOI: 10.1186/s12974-024-03316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/29/2024] [Indexed: 01/06/2025] Open
Abstract
Following recent advances in post-thrombectomy stroke care, the role of neuroinflammation and neuroprotective strategies in mitigating secondary injury has gained prominence. Yet, while neuroprotection and anti-inflammatory agents have re-emerged in clinical trials, their success has been limited. The neuroinflammatory response in cerebral ischemia is robust and multifactorial, complicating therapeutic approaches targeting single pathways. In this study, we aimed to characterize early inflammatory gene dysregulation following ischemic stroke using translational in-silico and in-vivo approaches. Using an in vivo ischemic stroke model, transcriptomic analysis revealed significant dysregulation of inflammatory genes. Graph theory analysis then showed a rich-club organization among stroke-related genes, with highly connected core nodes. The expression levels of the core genes identified within this network significantly explained radiological outcomes, including T2-signal hyperintensity (R2 = 0.57, P < 0.001), mean diffusivity (R2 = 0.52, P < 0.001), and mean kurtosis (R2 = 0.65, P < 0.001), correlating more strongly than non-core genes. Similar findings were observed with functional and cognitive outcomes, showing R2 values of 0.58, 0.7, 0.54, and 0.7 for neurological severity scores, corner tasks, passive avoidance, and novel object recognition tasks, respectively (P < 0.001). Using in-silico analysis, we identified a set of upstream regulators directly interacting with core network nodes, leading to simulations that highlighted C3-targeted therapy as a potential treatment. This hypothesis was then confirmed in vivo using a targeted C3 inhibitor (CR2-fH), which reversed gene dysregulation in the neuroinflammatory network and improved radiological and functional outcomes. Our findings underscore the significance of neuroinflammation in stroke pathology, supporting network-based therapeutic targeting and demonstrating the benefits of targeted complement inhibition in enhancing outcomes through modulation of the neuroinflammatory network core. This study's approach, combining graph theory analysis along with in-silico modeling, offers a promising translational pipeline applicable to stroke and other complex diseases.
Collapse
Affiliation(s)
- Youssef M Zohdy
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jonathan A Grossberg
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Brian M Howard
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Gustavo Pradilla
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Firas H Kobeissy
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
- Ralph Johnson VA Medical Center, Charleston, SC, USA
| | - Ali M Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
4
|
Ding R, Cheng J, Wei S, Qin X, Liu Y, Li H, Xie T, Chai H, Chen Z. Sequential transcriptomic alterations in the cerebral cortex of mice after cerebral venous sinus thrombosis. J Proteomics 2024; 291:105035. [PMID: 37918797 DOI: 10.1016/j.jprot.2023.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
To investigate the expression alterations of specific genes that occur after venous stroke, we identified differentially expressed genes (DEGs) between sham and damaged cortical tissues at 2 and 7 days after induction of cerebral venous sinus thrombosis (CVST) model. The profiles of DEGs were analyzed using GO, KEGG, GSEA, and PPI, and the crucial gene was further verified by western blot and immunofluorescence. We found 969 and 883 DEGs at 2 and 7 days after CVST, respectively. A marked increase in biological-process categories, such as immune system process and inflammatory response, and a decrease in neuropeptide signaling pathway were observed both at 2 and 7 days post-CVST. The KEGG pathway was enriched to varying degrees on complement and coagulation cascades, cytokine-cytokine receptor interaction, and multiple immune-inflammatory signaling pathways at 2 and 7 days post-CVST, separately. Furthermore, GSEA highlights the potential roles of the NOD-like receptor signaling pathway and cytokine-cytokine receptor interaction in CVST. Importantly, numerous genes related to KEGG pathways above featured prominently in the PPI network analysis, with IL1b being one of the most conspicuous. These time-dependent alterations in gene profiles and enrichment pathways reveal the unique pathophysiological characteristics of CVST and indicate novel therapeutic targets for venous stroke. SIGNIFICANCE: Cerebral venous sinus thrombosis (CVST) is an underrated and potentially fatal cause of stroke with a reported mortality of 5-10% worldwide. Currently, in addition to anticoagulant and thrombolytic therapy, effective treatments targeting the injured brain parenchyma after CVST remain limited. Besides, accurate diagnostic markers are still sorely lacking. In the present study, we will detect the transcriptomic alterations of the cerebral cortex of mice post-CVST by RNA-sequencing, screen differentially expressed genes and abnormal pathways through bioinformatics methods, analyze the correlation of these signals and CVST pathology, and finally validate the key molecules through western blot and immunofluorescence assays. Collectively, the study aimed to offer a reference for the discovery of specific genes/pathway alterations in the damaged cortical tissues of CVST mice and further reveal the underlying pathogenesis, thereby providing evidence for the diagnosis and treatment of CVST.
