1
|
Day JL, Tirard M, Brose N. Deletion of a core APC/C component reveals APC/C function in regulating neuronal USP1 levels and morphology. Front Mol Neurosci 2024; 17:1352782. [PMID: 38932933 PMCID: PMC11199872 DOI: 10.3389/fnmol.2024.1352782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction The Anaphase Promoting Complex (APC/C), an E3 ubiquitin ligase, plays a key role in cell cycle control, but it is also thought to operate in postmitotic neurons. Most studies linking APC/C function to neuron biology employed perturbations of the APC/C activators, cell division cycle protein 20 (Cdc20) and Cdc20 homologue 1 (Cdh1). However, multiple lines of evidence indicate that Cdh1 and Cdc20 can function in APC/C-independent contexts, so that the effects of their perturbation cannot strictly be linked to APC/C function. Methods We therefore deleted the gene encoding Anaphase Promoting Complex 4 (APC4), a core APC/C component, in neurons cultured from conditional knockout (cKO) mice. Results Our data indicate that several previously published substrates are actually not APC/C substrates, whereas ubiquitin specific peptidase 1 (USP1) protein levels are altered in APC4 knockout (KO) neurons. We propose a model where the APC/C ubiquitylates USP1 early in development, but later ubiquitylates a substrate that directly or indirectly stabilizes USP1. We further discovered a novel role of the APC/C in regulating the number of neurites exiting somata, but we were unable to confirm prior data indicating that the APC/C regulates neurite length, neurite complexity, and synaptogenesis. Finally, we show that APC4 SUMOylation does not impact the ability of the APC/C to control the number of primary neurites or USP1 protein levels. Discussion Our data indicate that perturbation studies aimed at dissecting APC/C biology must focus on core APC/C components rather than the APC/C activators, Cdh20 and Cdh1.
Collapse
Affiliation(s)
| | | | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
2
|
Chanda A, Sarkar A, Deng L, Bonni A, Bonni S. Sumoylated SnoN interacts with HDAC1 and p300/CBP to regulate EMT-associated phenotypes in mammary organoids. Cell Death Dis 2023; 14:405. [PMID: 37414747 PMCID: PMC10326038 DOI: 10.1038/s41419-023-05921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO) regulates the stability, subcellular localization, and interactions of protein substrates with consequences on cellular responses including epithelial-mesenchymal transition (EMT). Transforming growth factor beta (TGFβ) is a potent inducer of EMT with implications for cancer invasion and metastasis. The transcriptional coregulator SnoN suppresses TGFβ-induced EMT-associated responses in a sumoylation-dependent manner, but the underlying mechanisms have remained largely unknown. Here, we find that sumoylation promotes the interaction of SnoN with the epigenetic regulators histone deacetylase 1 (HDAC1) and histone acetylase p300 in epithelial cells. In gain and loss of function studies, HDAC1 suppresses, whereas p300 promotes, TGFβ-induced morphogenetic changes associated with EMT-related events in three-dimensional multicellular organoids derived from mammary epithelial cells or carcinomas. These findings suggest that sumoylated SnoN acts via the regulation of histone acetylation to modulate EMT-related effects in breast cell organoids. Our study may facilitate the discovery of new biomarkers and therapeutics in breast cancer and other epithelial cell-derived cancers.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Lili Deng
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Azad Bonni
- Neuroscience and Rare Diseases, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
3
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
4
|
PIAS1 and TIF1γ collaborate to promote SnoN SUMOylation and suppression of epithelial-mesenchymal transition. Cell Death Differ 2020; 28:267-282. [PMID: 32770107 DOI: 10.1038/s41418-020-0599-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
SUMO E3 ligases specify protein substrates for SUMOylation. The SUMO E3 ligases PIAS1 and TIF1γ target the transcriptional regulator SnoN for SUMOylation leading to suppression of epithelial-mesenchymal transition (EMT). Whether and how TIF1γ and PIAS1 might coordinate SnoN SUMOylation and regulation of EMT remained unknown. Here, we reveal that SnoN associates simultaneously with both TIF1γ and PIAS1, leading to a trimeric protein complex. Hence, PIAS1 and TIF1γ collaborate to promote the SUMOylation of SnoN. Importantly, loss of function studies of PIAS1 and TIF1γ suggest that these E3 ligases act in an interdependent manner to suppress EMT of breast cell-derived tissue organoids. Collectively, our findings unveil a novel mechanism by which SUMO E3 ligases coordinate substrate SUMOylation with biological implications.
Collapse
|
5
|
Zhao Z, Jinde S, Koike S, Tada M, Satomura Y, Yoshikawa A, Nishimura Y, Takizawa R, Kinoshita A, Sakakibara E, Sakurada H, Yamagishi M, Nishimura F, Inai A, Nishioka M, Eriguchi Y, Araki T, Takaya A, Kan C, Umeda M, Shimazu A, Hashimoto H, Bundo M, Iwamoto K, Kakiuchi C, Kasai K. Altered expression of microRNA-223 in the plasma of patients with first-episode schizophrenia and its possible relation to neuronal migration-related genes. Transl Psychiatry 2019; 9:289. [PMID: 31712567 PMCID: PMC6848172 DOI: 10.1038/s41398-019-0609-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 09/10/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
Recent studies have shown that microRNAs (miRNAs) play a role as regulators of neurodevelopment by modulating gene expression. Altered miRNA expression has been reported in various psychiatric disorders, including schizophrenia. However, the changes in the miRNA expression profile that occur during the initial stage of schizophrenia have not been fully investigated. To explore the global alterations in miRNA expression profiles that may be associated with the onset of schizophrenia, we first profiled miRNA expression in plasma from 17 patients with first-episode schizophrenia and 17 healthy controls using microarray analysis. Among the miRNAs that showed robust changes, the elevated expression of has-miR-223-3p (miR-223) was validated via quantitative reverse transcription-polymerase chain reaction (qRT-PCR) using another independent sample set of 21 schizophrenia patients and 21 controls. To identify the putative targets of miR-223, we conducted a genome-wide gene expression analysis in neuronally differentiated SK-N-SH cells with stable miR-223 overexpression and an in silico analysis. We found that the mRNA expression levels of four genes related to the cytoskeleton or cell migration were significantly downregulated in miR-223-overexpressing cells, possibly due to interactions with miR-223. The in silico analysis suggested the presence of miR-223 target sites in these four genes. Lastly, a luciferase assay confirmed that miR-223 directly interacted with the 3' untranslated regions (UTRs) of all four genes. Our results reveal an increase in miR-223 in plasma during both the first episode and the later stage of schizophrenia, which may affect the expression of cell migration-related genes targeted by miR-223.
