1
|
Wang J, Zhao M, Fu D, Wang M, Han C, Lv Z, Wang L, Liu J. Human neural stem cell-derived extracellular vesicles protect against ischemic stroke by activating the PI3K/AKT/mTOR pathway. Neural Regen Res 2025; 20:3245-3258. [PMID: 39248158 PMCID: PMC11881723 DOI: 10.4103/nrr.nrr-d-23-01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/11/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00028/figure1/v/2024-12-20T164640Z/r/image-tiff Human neural stem cell-derived extracellular vesicles exhibit analogous functions to their parental cells, and can thus be used as substitutes for stem cells in stem cell therapy, thereby mitigating the risks of stem cell therapy and advancing the frontiers of stem cell-derived treatments. This lays a foundation for the development of potentially potent new treatment modalities for ischemic stroke. However, the precise mechanisms underlying the efficacy and safety of human neural stem cell-derived extracellular vesicles remain unclear, presenting challenges for clinical translation. To promote the translation of therapy based on human neural stem cell-derived extracellular vesicles from the bench to the bedside, we conducted a comprehensive preclinical study to evaluate the efficacy and safety of human neural stem cell-derived extracellular vesicles in the treatment of ischemic stroke. We found that administration of human neural stem cell-derived extracellular vesicles to an ischemic stroke rat model reduced the volume of cerebral infarction and promoted functional recovery by alleviating neuronal apoptosis. The human neural stem cell-derived extracellular vesicles reduced neuronal apoptosis by enhancing phosphorylation of phosphoinositide 3-kinase, mammalian target of rapamycin, and protein kinase B, and these effects were reversed by treatment with a phosphoinositide 3-kinase inhibitor. These findings suggest that human neural stem cell-derived extracellular vesicles play a neuroprotective role in ischemic stroke through activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Finally, we showed that human neural stem cell-derived extracellular vesicles have a good in vivo safety profile. Therefore, human neural stem cell-derived extracellular vesicles are a promising potential agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jiayi Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Mengke Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Dong Fu
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Meina Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Chao Han
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Zhongyue Lv
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Liang Wang
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, Liaoning Province, China
| |
Collapse
|
2
|
Tong M, Homans C, Pelit W, Delikkaya B, de la Monte SM. Progressive Alcohol-Related Brain Atrophy and White Matter Pathology Are Linked to Long-Term Inhibitory Effects on mTOR Signaling. Biomolecules 2025; 15:413. [PMID: 40149949 PMCID: PMC11940526 DOI: 10.3390/biom15030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) causes cognitive-behavioral impairments that can lead to dementia. White matter is a major target in ARBD. Additional research is needed to better understand the mechanisms of ARBD progression to advanced stages with permanent disability. Potential contributing factors include neuroinflammation and altered signaling through pathways that regulate cell survival, neuronal plasticity, myelin maintenance, and energy metabolism. OBJECTIVES This study characterizes the time course-related effects of chronic heavy ethanol feeding on white matter myelin protein expression, neuroinflammation, and molecules that mediate signaling through the mechanistic target of rapamycin (mTOR) pathways. METHODS Adult Long Evans rats (8-12/group) were fed with isocaloric liquid diets containing 0% (control) or 36% ethanol. Experimental endpoints spanned from 1 day to 8 weeks. The frontal lobes were used for histopathology and molecular and biochemical analyses. RESULTS Chronic ethanol feeding caused significant brain atrophy that was detected within 4 weeks and sustained over the course of the study. Early exposure time points, i.e., 2 weeks or less, were associated with global increases in the expression of non-myelinating, myelinating, and astrocyte markers, whereas at 6 or 8 weeks, white matter oligodendrocyte/myelin/glial protein expression was reduced. These effects were not associated with shifts in neuroinflammatory markers. Instead, the early stages of ARBD were accompanied by increases in several mTOR proteins and phosphoproteins, while later phases were marked by inhibition of downstream mTOR signaling through P70S6K. CONCLUSIONS Short-term versus long-term ethanol exposures differentially altered white matter glial protein expression and signaling through mTOR's downstream mediators that have known roles in myelin maintenance. These findings suggest that strategic targeting of mTOR signaling dysregulation may be critical for maintaining the functional integrity of white matter and ultimately preventing long-term ARBD-related cognitive impairment.
Collapse
Affiliation(s)
- Ming Tong
- Department of Medicine, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Camilla Homans
- Molecular Pharmacology, Physiology, and Biotechnology Graduate Program, Brown University, Providence, RI 02903, USA
| | - William Pelit
- Department of Chemistry, Brown University, Providence, RI 02903, USA
| | - Busra Delikkaya
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
- Departments of Neurosurgery and Neurology, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
3
|
Lin ML, Lin W. Thinning of originally-existing, mature myelin represents a nondestructive form of myelin loss in the adult CNS. Front Cell Neurosci 2025; 19:1565913. [PMID: 40134707 PMCID: PMC11933062 DOI: 10.3389/fncel.2025.1565913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/28/2025] [Indexed: 03/27/2025] Open
Abstract
The main function of oligodendrocytes is to assemble and maintain myelin that wraps and insulates axons in the central nervous system (CNS). Traditionally, myelin structure, particularly its thickness, was believed to remain remarkably stable in adulthood (including early and middle adulthood, but not late adulthood or aging). However, emerging evidence reveals that the thickness of originally-existing, mature myelin (OEM) can undergo dynamic changes in the adult CNS. This overview highlights recent findings on the alteration of OEM thickness in the adult CNS, explores the underlying mechanisms, and proposes that progressive thinning of OEM represents a novel, nondestructive form of myelin loss in myelin disorders of the CNS.
Collapse
Affiliation(s)
- Min Li Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Wensheng Lin
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Ichihara Y, Okawa M, Minegishi M, Oizumi H, Yamamoto M, Ohbuchi K, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 14 (HLD14)-Related UFC1 p.Arg23Gln Decreases Cell Morphogenesis: A Phenotype Reversable with Hesperetin. MEDICINES (BASEL, SWITZERLAND) 2025; 12:2. [PMID: 39846712 PMCID: PMC11755592 DOI: 10.3390/medicines12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
INTRODUCTION In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths. Among these, an amino acid mutation of the ubiquitin-fold modifier conjugating enzyme 1 (UFC1) is associated with HLD14-related disease, characterized by hypomyelination and delayed myelination in the brain. UFC1 is a critical component of the UFMylation system, functioning similarly to E2-conjugating enzymes in the ubiquitin-dependent protein degradation system. METHODOLOGY We describe how a missense mutation in UFC1 (p.Arg23Gln) leads to the aggregation of UFC1 primarily in lysosomes in FBD-102b cells, which are undergoing oligodendroglial cell differentiation. RESULTS Cells with mutated UFC1 exhibit reduced Akt kinase phosphorylation and reduced expression of differentiation and myelination marker proteins. Consistently, these cells exhibit impaired morphological differentiation with a reduced ability to extend widespread membranes. Interestingly, hesperetin, a citrus flavonoid with known neuroprotective properties, was found to restore differentiation abilities in cells with the UFC1 mutation. CONCLUSIONS These findings indicate that the HLD14-related mutation in UFC1 causes its lysosomal aggregation, impairing its morphological differentiation. Furthermore, the study highlights potential therapeutic insights into the pathological molecular and cellular mechanisms underlying HLD14 and suggests hesperetin as a promising candidate for treatment.
Collapse
Affiliation(s)
- Yuri Ichihara
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
| | - Maho Okawa
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
| | - Minori Minegishi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 200-1192, Japan; (H.O.); (M.Y.); (K.O.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 200-1192, Japan; (H.O.); (M.Y.); (K.O.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Ibaraki 200-1192, Japan; (H.O.); (M.Y.); (K.O.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan (Y.M.)
- Laboratory of Molecular Pharmacology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Diabetic Neuropathy Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| |
Collapse
|
5
|
Wang W, Wang Y, Su L, Zhang M, Zhang T, Zhao J, Ma H, Zhang D, Ji F, Jiao RD, Li H, Xu Y, Chen L, Jiao J. Endothelial Cells Mediated by STING Regulate Oligodendrogenesis and Myelination During Brain Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308508. [PMID: 39136074 PMCID: PMC11481185 DOI: 10.1002/advs.202308508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/30/2024] [Indexed: 10/17/2024]
Abstract
Oligodendrocyte precursor cells (OPCs) migrate extensively using blood vessels as physical scaffolds in the developing central nervous system. Although the association of OPCs with the vasculature is critical for migration, the regulatory mechanisms important for OPCs proliferative and oligodendrocyte development are unknown. Here, a correlation is demonstrated between the developing vasculature and OPCs response during brain development. Deletion of endothelial stimulator of interferon genes (STING) disrupts angiogenesis by inhibiting farnesyl-diphosphate farnesyltransferase 1 (FDFT1) and thereby reducing cholesterol synthesis. Furthermore, the perturbation of metabolic homeostasis in endothelial cells increases interleukin 17D production which mediates the signal transduction from endothelial cells to OPCs, which inhibits oligodendrocyte development and myelination and causes behavioral abnormalities in adult mice. Overall, these findings indicate how the endothelial STING maintains metabolic homeostasis and contributes to oligodendrocyte precursor cells response in the developing neocortex.
Collapse
Affiliation(s)
- Wenwen Wang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- School of Life SciencesUniversity of Science and Technology of ChinaHefei230026China
| | - Yanyan Wang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Libo Su
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mengtian Zhang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Tianyu Zhang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jinyue Zhao
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hongyan Ma
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Dongming Zhang
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Fen Ji
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | | | - Hong Li
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuming Xu
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450000China
| | - Lei Chen
- Department of NeurologyWest China HospitalSichuan UniversityChengdu610041China
| | - Jianwei Jiao
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of ScienceBeijing100101China
- University of Chinese Academy of SciencesBeijing100049China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Beijing Institute for Stem Cell and Regenerative MedicineInstitute for Stem Cell and RegenerationChinese Academy of SciencesBeijing100101China
| |
Collapse
|
6
|
van de Wetering R, Bibi R, Biggerstaff A, Hong S, Pengelly B, Prisinzano TE, La Flamme AC, Kivell BM. Nalfurafine promotes myelination in vitro and facilitates recovery from cuprizone + rapamycin-induced demyelination in mice. Glia 2024; 72:1801-1820. [PMID: 38899723 DOI: 10.1002/glia.24583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
The kappa opioid receptor has been identified as a promising therapeutic target for promoting remyelination. In the current study, we evaluated the ability of nalfurafine to promote oligodendrocyte progenitor cell (OPC) differentiation and myelination in vitro, and its efficacy in an extended, cuprizone-induced demyelination model. Primary mouse (C57BL/6J) OPC-containing cultures were treated with nalfurafine (0.6-200 nM), clemastine (0.01-100 μM), T3 (30 ng/mL), or vehicle for 5 days. Using immunocytochemistry and confocal microscopy, we found that nalfurafine treatment increased OPC differentiation, oligodendrocyte (OL) morphological complexity, and myelination of nanofibers in vitro. Adult male mice (C57BL/6J) were given a diet containing 0.2% cuprizone and administered rapamycin (10 mg/kg) once daily for 12 weeks followed by 6 weeks of treatment with nalfurafine (0.01 or 0.1 mg/kg), clemastine (10 mg/kg), or vehicle. We quantified the number of OLs using immunofluorescence, gross myelination using black gold staining, and myelin thickness using electron microscopy. Cuprizone + rapamycin treatment produced extensive demyelination and was accompanied by a loss of mature OLs, which was partially reversed by therapeutic administration of nalfurafine. We also assessed these mice for functional behavioral changes in open-field, horizontal bar, and mouse motor skill sequence tests (complex wheel running). Cuprizone + rapamycin treatment resulted in hyperlocomotion, poorer horizontal bar scores, and less distance traveled on the running wheels. Partial recovery was observed on both the horizontal bar and complex running wheel tests over time, which was facilitated by nalfurafine treatment. Taken together, these data highlight the potential of nalfurafine as a remyelination-promoting therapeutic.
