1
|
Elhajjajy SI, Weng Z. A novel NLP-based method and algorithm to discover RNA-binding protein (RBP) motifs, contexts, binding preferences, and interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.631609. [PMID: 39896518 PMCID: PMC11785142 DOI: 10.1101/2025.01.20.631609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
RNA-binding proteins (RBPs) are essential modulators in the regulation of mRNA processing. The binding patterns, interactions, and functions of most RBPs are not well-characterized. Previous studies have shown that motif context is an important contributor to RBP binding specificity, but its precise role remains unclear. Despite recent computational advances to predict RBP binding, existing methods are challenging to interpret and largely lack a categorical focus on RBP motif contexts and RBP-RBP interactions. There remains a need for interpretable predictive models to disambiguate the contextual determinants of RBP binding specificity in vivo . Here, we present a novel and comprehensive pipeline to address these knowledge gaps. We devise a Natural Language Processing-based decomposition method to deconstruct sequences into entities consisting of a central target k -mer and its flanking regions, then use this representation to formulate the RBP binding prediction task as a weakly supervised Multiple Instance Learning problem. To interpret our predictions, we introduce a deterministic motif discovery algorithm designed to handle our data structure, recapitulating the established motifs of numerous RBPs as validation. Importantly, we characterize the binding motifs and binding contexts for 71 RBPs, with many of them being novel. Finally, through feature integration, transitive inference, and a new cross-prediction approach, we propose novel cooperative and competitive RBP-RBP interaction partners and hypothesize their potential regulatory functions. In summary, we present a complete computational strategy for investigating the contextual determinants of specific RBP binding, and we demonstrate the significance of our findings in delineating RBP binding patterns, interactions, and functions.
Collapse
|
2
|
Brandão‐Teles C, Carregari VC, Reis‐de‐Oliveira G, Smith BJ, Chaves Y, Sousa Santos AV, Pinheiro EMDC, Oliveira CC, Vieira AS, Crunfli F, Martins‐de‐Souza D. Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome. J Neurochem 2025; 169:e16304. [PMID: 39840781 PMCID: PMC11752419 DOI: 10.1111/jnc.16304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/26/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025]
Abstract
Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions. Significant alterations in essential myelination proteins highlighted the involvement of hnRNP A1 in maintaining myelin integrity. Pathways related to sphingolipid and endocannabinoid signaling were affected, as well as the synaptic vesicle cycle and GABAergic synapses. Although behavioral impairments were not observed, molecular changes suggest potential links to memory, synaptic function, and neurotransmission processes. These findings enhance our understanding of the multifaceted roles of hnRNP A1 in the central nervous system, providing valuable insights for future investigations and therapeutic interventions in neurodegenerative and demyelinating diseases.
Collapse
Affiliation(s)
- Caroline Brandão‐Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of CampinasCampinasBrazil
| | - Victor Corasolla Carregari
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of CampinasCampinasBrazil
| | - Guilherme Reis‐de‐Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of CampinasCampinasBrazil
| | - Bradley J. Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of CampinasCampinasBrazil
| | - Yane Chaves
- Translational Neuropsychiatry Unit, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Aline Valéria Sousa Santos
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of CampinasCampinasBrazil
| | | | - Caio C. Oliveira
- Institute of ChemistryUniversity of CampinasCampinasSão PauloBrazil
| | - Andre Schwambach Vieira
- Laboratory of Electrophysiology, Neurobiology and Behaviour, Department of Functional and Structural Biology, Institute of BiologyUniversity of CampinasCampinasBrazil
| | - Fernanda Crunfli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of CampinasCampinasBrazil
- Translational Neuropsychiatry Unit, Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Daniel Martins‐de‐Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of BiologyUniversity of CampinasCampinasBrazil
- Experimental Medicine Research Cluster (EMRC)University of CampinasCampinasSPBrazil
- D'Or Institute for Research and Education (IDOR)São PauloBrazil
- Instituto Nacional de Biomarcadores Em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e TecnológicoSão PauloBrazil
- INCT in Modelling Human Complex Diseases With 3D Platforms (Model3D), Conselho Nacional de Desenvolvimento Científico e TecnológicoSão PauloBrazil
| |
Collapse
|
3
|
Brandão-Teles C, Antunes ASLM, de Moraes Vrechi TA, Martins-de-Souza D. The Roles of hnRNP Family in the Brain and Brain-Related Disorders. Mol Neurobiol 2024; 61:3578-3595. [PMID: 37999871 DOI: 10.1007/s12035-023-03747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) belong to a complex family of RNA-binding proteins that are essential to control alternative splicing, mRNA trafficking, synaptic plasticity, stress granule formation, cell cycle regulation, and axonal transport. Over the past decade, hnRNPs have been associated with different brain disorders such as Alzheimer's disease, multiple sclerosis, and schizophrenia. Given their essential role in maintaining cell function and integrity, it is not surprising that dysregulated hnRNP levels lead to neurological implications. This review aims to explore the primary functions of hnRNPs in neurons, oligodendrocytes, microglia, and astrocytes, and their roles in brain disorders. We also discuss proteomics and other technologies and their potential for studying and evaluating hnRNPs in brain disorders, including the discovery of new therapeutic targets and possible pharmacological interventions.