Collapse
Affiliation(s)
- Rui Ding
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Cheng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shanshan Wei
- Department of Oncology, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan 430063, China
| | - Xiaohong Qin
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yaqi Liu
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Haiyan Li
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China
| | - Teng Xie
- Department of Neurosurgery, Hanchuan Renmin Hospital, Hanchuan, Hubei 431600, China
| | - Huihui Chai
- Department of Cerebrovascular Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, No 600 Tianhe Road, Guangzhou, 510630, Guangdong, China; Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, National Key Laboratory for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Laboratory of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai 200040, China.
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
5
|
Okrój M, Merle NS, Lu J. Editorial: Expert opinions and perspectives in complement: 2022. Front Immunol 2023; 14:1248299. [PMID: 37503345 PMCID: PMC10369785 DOI: 10.3389/fimmu.2023.1248299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Affiliation(s)
- Marcin Okrój
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Nicolas S. Merle
- Complement and Inflammation Research Section (CIRS), National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jinhua Lu
- Department of Microbiology and Immunology, Young Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Translational Research Programme, Young Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Couch C, Alawieh AM, Toutonji A, Atkinson C, Tomlinson S. Evaluating the comorbidities of age and cigarette smoking on stroke outcomes in the context of anti-complement mitigation strategies. Front Immunol 2023; 14:1161051. [PMID: 37223091 PMCID: PMC10200924 DOI: 10.3389/fimmu.2023.1161051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/20/2023] [Indexed: 05/25/2023] Open
Abstract
Multiple neuroprotective agents have shown beneficial effects in rodent models of stroke, but they have failed to translate in the clinic. In this perspective, we consider that a likely explanation for this failure, at least in part, is that there has been inadequate assessment of functional outcomes in preclinical stroke models, as well the use of young healthy animals that are not representative of clinical cohorts. Although the impact of older age and cigarette smoking comorbidities on stroke outcomes is well documented clinically, the impact of these (and other) stroke comorbidities on the neuroinflammatory response after stroke, as well as the response to neuroprotective agents, remains largely unexplored. We have shown that a complement inhibitor (B4Crry), that targets specifically to the ischemic penumbra and inhibits complement activation, reduces neuroinflammation and improves outcomes following murine ischemic stroke. For this perspective, we discuss the impact of age and smoking comorbidities on outcomes after stroke, and we experimentally assess whether increased complement activation contributes to worsened acute outcomes with these comorbidities. We found that the pro-inflammatory effects of aging and smoking contribute to worse stroke outcomes, and these effects are mitigated by complement inhibition.
Collapse
Affiliation(s)
- Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Ali M. Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Carl Atkinson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
- Ralph H. Johnson Veteran's Affairs (VA) Medical Center, Charleston, SC, United States
| |
Collapse
|
7
|
Hatchell D, Alshareef M, Vasas T, Guglietta S, Borucki D, Guo C, Mallah K, Eskandari R, Tomlinson S. A Role for P-selectin and Complement in the Pathological Sequelae of Germinal Matrix Hemorrhage. RESEARCH SQUARE 2023:rs.3.rs-2617965. [PMID: 36909595 PMCID: PMC10002788 DOI: 10.21203/rs.3.rs-2617965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Background Germinal Matrix Hemorrhage is a devastating disease of pre-term infancy commonly resulting in post-hemorrhagic hydrocephalus, periventricular leukomalacia, and subsequent neurocognitive deficits. We demonstrate vascular expression of the adhesion molecule P-selectin after GMH and investigate a strategy to specifically target complement inhibition to sites of P-selectin expression to mitigate the pathological sequelae of GMH. Methods We prepared two fusion proteins consisting of different anti-P-selectin single chain antibodies (scFv's) linked to the complement inhibitor Crry. One scFv targeting vehicle (2.12scFv) blocked the binding of P-selectin to its PSGL-1 ligand expressed on leukocytes, whereas the other targeting vehicle (2.3scFv) bound P-selectin without blocking ligand binding. Post-natal mice on day 4 (P4) were subjected to collagenase induced-intraventricular hemorrhage and treated with 2.3Psel-Crry, 2.12Psel-Crry, or vehicle. Results Compared to vehicle treatment, 2.3Psel-Crry treatment after induction of GMH resulted in reduced lesion size and mortality, reduced hydrocephalus development, and improved neurological deficit measurements in adolescence. In contrast, 2.12Psel-Crry treatment resulted in worse outcomes compared to vehicle. Improved outcomes with 2.3Psel-Crry were accompanied by decreased P-selectin expression, and decreased complement activation and microgliosis. Microglia from 2.3Psel-Crry treated mice displayed a ramified morphology, similar to naïve mice, whereas microglia in vehicle treated animals