Collapse
Affiliation(s)
- Ross van de Wetering
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Rabia Bibi
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Andy Biggerstaff
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Sheein Hong
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Bria Pengelly
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Anne C La Flamme
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Bronwyn M Kivell
- School of Biological Sciences, Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
7
|
Neili NE, AbdelKafi-Koubaa Z, Jebali J, Kaidi K, Sahraoui G, Ahmed MB, Srairi-Abid N, Marrakchi N, Doghri R, ELBini I. Modulation of αv integrins by lebecetin, a viper venom-derived molecule, in experimental neuroinflammation and demyelination models. Sci Rep 2024; 14:22398. [PMID: 39333683 PMCID: PMC11436777 DOI: 10.1038/s41598-024-73259-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Several neurodegenerative diseases, such as multiple sclerosis and Parkinson's disease, are linked to alterations in myelin content or structure. Transmembrane receptors such as integrins could be involved in these alterations. In the present study, we investigated the role of αv-integrins in experimental models of neuroinflammation and demyelination with the use of lebecetin (LCT), a C-lectin protein purified from Macrovipera lebetina viper venom, as an αv-integrin modulator. In a model of neuroinflammation, LCT inhibited the upregulation of αv, β3, β5, α5, and β1 integrins, as well as the associated release of pro-inflammatory factor IL-6 and chemokine CXCL-10, and decreased the expression of phosphorylated NfκB. The subsequent "indirect culture" between reactive astrocytes and oligodendrocytes showed a down-regulation of αv and β3 integrins versus upregulation of β1 one, accompanied by a reduced expression of myelin basic protein (MBP). Treatment of oligodendrocytes with LCT rectified the changes in integrin and MBP expression. Through Western blot quantification, LCT was shown to upregulate the expression levels of PI3K and p-mTOR while downregulating expression levels of p-AKT in oligodendrocytes, suggesting the neuroprotective and pro-myelinating effects of LCT may be related to the PI3K/mTor/AKT pathway. Concomitantly, we found that LCT promoted remyelination by tracking the increased expression of MBP in the brains of cuprizone-intoxicated mice. These results point to an involvement of integrins in not only neuroinflammation but demyelination as well. Thus, targeting αv integrins could offer potential therapeutic avenues for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Nour-Elhouda Neili
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Zaineb AbdelKafi-Koubaa
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Saleh Azaiez Institute, Tunis, Tunisia
| | - Jed Jebali
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Khouloud Kaidi
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Ghada Sahraoui
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Saleh Azaiez Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Melika Ben Ahmed
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
- Laboratory of Transmission, Control and Immunobiology of Infections (LR16IPT02), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Najet Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Naziha Marrakchi
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Raoudha Doghri
- Research Laboratory of Precision Medicine/Personalized Medicine and Oncology Investigation (LR21SP01), Saleh Azaiez Institute, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Ines ELBini
- Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, University of Tunis, El Manar, Tunis, Tunisia.
| |
Collapse
|
8
|
de la Monte SM, Tong M. Dysregulated mTOR networks in experimental sporadic Alzheimer's disease. Front Cell Neurosci 2024; 18:1432359. [PMID: 39386180 PMCID: PMC11461251 DOI: 10.3389/fncel.2024.1432359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Background Beyond the signature amyloid-beta plaques and neurofibrillary tangles, Alzheimer's disease (AD) has been shown to exhibit dysregulated metabolic signaling through insulin and insulin-like growth factor (IGF) networks that crosstalk with the mechanistic target of rapamycin (mTOR). Its broad impact on brain structure and function suggests that mTOR is likely an important therapeutic target for AD. Objective This study characterizes temporal lobe (TL) mTOR signaling abnormalities in a rat model of sporadic AD neurodegeneration. Methods Long Evans rats were given intracerebroventricular injections of streptozotocin (ic-STZ) or saline (control), and 4 weeks later, they were administered neurobehavioral tests followed by terminal harvesting of the TLs for histopathological study and measurement of AD biomarkers, neuroinflammatory/oxidative stress markers, and total and phosphorylated insulin/IGF-1-Akt-mTOR pathway signaling molecules. Results Rats treated with ic-STZ exhibited significantly impaired performance on Rotarod (RR) and Morris Water Maze (MWM) tests, brain atrophy, TL and hippocampal neuronal and white matter degeneration, and elevated TL pTau, AβPP, Aβ, AChE, 4-HNE, and GAPDH and reduced ubiquitin, IL-2, IL-6, and IFN-γ immunoreactivities. In addition, ic-STZ reduced TL pY1135/1136-IGF-1R, Akt, PTEN, pS380-PTEN, pS2448-mTOR, p70S6K, pT412-p70S6K, p/T-pT412-p70S6K, p/T-Rictor, and p/T-Raptor. Conclusion Experimental ic-STZ-induced sporadic AD-type neurodegeneration with neurobehavioral dysfunctions associated with inhibition of mTOR signaling networks linked to energy metabolism, plasticity, and white matter integrity.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Medicine, Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Women and Infants Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School at Brown University, Providence, RI, United States
| |
Collapse
|
9
|
Emamnejad R, Pagnin M, Petratos S. The iron maiden: Oligodendroglial metabolic dysfunction in multiple sclerosis and mitochondrial signaling. Neurosci Biobehav Rev 2024; 164:105788. [PMID: 38950685 DOI: 10.1016/j.neubiorev.2024.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Multiple sclerosis (MS) is an autoimmune disease, governed by oligodendrocyte (OL) dystrophy and central nervous system (CNS) demyelination manifesting variable neurological impairments. Mitochondrial mechanisms may drive myelin biogenesis maintaining the axo-glial unit according to dynamic requisite demands imposed by the axons they ensheath. The promotion of OL maturation and myelination by actively transporting thyroid hormone (TH) into the CNS and thereby facilitating key transcriptional and metabolic pathways that regulate myelin biogenesis is fundamental to sustain the profound energy demands at each axo-glial interface. Deficits in regulatory functions exerted through TH for these physiological roles to be orchestrated by mature OLs, can occur in genetic and acquired myelin disorders, whereby mitochondrial efficiency and eventual dysfunction can lead to profound oligodendrocytopathy, demyelination and neurodegenerative sequelae. TH-dependent transcriptional and metabolic pathways can be dysregulated during acute and chronic MS lesion activity depriving OLs from critical acetyl-CoA biochemical mechanisms governing myelin lipid biosynthesis and at the same time altering the generation of iron metabolism that may drive ferroptotic mechanisms, leading to advancing neurodegeneration.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, Victoria 3004, Australia.
| |
Collapse
|
10
|
Duan Y, Ye C, Liao J, Xie X. LY2940094, an NOPR antagonist, promotes oligodendrocyte generation and myelin recovery in an NOPR independent manner. Neurotherapeutics 2024; 21:e00424. [PMID: 39004556 PMCID: PMC11581876 DOI: 10.1016/j.neurot.2024.e00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
The myelin sheath plays crucial roles in brain development and neuronal functions. In the central nervous system, myelin is generated by oligodendrocytes, that differentiate from oligodendrocyte progenitor cells (OPC). In demyelinating diseases, the differentiation capacity of OPC is impaired and remyelination is dampened. Boosting remyelination by promoting OPC differentiation is a novel strategy for the treatment of demyelinating diseases. The opioid system, which consists of four receptors and their ligands, has been implicated in OPC differentiation and myelin formation. However, the exact roles of each opioid receptor and the relevant pharmacological molecules in OPC differentiation and myelin formation remain elusive. In the present study, specific agonists and antagonists of each opioid receptor were used to explore the function of opioid receptors in OPC differentiation. Nociceptin/orphanin FQ receptor (NOPR) specific antagonist LY2940094 was found to stimulate OPC differentiation and myelination in both in vitro and in vivo models. Unexpectedly, other NOPR ligands did not affect OPC differentiation, and NOPR knockdown did not mimic or impede the effect of LY2940094. LY2940094 was found to modulate the expression of the oligodendrocytes differentiation-associated transcription factors ID4 and Myrf, although the exact mechanism remains unclear. Since LY2940094 has been tested clinically to treat depression and alcohol dependency and has displayed an acceptable safety profile, it may provide an alternative approach to treat demyelinating diseases.
Collapse
Affiliation(s)
- Yanhui Duan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chenyuan Ye
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingyi Liao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; State Key Laboratory of Drug Research, National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China.
| |
Collapse
|
11
|
LeBlang CJ, Pazyra-Murphy MF, Silagi ES, Dasgupta S, Tsolias M, Miller T, Petrova V, Zhen S, Jovanovic V, Castellano D, Gerrish K, Ormanoglu P, Tristan C, Singeç I, Woolf CJ, Tasdemir-Yilmaz O, Segal RA. Satellite glial contact enhances differentiation and maturation of human iPSC-derived sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604966. [PMID: 39211268 PMCID: PMC11361066 DOI: 10.1101/2024.07.24.604966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Sensory neurons generated from induced pluripotent stem cells (iSNs) are used to model human peripheral neuropathies, however current differentiation protocols produce sensory neurons with an embryonic phenotype. Peripheral glial cells contact sensory neurons early in development and contribute to formation of the canonical pseudounipolar morphology, but these signals are not encompassed in current iSN differentiation protocols. Here, we show that terminal differentiation of iSNs in co-culture with rodent Dorsal Root Ganglion satellite glia (rSG) advances their differentiation and maturation. Co-cultured iSNs develop a pseudounipolar morphology through contact with rSGs. This transition depends on semaphorin-plexin guidance cues and on glial gap junction signaling. In addition to morphological changes, iSNs terminally differentiated in co-culture exhibit enhanced spontaneous action potential firing, more mature gene expression, and increased susceptibility to paclitaxel induced axonal degeneration. Thus, iSNs differentiated in coculture with rSGs provide a better model for investigating human peripheral neuropathies.
Collapse
|
12
|
Yalcin EB, Tong M, Delikkaya B, Pelit W, Yang Y, de la Monte SM. Differential effects of moderate chronic ethanol consumption on neurobehavior, white matter glial protein expression, and mTOR pathway signaling with adolescent brain maturation. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:492-516. [PMID: 38847790 PMCID: PMC11824867 DOI: 10.1080/00952990.2024.2355540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 09/06/2024]
Abstract
Background: Adolescent brains are highly vulnerable to heavy alcohol exposure. Increased understanding of how alcohol adversely impacts brain maturation may improve treatment outcomes.Objectives: This study characterizes short-term versus long-term effects of ethanol feeding on behavior, frontal lobe glial proteins, and mTOR signaling.Methods: Adolescent rats (8/group) were fed liquid diets containing 26% or 0% ethanol for 2 or 9 weeks, then subjected to novel object recognition (NOR) and open field (OF) tests. Frontal lobes were used for molecular assays.Results: Significant ethanol effects on OF performance occurred in the 2-week model (p < .0001). Further shifts in OF and NOR performance were unrelated to ethanol exposure in the 9-week models (p < .05 to p < .0001). Ethanol inhibited MAG1 (p < .01) and MBP (p < .0001) after 2 but not 9 weeks. However, both control and ethanol 9-week models had significantly reduced MAG1 (p < .001-0.0001), MBP (p < .0001), PDGFRA (p < .05-0.01), and PLP (p < .001-0.0001) relative to the 2-week models. GFAP was the only glial protein significantly inhibited by ethanol in both 2- (p < .01) and 9-week (p < .05) models. Concerning the mTOR pathway, ethanol reduced IRS-1 (p < .05) and globally inhibited mTOR (p < .01 or p < .001) in the 9- but not the 2-week model.Conclusions: Short-term versus long-term ethanol exposures differentially alter neurobehavioral function, glial protein expression, and signaling through IRS-1 and mTOR, which have known roles in myelination during adolescence. These findings suggest that strategies to prevent chronic alcohol-related brain pathology should consider the increased maturation-related vulnerability of adolescent brains.