Collapse
Affiliation(s)
- Zhilei Zhao
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan ,0000 0001 2151 536Xgrid.26999.3dInternational Research Center for Neurointelligence, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Shinsuke Koike
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Mariko Tada
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Yoshihiro Satomura
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Akane Yoshikawa
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Yukika Nishimura
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Ryu Takizawa
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Akihide Kinoshita
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Eisuke Sakakibara
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Hanako Sakurada
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Mika Yamagishi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Fumichika Nishimura
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Aya Inai
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Child Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Masaki Nishioka
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Yosuke Eriguchi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Child Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Tsuyoshi Araki
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Atsuhiko Takaya
- Department of Psychiatry, Fukui Kinen Hospital, Miura City, Kanagawa 238-0115 Japan
| | - Chiemi Kan
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Mental Health, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Maki Umeda
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Mental Health, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan ,0000 0001 0318 6320grid.419588.9Department of Public Health Nursing, Graduate School of Nursing Science, St. Luke’s International University, Chuo-ku, Tokyo, 104-0044 Japan
| | - Akihito Shimazu
- 0000 0000 9206 2938grid.410786.cCenter for Human and Social Sciences, College of Liberal Arts and Sciences, Kitasato University, Sagamihara City, Kanagawa 252-0373 Japan
| | - Hideki Hashimoto
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Health Economics and Epidemiology Research, School of Public Health, the University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Miki Bundo
- 0000 0001 0660 6749grid.274841.cDepartment of Molecular Brain Science, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto City, Kumamoto, 860-8556 Japan
| | - Kazuya Iwamoto
- 0000 0001 0660 6749grid.274841.cDepartment of Molecular Brain Science, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto City, Kumamoto, 860-8556 Japan
| | - Chihiro Kakiuchi
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Kiyoto Kasai
- 0000 0001 2151 536Xgrid.26999.3dDepartment of Neuropsychiatry, Graduate School of Medicine, the University of Tokyo, Bunkyo-ku, Tokyo, 113-8655 Japan ,0000 0001 2151 536Xgrid.26999.3dInternational Research Center for Neurointelligence, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
6
|
Goodman JV, Bonni A. Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling. Curr Opin Neurobiol 2019; 59:59-68. [PMID: 31146125 DOI: 10.1016/j.conb.2019.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
Precise temporal and spatial control of gene expression is essential for brain development. Besides DNA sequence-specific transcription factors, epigenetic factors play an integral role in the control of gene expression in neurons. Among epigenetic mechanisms, chromatin remodeling enzymes have emerged as essential to the control of neural circuit assembly and function in the brain. Here, we review recent studies on the roles and mechanisms of the chromodomain-helicase-DNA-binding (Chd) family of chromatin remodeling enzymes in the regulation of neuronal morphogenesis and connectivity in the mammalian brain. We explore the field through the lens of Chd3, Chd4, and Chd5 proteins, which incorporate into the nucleosome remodeling and deacetylase (NuRD) complex, and the related proteins Chd7 and Chd8, implicated in the pathogenesis of intellectual disability and autism spectrum disorders. These studies have advanced our understanding of the mechanisms that regulate neuronal connectivity in brain development and neurodevelopmental disorders of cognition.
Collapse
Affiliation(s)
- Jared V Goodman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Guo Y, Chen X, Xing R, Wang M, Zhu X, Guo W. Interplay between FMRP and lncRNA TUG1 regulates axonal development through mediating SnoN-Ccd1 pathway. Hum Mol Genet 2019; 27:475-485. [PMID: 29211876 DOI: 10.1093/hmg/ddx417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
LncRNAs have recently emerged to influence the pathogenesis of fragile X syndrome (FXS), which is caused by the functional loss of fragile X mental retardation protein (FMRP). However, the interaction between FMRP and lncRNAs on regulating neuronal development remains elusive. Here, we reported that FMRP directly interacted with lncRNA TUG1, and decreased its stability. Furthermore, TUG1 bond to transcriptional regulator, SnoN, and negatively modulated SnoN-Ccd1 pathway to specifically control axonal development. These observations suggested interplay between FMRP and lncRNAs might contribute to the pathogenesis of FXS.
Collapse
Affiliation(s)
- Ye Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Xu Chen
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ruxiao Xing
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School, University of Chinese Academy of Sciences, Beijing 100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
8
|
The Transcriptional Regulator SnoN Promotes the Proliferation of Cerebellar Granule Neuron Precursors in the Postnatal Mouse Brain. J Neurosci 2018; 39:44-62. [PMID: 30425119 DOI: 10.1523/jneurosci.0688-18.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 02/08/2023] Open
Abstract
Control of neuronal precursor cell proliferation is essential for normal brain development, and deregulation of this fundamental developmental event contributes to brain diseases. Typically, neuronal precursor cell proliferation extends over long periods of time during brain development. However, how neuronal precursor proliferation is regulated in a temporally specific manner remains to be elucidated. Here, we report that conditional KO of the transcriptional regulator SnoN in cerebellar granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cell cycle exit at later stages of cerebellar development in the postnatal male and female mouse brain. In laser capture microdissection followed by RNA-Seq, designed to profile gene expression specifically in the external granule layer of the cerebellum, we find that SnoN promotes the expression of cell proliferation genes and concomitantly represses differentiation genes in granule neuron precursors in vivo Remarkably, bioinformatics analyses reveal that SnoN-regulated genes contain binding sites for the transcription factors N-myc and Pax6, which promote the proliferation and differentiation of granule neuron precursors, respectively. Accordingly, we uncover novel physical interactions of SnoN with N-myc and Pax6 in cells. In behavior analyses, conditional KO of SnoN impairs cerebellar-dependent learning in a delayed eye-blink conditioning paradigm, suggesting that SnoN-regulation of granule neuron precursor proliferation bears functional consequences at the organismal level. Our findings define a novel function and mechanism for the major transcriptional regulator SnoN in the control of granule neuron precursor proliferation in the mammalian brain.SIGNIFICANCE STATEMENT This study reports the discovery that the transcriptional regulator SnoN plays a crucial role in the proliferation of cerebellar granule neuron precursors in the postnatal mouse brain. Conditional KO of SnoN in granule neuron precursors robustly inhibits the proliferation of these cells and promotes their cycle exit specifically at later stages of cerebellar development, with biological consequences of impaired cerebellar-dependent learning. Genomics and bioinformatics analyses reveal that SnoN promotes the expression of cell proliferation genes and concomitantly represses cell differentiation genes in vivo Although SnoN has been implicated in distinct aspects of the development of postmitotic neurons, this study identifies a novel function for SnoN in neuronal precursors in the mammalian brain.
Collapse
|
9
|
Chanda A, Sarkar A, Bonni S. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel) 2018; 10:cancers10080264. [PMID: 30096838 PMCID: PMC6115711 DOI: 10.3390/cancers10080264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFβ) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFβ to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFβ-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
10
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
11
|
Wnt Signaling Pathways Are Dysregulated in Rat Female Cerebellum Following Early Methyl Donor Deficiency. Mol Neurobiol 2018; 56:892-906. [PMID: 29804229 DOI: 10.1007/s12035-018-1128-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
Abstract
Gestational methyl donor (especially B9 and B12 vitamins) deficiency is involved in birth defects and brain development retardation. The underlying molecular mechanisms that are dysregulated still remain poorly understood, in particular in the cerebellum. As evidenced from previous data, females are more affected than males. In this study, we therefore took advantage of a validated rat nutritional model and performed a microarray analysis on female progeny cerebellum, in order to identify which genes and molecular pathways were disrupted in response to methyl donor deficiency. We found that cerebellum development is altered in female pups, with a decrease of the granular cell layer thickness at postnatal day 21. Furthermore, we investigated the involvement of the Wnt signaling pathway, a major molecular pathway involved in neuronal development and later on in synaptic assembly and neurotransmission processes. We found that Wnt canonical pathway was disrupted following early methyl donor deficiency and that neuronal targets were selectively enriched in the downregulated genes. These results could explain the structural brain defects previously observed and highlighted new genes and a new molecular pathway affected by nutritional methyl donor deprivation.
Collapse
|
12
|
DIXDC1 contributes to psychiatric susceptibility by regulating dendritic spine and glutamatergic synapse density via GSK3 and Wnt/β-catenin signaling. Mol Psychiatry 2018; 23:467-475. [PMID: 27752079 PMCID: PMC5395363 DOI: 10.1038/mp.2016.184] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022]
Abstract
Mice lacking DIX domain containing-1 (DIXDC1), an intracellular Wnt/β-catenin signal pathway protein, have abnormal measures of anxiety, depression and social behavior. Pyramidal neurons in these animals' brains have reduced dendritic spines and glutamatergic synapses. Treatment with lithium or a glycogen synthase kinase-3 (GSK3) inhibitor corrects behavioral and neurodevelopmental phenotypes in these animals. Analysis of DIXDC1 in over 9000 cases of autism, bipolar disorder and schizophrenia reveals higher rates of rare inherited sequence-disrupting single-nucleotide variants (SNVs) in these individuals compared with psychiatrically unaffected controls. Many of these SNVs alter Wnt/β-catenin signaling activity of the neurally predominant DIXDC1 isoform; a subset that hyperactivate this pathway cause dominant neurodevelopmental effects. We propose that rare missense SNVs in DIXDC1 contribute to psychiatric pathogenesis by reducing spine and glutamatergic synapse density downstream of GSK3 in the Wnt/β-catenin pathway.