displayed a more ameboid morphology that is associated with a more activated status. Consistent with these morphological characteristics, there was increased microglial internalization of complement deposits in vehicle compared to 2.3Psel-Crry treated animals, reminiscent of aberrant C3-dependent microglial phagocytosis that occurs in other (adult) types of brain injury. Also, following systemic injection, 2.3Psel-Crry specifically targeted to the post-GMH brain. Likely accounting for the unexpected finding that 2.12Psel-Crry worsens outcome following GMH was the finding that this construct interfered with coagulation in this hemorrhagic condition, and specifically with heterotypic platelet-leukocyte aggregation, which express P-selectin and PSGL-1, respectively. Conclusion GMH induces expression of P-selectin, the targeting of which with a complement inhibitor protects against pathogenic sequelae of GMH. A dual functioning construct with both P-selectin and complement blocking activity interferes with coagulation and worsens outcomes following GMH, but has potential for treatment of conditions that incorporate pathological thrombotic events, such as ischemic stroke.
Collapse
|
8
|
A Cadaver Feasibility Study of Extradural Contralateral C7 Ventral Root Transfer Technique for Treating Upper Extremity Paralysis. Spine (Phila Pa 1976) 2022; 47:1248-1252. [PMID: 35867634 DOI: 10.1097/brs.0000000000004367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/24/2022] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN A total of 6 formalin-fixed cadavers were included in the cadaver feasibility study. OBJECTIVE The aim was to ascertain the anatomical feasibility of extradural contralateral C7 ventral root transfer technique by cervical posterior. SUMMARY OF BACKGROUND DATA Upper limb spastic hemiplegia is a common sequela after stroke. In our previous study, the authors established a method by transferring contralateral C7 dorsal and ventral roots to the corresponding C7 dorsal and ventral roots on the affected side in the cervical posterior. METHODS In the present study, six formalin-fixed cadavers were dissected to confirm the anatomical feasibility. Experimental anastomosis in cadavers was conducted. The pertinent lengths of the extradural nerve roots were measured. The tissue structures surrounding regions between the extradural CC7 nerve roots and the vertebral artery were observed. The cervical magnetic resonance imaging scans of 60 adults were used to measure the distance between the donor and recipient nerves. RESULTS Experimental anastomosis showed that the distance between the donor and recipient nerves was approximately 1 cm; the short segment of the sural nerve needed bridging. The distance between both exit sites of the exit of the extradural dura mater was 33.57±1.55 mm. The length of the extradural CC7 ventral root was 22.00±0.98 mm. The ventral distance (vd) and the dorsal distance (dd) in males were 23.98±1.72 mm and 30.85±2.22 mm ( P <0.05), while those in females were 23.28±1.51 mm and 30.03±2.16 mm, respectively. C7 vertebral transverse process, ligaments, and other soft tissues were observed between the vertebral artery and the extradural C7 nerve root. CONCLUSION Under the premise of less trauma, our study shows that the extradural contralateral C7 ventral root transfer technique, in theory, yields better surgical results, including better recovery of motor function and complete preservation of sensory function. LEVEL OF EVIDENCE 5.
Collapse
|
9
|
Liu C, Xie J, Sun S, Li H, Li T, Jiang C, Chen X, Wang J, Le A, Wang J, Li Z, Wang J, Wang W. Hemorrhagic Transformation After Tissue Plasminogen Activator Treatment in Acute Ischemic Stroke. Cell Mol Neurobiol 2022; 42:621-646. [PMID: 33125600 PMCID: PMC11441267 DOI: 10.1007/s10571-020-00985-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022]
Abstract
Hemorrhagic transformation (HT) is a common complication after thrombolysis with recombinant tissue-type plasminogen activator (rt-PA) in ischemic stroke. In this article, recent research progress of HT in vivo and in vitro studies was reviewed. We have discussed new potential mechanisms and possible experimental models of HT development, as well as possible biomarkers and treatment methods. Meanwhile, we compared and analyzed rodent models, large animal models and in vitro BBB models of HT, and the limitations of these models were discussed. The molecular mechanism of HT was investigated in terms of BBB disruption, rt-PA neurotoxicity and the effect of neuroinflammation, matrix metalloproteinases, reactive oxygen species. The clinical features to predict HT were represented including blood biomarkers and clinical factors. Recent progress in neuroprotective strategies to improve HT after stroke treated with rt-PA is outlined. Further efforts need to be made to reduce the risk of HT after rt-PA therapy and improve the clinical prognosis of patients with ischemic stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Shanshan Sun
- Department of Ultrasound Imaging, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Hui Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tianyu Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Junmin Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China
| | - Anh Le
- Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Jiarui Wang
- The Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Zhanfei Li
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Jian Wang
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Henan, 450000, People's Republic of China.