Collapse
Affiliation(s)
- Emine B. Yalcin
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, The Providence VA Medical Center, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Busra Delikkaya
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, The Providence VA Medical Center, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - William Pelit
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Yiwen Yang
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, The Providence VA Medical Center, The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology and Neurosurgery, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
13
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
14
|
Fu JT, Yang CJ, Lee LY, Chen WP, Chen YW, Chen CC, Sun YT, Yang CS, Tzeng SF. Erinacine S, a small active component derived from Hericium erinaceus, protects oligodendrocytes and alleviates mood abnormalities in cuprizone-exposed rodents. Biomed Pharmacother 2024; 173:116297. [PMID: 38394854 DOI: 10.1016/j.biopha.2024.116297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Hericium erinaceus mycelium extract (HEM), containing erinacine A (HeA) and erinacine S (HeS), has shown promise in promoting the differentiation of oligodendrocyte precursor cells (OPCs) into mature oligodendrocytes (OLs), crucial for myelin production in the central nervous system (CNS). The main aim of this study was to characterize the protective effects of HEM and its components on OLs and myelin in demyelinating rodents by exposure to cuprizone (CPZ), a copper chelating agent commonly used to induce demyelination in the corpus callosum of the brain. Rats were fed by CPZ-containing diet and simultaneously orally administered HEM, HeA, or HeS on a daily basis for three weeks. We found that HEM and HeS preserved myelin and OLs in the corpus callosum of CPZ-fed rats, along with reduced microglia and astrocyte activation, and downregulated IL-1β expression. Furthermore, post-treatment with HeS, in mouse models with acute (6 weeks) or chronic (12 weeks) CPZ-induced demyelination demonstrated oral administration during the final 4 weeks (HeS4/6 or HeS4/12) effectively preserved myelin in the corpus callosum. Additionally, HeS4/6 and HeS4/12 inhibited anxious and depressive-like behaviors in CPZ-fed mice. In summary, simultaneous administration of HEM and HeS in rats during short-term CPZ intoxication preserved OLs and myelin. Furthermore, post-administration of HeS not only inhibited demyelination and gliosis but also alleviated anxiety and depression in both acute and chronic CPZ-fed mice. This study presents compelling evidence supporting the potential of HeS as a promising small active compound for protecting OLs and preserving myelin in demyelinating diseases associated with emotional disorders.
Collapse
Affiliation(s)
- Jing-Ting Fu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Jou Yang
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Li-Ya Lee
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Wan-Ping Chen
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Yu-Wen Chen
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Chin-Chu Chen
- Biotech Research Institute, Grape King Biotechnology Inc, Taoyuan, Taiwan
| | - Yuan-Ting Sun
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Shi Yang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Shun-Fen Tzeng
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Karalis V, Wood D, Teaney NA, Sahin M. The role of TSC1 and TSC2 proteins in neuronal axons. Mol Psychiatry 2024; 29:1165-1178. [PMID: 38212374 DOI: 10.1038/s41380-023-02402-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Tuberous Sclerosis Complex 1 and 2 proteins, TSC1 and TSC2 respectively, participate in a multiprotein complex with a crucial role for the proper development and function of the nervous system. This complex primarily acts as an inhibitor of the mechanistic target of rapamycin (mTOR) kinase, and mutations in either TSC1 or TSC2 cause a neurodevelopmental disorder called Tuberous Sclerosis Complex (TSC). Neurological manifestations of TSC include brain lesions, epilepsy, autism, and intellectual disability. On the cellular level, the TSC/mTOR signaling axis regulates multiple anabolic and catabolic processes, but it is not clear how these processes contribute to specific neurologic phenotypes. Hence, several studies have aimed to elucidate the role of this signaling pathway in neurons. Of particular interest are axons, as axonal defects are associated with severe neurocognitive impairments. Here, we review findings regarding the role of the TSC1/2 protein complex in axons. Specifically, we will discuss how TSC1/2 canonical and non-canonical functions contribute to the formation and integrity of axonal structure and function.
Collapse
Affiliation(s)
- Vasiliki Karalis
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Delaney Wood
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Nicole A Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- FM Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, 02115, USA.
- Human Neuron Core, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Yu K, Zhou H, Chen Z, Lei Y, Wu J, Yuan Q, He J. Mechanism of cognitive impairment and white matter damage in the MK-801 mice model of schizophrenia treated with quetiapine. Behav Brain Res 2024; 461:114838. [PMID: 38157989 DOI: 10.1016/j.bbr.2023.114838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Schizophrenia has been linked to cognitive impairment and white matter damage in a growing number of studies this year. In this study, we used the MK-801-induced schizophrenia-like mice model to investigate the effects of quetiapine on behavioral changes and myelin loss in the model mice. The subjects selected for this study were C57B6/J male mice, MK-801 (1 mg/kg/d intraperitoneal injection) modeling for 1 week and quetiapine (10 mg/kg/d intraperitoneal injection) treatment for 2 weeks. Behavioral tests were then performed using the three-chamber paradigm test and the Y maze test. Moreover, western blot, immunohistochemistry, and immunofluorescence were conducted to investigate the changes in oligodendrocyte spectrum markers. In addition, we performed some mechanism-related proteins by western blot. Quetiapine ameliorated cognitive impairment and cerebral white matter damage in MK-801 model mice, and the mechanism may be related to the PI3K/AKT pathways. The present study suggests that quetiapine has a possible mechanism for treating cognitive impairment and white matter damage caused by schizophrenia.
Collapse
Affiliation(s)
- Kai Yu
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Han Zhou
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhuo Chen
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuying Lei
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junnan Wu
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qianfa Yuan
- Xiamen Xian Yue Hospital, Xiamen, Fujian, China
| | - Jue He
- School of Mental Health and the Affiliated Kangning Hospital, Wenzhou Key Laboratory for Basic and Translational Research in Mental Health, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China; Institute of Neurological Disease, First Affiliated Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
17
|
Wu L, Wei S, Pei D, Yao Y, Xiang Z, Yu E, Chen Z, Du Z, Qu S. Activation of the Akt Attenuates Ropivacaine-Induced Myelination Impairment in Spinal Cord and Sensory Dysfunction in Neonatal Rats. Mol Neurobiol 2023; 60:7009-7020. [PMID: 37523045 DOI: 10.1007/s12035-023-03498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Prolonged exposure to local anesthetics (LAs) or intrathecal administration of high doses of LAs can cause spinal cord damage. Intraspinal administration of LAs is increasingly being used in children and neonates. Therefore, it is important to study LA-related spinal cord damage and the underlying mechanism in developmental models. First, neonatal Sprague-Dawley rats received three intrathecal injections of 0.5% ropivacaine, 1% ropivacaine, 2% ropivacaine or saline (90-min interval) on postnatal day 7. Electron microscopy, luxol fast blue staining and behavioral tests were performed to evaluate the spinal neurotoxicity caused by ropivacaine at different concentrations. Western blot analysis and immunostaining was performed to detect the expression changes of p-Akt, Akt, myelin gene regulatory factor (MYRF) and myelin basic protein (MBP) in the spinal cord treated with different concentrations of ropivacaine. Our results showed that 1% or 2% ropivacaine impaired myelination in the spinal cord and induced sensory dysfunction, but 0.5% ropivacaine did not. Moreover, 1% or 2% ropivacaine decreased the expression of p-Akt, MYRF and MBP in the spinal cord. Then, in order to further explore the role of these proteins in this model, the Akt-specific activator (SC79) was intraperitoneally injected 30 min before 2% ropivacaine treatment. Interestingly, SC79-mediated activation of Akt partly rescued ropivacaine-induced myelination impairments and sensory dysfunction. Overall, the results showed that ropivacaine caused spinal neurotoxicity in a dose-dependent manner in neonatal rats and that activation of the Akt partly rescued ropivacaine-induced these changes. These data provide insight into the neurotoxicity to the developing spinal cord caused by LAs.
Collapse
Affiliation(s)
- Lei Wu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Siwei Wei
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Dongjie Pei
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Yiyi Yao
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zhen Xiang
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Eryou Yu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zheng Chen
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China
| | - Zhen Du
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China.
| | - Shuangquan Qu
- Department of Anesthesiology, Hunan Children's Hospital, No.86 Ziyuan Rd, Changsha, 410007, Hunan, China.
| |
Collapse
|
18
|
Rajendran R, Rajendran V, Böttiger G, Stadelmann C, Shirvanchi K, von Au L, Bhushan S, Wallendszus N, Schunin D, Westbrock V, Liebisch G, Ergün S, Karnati S, Berghoff M. The small molecule fibroblast growth factor receptor inhibitor infigratinib exerts anti-inflammatory effects and remyelination in a model of multiple sclerosis. Br J Pharmacol 2023; 180:2989-3007. [PMID: 37400950 DOI: 10.1111/bph.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Fibroblast growth factors and receptors (FGFR) have been shown to modulate inflammation and neurodegeneration in multiple sclerosis (MS). The selective FGFR inhibitor infigratinib has been shown to be effective in cancer models. Here, we investigate the effects of infigratinib on prevention and suppression of first clinical episodes of myelin oligodendrocyte glycoprotein (MOG)35-55 -induced experimental autoimmune encephalomyelitis (EAE) in mice. EXPERIMENTAL APPROACH The FGFR inhibitor infigratinib was given over 10 days from the time of experimental autoimmune encephalomyelitis induction or the onset of symptoms. The effects of infigratinib on proliferation, cytotoxicity and FGFR signalling proteins were studied in lymphocyte cell lines and microglial cells. KEY RESULTS Administration of infigratinib prevented by 40% and inhibited by 65% first clinical episodes of the induced experimental autoimmune encephalomyelitis. In the spinal cord, infiltration of lymphocytes and macrophages/microglia, destruction of myelin and axons were reduced by infigratinib. Infigratinib enhanced the maturation of oligodendrocytes and increased remyelination. In addition, infigratinib resulted in an increase of myelin proteins and a decrease in remyelination inhibitors. Further, lipids associated with neurodegeneration such as lysophosphatidylcholine and ceramide were decreased as were proliferation of T cells and microglial cells. CONCLUSION AND IMPLICATIONS This proof of concept study demonstrates the therapeutic potential of targeting FGFRs in a disease model of multiple sclerosis. Application of oral infigratinib resulted in anti-inflammatory and remyelinating effects. Thus, infigratinib may have the potential to slow disease progression or even to improve the disabling symptoms of multiple sclerosis.