Collapse
|
13
|
Chiola S, Do MD, Centrone L, Mallamaci A. Foxg1 Overexpression in Neocortical Pyramids Stimulates Dendrite Elongation Via Hes1 and pCreb1 Upregulation. Cereb Cortex 2018; 29:1006-1019. [DOI: 10.1093/cercor/bhy007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/07/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Simone Chiola
- Lab of Cerebral Cortex Development, Neuroscience Area, SISSA, via Bonomea Trieste, Italy
| | - Mihn Duc Do
- Lab of Cerebral Cortex Development, Neuroscience Area, SISSA, via Bonomea Trieste, Italy
| | - Lucy Centrone
- Lab of Cerebral Cortex Development, Neuroscience Area, SISSA, via Bonomea Trieste, Italy
| | - Antonello Mallamaci
- Lab of Cerebral Cortex Development, Neuroscience Area, SISSA, via Bonomea Trieste, Italy
| |
Collapse
|
14
|
Neuron-specific alternative splicing of transcriptional machineries: Implications for neurodevelopmental disorders. Mol Cell Neurosci 2017; 87:35-45. [PMID: 29254826 DOI: 10.1016/j.mcn.2017.10.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023] Open
Abstract
The brain has long been known to display the most complex pattern of alternative splicing, thereby producing diverse protein isoforms compared to other tissues. Recent evidence indicates that many alternative exons are neuron-specific, evolutionarily conserved, and found in regulators of transcription including DNA-binding protein and histone modifying enzymes. This raises a possibility that neurons adopt unique mechanisms of transcription. Given that transcriptional machineries are frequently mutated in neurodevelopmental disorders with cognitive dysfunction, it is important to understand how neuron-specific alternative splicing contributes to proper transcriptional regulation in the brain. In this review, we summarize current knowledge regarding how neuron-specific splicing events alter the function of transcriptional regulators and shape unique gene expression patterns in the brain and the implications of neuronal splicing to the pathophysiology of neurodevelopmental disorders.
Collapse
|
15
|
Pharmacological intervention of early neuropathy in neurodegenerative diseases. Pharmacol Res 2017; 119:169-177. [PMID: 28167240 DOI: 10.1016/j.phrs.2017.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 12/11/2022]
Abstract
Extensive studies have reported the significant roles of numerous cellular features and processes in properly maintaining neuronal morphology and function throughout the lifespan of an animal. Any alterations in their homeostasis appear to be strongly associated with neuronal aging and the pathogenesis of various neurodegenerative diseases, even before the occurrence of prominent neuronal death. However, until recently, the primary focus of studies regarding many neurodegenerative diseases has been on the massive cell death occurring at the late stages of disease progression. Thus, our understanding on early neuropathy in these diseases remains relatively limited. The complicated nature of various neuropathic features manifested early in neurodegenerative diseases suggests the involvement of a system-wide transcriptional regulation and epigenetic control. Epigenetic alterations and consequent changes in the neuronal transcriptome are now begun to be extensively studied in various neurodegenerative diseases. Upon the catastrophic incident of neuronal death in disease progression, it is utterly difficult to reverse the deleterious defects by pharmacological treatments, and therefore, therapeutics targeting the system-wide transcriptional dysregulation associated with specific early neuropathy is considered a better option. Here, we review our current understanding on the system-wide transcriptional dysregulation that is likely associated with early neuropathy shown in various neurodegenerative diseases and discuss the possible future developments of pharmaceutical therapeutics.
Collapse
|
16
|
Kwan V, Meka D, White S, Hung C, Holzapfel N, Walker S, Murtaza N, Unda B, Schwanke B, Yuen R, Habing K, Milsom C, Hope K, Truant R, Scherer S, Calderon de Anda F, Singh K. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants. Cell Rep 2016; 17:1892-1904. [DOI: 10.1016/j.celrep.2016.10.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 09/02/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022] Open
|
17
|
Abstract
In this review, Huang and Bonni discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis; glial differentiation and migration; neuronal survival, metabolism, and morphogenesis; synapse formation and plasticity; and learning and memory. Control of protein abundance by the ubiquitin–proteasome system is essential for normal brain development and function. Just over a decade ago, the first post-mitotic function of the anaphase-promoting complex, a major cell cycle-regulated E3 ubiquitin ligase, was discovered in the control of axon growth and patterning in the mammalian brain. Since then, a large number of studies have identified additional novel roles for the anaphase-promoting complex in diverse aspects of neuronal connectivity and plasticity in the developing and mature nervous system. In this review, we discuss the functions and mechanisms of the anaphase-promoting complex in neurogenesis, glial differentiation and migration, neuronal survival and metabolism, neuronal morphogenesis, synapse formation and plasticity, and learning and memory. We also provide a perspective on future investigations of the anaphase-promoting complex in neurobiology.
Collapse
Affiliation(s)
- Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
18
|
Wang X, Sterne GR, Ye B. Regulatory mechanisms underlying the differential growth of dendrites and axons. Neurosci Bull 2014; 30:557-68. [PMID: 25001617 PMCID: PMC5562626 DOI: 10.1007/s12264-014-1447-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 04/10/2014] [Indexed: 01/06/2023] Open
Abstract
A typical neuron is comprised of an information input compartment, or the dendrites, and an output compartment, known as the axon. These two compartments are the structural basis for functional neural circuits. However, little is known about how dendritic and axonal growth are differentially regulated. Recent studies have uncovered two distinct types of regulatory mechanisms that differentiate dendritic and axonal growth: dedicated mechanisms and bimodal mechanisms. Dedicated mechanisms regulate either dendritespecific or axon-specific growth; in contrast, bimodal mechanisms direct dendritic and axonal development in opposite manners. Here, we review the dedicated and bimodal regulators identified by recent Drosophila and mammalian studies. The knowledge of these underlying molecular mechanisms not only expands our understanding about how neural circuits are wired, but also provides insights that will aid in the rational design of therapies for neurological diseases.
Collapse
Affiliation(s)
- Xin Wang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Gabriella R. Sterne
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
19
|
Ikeuchi Y, Dadakhujaev S, Chandhoke AS, Huynh MA, Oldenborg A, Ikeuchi M, Deng L, Bennett EJ, Harper JW, Bonni A, Bonni S. TIF1γ protein regulates epithelial-mesenchymal transition by operating as a small ubiquitin-like modifier (SUMO) E3 ligase for the transcriptional regulator SnoN1. J Biol Chem 2014; 289:25067-78. [PMID: 25059663 DOI: 10.1074/jbc.m114.575878] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a fundamental cellular process that contributes to epithelial tissue morphogenesis during normal development and in tumor invasiveness and metastasis. The transcriptional regulator SnoN robustly influences EMT in response to the cytokine TGFβ, but the mechanisms that regulate the fundamental role of SnoN in TGFβ-induced EMT are not completely understood. Here we employ interaction proteomics to uncover the signaling protein TIF1γ as a specific interactor of SnoN1 but not the closely related isoform SnoN2. A 16-amino acid peptide within a unique region of SnoN1 mediates the interaction of SnoN1 with TIF1γ. Strikingly, although TIF1γ is thought to act as a ubiquitin E3 ligase, we find that TIF1γ operates as a small ubiquitin-like modifier (SUMO) E3 ligase that promotes the sumoylation of SnoN1 at distinct lysine residues. Importantly, TIF1γ-induced sumoylation is required for the ability of SnoN1 to suppress TGFβ-induced EMT, as assayed by the disruption of the morphogenesis of acini in a physiologically relevant three-dimensional model of normal murine mammary gland (NMuMG) epithelial cells. Collectively, our findings define a novel TIF1γ-SnoN1 sumoylation pathway that plays a critical role in EMT and has important implications for our understanding of TGFβ signaling and diverse biological processes in normal development and cancer biology.