| | - Wei Wang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
10
|
Couch C, Mallah K, Borucki DM, Bonilha HS, Tomlinson S. State of the science in inflammation and stroke recovery: A systematic review. Ann Phys Rehabil Med 2022; 65:101546. [PMID: 34098132 PMCID: PMC9018463 DOI: 10.1016/j.rehab.2021.101546] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/26/2021] [Accepted: 04/19/2021] [Indexed: 11/20/2022]
Abstract
Stroke is a major cause of mortality worldwide, and survivors often have major life-changing disabilities. Annually in the United States, an estimated 795,000 people experience a new or recurrent stroke. All types of stroke involve an inflammatory reaction that follows the initial phase of incidence. However, investigations into any links between inflammatory markers and recovery processes in the context of post-stroke rehabilitation are lacking. In this systematic review, we searched the literature in PubMed, SCOPUS, and CINAHL databases to gather information on inflammatory biomarkers related to stroke and their association with rehabilitation outcomes, according to PRISMA guidelines. Eleven articles (n=1.773 stroke patients) were selected. Immune markers (interleukin 6 [IL-6], C-reactive protein, IL-1α, tumor necrosis factor α, soluble intercellular adhesion molecule 1) and functional status assessments (Modified Rankin Score, National Institutes of Health Stroke Scale, Functional Independence Measure, etc.) were the primary measures used in the reviewed studies. We found preliminary evidence for the evaluation of inflammatory biomarkers post-stroke, including the role of inflammation in functional recovery and the influence of rehabilitation on inflammation. This is the first systematic review of the topic. The review identifies several gaps in the literature that are critical for understanding the potential use of inflammatory markers to improve post-stroke outcomes.
Collapse
Affiliation(s)
- Christine Couch
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC, 29425, USA; Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Khalil Mallah
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC, 29425, USA
| | - Davis M Borucki
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC, 29425, USA; Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Heather Shaw Bonilha
- Department of Health Sciences and Research, College of Health Professions, Medical University of South Carolina, Charleston, SC, USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC, 29425, USA; Ralph Johnson VA Medical Center, Charleston, SC, USA.
| |
Collapse
|
11
|
Complement as a powerful "influencer" in the brain during development, adulthood and neurological disorders. Adv Immunol 2021; 152:157-222. [PMID: 34844709 DOI: 10.1016/bs.ai.2021.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complement system was long considered as only a powerful effector arm of the immune system that, while critically protective, could lead to inflammation and cell death if overactivated, even in the central nervous system (CNS). However, in the past decade it has been recognized as playing critical roles in key physiological processes in the CNS, including neurogenesis and synaptic remodeling in the developing and adult brain. Inherent in these processes are the interactions with cells in the brain, and the cascade of interactions and functional consequences that ensue. As a result, investigations of therapeutic approaches for both suppressing excessive complement driven neurotoxicity and aberrant sculpting of neuronal circuits, require broad (and deep) knowledge of the functional activities of multiple components of this highly evolved and regulated system to avoid unintended negative consequences in the clinic. Advances in basic science are beginning to provide a roadmap for translation to therapeutics, with both small molecule and biologics. Here, we present examples of the critical roles of proper complement function in the development and sculpting of the nervous system, and in enabling rapid protection from infection and clearance of dying cells. Microglia are highlighted as important command centers that integrate signals from the complement system and other innate sensors that are programed to provide support and protection, but that direct detrimental responses to aberrant activation and/or regulation of the system. Finally, we present promising research areas that may lead to effective and precision strategies for complement targeted interventions to promote neurological health.