Collapse
Affiliation(s)
- Ranjithkumar Rajendran
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Vinothkumar Rajendran
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Gregor Böttiger
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Kian Shirvanchi
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Laureen von Au
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Sudhanshu Bhushan
- Institute for Anatomy and Cell Biology, University of Giessen, Giessen, Germany
| | - Natascha Wallendszus
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Darja Schunin
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Victor Westbrock
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital of Regensburg, Regensburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, Würzburg, Germany
| | - Martin Berghoff
- Experimental Neurology Group, Department of Neurology, University of Giessen, Giessen, Germany
| |
Collapse
|
19
|
Xiao J. Thirty years of BDNF study in central myelination: From biology to therapy. J Neurochem 2023; 167:321-336. [PMID: 37747083 DOI: 10.1111/jnc.15968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Being the highest expressed neurotrophin in the mammalian brain, the brain-derived neurotrophic factor (BDNF) is essential to neural development and plasticity in both health and diseases. Following the discovery of BDNF by Yves-Alain Barde in 1982, the main feature of BDNF's activity in myelination was first described by Cellerino et al. in 1997. Since then, genetic manipulation of the BDNF-encoding gene and its receptors in murine models has revealed the contribution of BDNF to the myelinating process in the central nervous system (CNS). The series of BDNF or receptor mouse mutants as well as the BDNF polymorphism in humans have provided new insights into the roles that BDNF signaling plays in myelination in a complex manner. 2024 marks the 30th year of BDNF's research in myelination. Here, we share our perspective on the 30-year history of BDNF in the field of CNS myelination from phenotyping to therapeutic development, focusing on genetic evidence regarding the mechanism by which BDNF regulates myelin formation and repair in the CNS. This review also discusses the current hypotheses of BDNF's action on CNS myelination: axonal- and oligodendroglial-driven mechanisms, which may be ultimately activity-dependent. Last, this review raises the challenges and opportunities of developing BDNF-based therapies for neurodegenerative diseases, opening unanswered questions for future investigation.
Collapse
Affiliation(s)
- Junhua Xiao
- School of Health Sciences, Swinburne University of Technology, Hawthorn, Victoria, Australia
- School of Allied Health, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
20
|
Yazdani Y, Zamani ARN, Majidi Z, Sharafkandi N, Alizadeh S, Mofrad AME, Valizadeh A, Idari G, Radvar AD, Safaie N, Faridvand Y. Curcumin and targeting of molecular and metabolic pathways in multiple sclerosis. Cell Biochem Funct 2023; 41:779-787. [PMID: 37653672 DOI: 10.1002/cbf.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Multiple sclerosis (MS) is a life-threading disease that poses a great threat to the human being lifestyle. Having said extensive research in the realm of underlying mechanisms and treatment procedures, no definite remedy has been found. Over the past decades, many medicines have been disclosed to alleviate the symptoms and marking of MS. Meanwhile, the substantial efficacy of herbal medicines including curcumin must be underscored. Accumulated documents demonstrated the fundamental role of curcumin in the induction of the various signaling pathways. According to evidence, curcumin can play a role in mitochondrial dysfunction and apoptosis, autophagy, and mitophagy. Also, by targeting the signaling pathways AMPK, PGC-1α/PPARγ, and PI3K/Akt/mTOR, curcumin interferes with the metabolism of MS. The anti-inflammatory, antioxidant, and immune regulatory effects of this herbal compound are involved in its effectiveness against MS. Thus, the present review indicates the molecular and metabolic pathways associated with curcumin's various pharmacological actions on MS, as well as setting into context the many investigations that have noted curcumin-mediated regulatory effects in MS.
Collapse
Affiliation(s)
- Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo R N Zamani
- Department of Genetic, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shaban Alizadeh
- Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir M E Mofrad
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Amir Valizadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Idari
- Department of Clinical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aysan D Radvar
- Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Safaie
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Faridvand
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
de la Monte SM, Tong M, Delikkaya B. Differential Early Mechanistic Frontal Lobe Responses to Choline Chloride and Soy Isoflavones in an Experimental Model of Fetal Alcohol Spectrum Disorder. Int J Mol Sci 2023; 24:7595. [PMID: 37108779 PMCID: PMC10145811 DOI: 10.3390/ijms24087595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of neurodevelopmental defects, and white matter is a major target of ethanol neurotoxicity. Therapeutic interventions with choline or dietary soy could potentially supplement public health preventive measures. However, since soy contains abundant choline, it would be important to know if its benefits are mediated by choline or isoflavones. We compared early mechanistic responses to choline and the Daidzein+Genistein (D+G) soy isoflavones in an FASD model using frontal lobe tissue to assess oligodendrocyte function and Akt-mTOR signaling. Long Evans rat pups were binge administered 2 g/Kg of ethanol or saline (control) on postnatal days P3 and P5. P7 frontal lobe slice cultures were treated with vehicle (Veh), Choline chloride (Chol; 75 µM), or D+G (1 µM each) for 72 h without further ethanol exposures. The expression levels of myelin oligodendrocyte proteins and stress-related molecules were measured by duplex enzyme-linked immunosorbent assays (ELISAs), and mTOR signaling proteins and phosphoproteins were assessed using 11-plex magnetic bead-based ELISAs. Ethanol's main short-term effects in Veh-treated cultures were to increase GFAP and relative PTEN phosphorylation and reduce Akt phosphorylation. Chol and D+G significantly modulated the expression of oligodendrocyte myelin proteins and mediators of insulin/IGF-1-Akt-mTOR signaling in both control and ethanol-exposed cultures. In general, the responses were more robust with D+G; the main exception was that RPS6 phosphorylation was significantly increased by Chol and not D+G. The findings suggest that dietary soy, with the benefits of providing complete nutrition together with Choline, could be used to help optimize neurodevelopment in humans at risk for FASD.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
22
|
Tishler TA, Ellingson BM, Salvadore G, Baker P, Turkoz I, Subotnik KL, de la Fuente-Sandoval C, Nuechterlein KH, Alphs L. Effect of treatment with paliperidone palmitate versus oral antipsychotics on frontal lobe intracortical myelin volume in participants with recent-onset schizophrenia: Magnetic resonance imaging results from the DREaM study. Schizophr Res 2023; 255:195-202. [PMID: 37004331 DOI: 10.1016/j.schres.2023.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 02/10/2023] [Accepted: 03/11/2023] [Indexed: 04/04/2023]
Abstract
OBJECTIVE We investigated changes in brain intracortical myelin (ICM) volume in the frontal lobe after 9 months of treatment with paliperidone palmitate (PP) compared with 9 months of treatment with oral antipsychotics (OAP) in participants with recent-onset schizophrenia or schizophreniform disorder from the Disease Recovery Evaluation and Modification (DREaM) study, a randomized, open-label, delayed-start trial. METHODS DREaM included 3 phases: Part I, a 2-month oral run-in; Part II, a 9-month disease progression phase (PP or OAP); and Part III, 9 months of additional treatment (participants receiving PP continued PP [PP/PP] and participants receiving OAP were rerandomized to receive either PP [OAP/PP] or OAP [OAP/OAP]). In Part II, magnetic resonance imaging (MRI) and functional and symptomatic assessment was performed at baseline, day 92, and day 260. ICM volume as a fraction of the entire brain volume was quantified by subtraction of a proton density image from an inversion recovery image. Within-treatment-group changes from baseline were assessed by paired t-tests. Analysis of covariance was used to analyze ICM volume changes between treatment groups, adjusting for country. RESULTS The MRI analysis sample size included 71 DREaM participants (PP, 23; OAP, 48) and 64 healthy controls. At baseline, mean adjusted ICM fraction values did not differ between groups (PP, 0.057; OAP, 0.058, p = 0.79). By day 92, the adjusted ICM fraction in the OAP group had decreased significantly (change from baseline, -0.002; p = 0.001), whereas the adjusted ICM fraction remained unchanged from baseline in the PP group (0.000; p = 0.80). At day 260, the change from baseline in adjusted ICM fraction was -0.004 (p = 0.004) in the OAP group and -0.001 (p = 0.728) in the PP group. The difference between treatment groups did not reach statistical significance (p = 0.147). CONCLUSIONS In participants with recent-onset schizophrenia or schizophreniform disorder, frontal ICM volume was preserved at baseline levels in those treated with PP over 9 months. However, a decrease of frontal ICM volume was observed among participants treated with OAPs. TRIAL REGISTRATION clinicaltrials.gov identifier NCT02431702.
Collapse
Affiliation(s)
- T A Tishler
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - B M Ellingson
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA; UCLA Center for Computer Vision and Imaging Biomarkers, Departments of Radiological Sciences and Psychiatry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA.
| | - G Salvadore
- Janssen Research and Development, LLC, Titusville, NJ, USA.
| | - P Baker
- Janssen Scientific Affairs, LLC, Titusville, NJ, USA.
| | - I Turkoz
- Janssen Research and Development, LLC, Titusville, NJ, USA.
| | - K L Subotnik
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - C de la Fuente-Sandoval
- Laboratory of Experimental Psychiatry, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico; Neuropsychiatry Department, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico.
| | - K H Nuechterlein
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA; Department of Psychology, University of California at Los Angeles, Los Angeles, CA, USA.
| | - L Alphs
- Janssen Scientific Affairs, LLC, Titusville, NJ, USA.
| |
Collapse
|
23
|
Luo W, Xu H, Xu L, Jiang W, Chen C, Chang Y, Liu C, Tian Z, Qiu X, Xie C, Li X, Chen H, Lai S, Wu L, Cui Y, Tang C, Qiu W. Remyelination in neuromyelitis optica spectrum disorder is promoted by edaravone through mTORC1 signaling activation. Glia 2023; 71:284-304. [PMID: 36089914 DOI: 10.1002/glia.24271] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/15/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a severe inflammatory autoimmune disease of the central nervous system that is manifested as secondary myelin loss. Oligodendrocyte progenitor cells (OPCs) are the principal source of myelinating oligodendrocytes (OLs) and are abundant in demyelinated regions of NMOSD patients, thus possibly representing a cellular target for pharmacological intervention. To explore the therapeutic compounds that enhance myelination due to endogenous OPCs, we screened the candidate drugs in mouse neural progenitor cell (NPC)-derived OPCs. We identified drug edaravone, which is approved by the Food and Drug Administration (FDA), as a promoter of OPC differentiation into mature OLs. Edaravone enhanced remyelination in organotypic slice cultures and in mice, even when edaravone was administered following NMO-IgG-induced demyelination, and ameliorated motor impairment in a systemic mouse model of NMOSD. The results of mechanistic studies in NMO-IgG-treated mice and the biopsy samples of the brain tissues of NMOSD patients indicated that the mTORC1 signaling pathway was significantly inhibited, and edaravone promoted OPC maturation and remyelination by activating mTORC1 signaling. Furthermore, pharmacological activation of mTORC1 signaling significantly enhanced myelin regeneration in NMOSD. Thus, edaravone is a potential therapeutic agent that promotes lesion repair in NMOSD patients by enhancing OPC maturation.