Collapse
Affiliation(s)
- Yoshiho Ikeuchi
- From the Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, the Departments of Neurobiology and
| | - Shorafidinkhuja Dadakhujaev
- the Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Amrita S Chandhoke
- the Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | - Anna Oldenborg
- From the Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | - Lili Deng
- the Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Eric J Bennett
- Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - J Wade Harper
- Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Azad Bonni
- From the Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, the Departments of Neurobiology and
| | - Shirin Bonni
- the Southern Alberta Cancer Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
20
|
Nakatani T, Minaki Y, Kumai M, Nitta C, Ono Y. The c-Ski family member and transcriptional regulator Corl2/Skor2 promotes early differentiation of cerebellar Purkinje cells. Dev Biol 2014; 388:68-80. [DOI: 10.1016/j.ydbio.2014.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/16/2014] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
|
21
|
Do JL, Bonni A, Tuszynski MH. SnoN facilitates axonal regeneration after spinal cord injury. PLoS One 2013; 8:e71906. [PMID: 23936531 PMCID: PMC3732222 DOI: 10.1371/journal.pone.0071906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/04/2013] [Indexed: 12/14/2022] Open
Abstract
Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.
Collapse
Affiliation(s)
- Jiun L. Do
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Azad Bonni
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark H. Tuszynski
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- Veterans Affairs Medical Center, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Wang X, Kim JH, Bazzi M, Robinson S, Collins CA, Ye B. Bimodal control of dendritic and axonal growth by the dual leucine zipper kinase pathway. PLoS Biol 2013; 11:e1001572. [PMID: 23750116 PMCID: PMC3672216 DOI: 10.1371/journal.pbio.1001572] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/16/2013] [Indexed: 02/03/2023] Open
Abstract
Knowledge of the molecular and genetic mechanisms underlying the separation of dendritic and axonal compartments is not only crucial for understanding the assembly of neural circuits, but also for developing strategies to correct defective dendrites or axons in diseases with subcellular precision. Previous studies have uncovered regulators dedicated to either dendritic or axonal growth. Here we investigate a novel regulatory mechanism that differentially directs dendritic and axonal growth within the same neuron in vivo. We find that the dual leucine zipper kinase (DLK) signaling pathway in Drosophila, which consists of Highwire and Wallenda and controls axonal growth, regeneration, and degeneration, is also involved in dendritic growth in vivo. Highwire, an evolutionarily conserved E3 ubiquitin ligase, restrains axonal growth but acts as a positive regulator for dendritic growth in class IV dendritic arborization neurons in the larva. While both the axonal and dendritic functions of highwire require the DLK kinase Wallenda, these two functions diverge through two downstream transcription factors, Fos and Knot, which mediate the axonal and dendritic regulation, respectively. This study not only reveals a previously unknown function of the conserved DLK pathway in controlling dendrite development, but also provides a novel paradigm for understanding how neuronal compartmentalization and the diversity of neuronal morphology are achieved.
Collapse
Affiliation(s)
- Xin Wang
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jung Hwan Kim
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mouna Bazzi
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sara Robinson
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Catherine A. Collins
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
23
|
Varea O, Escoll M, Diez H, Garrido J, Wandosell F. Oestradiol signalling through the Akt–mTORC1–S6K1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1052-64. [DOI: 10.1016/j.bbamcr.2012.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/11/2012] [Accepted: 12/26/2012] [Indexed: 12/12/2022]
|
24
|
Breaking it down: the ubiquitin proteasome system in neuronal morphogenesis. Neural Plast 2013; 2013:196848. [PMID: 23476809 PMCID: PMC3586504 DOI: 10.1155/2013/196848] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/31/2012] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is most widely known for its role in intracellular protein degradation; however, in the decades since its discovery, ubiquitination has been associated with the regulation of a wide variety of cellular processes. The addition of ubiquitin tags, either as single moieties or as polyubiquitin chains, has been shown not only to mediate degradation by the proteasome and the lysosome, but also to modulate protein function, localization, and endocytosis. The UPS plays a particularly important role in neurons, where local synthesis and degradation work to balance synaptic protein levels at synapses distant from the cell body. In recent years, the UPS has come under increasing scrutiny in neurons, as elements of the UPS have been found to regulate such diverse neuronal functions as synaptic strength, homeostatic plasticity, axon guidance, and neurite outgrowth. Here we focus on recent advances detailing the roles of the UPS in regulating the morphogenesis of axons, dendrites, and dendritic spines, with an emphasis on E3 ubiquitin ligases and their identified regulatory targets.
Collapse
|
25
|
Yamada T, Yang Y, Bonni A. Spatial organization of ubiquitin ligase pathways orchestrates neuronal connectivity. Trends Neurosci 2013; 36:218-26. [PMID: 23332798 DOI: 10.1016/j.tins.2012.12.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 12/27/2022]
Abstract
Recent studies have revealed that E3 ubiquitin ligases have essential functions in the establishment of neuronal circuits. Strikingly, a common emerging theme in these studies is that spatial organization of E3 ubiquitin ligases plays a critical role in the control of neuronal morphology and connectivity. E3 ubiquitin ligases localize to the nucleus, centrosome, Golgi apparatus, axon and dendrite cytoskeleton, and synapses in neurons. Localization of ubiquitin ligases within distinct subcellular compartments may facilitate neuronal responses to extrinsic cues and the ubiquitination of local substrates. Here, we review the functions of neuronal E3 ubiquitin ligases at distinct subcellular locales and explore how they regulate neuronal morphology and function in the nervous system.
Collapse
Affiliation(s)
- Tomoko Yamada
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
26
|
The brake within: Mechanisms of intrinsic regulation of axon growth featuring the Cdh1-APC pathway. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractNeurons of the central nervous system (CNS) form a magnificent network destined to control bodily functions and human behavior for a lifetime. During development of the CNS, neurons extend axons that establish connections to other neurons. Axon growth is guided by extrinsic cues and guidance molecules. In addition to environmental signals, intrinsic programs including transcription and the ubiquitin proteasome system (UPS) have been implicated in axon growth regulation. Over the past few years it has become evident that the E3 ubiquitin ligase Cdh1-APC together with its associated pathway plays a central role in axon growth suppression. By elucidating the intricate interplay of extrinsic and intrinsic mechanisms, we can enhance our understanding of why axonal regeneration in the CNS fails and obtain further insight into how to stimulate successful regeneration after injury.
Collapse
|
27
|
Kannan M, Lee SJ, Schwedhelm-Domeyer N, Nakazawa T, Stegmüller J. p250GAP is a novel player in the Cdh1-APC/Smurf1 pathway of axon growth regulation. PLoS One 2012; 7:e50735. [PMID: 23226367 PMCID: PMC3511349 DOI: 10.1371/journal.pone.0050735] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/24/2012] [Indexed: 12/23/2022] Open
Abstract
Axon growth is an essential process during brain development. The E3 ubiquitin ligase Cdh1-APC has emerged as a critical regulator of intrinsic axon growth control. Here, we identified the RhoGAP p250GAP as a novel interactor of the E3 ubiquitin ligase Cdh1-APC and found that p250GAP promotes axon growth downstream of Cdh1-APC. We also report that p250GAP undergoes non-proteolytic ubiquitination and associates with the Cdh1 substrate Smurf1 to synergistically regulate axon growth. Finally, we found that in vivo knockdown of p250GAP in the developing cerebellar cortex results in impaired migration and axonal growth. Taken together, our data indicate that Cdh1-APC together with the RhoA regulators p250GAP and Smurf1 controls axon growth in the mammalian brain.