Collapse
Affiliation(s)
- Caroline Brandão-Teles
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| | - André S L M Antunes
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Talita Aparecida de Moraes Vrechi
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- INCT in Modelling Human Complex Diseases with 3D Platforms (Model3D), São Paulo, Brazil.
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Instituto Nacional de Biomarcadores em Neuropsiquiatria, São Paulo, Brazil.
| |
Collapse
|
4
|
Zhuang LP, Gao WJ, Fang LL, Zeng GR, Ye QY, Dai XM, Zhang J, Chen XC. HnRNPK is involved in stress-induced depression-like behavior via ERK-BDNF pathway in mice. Neurochem Int 2023; 169:105589. [PMID: 37543308 DOI: 10.1016/j.neuint.2023.105589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
As a ubiquitous RNA-binding protein, heterogeneous nuclear ribonucleoprotein K (hnRNPK) interacts with numerous nucleic acids and proteins and is involved in various cellular functions. Available literature indicates that it can regulate dendritic spine density through the extracellular signal-regulating kinase (ERK) - brain-derived neurotrophic factor (BDNF) pathway, which is crucial to retain the synaptic plasticity in patients with major depressive disorder (MDD) and mouse depression models. However, ERK upstream regulatory kinase has not been fully elucidated. Furthermore, it remains unexplored whether hnRNPK may impact the depressive condition via the ERK pathway. The present study addressed this issue by integrating approaches of genetics, molecular biology, behavioral testing. We found that hnRNPK in the brain was mainly distributed in the hippocampal neurons; that it was significantly downregulated in mice that displayed stress-induced depression-like behaviors; and that the level of hnRNPK markedly decreased in MDD patients from the GEO database. Further in vivo and in vitro analyses revealed that the changes in the expressions of BDNF and PSD95 and in the phosphorylation of ERK (Thr202/Tyr204) paralleled the variation of hnRNPK levels in the ventral hippocampal neurons in mice with depression-like behaviors. Finally, esketamine treatment significantly increased the level of hnRNPK in mice. These findings evidence that hnRNPK involved in the pathogenesis of depression via the ERK-BDNF pathway, pinpointing hnRNPK as a potential therapeutic target in treating MDD patients.
Collapse
Affiliation(s)
- Lv-Ping Zhuang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University; Fuzhou, China
| | - Wei-Jie Gao
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University; Fuzhou, China
| | - Liu-Lv Fang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University; Fuzhou, China
| | - Gui-Rong Zeng
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University; Fuzhou, China
| | - Qin-Yong Ye
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University; Fuzhou, China
| | - Xiao-Man Dai
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University; Fuzhou, China
| | - Jing Zhang
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University; Fuzhou, China.
| | - Xiao-Chun Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fujian Key Laboratory of Molecular Neurology and Institute of Neuroscience, Fujian Medical University; Fuzhou, China.