Collapse
Affiliation(s)
- Wenjing Luo
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chen Chen
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yanyu Chang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chunxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhenming Tian
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Chichu Xie
- Department of Clinical Immunology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xuejia Li
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Haijia Chen
- Guangzhou SALIAI Stem Cell Science and Technology Co., Ltd., Guangdong Saliai Stem Cell Research Institute, Guangzhou, Guangdong Province, China
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Longjun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
24
|
mTORC2 Loss in Oligodendrocyte Progenitor Cells Results in Regional Hypomyelination in the Central Nervous System. J Neurosci 2023; 43:540-558. [PMID: 36460463 PMCID: PMC9888514 DOI: 10.1523/jneurosci.0010-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
In the CNS, oligodendrocyte progenitor cells (OPCs) differentiate into mature oligodendrocytes to generate myelin, an essential component for normal nervous system function. OPC differentiation is driven by signaling pathways, such as mTOR, which functions in two distinct complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), containing Raptor or Rictor, respectively. In the current studies, mTORC2 signaling was selectively deleted from OPCs in PDGFRα-Cre X Rictorfl/fl mice. This study examined developmental myelination in male and female mice, comparing the impact of mTORC2 deletion in the corpus callosum and spinal cord. In both regions, Rictor loss in OPCs resulted in early reduction in myelin RNAs and proteins. However, these deficits rapidly recovered in spinal cord, where normal myelin was noted at P21 and P45. By contrast, the losses in corpus callosum resulted in severe hypomyelination and increased unmyelinated axons. The hypomyelination may result from decreased oligodendrocytes in the corpus callosum, which persisted in animals as old as postnatal day 350. The current studies focus on uniquely altered signaling pathways following mTORC2 loss in developing oligodendrocytes. A major mTORC2 substrate is phospho-Akt-S473, which was significantly reduced throughout development in both corpus callosum and spinal cord at all ages measured, yet this had little impact in spinal cord. Loss of mTORC2 signaling resulted in decreased expression of actin regulators, such as gelsolin in corpus callosum, but only minimal loss in spinal cord. The current study establishes a regionally specific role for mTORC2 signaling in OPCs, particularly in the corpus callosum.SIGNIFICANCE STATEMENT mTORC1 and mTORC2 signaling has differential impact on myelination in the CNS. Numerous studies identify a role for mTORC1, but deletion of Rictor (mTORC2 signaling) in late-stage oligodendrocytes had little impact on myelination in the CNS. However, the current studies establish that deletion of mTORC2 signaling from oligodendrocyte progenitor cells results in reduced myelination of brain axons. These studies also establish a regional impact of mTORC2, with little change in spinal cord in these conditional Rictor deletion mice. Importantly, in both brain and spinal cord, mTORC2 downstream signaling targets were impacted by Rictor deletion. Yet, these signaling changes had little impact on myelination in spinal cord, while they resulted in long-term alterations in myelination in brain.
Collapse
|
25
|
Developing Novel Experimental Models of m-TORopathic Epilepsy and Related Neuropathologies: Translational Insights from Zebrafish. Int J Mol Sci 2023; 24:ijms24021530. [PMID: 36675042 PMCID: PMC9866103 DOI: 10.3390/ijms24021530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is an important molecular regulator of cell growth and proliferation. Brain mTOR activity plays a crucial role in synaptic plasticity, cell development, migration and proliferation, as well as memory storage, protein synthesis, autophagy, ion channel expression and axonal regeneration. Aberrant mTOR signaling causes a diverse group of neurological disorders, termed 'mTORopathies'. Typically arising from mutations within the mTOR signaling pathway, these disorders are characterized by cortical malformations and other neuromorphological abnormalities that usually co-occur with severe, often treatment-resistant, epilepsy. Here, we discuss recent advances and current challenges in developing experimental models of mTOR-dependent epilepsy and other related mTORopathies, including using zebrafish models for studying these disorders, as well as outline future directions of research in this field.
Collapse
|
26
|
Murray CJ, Vecchiarelli HA, Tremblay MÈ. Enhancing axonal myelination in seniors: A review exploring the potential impact cannabis has on myelination in the aged brain. Front Aging Neurosci 2023; 15:1119552. [PMID: 37032821 PMCID: PMC10073480 DOI: 10.3389/fnagi.2023.1119552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 04/11/2023] Open
Abstract
Consumption of cannabis is on the rise as public opinion trends toward acceptance and its consequent legalization. Specifically, the senior population is one of the demographics increasing their use of cannabis the fastest, but research aimed at understanding cannabis' impact on the aged brain is still scarce. Aging is characterized by many brain changes that slowly alter cognitive ability. One process that is greatly impacted during aging is axonal myelination. The slow degradation and loss of myelin (i.e., demyelination) in the brain with age has been shown to associate with cognitive decline and, furthermore, is a common characteristic of numerous neurological diseases experienced in aging. It is currently not known what causes this age-dependent degradation, but it is likely due to numerous confounding factors (i.e., heightened inflammation, reduced blood flow, cellular senescence) that impact the many cells responsible for maintaining overall homeostasis and myelin integrity. Importantly, animal studies using non-human primates and rodents have also revealed demyelination with age, providing a reliable model for researchers to try and understand the cellular mechanisms at play. In rodents, cannabis was recently shown to modulate the myelination process. Furthermore, studies looking at the direct modulatory impact cannabis has on microglia, astrocytes and oligodendrocyte lineage cells hint at potential mechanisms to prevent some of the more damaging activities performed by these cells that contribute to demyelination in aging. However, research focusing on how cannabis impacts myelination in the aged brain is lacking. Therefore, this review will explore the evidence thus far accumulated to show how cannabis impacts myelination and will extrapolate what this knowledge may mean for the aged brain.
Collapse
Affiliation(s)
- Colin J. Murray
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- *Correspondence: Colin J. Murray,
| | | | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Départment de Médicine Moléculaire, Université Laval, Québec City, QC, Canada
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Institute for Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada
- Marie-Ève Tremblay,
| |
Collapse
|
27
|
de la Monte SM. Malignant Brain Aging: The Formidable Link Between Dysregulated Signaling Through Mechanistic Target of Rapamycin Pathways and Alzheimer's Disease (Type 3 Diabetes). J Alzheimers Dis 2023; 95:1301-1337. [PMID: 37718817 PMCID: PMC10896181 DOI: 10.3233/jad-230555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Malignant brain aging corresponds to accelerated age-related declines in brain functions eventually derailing the self-sustaining forces that govern independent vitality. Malignant brain aging establishes the path toward dementing neurodegeneration, including Alzheimer's disease (AD). The full spectrum of AD includes progressive dysfunction of neurons, oligodendrocytes, astrocytes, microglia, and the microvascular systems, and is mechanistically driven by insulin and insulin-like growth factor (IGF) deficiencies and resistances with accompanying deficits in energy balance, increased cellular stress, inflammation, and impaired perfusion, mimicking the core features of diabetes mellitus. The underlying pathophysiological derangements result in mitochondrial dysfunction, abnormal protein aggregation, increased oxidative and endoplasmic reticulum stress, aberrant autophagy, and abnormal post-translational modification of proteins, all of which are signature features of both AD and dysregulated insulin/IGF-1-mechanistic target of rapamycin (mTOR) signaling. This article connects the dots from benign to malignant aging to neurodegeneration by reviewing the salient pathologies associated with initially adaptive and later dysfunctional mTOR signaling in the brain. Effective therapeutic and preventive measures must be two-pronged and designed to 1) address complex and shifting impairments in mTOR signaling through the re-purpose of effective anti-diabetes therapeutics that target the brain, and 2) minimize the impact of extrinsic mediators of benign to malignant aging transitions, e.g., inflammatory states, obesity, systemic insulin resistance diseases, and repeated bouts of general anesthesia, by minimizing exposures or implementing neuroprotective measures.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
28
|
Leo H, Kipp M. Remyelination in Multiple Sclerosis: Findings in the Cuprizone Model. Int J Mol Sci 2022; 23:ijms232416093. [PMID: 36555733 PMCID: PMC9783537 DOI: 10.3390/ijms232416093] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Remyelination therapies, which are currently under development, have a great potential to delay, prevent or even reverse disability in multiple sclerosis patients. Several models are available to study the effectiveness of novel compounds in vivo, among which is the cuprizone model. This model is characterized by toxin-induced demyelination, followed by endogenous remyelination after cessation of the intoxication. Due to its high reproducibility and ease of use, this model enjoys high popularity among various research and industrial groups. In this review article, we will summarize recent findings using this model and discuss the potential of some of the identified compounds to promote remyelination in multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Markus Kipp
- Correspondence: ; Tel.: +49-(0)-381-494-8400
| |
Collapse
|
29
|
Emamnejad R, Dass M, Mahlis M, Bozkurt S, Ye S, Pagnin M, Theotokis P, Grigoriadis N, Petratos S. Thyroid hormone-dependent oligodendroglial cell lineage genomic and non-genomic signaling through integrin receptors. Front Pharmacol 2022; 13:934971. [PMID: 36133808 PMCID: PMC9483185 DOI: 10.3389/fphar.2022.934971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is a heterogeneous autoimmune disease whereby the pathological sequelae evolve from oligodendrocytes (OLs) within the central nervous system and are targeted by the immune system, which causes widespread white matter pathology and results in neuronal dysfunction and neurological impairment. The progression of this disease is facilitated by a failure in remyelination following chronic demyelination. One mediator of remyelination is thyroid hormone (TH), whose reliance on monocarboxylate transporter 8 (MCT8) was recently defined. MCT8 facilitates the entry of THs into oligodendrocyte progenitor cell (OPC) and pre-myelinating oligodendrocytes (pre-OLs). Patients with MS may exhibit downregulated MCT8 near inflammatory lesions, which emphasizes an inhibition of TH signaling and subsequent downstream targeted pathways such as phosphoinositide 3-kinase (PI3K)-Akt. However, the role of the closely related mammalian target of rapamycin (mTOR) in pre-OLs during neuroinflammation may also be central to the remyelination process and is governed by various growth promoting signals. Recent research indicates that this may be reliant on TH-dependent signaling through β1-integrins. This review identifies genomic and non-genomic signaling that is regulated through mTOR in TH-responsive pre-OLs and mature OLs in mouse models of MS. This review critiques data that implicates non-genomic Akt and mTOR signaling in response to TH-dependent integrin receptor activation in pre-OLs. We have also examined whether this can drive remyelination in the context of neuroinflammation and associated sequelae. Importantly, we outline how novel therapeutic small molecules are being designed to target integrin receptors on oligodendroglial lineage cells and whether these are viable therapeutic options for future use in clinical trials for MS.
Collapse
Affiliation(s)
- Rahimeh Emamnejad
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Mary Dass
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Michael Mahlis
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Salome Bozkurt
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Sining Ye
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Maurice Pagnin
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
| | - Paschalis Theotokis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- B’, Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Thessaloniki, Greece
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC, Australia
- *Correspondence: Steven Petratos,
| |
Collapse
|
30
|
Caprariello AV, Adams DJ. The landscape of targets and lead molecules for remyelination. Nat Chem Biol 2022; 18:925-933. [PMID: 35995862 PMCID: PMC9773298 DOI: 10.1038/s41589-022-01115-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/18/2022] [Indexed: 12/24/2022]
Abstract
Remyelination, or the restoration of myelin sheaths around axons in the central nervous system, is a multi-stage repair process that remains a major need for millions of patients with multiple sclerosis and other diseases of myelin. Even into adulthood, rodents and humans can generate new myelin-producing oligodendrocytes, leading to the therapeutic hypothesis that enhancing remyelination could lessen disease burden in multiple sclerosis. Multiple labs have used phenotypic screening to identify dozens of drugs that enhance oligodendrocyte formation, and several hit molecules have now advanced to clinical evaluation. Target identification studies have revealed that a large majority of these hits share the ability to inhibit a narrow range of cholesterol pathway enzymes and thereby induce cellular accumulation of specific sterol precursors to cholesterol. This Perspective surveys the recent fruitful intersection of chemical biology and remyelination and suggests multiple approaches toward new targets and lead molecules to promote remyelination.