Collapse
Affiliation(s)
- Madhuvanthi Kannan
- Cellullar and Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Shih-Ju Lee
- Cellullar and Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Nicola Schwedhelm-Domeyer
- Cellullar and Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Takanobu Nakazawa
- Department of Neurophysiology, School of Medicine, University of Tokyo, Tokyo, Japan
| | - Judith Stegmüller
- Cellullar and Molecular Neurobiology, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- * E-mail:
| |
Collapse
|
28
|
Kannan M, Lee SJ, Schwedhelm-Domeyer N, Stegmüller J. The E3 ligase Cdh1-anaphase promoting complex operates upstream of the E3 ligase Smurf1 in the control of axon growth. Development 2012; 139:3600-12. [PMID: 22949615 DOI: 10.1242/dev.081786] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Axon growth is an essential event during brain development and is extremely limited due to extrinsic and intrinsic inhibition in the adult brain. The E3 ubiquitin ligase Cdh1-anaphase promoting complex (APC) has emerged as an important intrinsic suppressor of axon growth. In this study, we identify in rodents the E3 ligase Smurf1 as a novel substrate of Cdh1-APC and that Cdh1 targets Smurf1 for degradation in a destruction box-dependent manner. We find that Smurf1 acts downstream of Cdh1-APC in axon growth and that the turnover of RhoA by Smurf1 is important in this process. In addition, we demonstrate that acute knockdown of Smurf1 in vivo in the developing cerebellar cortex results in impaired axonal growth and migration. Finally, we show that a stabilized form of Smurf1 overrides the inhibition of axon growth by myelin. Taken together, we uncovered a Cdh1-APC/Smurf1/RhoA pathway that mediates axonal growth suppression in the developing mammalian brain.
Collapse
Affiliation(s)
- Madhuvanthi Kannan
- MPI of Experimental Medicine, Hermann Rein Strasse 3, 37075 Göttingen, Germany
| | | | | | | |
Collapse
|
29
|
Shinozuka E, Miyashita M, Mizuguchi Y, Akagi I, Kikuchi K, Makino H, Matsutani T, Hagiwara N, Nomura T, Uchida E, Takizawa T. SnoN/SKIL modulates proliferation through control of hsa-miR-720 transcription in esophageal cancer cells. Biochem Biophys Res Commun 2012; 430:101-6. [PMID: 23154181 DOI: 10.1016/j.bbrc.2012.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 11/06/2012] [Indexed: 11/30/2022]
Abstract
It is now evident that changes in microRNA are involved in cancer progression, but the mechanisms of transcriptional regulation of miRNAs remain unknown. Ski-related novel gene (SnoN/SKIL), a transcription co-factor, acts as a potential key regulator within a complex network of p53 transcriptional repressors. SnoN has pro- and anti-oncogenic functions in the regulation of cell proliferation, senescence, apoptosis, and differentiation. We characterized the roles of SnoN in miRNA transcriptional regulation and its effects on cell proliferation using esophageal squamous cell carcinoma (ESCC) cells. Silencing of SnoN altered a set of miRNA expression profiles in TE-1cells, and the expression levels of miR-720, miR-1274A, and miR-1274B were modulated by SnoN. The expression of these miRNAs resulted in changes to the target protein p63 and a disintegrin and metalloproteinase domain 9 (ADAM9). Furthermore, silencing of SnoN significantly upregulated cell proliferation in TE-1 cells, indicating a potential anti-oncogenic function. These results support our observation that cancer tissues have lower expression levels of SnoN, miR-720, and miR-1274A compared to adjacent normal tissues from ESCC patients. These data demonstrate a novel mechanism of miRNA regulation, leading to changes in cell proliferation.
Collapse
Affiliation(s)
- Eriko Shinozuka
- Department of Surgery for Organ Function and Biological Regulation, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wang X, Ye B. Transcriptional regulators that differentially control dendrite and axon development. FRONTIERS IN BIOLOGY 2012; 7:292-296. [PMID: 39219713 PMCID: PMC11364217 DOI: 10.1007/s11515-012-1234-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurons are the basic units establishing connectivity in the nervous system. As a signature feature, neurons form polarized structures: dendrites and axons, which integrate either sensory stimuli or inputs from upstream neurons and send outputs to target cells, respectively. The separation of dendritic and axonal compartments is achieved in two steps during development: 1) dendrite and axon specification: how neurites are initially specified as dendrites and axons; and 2) dendrite and axon commitment: how dendrites and axons are committed to distinct compartmental fates and architectures. In order to understand neural circuit assembly and to correct erroneous dendrite or axon growth in a compartment-specific manner, it is essential to understand the regulatory mechanisms underlying dendrite and axon commitment. Compared to extensive studies on dendrite and axon specification, little is known about the molecular mechanisms exclusively dedicated to dendrite or axon commitment. Recent studies have uncovered the requirement of transcriptional regulation in this process. Here, we review the studies on transcriptional regulators: Dar1, p300-SnoN, NeuroD, which have been shown to separate dendrite- and axon-specific growth of the same neuron type after compartmental fates are specified.
Collapse
Affiliation(s)
- Xin Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bing Ye
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Zhu Q, Luo K. SnoN in regulation of embryonic development and tissue morphogenesis. FEBS Lett 2012; 586:1971-6. [PMID: 22710172 DOI: 10.1016/j.febslet.2012.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/03/2012] [Accepted: 03/05/2012] [Indexed: 01/15/2023]
Abstract
SnoN (Ski-novel protein) plays an important role in embryonic development, tumorigenesis and aging. Past studies largely focused on its roles in tumorigenesis. Recent studies of its expression patterns and functions in mouse models and mammalian cells have revealed that SnoN interacts with multiple signaling molecules at different cellular levels to modulate the activities of several signaling pathways in a tissue context and developmental stage dependent manner. These studies suggest that SnoN may have broad functions in the embryonic development and tissue morphogenesis.
Collapse
Affiliation(s)
- Qingwei Zhu
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
32
|
Bonni S, Bonni A. SnoN signaling in proliferating cells and postmitotic neurons. FEBS Lett 2012; 586:1977-83. [PMID: 22710173 DOI: 10.1016/j.febslet.2012.02.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/28/2023]
Abstract
The transcriptional regulator SnoN plays a fundamental role as a modulator of transforming growth factor beta (TGFβ)-induced signal transduction and biological responses. In recent years, novel functions of SnoN have been discovered in both TGFβ-dependent and TGFβ-independent settings in proliferating cells and postmitotic neurons. Accumulating evidence suggests that SnoN plays a dual role as a corepressor or coactivator of TGFβ-induced transcription. Accordingly, SnoN exerts oncogenic or tumor-suppressive effects in epithelial tissues. At the cellular level, SnoN antagonizes or mediates the ability of TGFβ to induce cell cycle arrest in a cell-type specific manner. SnoN also exerts key effects on epithelial-mesenchymal transition (EMT), with implications in cancer biology. Recent studies have expanded SnoN functions to postmitotic neurons, where SnoN orchestrates key aspects of neuronal development in the mammalian brain, from axon growth and branching to neuronal migration and positioning. In this review, we will highlight our understanding of SnoN biology at the crossroads of cancer biology and neurobiology.
Collapse
Affiliation(s)
- Shirin Bonni
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
33
|
Trakhtenberg EF, Goldberg JL. Epigenetic regulation of axon and dendrite growth. Front Mol Neurosci 2012; 5:24. [PMID: 22403528 PMCID: PMC3290832 DOI: 10.3389/fnmol.2012.00024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/12/2012] [Indexed: 12/27/2022] Open
Abstract
Neuroregenerative therapies for central nervous system (CNS) injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and re-innervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases. Although neurons' intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus, a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.