Collapse
|
12
|
Yarmoska SK, Alawieh AM, Tomlinson S, Hoang KB. Modulation of the Complement System by Neoplastic Disease of the Central Nervous System. Front Immunol 2021; 12:689435. [PMID: 34671342 PMCID: PMC8521155 DOI: 10.3389/fimmu.2021.689435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022] Open
Abstract
The complement system is a highly conserved component of innate immunity that is involved in recognizing and responding to pathogens. The system serves as a bridge between innate and adaptive immunity, and modulation of the complement system can affect the entire host immune response to a foreign insult. Neoplastic diseases have been shown to engage the complement system in order to evade the immune system, gain a selective growth advantage, and co-opt the surrounding environment for tumor proliferation. Historically, the central nervous system has been considered to be an immune-privileged environment, but it is now clear that there are active roles for both innate and adaptive immunity within the central nervous system. Much of the research on the role of immunological modulation of neoplastic disease within the central nervous system has focused on adaptive immunity, even though innate immunity still plays a critical role in the natural history of central nervous system neoplasms. Here, we review the modulation of the complement system by a variety of neoplastic diseases of the central nervous system. We also discuss gaps in the current body of knowledge and comment on future directions for investigation.
Collapse
Affiliation(s)
- Steven K. Yarmoska
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Ali M. Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Kimberly B. Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
13
|
Contralateral C7 Nerve Transfer for Stroke Recovery: New Frontier for Peripheral Nerve Surgery. J Clin Med 2021; 10:jcm10153344. [PMID: 34362127 PMCID: PMC8347887 DOI: 10.3390/jcm10153344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/19/2021] [Accepted: 07/11/2021] [Indexed: 11/22/2022] Open
Abstract
Ischemic stroke remains a major cause of disability in the United States and worldwide. Following the large-scale implementation of stroke thrombectomy and the optimization of treatment protocols for acute stroke, the reduction in stroke-associated mortality has resulted in an increased proportion of stroke survivors, many of whom have moderate to severe disability. To date, the treatment of subacute and chronic stroke has remained a challenge. Several approaches, involving pharmacological interventions to promote neuroplasticity, brain stimulation strategies and rehabilitative interventions, are currently being explored at different stages of the translational spectrum, yet level 1 evidence is still limited. In a recent landmark study, surgical intervention using contralateral C7 nerve transfer, an approach used to treat brachial plexus injury, was implemented in patients with chronic stroke, demonstrating an added benefit to standard rehabilitation strategies, leading to improved motor performance and reduced spasticity. The procedure involved the transfer of the C7 nerve root and middle trunk from the uninjured extremity to the injured extremity using a short conduit that allows for faster regeneration and innervation of the injured upper extremity via the ipsilateral (contralesional) hemisphere. In this work, we review the rationale for using contralateral C7 nerve transfer in stroke, describe the surgical intervention with associated variations and limitations, and discuss the current evidence for the efficacy of this technique in ischemic stroke research.
Collapse
|
14
|
Gu RF, Fang T, Nelson A, Gyoneva S, Gao B, Hedde J, Henry K, Peterson E, Burkly LC, Wei R. Proteomic Characterization of the Dynamics of Ischemic Stroke in Mice. J Proteome Res 2021; 20:3689-3700. [PMID: 34085531 PMCID: PMC8256414 DOI: 10.1021/acs.jproteome.1c00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Novel therapies and biomarkers are
needed for the treatment of
acute ischemic stroke (AIS). This study aimed to provide comprehensive
insights into the dynamic proteome changes and underlying molecular
mechanisms post-ischemic stroke. TMT-coupled proteomic analysis was
conducted on mouse brain cortex tissue from five time points up to
4 weeks poststroke in the distal hypoxic-middle cerebral artery occlusion
(DH-MCAO) model. We found that nearly half of the detected proteome
was altered following stroke, but only ∼8.6% of the changes
were at relatively large scales. Clustering on the changed proteome
defined four distinct expression patterns characterized by temporal
and quantitative changes in innate and adaptive immune response pathways
and cytoskeletal and neuronal remodeling. Further analysis on a subset
of 309 “top hits”, which temporally responded to stroke
with relatively large and sustained changes, revealed that they were
mostly secreted proteins, highly correlated to different cortical
cytokines, and thereby potential pharmacodynamic biomarker candidates
for inflammation-targeting therapies. Closer examination of the top
enriched neurophysiologic pathways identified 57 proteins potentially
associated with poststroke recovery. Altogether, our study generated
a rich dataset with candidate proteins worthy of further validation
as biomarkers and/or therapeutic targets for stroke. The proteomics
data are available in the PRIDE Archive with identifier PXD025077.