Collapse
Affiliation(s)
| | - Drew J Adams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
31
|
Behroozi Z, Ramezani F, Nasirinezhad F. Human umbilical cord blood-derived platelet -rich plasma: a new window for motor function recovery and axonal regeneration after spinal cord injury. Physiol Behav 2022; 252:113840. [PMID: 35525286 DOI: 10.1016/j.physbeh.2022.113840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND There are complex mechanisms for reducing intrinsic repairability and neuronal regeneration following spinal cord injury (SCI). Platelet-rich plasma (PRP) is a rich source of growth factors and has been used to motivate the regeneration of peripheral nerves in neurodegenerative disorders. However, only a few studies have shown the effects of PRP on the SCI models. METHODS We investigated whether PRP derived from human umbilical cord blood (HUCB-PRP) could recover motor function in animals with spinal cord injury. Sixty adult male Wistar rats were randomly divided into 6 groups (n=60) as control, sham (laminectomy without induction of spinal cord injury), SCI, vehicle (SCI+ Platelet-Poor Plasma), PRP2day (SCI+PRP injection 2 days after SCI), and PRP14day (SCI+PRP injection 14 days after SCI). SCI was performed at the T12-T13 level. BBB test was carried out weekly after injury for six weeks. Caspase3 expression was determined using the Immunohistochemistry technique. The expression of GSK3β, CSF-tau, and MAG was determined using the Western blot technique. Data were analyzed by PRISM & SPSS software. RESULTS HUCB-PRP treated animals showed a higher locomotor function recovery than those in the SCI group (p<0.0001). The level of caspase3, GSK3β and CSF- Tau reduced and the MAG level in the spinal cord increased by the injection of HUCB-PRP in SCI animals. CONCLUSION Injection of HUCB-PRP enhanced hind limb locomotor performance by modulation of caspase3, GSK3β, CSF-tau, and MAG expression. Using HUCB-PRP could be a new therapeutic option for recovering motor function and axonal regeneration after SCI.
Collapse
Affiliation(s)
- Zahra Behroozi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences. Kerman, Iran.
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Farinaz Nasirinezhad
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Physiology Research Center, Department of Physiology, Iran University of Medical Sciences; Center for Experimental and Comparative Study, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Wang S, Wang Y, Zou S. A Glance at the Molecules That Regulate Oligodendrocyte Myelination. Curr Issues Mol Biol 2022; 44:2194-2216. [PMID: 35678678 PMCID: PMC9164040 DOI: 10.3390/cimb44050149] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Oligodendrocyte (OL) myelination is a critical process for the neuronal axon function in the central nervous system. After demyelination occurs because of pathophysiology, remyelination makes repairs similar to myelination. Proliferation and differentiation are the two main stages in OL myelination, and most factors commonly play converse roles in these two stages, except for a few factors and signaling pathways, such as OLIG2 (Oligodendrocyte transcription factor 2). Moreover, some OL maturation gene mutations induce hypomyelination or hypermyelination without an obvious function in proliferation and differentiation. Herein, three types of factors regulating myelination are reviewed in sequence.
Collapse
Affiliation(s)
- Shunqi Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
| | - Yingxing Wang
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
| | - Suqi Zou
- Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang 330031, China; (S.W.); (Y.W.)
- School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
33
|
Narine M, Colognato H. Current Insights Into Oligodendrocyte Metabolism and Its Power to Sculpt the Myelin Landscape. Front Cell Neurosci 2022; 16:892968. [PMID: 35573837 PMCID: PMC9097137 DOI: 10.3389/fncel.2022.892968] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
Once believed to be part of the nervenkitt or "nerve glue" network in the central nervous system (CNS), oligodendroglial cells now have established roles in key neurological functions such as myelination, neuroprotection, and motor learning. More recently, oligodendroglia has become the subject of intense investigations aimed at understanding the contributions of its energetics to CNS physiology and pathology. In this review, we discuss the current understanding of oligodendroglial metabolism in regulating key stages of oligodendroglial development and health, its role in providing energy to neighboring cells such as neurons, as well as how alterations in oligodendroglial bioenergetics contribute to disease states. Importantly, we highlight how certain inputs can regulate oligodendroglial metabolism, including extrinsic and intrinsic mediators of cellular signaling, pharmacological compounds, and even dietary interventions. Lastly, we discuss emerging studies aimed at discovering the therapeutic potential of targeting components within oligodendroglial bioenergetic pathways.
Collapse
Affiliation(s)
- Mohanlall Narine
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
- Department of Neurobiology, & Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
34
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|
35
|
Scalabrino G. Newly Identified Deficiencies in the Multiple Sclerosis Central Nervous System and Their Impact on the Remyelination Failure. Biomedicines 2022; 10:biomedicines10040815. [PMID: 35453565 PMCID: PMC9026986 DOI: 10.3390/biomedicines10040815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) remains enigmatic and controversial. Myelin sheaths in the central nervous system (CNS) insulate axons and allow saltatory nerve conduction. MS brings about the destruction of myelin sheaths and the myelin-producing oligodendrocytes (ODCs). The conundrum of remyelination failure is, therefore, crucial in MS. In this review, the roles of epidermal growth factor (EGF), normal prions, and cobalamin in CNS myelinogenesis are briefly summarized. Thereafter, some findings of other authors and ourselves on MS and MS-like models are recapitulated, because they have shown that: (a) EGF is significantly decreased in the CNS of living or deceased MS patients; (b) its repeated administration to mice in various MS-models prevents demyelination and inflammatory reaction; (c) as was the case for EGF, normal prion levels are decreased in the MS CNS, with a strong correspondence between liquid and tissue levels; and (d) MS cobalamin levels are increased in the cerebrospinal fluid, but decreased in the spinal cord. In fact, no remyelination can occur in MS if these molecules (essential for any form of CNS myelination) are lacking. Lastly, other non-immunological MS abnormalities are reviewed. Together, these results have led to a critical reassessment of MS pathogenesis, partly because EGF has little or no role in immunology.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
36
|
Villa-González M, Martín-López G, Pérez-Álvarez MJ. Dysregulation of mTOR Signaling after Brain Ischemia. Int J Mol Sci 2022; 23:ijms23052814. [PMID: 35269956 PMCID: PMC8911477 DOI: 10.3390/ijms23052814] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this review, we provide recent data on the role of mTOR kinase in the brain under physiological conditions and after damage, with a particular focus on cerebral ischemia. We cover the upstream and downstream pathways that regulate the activation state of mTOR complexes. Furthermore, we summarize recent advances in our understanding of mTORC1 and mTORC2 status in ischemia–hypoxia at tissue and cellular levels and analyze the existing evidence related to two types of neural cells, namely glia and neurons. Finally, we discuss the potential use of mTORC1 and mTORC2 as therapeutic targets after stroke.
Collapse
Affiliation(s)
- Mario Villa-González
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
| | - Gerardo Martín-López
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
| | - María José Pérez-Álvarez
- Departamento de Biología (Fisiología Animal), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (M.V.-G.); (G.M.-L.)
- Centro de Biología Molecular “Severo Ochoa” (CBMSO), Universidad Autónoma de Madrid/CSIC, 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-91-497-2819
| |
Collapse
|
37
|
Yoon H, Triplet EM, Simon WL, Choi CI, Kleppe LS, De Vita E, Miller AK, Scarisbrick IA. Blocking Kallikrein 6 promotes developmental myelination. Glia 2022; 70:430-450. [PMID: 34626143 PMCID: PMC8732303 DOI: 10.1002/glia.24100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/12/2022]
Abstract
Kallikrein related peptidase 6 (Klk6) is a secreted serine protease highly expressed in oligodendrocytes and implicated in demyelinating conditions. To gain insights into the significance of Klk6 to oligodendrocyte biology, we investigated the impact of global Klk6 gene knockout on CNS developmental myelination using the spinal cord of male and female mice as a model. Results demonstrate that constitutive loss of Klk6 expression accelerates oligodendrocyte differentiation developmentally, including increases in the expression of myelin proteins such as MBP, PLP and CNPase, in the number of CC-1+ mature oligodendrocytes, and myelin thickness by the end of the first postnatal week. Co-ordinate elevations in the pro-myelinating signaling pathways ERK and AKT, expression of fatty acid 2-hydroxylase, and myelin regulatory transcription factor were also observed in the spinal cord of 7d Klk6 knockouts. LC/MS/MS quantification of spinal cord lipids showed sphingosine and sphingomyelins to be elevated in Klk6 knockouts at the peak of myelination. Oligodendrocyte progenitor cells (OPCs)-derived from Klk6 knockouts, or wild type OPCs-treated with a Klk6 inhibitor (DFKZ-251), also showed increased MBP and PLP. Moreover, inhibition of Klk6 in OPC cultures enhanced brain derived neurotrophic factor-driven differentiation. Altogether, these findings suggest that oligodendrocyte-derived Klk6 may operate as an autocrine or paracrine rheostat, or brake, on pro-myelinating signaling serving to regulate myelin homeostasis developmentally and in the adult. These findings document for the first time that inhibition of Klk6 globally, or specifically in oligodendrocyte progenitors, is a strategy to increase early stages of oligodendrocyte differentiation and myelin production in the CNS.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic School of Biomedical Sciences Rochester 55905
| | - Erin M. Triplet
- Regenerative Sciences Program, Mayo Clinic School of Biomedical Sciences Rochester 55905
| | - Whitney L. Simon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic School of Biomedical Sciences Rochester 55905
| | - Chan-Il Choi
- Department of Physical Medicine and Rehabilitation, Mayo Clinic School of Biomedical Sciences Rochester 55905
| | - Laurel S. Kleppe
- Department of Physical Medicine and Rehabilitation, Mayo Clinic School of Biomedical Sciences Rochester 55905
| | - Elena De Vita
- University of Heidelberg, Faculty of Biosciences, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Aubry K. Miller
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Isobel A. Scarisbrick
- Department of Physical Medicine and Rehabilitation, Mayo Clinic School of Biomedical Sciences Rochester 55905
- Regenerative Sciences Program, Mayo Clinic School of Biomedical Sciences Rochester 55905
- Department of Physiology and Biomedical Engineering, Minnesota USA 55905
| |
Collapse
|
38
|
Liu X, Dong C, Liu K, Chen H, Liu B, Dong X, Qian Y, Wu B, Lin Y, Wang H, Yang L, Zhou W. mTOR pathway repressing expression of FoxO3 is a potential mechanism involved in neonatal white matter dysplasia. Hum Mol Genet 2022; 31:2508-2520. [PMID: 35220433 DOI: 10.1093/hmg/ddac049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Neonatal white matter dysplasia (NWMD) is characterized by developmental abnormity of CNS white matter, including abnormal myelination. Besides environmental factors such as suffocation at birth, genetic factors are also main causes. Signaling pathway is an important part of gene function and several signaling pathways play important roles in myelination. Here, we performed genetic analysis on a corhort of 138 patients with NWMD and found that 20% (5/25) cause genes which refered to 28.57% (8/28) patients enriched in mTOR signaling pathway. Depletion of mTOR reduced genesis and proliferation of oligodendrocyte progenitor cells (OPC) during embryonic stage and reduced myelination in corpus callosum besides cerebellum and spinal cord during early postnatal stages which is related to not only differentiation but also proliferation of oligodendrocyte (OL). Transcriptomic analyses indicated that depletion of mTOR in OLs upregulated expression of FoxO3, which is a repressor of expression of myelin basic protein (MBP), and downregulating expresion of FoxO3 by siRNA promoted OPCs develop into MBP+ OLs. Thus, our findings suggested that mTOR signaling pathway is NWMD-related pathway and mTOR is important for myelination of the entire CNS during early developmental stages through regulating expression of FoxO3 at least partially.