Collapse
|
34
|
Band AM, Laiho M. SnoN oncoprotein enhances estrogen receptor-α transcriptional activity. Cell Signal 2011; 24:922-30. [PMID: 22227247 DOI: 10.1016/j.cellsig.2011.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 12/19/2011] [Indexed: 12/13/2022]
Abstract
Estrogen receptor-α (ERα) and transforming growth factor-beta (TGF-β) signaling pathways are essential regulators during mammary gland development and tumorigenesis. Ski-related novel gene (SnoN) is an oncoprotein and a negative feedback inhibitor of TGF-β signaling. We have previously reported that low expression of SnoN in ERα positive breast carcinomas is associated with favorable prognosis (Zhang et al. Cancer Res. (2003) 63, 5005-5010). Here we have studied the mechanism of a possible cross-talk between ERα and SnoN. We find that SnoN interacts with the estrogen-activated form of ERα in the nucleus. SnoN contains two highly conserved nuclear receptor binding LxxLL-like motifs and we show that mutations in these motifs reduce the interaction of SnoN with ERα. Over-expression of SnoN enhanced the transcriptional activity of ERα in estrogen response element (ERE)-reporter assays, augmented the expression of several ERα target genes and increased the proliferation of MCF7 breast carcinoma cells in an estrogen-dependent manner. Chromatin immunoprecipitation demonstrated that SnoN interacts with ERα at the TTF1 (pS2) gene promoter. Conversely, silencing of SnoN reduced both ERE-reporter activity and the expression of ERα target genes in MCF7 and T-47D breast cancer cells. Histone deacetylase inhibition increased the level of SnoN and SnoN-dependent enhancement of ERα-dependent transcription and SnoN supported the recruitment of p300 histone acetylase to ERα. This study reveals a novel mechanism that interconnects ERα and TGF-β signaling pathways by SnoN. Accordingly, the results indicate that high SnoN level promotes ERα signaling and possibly breast cancer progression.
Collapse
Affiliation(s)
- Arja M Band
- Molecular Cancer Biology Program, Biomedicum Helsinki and Haartman Institute, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
35
|
de la Torre-Ubieta L, Bonni A. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron 2011; 72:22-40. [PMID: 21982366 DOI: 10.1016/j.neuron.2011.09.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
Abstract
The highly specialized morphology of a neuron, typically consisting of a long axon and multiple branching dendrites, lies at the core of the principle of dynamic polarization, whereby information flows from dendrites toward the soma and to the axon. For more than a century, neuroscientists have been fascinated by how shape is important for neuronal function and how neurons acquire their characteristic morphology. During the past decade, substantial progress has been made in our understanding of the molecular underpinnings of neuronal polarity and morphogenesis. In these studies, transcription factors have emerged as key players governing multiple aspects of neuronal morphogenesis from neuronal polarization and migration to axon growth and pathfinding to dendrite growth and branching to synaptogenesis. In this review, we will highlight the role of transcription factors in shaping neuronal morphology with emphasis on recent literature in mammalian systems.
Collapse
Affiliation(s)
- Luis de la Torre-Ubieta
- Department of Neurobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Abstract
Understanding axon regenerative failure remains a major goal in neuroscience, and reversing this failure remains a major goal for clinical neurology. Although an inhibitory central nervous system environment clearly plays a role, focus on molecular pathways within neurons has begun to yield fruitful insights. Initial steps forward investigated the receptors and signaling pathways immediately downstream of environmental cues, but recent work has also shed light on transcriptional control mechanisms that regulate intrinsic axon growth ability, presumably through whole cassettes of gene target regulation. Here we will discuss transcription factors that regulate neurite growth in vitro and in vivo, including p53, SnoN, E47, cAMP-responsive element binding protein (CREB), signal transducer and activator of transcription 3 (STAT3), nuclear factor of activated T cell (NFAT), c-Jun activating transcription factor 3 (ATF3), sex determining region Ybox containing gene 11 (Sox11), nuclear factor κ-light chain enhancer of activated B cells (NFκB), and Krüppel-like factors (KLFs). Revealing the similarities and differences among the functions of these transcription factors may further our understanding of the mechanisms of transcriptional regulation in axon growth and regeneration.
Collapse
Affiliation(s)
| | - Jeffrey L. Goldberg
- Bascom Palmer Eye Institute and the Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
37
|
Puram SV, Bonni A. Novel functions for the anaphase-promoting complex in neurobiology. Semin Cell Dev Biol 2011; 22:586-94. [PMID: 21439392 PMCID: PMC3177029 DOI: 10.1016/j.semcdb.2011.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Accepted: 03/16/2011] [Indexed: 11/21/2022]
Abstract
In recent years, diverse and unexpected neurobiological functions have been uncovered for the major cell cycle-regulated ubiquitin ligase, the anaphase-promoting complex (APC). Functions of the APC in the nervous system range from orchestrating neuronal morphogenesis and synapse development to the regulation of neuronal differentiation, survival, and metabolism. The APC acts together with the coactivating proteins Cdh1 and Cdc20 in neural cells to target specific substrates for ubiquitination and consequent degradation by the proteasome. As we continue to unravel APC functions and mechanisms in neurobiology, these studies should advance our understanding of the molecular mechanisms of neuronal connectivity, with important implications for the study of brain development and disease.
Collapse
Affiliation(s)
- Sidharth V. Puram
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
| | - Azad Bonni
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
38
|
Terawaki SI, Yano K, Katsutani T, Shiomi K, Keino-Masu K, Masu M, Shomura Y, Komori H, Shibata N, Higuchi Y. Crystallographic characterization of the DIX domain of the Wnt signalling positive regulator Ccd1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:758-61. [PMID: 21795788 DOI: 10.1107/s1744309111016526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/02/2011] [Indexed: 11/10/2022]
Abstract
Coiled-coil DIX1 (Ccd1) is a positive regulator that activates the canonical Wnt signalling pathway by inhibiting the degradation of the key signal transducer β-catenin. The C-terminal DIX domain of Ccd1 plays an important role in the regulation of signal transduction through homo-oligomerization and protein complex formation with other DIX domain-containing proteins, i.e. axin and dishevelled proteins. Here, the expression, purification, crystallization and X-ray data collection of the Ccd1 DIX domain are reported. The crystals of the Ccd1 DIX domain belonged to space group P2(1)2(1)2(1), with unit-cell parameters a=72.9, b=75.7, c=125.6 Å. An X-ray diffraction data set was collected at 3.0 Å resolution.
Collapse
Affiliation(s)
- Shin-ichi Terawaki
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The emerging role of APC/CCdh1 in development. Semin Cell Dev Biol 2011; 22:579-85. [PMID: 21497201 DOI: 10.1016/j.semcdb.2011.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 03/24/2011] [Accepted: 03/30/2011] [Indexed: 01/10/2023]
Abstract
The function of APC/C (anaphase-promoting complex/cyclosome) was initially implicated with the onset of anaphase during mitosis, where its association with Cdc20 targets securin for destruction, thereby allowing the separation of two duplicated daughter genomes. When combined with Cdh1, APC regulates G1/S transition and DNA replication during cell cycle. Beyond cell cycle control, results from recent biochemical and mouse genetic studies have attracted our attention to the unexpected impact of APC/C(Cdh1) in cellular differentiation, genomic integrity and pathogenesis of various diseases. This review will aim to summarize current understanding of APC/C(Cdh1) in regulating crucial events during development.
Collapse
|
40
|
Eguren M, Manchado E, Malumbres M. Non-mitotic functions of the Anaphase-Promoting Complex. Semin Cell Dev Biol 2011; 22:572-8. [PMID: 21439391 DOI: 10.1016/j.semcdb.2011.03.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 03/16/2011] [Indexed: 02/03/2023]
Abstract
The Anaphase-Promoting Complex or Cyclosome (APC/C) is an E3 ubiquitin ligase whose activation requires the binding of a cofactor, either Cdc20 or Cdh1. While APC/C-Cdc20 is a major player during mitotic exit, APC/C-Cdh1 plays a central role in maintaining quiescence and controlling the onset of DNA replication. In addition, APC/C-Cdh1 is essential for endoreduplication, a process in which several rounds of DNA synthesis occur without mitosis. Recent data suggest that the APC/C is also involved in differentiation and metabolism, and plays important roles in postmitotic cells such as neurons. Thus, the APC/C is not only critical for anaphase onset but also regulates many other cellular processes during G1/S or in quiescent cells.