Collapse
Affiliation(s)
- Rong-Fang Gu
- Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Terry Fang
- Genetic and Neurodevelopmental Disorders Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ashley Nelson
- Genetic and Neurodevelopmental Disorders Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Stefka Gyoneva
- Genetic and Neurodevelopmental Disorders Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Benbo Gao
- Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Joe Hedde
- Genetic and Neurodevelopmental Disorders Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Kate Henry
- Genetic and Neurodevelopmental Disorders Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Emily Peterson
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Linda C Burkly
- Genetic and Neurodevelopmental Disorders Research, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Ru Wei
- Chemical Biology and Proteomics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
15
|
Complement Drives Synaptic Degeneration and Progressive Cognitive Decline in the Chronic Phase after Traumatic Brain Injury. J Neurosci 2021; 41:1830-1843. [PMID: 33446516 DOI: 10.1523/jneurosci.1734-20.2020] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023] Open
Abstract
Cognitive deficits following traumatic brain injury (TBI) remain a major cause of disability and early-onset dementia, and there is increasing evidence that chronic neuroinflammation occurring after TBI plays an important role in this process. However, little is known about the molecular mechanisms responsible for triggering and maintaining chronic inflammation after TBI. Here, we identify complement, and specifically complement-mediated microglial phagocytosis of synapses, as a pathophysiological link between acute insult and a chronic neurodegenerative response that is associated with cognitive decline. Three months after an initial insult, there is ongoing complement activation in the injured brain of male C57BL/6 mice, which drives a robust chronic neuroinflammatory response extending to both hemispheres. This chronic neuroinflammatory response promotes synaptic degeneration and predicts progressive cognitive decline. Synaptic degeneration was driven by microglial phagocytosis of complement-opsonized synapses in both the ipsilateral and contralateral brain, and complement inhibition interrupted the degenerative neuroinflammatory response and reversed cognitive decline, even when therapy was delayed until 2 months after TBI. These findings provide new insight into our understanding of TBI pathology and its management; and whereas previous therapeutic investigations have focused almost exclusively on acute treatments, we show that all phases of TBI, including at chronic time points after TBI, may be amenable to therapeutic interventions, and specifically to complement inhibition.SIGNIFICANCE STATEMENT There is increasing evidence of a chronic neuroinflammatory response after traumatic brain injury (TBI), but little is known about the molecular mechanisms responsible for triggering and maintaining chronic inflammation. We identify complement, and specifically complement-mediated microglial phagocytosis of synapses, as a pathophysiological link between acute insult and a chronic neurodegenerative response, and further that this response is associated with cognitive decline. Complement inhibition interrupted this response and reversed cognitive decline, even when therapy was delayed until 2 months after injury. The data further support the concept that TBI should be considered a chronic rather than an acute disease condition, and have implications for the management of TBI in the chronic phase of injury, specifically with regard to the therapeutic application of complement inhibition.
Collapse
|
16
|
Keragala CB, Woodruff TM, Liu Z, Niego B, Ho H, McQuilten Z, Medcalf RL. Tissue-Type Plasminogen Activator and Tenecteplase-Mediated Increase in Blood Brain Barrier Permeability Involves Cell Intrinsic Complement. Front Neurol 2020; 11:577272. [PMID: 33363504 PMCID: PMC7753024 DOI: 10.3389/fneur.2020.577272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/09/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Tissue-type plasminogen activator (t-PA) has been the mainstay of therapeutic thrombolysis for patients with acute ischaemic stroke (AIS). However, t-PA can cause devastating intracerebral hemorrhage. t-PA can also influence the CNS in part by modulation of BBB permeability. Complement activation also occurs after AIS and has also been reported to increase BBB permeability. The complement components, C3 and C5, can also be activated by t-PA via plasmin formation and cell intrinsic complement may be involved in this process. Tenecteplase (TNK-tPA) is a t-PA variant with a longer plasma half-life, yet the ability of TNK-tPA to modulate the BBB and complement is less clear. Aim: To evaluate the effect of C5 and C5a-receptor 1 (C5aR1) inhibitors on t-PA- and TNK-tPA-mediated opening of the BBB. Methods: We used an in vitro model of the BBB where human brain endothelial cells and human astrocytes were co-cultured on the opposite sides of a porous membrane assembled in transwell inserts. The luminal (endothelial) compartment was stimulated with t-PA or TNK-tPA together with plasminogen, in the presence of PMX205 (a non-competitive C5aR1 antagonist), Avacopan (a competitive C5aR1 antagonist) or Eculizumab (a humanized monoclonal inhibitor of human C5). BBB permeability was assessed 5 and 24 h later. Immunofluorescence was also used to detect changes in C5 and C5aR1 expression in endothelial cells and astrocytes. Results: PMX205, but not Avacopan or Eculizumab, blocked t-PA-mediated increase in BBB permeability at both the 5 and 24 h time points. PMX205 also blocked TNK-tPA-mediated increase in BBB permeability. Immunofluorescence analysis revealed intracellular staining of C5 in both cell types. C5aR1 expression was also detected on the cell surfaces and also located intracellularly in both cell types. Conclusion: t-PA and TNK-tPA-mediated increase in BBB permeability involves C5aR1 receptor activation from cell-derived C5a. Selective inhibitors of C5aR1 may have therapeutic potential in AIS.