Collapse
Affiliation(s)
- Xiuyun Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Chen Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Kaiyi Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Huiyao Chen
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bo Liu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Xinran Dong
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yanyan Qian
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yifeng Lin
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Lin Yang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Molecular Medicine, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Division of Neonatology, Key Laboratory of Neonatal Diseases, Ministry of Health, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Sawaguchi S, Suzuki R, Oizumi H, Ohbuchi K, Mizoguchi K, Yamamoto M, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 8 (HLD8)-Associated Mutation of POLR3B Leads to Defective Oligodendroglial Morphological Differentiation Whose Effect Is Reversed by Ibuprofen. Neurol Int 2022; 14:212-244. [PMID: 35225888 PMCID: PMC8884015 DOI: 10.3390/neurolint14010018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
POLR3B and POLR3A are the major subunits of RNA polymerase III, which synthesizes non-coding RNAs such as tRNAs and rRNAs. Nucleotide mutations of the RNA polymerase 3 subunit b (polr3b) gene are responsible for hypomyelinating leukodystrophy 8 (HLD8), which is an autosomal recessive oligodendroglial cell disease. Despite the important association between POLR3B mutation and HLD8, it remains unclear how mutated POLR3B proteins cause oligodendroglial cell abnormalities. Herein, we show that a severe HLD8-associated nonsense mutation (Arg550-to-Ter (R550X)) primarily localizes POLR3B proteins as protein aggregates into lysosomes in the FBD-102b cell line as an oligodendroglial precursor cell model. Conversely, wild type POLR3B proteins were not localized in lysosomes. Additionally, the expression of proteins with the R550X mutation in cells decreased lysosome-related signaling through the mechanistic target of rapamycin (mTOR). Cells harboring the mutant constructs did not exhibit oligodendroglial cell differentiated phenotypes, which have widespread membranes that extend from their cell body. However, cells harboring the wild type constructs exhibited differentiated phenotypes. Ibuprofen, which is a non-steroidal anti-inflammatory drug (NSAID), improved the defects in their differentiation phenotypes and signaling through mTOR. These results indicate that the HLD8-associated POLR3B proteins with the R550X mutation are localized in lysosomes, decrease mTOR signaling, and inhibit oligodendroglial cell morphological differentiation, and ibuprofen improves these cellular pathological effects. These findings may reveal some of the molecular and cellular pathological mechanisms underlying HLD8 and their amelioration.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Rimi Suzuki
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (K.M.); (M.Y.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan; (S.S.); (R.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya 157-8535, Japan
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
40
|
Teng X, Hu P, Chen Y, Zang Y, Ye X, Ou J, Chen G, Shi YS. A novel
Lgi1
mutation causes white matter abnormalities and impairs motor coordination in mice. FASEB J 2022; 36:e22212. [DOI: 10.1096/fj.202101652r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/18/2022] [Accepted: 02/03/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xiao‐Yu Teng
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Ping Hu
- Department of Prenatal Diagnosis State Key Laboratory of Reproductive Medicine Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital Nanjing China
| | - Yangyang Chen
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Yanyu Zang
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Xiaolian Ye
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Jingmin Ou
- Department of General Surgery Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Guiquan Chen
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
| | - Yun Stone Shi
- Minister of Education Key Laboratory of Model Animal for Disease Study Model Animal Research Center, Medical School Nanjing University Nanjing China
- State Key Laboratory of Pharmaceutical Biotechnology Department of Neurology Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing University Nanjing China
- Institute for Brain Sciences Nanjing University Nanjing China
- Chemistry and Biomedicine Innovation Center Nanjing University Nanjing China
| |
Collapse
|
41
|
Benardais K, Ornelas IM, Fauveau M, Brown TL, Finseth LT, Panic R, Deboux C, Macklin WB, Wood TL, Nait Oumesmar B. p70S6 kinase regulates oligodendrocyte differentiation and is active in remyelinating lesions. Brain Commun 2022; 4:fcac025. [PMID: 35224490 PMCID: PMC8864467 DOI: 10.1093/braincomms/fcac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/10/2021] [Accepted: 02/10/2022] [Indexed: 11/15/2022] Open
Abstract
The p70 ribosomal S6 kinases (p70 ribosomal S6 kinase 1 and p70 ribosomal S6 kinase 2) are downstream targets of the mechanistic target of rapamycin signalling pathway. p70 ribosomal S6 kinase 1 specifically has demonstrated functions in regulating cell size in Drosophila and in insulin-sensitive cell populations in mammals. Prior studies demonstrated that the mechanistic target of the rapamycin pathway promotes oligodendrocyte differentiation and developmental myelination; however, how the immediate downstream targets of mechanistic target of rapamycin regulate these processes has not been elucidated. Here, we tested the hypothesis that p70 ribosomal S6 kinase 1 regulates oligodendrocyte differentiation during developmental myelination and remyelination processes in the CNS. We demonstrate that p70 ribosomal S6 kinase activity peaks in oligodendrocyte lineage cells at the time when they transition to myelinating oligodendrocytes during developmental myelination in the mouse spinal cord. We further show p70 ribosomal S6 kinase activity in differentiating oligodendrocytes in acute demyelinating lesions induced by lysophosphatidylcholine injection or by experimental autoimmune encephalomyelitis in mice. In demyelinated lesions, the expression of the p70 ribosomal S6 kinase target, phosphorylated S6 ribosomal protein, was transient and highest in maturing oligodendrocytes. Interestingly, we also identified p70 ribosomal S6 kinase activity in oligodendrocyte lineage cells in active multiple sclerosis lesions. Consistent with its predicted function in promoting oligodendrocyte differentiation, we demonstrate that specifically inhibiting p70 ribosomal S6 kinase 1 in cultured oligodendrocyte precursor cells significantly impairs cell lineage progression and expression of myelin basic protein. Finally, we used zebrafish to show in vivo that inhibiting p70 ribosomal S6 kinase 1 function in oligodendroglial cells reduces their differentiation and the number of myelin internodes produced. These data reveal an essential function of p70 ribosomal S6 kinase 1 in promoting oligodendrocyte differentiation during development and remyelination across multiple species.
Collapse
Affiliation(s)
- Karelle Benardais
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Isis M. Ornelas
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07101
| | - Melissa Fauveau
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Tanya L. Brown
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA 80045
| | - Lisbet T. Finseth
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA 80045
| | - Radmila Panic
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Cyrille Deboux
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Wendy B. Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA 80045
| | - Teresa L. Wood
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07101
| | - Brahim Nait Oumesmar
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07101
| |
Collapse
|
42
|
Lee A, Kwon OW, Jung KR, Song GJ, Yang HJ. The effects of Korean Red Ginseng-derived components on oligodendrocyte lineage cells: Distinct facilitatory roles of the non-saponin and saponin fractions, and Rb1, in proliferation, differentiation and myelination. J Ginseng Res 2022; 46:104-114. [PMID: 35035243 PMCID: PMC8753459 DOI: 10.1016/j.jgr.2021.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/21/2021] [Accepted: 04/21/2021] [Indexed: 12/05/2022] Open
Abstract
Background Abnormalities of myelin, which increases the efficiency of action potential conduction, are found in neurological disorders. Korean Red Ginseng (KRG) demonstrates therapeutic efficacy against some of these conditions, however effects on oligodendrocyte (OL)s are not well known. Here, we examined the effects of KRG-derived components on development and protection of OL-lineage cells. Methods Primary OL precursor cell (OPC) cultures were prepared from neonatal mouse cortex. The protective efficacies of the KRG components were examined against inhibitors of mitochondrial respiratory chain activity. For in vivo function of Rb1 on myelination, after 10 days of oral gavage into adult male mice, forebrains were collected. OPC proliferation were assessed by BrdU incorporation, and differentiation and myelination were examined by qPCR, western blot and immunocytochemistry. Results The non-saponin promoted OPC proliferation, while the saponin promoted differentiation. Both processes were mediated by AKT and extracellular regulated kinase (ERK) signaling. KRG extract, the saponin and non-saponin protected OPCs against oxidative stress, and both KRG extract and the saponin significantly increased the expression of the antioxidant enzyme. Among 11 major ginsenosides tested, Rb1 significantly increased OL membrane size in vitro. Moreover, Rb1 significantly increased myelin formation in adult mouse brain. Conclusion All KRG components prevented OPC deaths under oxidative stress. While non-saponin promoted proliferation, saponin fraction increased differentiation and OL membrane size. Furthermore, among all the tested ginsenosides, Rb1 showed the biggest increase in the membrane size and significantly enhanced myelination in vivo. These results imply therapeutic potentials of KRG and Rb1 for myelin-related disorders.
Collapse
Affiliation(s)
- Ahreum Lee
- Korea Institute of Brain Science, Seoul, Republic of Korea.,Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Oh Wook Kwon
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Kwi Ryun Jung
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Gyun Jee Song
- Translational Brain Research Center, International St. Mary's Hospital, Catholic Kwandong University, Incheon, Republic of Korea
| | - Hyun-Jeong Yang
- Korea Institute of Brain Science, Seoul, Republic of Korea.,Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| |
Collapse
|
43
|
Yu Z, Yang Z, Ren G, Wang Y, Luo X, Zhu F, Yu S, Jia L, Chen M, Worley PF, Xiao B. GATOR2 complex-mediated amino acid signaling regulates brain myelination. Proc Natl Acad Sci U S A 2022; 119:e2110917119. [PMID: 35022234 PMCID: PMC8784133 DOI: 10.1073/pnas.2110917119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/16/2021] [Indexed: 02/05/2023] Open
Abstract
Amino acids are essential for cell growth and metabolism. Amino acid and growth factor signaling pathways coordinately regulate the mechanistic target of rapamycin complex 1 (mTORC1) kinase in cell growth and organ development. While major components of amino acid signaling mechanisms have been identified, their biological functions in organ development are unclear. We aimed to understand the functions of the critically positioned amino acid signaling complex GAP activity towards Rags 2 (GATOR2) in brain development. GATOR2 mediates amino acid signaling to mTORC1 by directly linking the amino acid sensors for arginine and leucine to downstream signaling complexes. Now, we report a role of GATOR2 in oligodendrocyte myelination in postnatal brain development. We show that the disruption of GATOR2 complex by genetic deletion of meiosis regulator for oocyte development (Mios, encoding a component of GATOR2) selectively impairs the formation of myelinating oligodendrocytes, thus brain myelination, without apparent effects on the formation of neurons and astrocytes. The loss of Mios impairs cell cycle progression of oligodendrocyte precursor cells, leading to their reduced proliferation and differentiation. Mios deletion manifests a cell type-dependent effect on mTORC1 in the brain, with oligodendroglial mTORC1 selectively affected. However, the role of Mios/GATOR2 in oligodendrocyte formation and myelination involves mTORC1-independent function. This study suggests that GATOR2 coordinates amino acid and growth factor signaling to regulate oligodendrocyte myelination.
Collapse
Affiliation(s)
- Zongyan Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, People's Republic of China
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Zhiwen Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Guoru Ren
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Yingjie Wang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xiang Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150000, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Feiyan Zhu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Shouyang Yu
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Lanlan Jia
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Mina Chen
- Neuroscience & Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu 610041, People's Republic of China
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bo Xiao
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518005, People's Republic of China;
- Department of Biology, School of Life Sciences, Brain Research Center, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
44
|
Kurysheva NI. [Neuroprotective properties of latanoprost]. Vestn Oftalmol 2022; 138:126-134. [PMID: 36004601 DOI: 10.17116/oftalma2022138041126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glaucoma is the main cause of irreversible blindness in the world. Latanoprost - an ester prodrug of prostaglandin F2α (PGF2α) - was the first prostaglandin analogue used to treat glaucoma. The review shows that latanoprost possesses direct neuroprotective properties such as blocking the entry of calcium ions into neurons and inhibiting the action of caspase-3, inhibiting the activity of cyclooxygenase and activation of polypeptide 2B1 (OATP2B1) and Klotho protein. It is emphasized that when the drug is instilled into the eye, the concentration of the drug inside the vitreous body is twice as high as what is required to ensure the survival of retinal ganglion cells.