Collapse
Affiliation(s)
- Manuel Eguren
- Cell Division and Cancer Group, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | | | | |
Collapse
|
41
|
Liu YT, Dan QJ, Wang J, Feng Y, Chen L, Liang J, Li Q, Lin SC, Wang ZX, Wu JW. Molecular basis of Wnt activation via the DIX domain protein Ccd1. J Biol Chem 2011; 286:8597-8608. [PMID: 21189423 PMCID: PMC3048742 DOI: 10.1074/jbc.m110.186742] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/06/2010] [Indexed: 01/22/2023] Open
Abstract
The Wnt signaling plays pivotal roles in embryogenesis and cancer, and the three DIX domain-containing proteins, Dvl, Axin, and Ccd1, play distinct roles in the initiation and regulation of canonical Wnt signaling. Overexpressed Dvl has a tendency to form large polymers in a cytoplasmic punctate pattern, whereas the biologically active Dvl in fact forms low molecular weight oligomers. The molecular basis for how the polymeric sizes of Dvl proteins are controlled upon Wnt signaling remains unclear. Here we show that Ccd1 up-regulates canonical Wnt signaling via acting synergistically with Dvl. We determined the crystal structures of wild type Ccd1-DIX and mutant Dvl1-DIX(Y17D), which pack into "head-to-tail" helical filaments. Structural analyses reveal two sites crucial for intra-filament homo- and hetero-interaction and a third site for inter-filament homo-assembly. Systematic mutagenesis studies identified critical residues from all three sites required for Dvl homo-oligomerization, puncta formation, and stimulation of Wnt signaling. Remarkably, Ccd1 forms a hetero-complex with Dvl through the "head" of Dvl-DIX and the "tail" of Ccd1-DIX, depolymerizes Dvl homo-assembly, and thereby controls the size of Dvl polymer. These data together suggest a molecular mechanism for Ccd1-mediated Wnt activation in that Ccd1 converts latent polymeric Dvl to a biologically active oligomer(s).
Collapse
Affiliation(s)
- Yi-Tong Liu
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong-Jie Dan
- the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Jiawei Wang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingang Feng
- the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Lei Chen
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Juan Liang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinxi Li
- the MOE Key Laboratory of Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng-Cai Lin
- the MOE Key Laboratory of Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhi-Xin Wang
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China,; the Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, and
| | - Jia-Wei Wu
- From the MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China,.
| |
Collapse
|
42
|
Huynh MA, Ikeuchi Y, Netherton S, de la Torre-Ubieta L, Kanadia R, Stegmüller J, Cepko C, Bonni S, Bonni A. An isoform-specific SnoN1-FOXO1 repressor complex controls neuronal morphogenesis and positioning in the mammalian brain. Neuron 2011; 69:930-44. [PMID: 21382553 PMCID: PMC3073069 DOI: 10.1016/j.neuron.2011.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2010] [Indexed: 12/17/2022]
Abstract
Control of neuronal positioning is fundamental to normal brain development. However, the cell-intrinsic mechanisms that govern neuronal positioning remain to be elucidated. Here, we report that the spliced protein products of the transcriptional regulator SnoN, SnoN1 and SnoN2, harbor opposing functions in the coordinate regulation of neuronal branching and positioning. Knockdown of SnoN2 stimulates axon branching in primary neurons and impairs migration of granule neurons in the rat cerebellar cortex in vivo. By contrast, SnoN1 knockdown suppresses SnoN2 knockdown-induced neuronal branching and strikingly triggers excessive migration of granule neurons in the cerebellar cortex. We also find that SnoN1 forms a complex with the transcription factor FOXO1 that represses the X-linked lissencephaly gene encoding doublecortin (DCX). Accordingly, repression of DCX mediates the ability of SnoN1 to regulate branching in primary neurons and granule neuron migration in vivo. These data define an isoform-specific SnoN1-FOXO1 transcriptional complex that orchestrates neuronal branching and positioning in the brain with important implications for the study of developmental disorders of cognition and epilepsy.
Collapse
Affiliation(s)
- Mai Anh Huynh
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Program in Biology and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health, Sciences, and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Yoshiho Ikeuchi
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart Netherton
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada
| | - Luis de la Torre-Ubieta
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Rahul Kanadia
- Department of Genetics, Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Judith Stegmüller
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Constance Cepko
- Department of Genetics, Harvard Medical School, and Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta T2N 4N1, Canada
| | - Azad Bonni
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
- Program in Biology and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
43
|
Ye B, Kim JH, Yang L, McLachlan I, Younger S, Jan LY, Jan YN. Differential regulation of dendritic and axonal development by the novel Krüppel-like factor Dar1. J Neurosci 2011; 31:3309-19. [PMID: 21368042 PMCID: PMC3086283 DOI: 10.1523/jneurosci.6307-10.2011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 12/23/2010] [Accepted: 12/29/2010] [Indexed: 01/15/2023] Open
Abstract
Dendrites and axons are two major neuronal compartments with differences that are critical for neuronal functions. To learn about the differential regulation of dendritic and axonal development, we conducted a genetic screen in Drosophila and isolated the dendritic arbor reduction 1 (dar1) mutants, which display defects in dendritic but not axonal growth. The dar1 gene encodes a novel transcription regulator in the Krüppel-like factor family. Neurons lacking dar1 function have severely reduced growth of microtubule- but not F-actin-based dendritic branches. In contrast, overexpression of Dar1 dramatically increased the growth of microtubule-based dendritic branches. Our results suggest that Dar1 promotes dendrite growth in part by suppressing the expression of the microtubule-severing protein Spastin. Our study thus uncovers a novel transcriptional program for microtubule regulation that preferentially controls dendrite growth.
Collapse
Affiliation(s)
- Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Jahchan NS, Luo K. SnoN in mammalian development, function and diseases. Curr Opin Pharmacol 2010; 10:670-5. [PMID: 20822955 PMCID: PMC3123730 DOI: 10.1016/j.coph.2010.08.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
SnoN (Ski-novel protein) was discovered as a nuclear proto-oncogene on the basis of its ability to induce transformation of chicken and quail embryonic fibroblasts. As a crucial negative regulator of transforming growth factor-β (TGF-β) signaling and also an activator of p53, it plays an important role in regulating cell proliferation, senescence, apoptosis, and differentiation. Recent studies of its expression patterns and functions in mouse models and mammalian cells have revealed important functions of SnoN in normal epithelial development and tumorigenesis. Evidence suggests that SnoN has both pro-oncogenic and anti-oncogenic functions by modulating multiple signaling pathways. These studies suggest that SnoN may have broad functions in the development and homeostasis of embryonic and postnatal tissues.
Collapse
Affiliation(s)
- Nadine S Jahchan
- Department of Molecular and Cell Biology, University of California, Berkeley, USA
| | | |
Collapse
|
45
|
Pot I, Ikeuchi Y, Bonni A, Bonni S. SnoN: bridging neurobiology and cancer biology. Curr Mol Med 2010; 10:667-73. [PMID: 20712586 PMCID: PMC3064562 DOI: 10.2174/156652410792630616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 06/12/2010] [Indexed: 01/05/2023]
Abstract
The transcriptional regulator SnoN has been the subject of growing interest due to its diverse functions in normal and pathological settings. A large body of evidence has established a fundamental role for SnoN as a modulator of signaling and responses by the transforming growth beta (TGFbeta) family of cytokines, though how SnoN regulates TGFbeta responses remains incompletely understood. In accordance with the critical and complex roles of TGFbeta in tumorigenesis and metastasis, SnoN may act as a tumor promoter or suppressor depending on the stage and type of cancer. Beyond its role in cancer, SnoN has also been implicated in the control of axon morphogenesis in postmitotic neurons in the mammalian brain. Remarkably, signaling pathways that control SnoN functions in the divergent cycling cells and postmitotic neurons appear to be conserved. Identification of novel SnoN regulatory and effector mechanisms holds the promise of advances at the interface of cancer biology and neurobiology.