Collapse
Affiliation(s)
- Charithani B Keragala
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Zikou Liu
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Be'eri Niego
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Heidi Ho
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Zoe McQuilten
- Transfusion Research Unit, Department of Epidemiology and Preventative Medicine, Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, VIC, Australia
| | - Robert L Medcalf
- Molecular Neurotrauma and Haemostasis, Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
17
|
Alawieh AM, Langley EF, Feng W, Spiotta AM, Tomlinson S. Complement-Dependent Synaptic Uptake and Cognitive Decline after Stroke and Reperfusion Therapy. J Neurosci 2020; 40:4042-4058. [PMID: 32291326 PMCID: PMC7219298 DOI: 10.1523/jneurosci.2462-19.2020] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the success of reperfusion therapy in significantly reducing the extent of infarct expansion after stroke, the effect of revascularization on poststroke neuroinflammation and the role of anti-inflammatory strategies in postreperfusion era are yet to be explored. Here, we investigate whether the neuroinflammatory response may still contribute to neurologic deficits after reperfused stroke by using targeted complement inhibition to suppress poststroke neuroinflammation in mice with or without concurrent reperfusion therapy. Complement inhibition was achieved using B4Crry, an injury site-targeted inhibitor of C3 activation. Following embolic stroke in male C57bl/6 mice, thrombolysis using tissue-plasminogen activator (t-PA) reduced injury and improved motor deficits, but did not improve cognitive outcomes. After both reperfused and non-reperfused stroke, complement activation and opsonization of hippocampal synapses directed ongoing microglia-dependent phagocytosis of synapses for at least 30 d after stroke, leading to a loss of synaptic density that was associated with cognitive decline. B4Crry treatment, alone or in combination with tPA, limited perilesional complement deposition, reduced microgliosis and synaptic uptake, and improved cognitive outcome without affecting regenerative responses. Furthermore, complement inhibition improved the safety, efficacy, and treatment window of reperfusion therapy with t-PA by limiting hemorrhagic transformation. This work thus demonstrates that poststroke neuroinflammation contributes to hemorrhagic transformation and progression of neurodegenerative responses in the brain even following early and successful revascularization.SIGNIFICANCE STATEMENT This study addresses two major challenges facing the treatment of stroke in the era of reperfusion therapy: hemorrhagic transformation and the disconnect between successful revascularization and functional outcomes. We studied how complement-dependent neuroinflammation drives the pathophysiology behind these challenges using a translationally relevant strategy. Complement inhibition was achieved using B4Crry, an injury site-targeted inhibitor of C3 activation. Following embolic stroke, pharmacological thrombolysis limited infarct size, but did not prevent complement activation. In reperfused and non-reperfused stroke, complement activation and opsonization of hippocampal synapses resulted in synaptic phagocytosis and subsequent cognitive decline. B4Crry treatment limited perilesional complement deposition, reduced microgliosis and synaptic uptake, and improved cognitive outcomes. Complement inhibition also improved the safety, efficacy, and treatment window of thrombolytic therapy.
Collapse
Affiliation(s)
- Ali M Alawieh
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - E Farris Langley
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Wuwei Feng
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710
| | - Alejandro M Spiotta
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina 29425
- Ralph H. Johnson VA Medical Center, Charleston, South Carolina 29401
| |
Collapse
|
18
|
Clarke AR, Christophe BR, Khahera A, Sim JL, Connolly ES. Therapeutic Modulation of the Complement Cascade in Stroke. Front Immunol 2019; 10:1723. [PMID: 31417544 PMCID: PMC6682670 DOI: 10.3389/fimmu.2019.01723] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 01/22/2023] Open
Abstract
Stroke is a leading cause of death and disability worldwide and an increasing number of ischemic stroke patients are undergoing pharmacological and mechanical reperfusion. Both human and experimental models of reperfused ischemic stroke have implicated the complement cascade in secondary tissue injury. Most data point to the lectin and alternative pathways as key to activation, and C3a and C5a binding of their receptors as critical effectors of injury. During periods of thrombolysis use to treat stroke, acute experimental complement cascade blockade has been found to rescue tissue and improves functional outcome. Blockade of the complement cascade during the period of tissue reorganization, repair, and recovery is by contrast not helpful and in fact is likely to be deleterious with emerging data suggesting downstream upregulation of the cascade might even facilitate recovery. Successful clinical translation will require the right clinical setting and pharmacologic strategies that are capable of targeting the key effectors early while not inhibiting delayed repair. Early reports in a variety of disease states suggest that such pharmacologic strategies appear to have a favorable risk profile and offer substantial hope for patients.