Collapse
Affiliation(s)
- N I Kurysheva
- Medical and Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Biophysical Center, Moscow, Russia
- Ophthalmological Center of the State Research Center - Burnasyan Federal Biophysical Center, Moscow, Russia
| |
Collapse
|
45
|
Sawaguchi S, Tago K, Oizumi H, Ohbuchi K, Yamamoto M, Mizoguchi K, Miyamoto Y, Yamauchi J. Hypomyelinating Leukodystrophy 7 (HLD7)-Associated Mutation of POLR3A Is Related to Defective Oligodendroglial Cell Differentiation, Which Is Ameliorated by Ibuprofen. Neurol Int 2021; 14:11-33. [PMID: 35076634 PMCID: PMC8788570 DOI: 10.3390/neurolint14010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 01/13/2023] Open
Abstract
Hypomyelinating leukodystrophy 7 (HLD7) is an autosomal recessive oligodendroglial cell-related myelin disease, which is associated with some nucleotide mutations of the RNA polymerase 3 subunit a (polr3a) gene. POLR3A is composed of the catalytic core of RNA polymerase III synthesizing non-coding RNAs, such as rRNA and tRNA. Here, we show that an HLD7-associated nonsense mutation of Arg140-to-Ter (R140X) primarily localizes POLR3A proteins as protein aggregates into lysosomes in mouse oligodendroglial FBD-102b cells, whereas the wild type proteins are not localized in lysosomes. Expression of the R140X mutant proteins, but not the wild type proteins, in cells decreased signaling through the mechanistic target of rapamycin (mTOR), controlling signal transduction around lysosomes. While cells harboring the wild type constructs exhibited phenotypes with widespread membranes with myelin marker protein expression following the induction of differentiation, cells harboring the R140X mutant constructs did not exhibit them. Ibuprofen, a non-steroidal anti-inflammatory drug (NSAID), which is also known as an mTOR signaling activator, ameliorated defects in differentiation with myelin marker protein expression and the related signaling in cells harboring the R140X mutant constructs. Collectively, HLD7-associated POLR3A mutant proteins are localized in lysosomes where they decrease mTOR signaling, inhibiting cell morphological differentiation. Importantly, ibuprofen reverses undifferentiated phenotypes. These findings may reveal some of the pathological mechanisms underlying HLD7 and their amelioration at the molecular and cellular levels.
Collapse
Affiliation(s)
- Sui Sawaguchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
| | - Kenji Tago
- Department of Biochemistry, Jichi Medical University, Shimotsuke 321-0498, Japan;
| | - Hiroaki Oizumi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Katsuya Ohbuchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Masahiro Yamamoto
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Kazushige Mizoguchi
- Tsumura Research Laboratories, Tsumura & Co., Inashiki 200-1192, Japan; (H.O.); (K.O.); (M.Y.); (K.M.)
| | - Yuki Miyamoto
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; (S.S.); (Y.M.)
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
- Correspondence: ; Tel.: +81-42-676-7164; Fax: +81-42-676-8841
| |
Collapse
|
46
|
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol 2021; 12:754270. [PMID: 34899572 PMCID: PMC8664554 DOI: 10.3389/fneur.2021.754270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent findings showing that epidermal growth factor (EGF) is significantly decreased in the cerebrospinal fluid (CSF) and spinal cord (SC) of living or deceased multiple sclerosis (MS) patients, and that its repeated administration to rodents with chemically- or virally-induced demyelination of the central nervous system (CNS) or experimental allergic encephalomyelitis (EAE) prevents demyelination and inflammatory reactions in the CNS, have led to a critical reassessment of the MS pathogenesis, partly because EGF is considered to have little or no role in immunology. EGF is the only myelinotrophic factor that has been tested in the CSF and spinal cord of MS patients, and it has been shown there is a good correspondence between liquid and tissue levels. This review: (a) briefly summarises the positive EGF effects on neural stem cells, oligodendrocyte cell lineage, and astrocytes in order to explain, at least in part, the biological basis of the myelin loss and remyelination failure in MS; and (b) after a short analysis of the evolution of the principle of cause-effect in the history of Western philosophy, highlights the lack of any experimental immune-, toxin-, or virus-mediated model that precisely reproduces the histopathological features and “clinical” symptoms of MS, thus underlining the inapplicability of Claude Bernard's crucial sequence of “observation, hypothesis, and hypothesis testing.” This is followed by a discussion of most of the putative non-immunologically-linked points of MS pathogenesis (abnormalities in myelinotrophic factor CSF levels, oligodendrocytes (ODCs), astrocytes, extracellular matrix, and epigenetics) on the basis of Popper's falsification principle, and the suggestion that autoimmunity and phologosis reactions (surely the most devasting consequences of the disease) are probably the last links in a chain of events that trigger the reactions. As it is likely that there is a lack of other myelinotrophic growth factors because myelinogenesis is controlled by various CNS and extra-CNS growth factors and other molecules within and outside ODCs, further studies are needed to investigate the role of non-immunological molecules at the time of the onset of the disease. In the words of Galilei, the human mind should be prepared to understand what nature has created.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
47
|
Wang Y, Guo F. Group I PAKs in myelin formation and repair of the central nervous system: what, when, and how. Biol Rev Camb Philos Soc 2021; 97:615-639. [PMID: 34811887 DOI: 10.1111/brv.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
p21-activated kinases (PAKs) are a family of cell division control protein 42/ras-related C3 botulinum toxin substrate 1 (Cdc42/Rac1)-activated serine/threonine kinases. Group I PAKs (PAK1-3) have distinct activation mechanisms from group II PAKs (PAK4-6) and are the focus of this review. In transformed cancer cells, PAKs regulate a variety of cellular processes and molecular pathways which are also important for myelin formation and repair in the central nervous system (CNS). De novo mutations in group I PAKs are frequently seen in children with neurodevelopmental defects and white matter anomalies. Group I PAKs regulate virtually every aspect of neuronal development and function. Yet their functions in CNS myelination and remyelination remain incompletely defined. Herein, we highlight the current understanding of PAKs in regulating cellular and molecular pathways and discuss the status of PAK-regulated pathways in oligodendrocyte development. We point out outstanding questions and future directions in the research field of group I PAKs and oligodendrocyte development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| | - Fuzheng Guo
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| |
Collapse
|
48
|
Ozes B, Moss K, Myers M, Ridgley A, Chen L, Murrey D, Sahenk Z. AAV1.NT-3 gene therapy in a CMT2D model: phenotypic improvements in GarsP278KY/+ mice. Brain Commun 2021; 3:fcab252. [PMID: 34755111 PMCID: PMC8568849 DOI: 10.1093/braincomms/fcab252] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Glycyl-tRNA synthetase mutations are associated to the Charcot-Marie-Tooth disease type-2D. The GarsP278KY/+ model for Charcot-Marie-Tooth disease type-2D is known best for its early onset severe neuropathic phenotype with findings including reduced axon size, slow conduction velocities and abnormal neuromuscular junction. Muscle involvement remains largely unexamined. We tested the efficacy of neurotrophin 3 gene transfer therapy in two Gars mutants with severe (GarsP278KY/+ ) and milder (GarsΔETAQ/+ ) phenotypes via intramuscular injection of adeno-associated virus setoype-1, triple tandem muscle creatine kinase promoter, neurotrophin 3 (AAV1.tMCK.NT-3) at 1 × 1011 vg dose. In the GarsP278KY/+ mice, the treatment efficacy was assessed at 12 weeks post-injection using rotarod test, electrophysiology and detailed quantitative histopathological studies of the peripheral nervous system including neuromuscular junction and muscle. Neurotrophin 3 gene transfer therapy in GarsP278KY/+ mice resulted in significant functional and electrophysiological improvements, supported with increases in myelin thickness and improvements in the denervated status of neuromuscular junctions as well as increases in muscle fibre size along with attenuation of myopathic changes. Improvements in the milder phenotype GarsΔETAQ/+ was less pronounced. Furthermore, oxidative enzyme histochemistry in muscles from Gars mutants revealed alterations in the content and distribution of oxidative enzymes with increased expression levels of Pgc1a. Cox1, Cox3 and Atp5d transcripts were significantly decreased suggesting that the muscle phenotype might be related to mitochondrial dysfunction. Neurotrophin 3 gene therapy attenuated these abnormalities in the muscle. This study shows that neurotrophin 3 gene transfer therapy has disease modifying effect in a mouse model for Charcot-Marie-Tooth disease type-2D, leading to meaningful improvements in peripheral nerve myelination and neuromuscular junction integrity as well as in a unique myopathic process, associated with mitochondria dysfunction, all in combination contributing to functional outcome. Based on the multiple biological effects of this versatile molecule, we predict neurotrophin 3 has the potential to be beneficial in other aminoacyl-tRNA synthetase-linked Charcot-Marie-Tooth disease subtypes.
Collapse
Affiliation(s)
- Burcak Ozes
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Kyle Moss
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Morgan Myers
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Alicia Ridgley
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Lei Chen
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Darren Murrey
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Zarife Sahenk
- Department of Pediatrics, Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH 43205, USA.,Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
49
|
Small molecule screening as an approach to encounter inefficient myelin repair. Curr Opin Pharmacol 2021; 61:127-135. [PMID: 34753035 DOI: 10.1016/j.coph.2021.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/20/2022]
Abstract
While current multiple sclerosis therapies are focused on immunomodulation, thereby slowing down disease progression, scientific interest has nowadays been shifted toward regenerative therapies aiming at reversing already existing deficits. The application of chemical compounds was proven to be valuable for the understanding of oligodendrogenesis and for exposing mechanisms that can boost remyelination. However, sufficient myelin repair has not been achieved yet, thus underscoring the need for more studies toward this unmet clinical goal. In this regard, many research groups have significantly contributed to the field via developing compound screening approaches or using single substances. We, here, present an overview of recent studies addressing the identification of myelin repair drugs and provide insights into technical aspects and identified substances.
Collapse
|
50
|
Corrêa T, Feltes BC, Giugliani R, Matte U. Disruption of morphogenic and growth pathways in lysosomal storage diseases. WIREs Mech Dis 2021; 13:e1521. [PMID: 34730292 DOI: 10.1002/wsbm.1521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/12/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022]
Abstract
The lysosome achieved a new protagonism that highlights its multiple cellular functions, such as in the catabolism of complex substrates, nutrient sensing, and signaling pathways implicated in cell metabolism and growth. Lysosomal storage diseases (LSDs) cause lysosomal accumulation of substrates and deficiency in trafficking of macromolecules. The substrate accumulation can impact one or several pathways which contribute to cell damage. Autophagy impairment and immune response are widely studied, but less attention is paid to morphogenic and growth pathways and its impact on the pathophysiology of LSDs. Hedgehog pathway is affected with abnormal expression and changes in distribution of protein levels, and a reduced number and length of primary cilia. Moreover, growth pathways are identified with delay in reactivation of mTOR that deregulate termination of autophagy and reformation of lysosomes. Insulin resistance caused by changes in lipids rafts has been described in different LSDs. While the genetic and biochemical bases of deficient proteins in LSDs are well understood, the secondary molecular mechanisms that disrupt wider biological processes associated with LSDs are only now becoming clearer. Therefore, we explored how specific signaling pathways can be related to specific LSDs, showing that a system medicine approach could be a valuable tool for the better understanding of LSD pathogenesis. This article is categorized under: Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Thiago Corrêa
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Bruno C Feltes
- Department of Theoretical Informatics, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Giugliani
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ursula Matte
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|