Collapse
Affiliation(s)
- Isabelle Pot
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Alberta, T2N 4N1 Canada
| | - Yoshiho Ikeuchi
- Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Azad Bonni
- Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, University of Calgary, Alberta, T2N 4N1 Canada
| |
Collapse
|
46
|
Abstract
The ability of neurons to form a single axon and multiple dendrites underlies the directional flow of information transfer in the central nervous system. Dendrites and axons are molecularly and functionally distinct domains. Dendrites integrate synaptic inputs, triggering the generation of action potentials at the level of the soma. Action potentials then propagate along the axon, which makes presynaptic contacts onto target cells. This article reviews what is known about the cellular and molecular mechanisms underlying the ability of neurons to initiate and extend a single axon during development. Remarkably, neurons can polarize to form a single axon, multiple dendrites, and later establish functional synaptic contacts in reductionist in vitro conditions. This approach became, and remains, the dominant model to study axon initiation and growth and has yielded the identification of many molecules that regulate axon formation in vitro (Dotti et al. 1988). At present, only a few of the genes identified using in vitro approaches have been shown to be required for axon initiation and outgrowth in vivo. In vitro, axon initiation and elongation are largely intrinsic properties of neurons that are established in the absence of relevant extracellular cues. However, the importance of extracellular cues to axon initiation and outgrowth in vivo is emerging as a major theme in neural development (Barnes and Polleux 2009). In this article, we focus our attention on the extracellular cues and signaling pathways required in vivo for axon initiation and axon extension.
Collapse
|
47
|
Quijano JC, Stinchfield MJ, Zerlanko B, Gibbens YY, Takaesu NT, Hyman-Walsh C, Wotton D, Newfeld SJ. The Sno oncogene antagonizes Wingless signaling during wing development in Drosophila. PLoS One 2010; 5:e11619. [PMID: 20661280 PMCID: PMC2905394 DOI: 10.1371/journal.pone.0011619] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 06/15/2010] [Indexed: 11/18/2022] Open
Abstract
The Sno oncogene (Snoo or dSno in Drosophila) is a highly conserved protein and a well-established antagonist of Transforming Growth Factor-β signaling in overexpression assays. However, analyses of Sno mutants in flies and mice have proven enigmatic in revealing developmental roles for Sno proteins. Thus, to identify developmental roles for dSno we first reconciled conflicting data on the lethality of dSno mutations. Then we conducted analyses of wing development in dSno loss of function genotypes. These studies revealed ectopic margin bristles and ectopic campaniform sensilla in the anterior compartment of the wing blade suggesting that dSno functions to antagonize Wingless (Wg) signaling. A subsequent series of gain of function analyses yielded the opposite phenotype (loss of bristles and sensilla) and further suggested that dSno antagonizes Wg signal transduction in target cells. To date Sno family proteins have not been reported to influence the Wg pathway during development in any species. Overall our data suggest that dSno functions as a tissue-specific component of the Wg signaling pathway with modest antagonistic activity under normal conditions but capable of blocking significant levels of extraneous Wg, a role that may be conserved in vertebrates.
Collapse
Affiliation(s)
- Janine C. Quijano
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Michael J. Stinchfield
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Brad Zerlanko
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ying Y. Gibbens
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Norma T. Takaesu
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Cathy Hyman-Walsh
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
| | - David Wotton
- Department of Biochemistry and Molecular Genetics, and Center for Cell Signaling, University of Virginia, Charlottesville, Virginia, United States of America
| | - Stuart J. Newfeld
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
48
|
Chédotal A. Should I stay or should I go? Becoming a granule cell. Trends Neurosci 2010; 33:163-72. [PMID: 20138673 DOI: 10.1016/j.tins.2010.01.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 12/23/2009] [Accepted: 01/14/2010] [Indexed: 01/30/2023]
Abstract
Cerebellar granule cells undergo profound and rapid morphological modifications during development while they migrate from their birthplace at the surface of the cerebellar cortex to its deepest layer. Post-mitotic granule cells extend bipolar axons and sequentially use the two main modes of migration, tangential and radial, to reach their final destinations. Recent studies show that protein degradation involving key cell-cycle regulators controls granule cell axon extension. The use of knockout mice deficient in different axon-guidance molecules combined with cutting-edge imaging methods has started to shed light on the molecular mechanisms that trigger granule cell migration. These studies suggest that a major reorganization of the cytoskeleton occurs as granule cells switch from tangential to radial migration.
Collapse
Affiliation(s)
- Alain Chédotal
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR S968, Institut de la Vision, Department of Development, F-75012 Paris, France.
| |
Collapse
|
49
|
Puram SV, Kim AH, Bonni A. An old dog learns new tricks: a novel function for Cdc20-APC in dendrite morphogenesis in neurons. Cell Cycle 2010; 9:482-5. [PMID: 20195072 PMCID: PMC2853878 DOI: 10.4161/cc.9.3.10558] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The E3 ubiquitin ligases Cdc20-anaphase-promoting complex (Cdc20-APC) and Cdh1-APC play key roles in cell cycle transitions in proliferating cells. Remarkably, these ubiquitin ligases are also expressed in postmitotic neurons, raising interest in non-mitotic functions of the APC. Cdh1-APC has been implicated in diverse functions in the nervous system, from the control of axon growth and patterning to synapse development to neuron survival. However, until recently the question of whether Cdc20-APC harbors functions in neurons remained unanswered. New evidence from Kim et al. (2009) has uncovered a novel role for Cdc20-APCin dendrite growth and elaboration in post-mitotic neurons. Interestingly, the histone deacetylase HDAC6 augments Cdc20-APC activity at the centrosome by promoting Cdc20 polyubiquitination. In turn, Cdc20-APC triggers the degradation of the centrosomally localized protein Id1 and thereby promotes dendrite growth and elaboration. These findings have advanced our understanding of APC biology in neuronal connectivity in the brain.
Collapse
Affiliation(s)
- Sidharth V. Puram
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
| | - Albert H. Kim
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Department of Neurosurgery, Brigham and Women's Hospital, Children's Hospital, Boston, MA 02115
| | - Azad Bonni
- Department of Pathology, Harvard Medical School, Boston, MA 02115
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
50
|
Yang Y, Kim AH, Bonni A. The dynamic ubiquitin ligase duo: Cdh1-APC and Cdc20-APC regulate neuronal morphogenesis and connectivity. Curr Opin Neurobiol 2010; 20:92-9. [PMID: 20060286 DOI: 10.1016/j.conb.2009.12.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/08/2009] [Accepted: 12/11/2009] [Indexed: 01/10/2023]
Abstract
The proper development and patterning of axons, dendrites, and synapses is essential for the establishment of accurate neuronal circuits in the brain. A major goal in neurobiology is to identify the mechanisms and principles that govern these fundamental developmental events of neuronal circuit formation. In recent years, exciting new studies have suggested that ubiquitin signaling pathways may play crucial roles in the control of neuronal connectivity. Among E3 ubiquitin ligases, Cdh1-anaphase promoting complex (Cdh1-APC) and Cdc20-APC have emerged as key regulators of diverse aspects of neuronal connectivity, from axon and dendrite morphogenesis to synapse differentiation and remodeling.
Collapse
Affiliation(s)
- Yue Yang
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|