Collapse
Affiliation(s)
- Alison R Clarke
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Brandon R Christophe
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Anadjeet Khahera
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Justin L Sim
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - E Sander Connolly
- Cerebrovascular Research Laboratory, Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
19
|
Raghavan P. Research in the Acute Rehabilitation Setting: a Bridge Too Far? Curr Neurol Neurosci Rep 2019; 19:4. [DOI: 10.1007/s11910-019-0919-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Xie W, Zhou P, Sun Y, Meng X, Dai Z, Sun G, Sun X. Protective Effects and Target Network Analysis of Ginsenoside Rg1 in Cerebral Ischemia and Reperfusion Injury: A Comprehensive Overview of Experimental Studies. Cells 2018; 7:cells7120270. [PMID: 30545139 PMCID: PMC6316103 DOI: 10.3390/cells7120270] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022] Open
Abstract
Cerebral ischemia-reperfusion is a complicated pathological process. The injury and cascade reactions caused by cerebral ischemia and reperfusion are characterized by high mortality, high recurrence, and high disability. However, only a limited number of antithrombotic drugs, such as recombinant tissue plasminogen activator (r-TPA), aspirin, and heparin, are currently available for ischemic stroke, and its safety concerns is inevitable which associated with reperfusion injury and hemorrhage. Therefore, it is necessary to further explore and examine some potential neuroprotective agents with treatment for cerebral ischemia and reperfusion injury to reduce safety concerns caused by antithrombotic drugs in ischemic stroke. Ginseng Rg1 (G-Rg1) is a saponin composed of natural active ingredients and derived from the roots or stems of Panax notoginseng and ginseng in traditional Chinese medicine. Its pharmacological effects exert remarkable neurotrophic and neuroprotective effects in the central nervous system. To explore and summarize the protective effects and mechanisms of ginsenoside Rg1 against cerebral ischemia and reperfusion injury, we conducted this review, in which we searched the PubMed database to obtain and organize studies concerning the pharmacological effects and mechanisms of ginsenoside Rg1 against cerebral ischemia and reperfusion injury. This study provides a valuable reference and clues for the development of new agents to combat ischemic stroke. Our summarized review and analysis show that the pharmacological effects of and mechanisms underlying ginsenoside Rg1 activity against cerebral ischemia and reperfusion injury mainly involve 4 sets of mechanisms: anti-oxidant activity and associated apoptosis via the Akt, Nrf2/HO-1, PPARγ/HO-1, extracellular regulated protein kinases (ERK), p38, and c-Jun N-terminal kinase (JNK) pathways (or mitochondrial apoptosis pathway) and the caspase-3/ROCK1/MLC pathway; anti-inflammatory and immune stimulatory-related activities that involve apoptosis or necrosis via MAPK pathways (the JNK1/2 + ERK1/2 and PPARγ/HO-1 pathways), endoplasmic reticulum stress (ERS), high mobility group protein1 (HMGB1)-induced TLR2/4/9 and receptor for advanced glycation end products (RAGE) pathways, and the activation of NF-κB; neurological cell cycle, proliferation, differentiation, and regeneration via the MAPK pathways (JNK1/2 + ERK1/2, PI3K-Akt/mTOR, PKB/Akt and HIF-1α/VEGF pathways); and energy metabolism and the regulation of cellular ATP levels, the blood-brain barrier and other effects via N-methyl-D-aspartic acid (NMDA) receptors, ERS, and AMP/AMPK-GLUT pathways. Collectively, these mechanisms result in significant neuroprotective effects against cerebral ischemic injury. These findings will be valuable in that they should further promote the development of candidate drugs and provide more information to support the application of previous findings in stroke clinical trials.
Collapse
Affiliation(s)
- Weijie Xie
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Ping Zhou
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Yifan Sun
- Institute of Medical Information, Chinese Academy of Medical Sciences, Beijing 100020, China.
| | - Xiangbao Meng
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Ziru Dai
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing 100193, China.
| |
Collapse
|