| |
Collapse
|
5
|
Jiang X, Gatt A, Lashley T. HnRNP Pathologies in Frontotemporal Lobar Degeneration. Cells 2023; 12:1633. [PMID: 37371103 DOI: 10.3390/cells12121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Frontotemporal dementia (FTD) is the second most common form of young-onset (<65 years) dementia. Clinically, it primarily manifests as a disorder of behavioural, executive, and/or language functions. Pathologically, frontotemporal lobar degeneration (FTLD) is the predominant cause of FTD. FTLD is a proteinopathy, and the main pathological proteins identified so far are tau, TAR DNA-binding protein 43 (TDP-43), and fused in sarcoma (FUS). As TDP-43 and FUS are members of the heterogeneous ribonucleic acid protein (hnRNP) family, many studies in recent years have expanded the research on the relationship between other hnRNPs and FTLD pathology. Indeed, these studies provide evidence for an association between hnRNP abnormalities and FTLD. In particular, several studies have shown that multiple hnRNPs may exhibit nuclear depletion and cytoplasmic mislocalisation within neurons in FTLD cases. However, due to the diversity and complex association of hnRNPs, most studies are still at the stage of histological discovery of different hnRNP abnormalities in FTLD. We herein review the latest studies relating hnRNPs to FTLD. Together, these studies outline an important role of multiple hnRNPs in the pathogenesis of FTLD and suggest that future research into FTLD should include the whole spectrum of this protein family.
Collapse
Affiliation(s)
- Xinwa Jiang
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ariana Gatt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
6
|
Moretto E, Miozzo F, Longatti A, Bonnet C, Coussen F, Jaudon F, Cingolani LA, Passafaro M. The tetraspanin TSPAN5 regulates AMPAR exocytosis by interacting with the AP4 complex. eLife 2023; 12:76425. [PMID: 36795458 PMCID: PMC9934860 DOI: 10.7554/elife.76425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Intracellular trafficking of AMPA receptors is a tightly regulated process which involves several adaptor proteins, and is crucial for the activity of excitatory synapses both in basal conditions and during synaptic plasticity. We found that, in rat hippocampal neurons, an intracellular pool of the tetraspanin TSPAN5 promotes exocytosis of AMPA receptors without affecting their internalisation. TSPAN5 mediates this function by interacting with the adaptor protein complex AP4 and Stargazin and possibly using recycling endosomes as a delivery route. This work highlights TSPAN5 as a new adaptor regulating AMPA receptor trafficking.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, CNRVedano al LambroItaly,NeuroMI Milan Center for Neuroscience, University of Milano-BicoccaMilanItaly
| | | | | | - Caroline Bonnet
- University of Bordeaux, Interdisciplinary Institute for NeuroscienceBordeauxFrance
| | - Francoise Coussen
- University of Bordeaux, Interdisciplinary Institute for NeuroscienceBordeauxFrance
| | - Fanny Jaudon
- Department of Life Sciences, University of TriesteTriesteItaly,IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Lorenzo A Cingolani
- Department of Life Sciences, University of TriesteTriesteItaly,Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia (IIT)GenoaItaly
| | - Maria Passafaro
- Institute of Neuroscience, CNRVedano al LambroItaly,NeuroMI Milan Center for Neuroscience, University of Milano-BicoccaMilanItaly
| |
Collapse
|
7
|
Fisher E, Feng J. RNA splicing regulators play critical roles in neurogenesis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1728. [PMID: 35388651 DOI: 10.1002/wrna.1728] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Alternative RNA splicing increases transcript diversity in different cell types and under varying conditions. It is executed with the help of RNA splicing regulators (RSRs), which are operationally defined as RNA-binding proteins (RBPs) that regulate alternative splicing, but not directly catalyzing the chemical reactions of splicing. By systematically searching for RBPs and manually identifying those that regulate splicing, we curated 305 RSRs in the human genome. Surprisingly, most of the RSRs are involved in neurogenesis. Among these RSRs, we focus on nine families (PTBP, NOVA, RBFOX, ELAVL, CELF, DBHS, MSI, PCBP, and MBNL) that play essential roles in the neurogenic pathway. A better understanding of their functions will provide novel insights into the role of splicing in brain development, health, and disease. This comprehensive review serves as a stepping-stone to explore the diverse and complex set of RSRs as fundamental regulators of neural development. This article is categorized under: RNA-Based Catalysis > RNA Catalysis in Splicing and Translation RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Emily Fisher
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| | - Jian Feng
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York, USA
- Veterans Affairs Western New York Healthcare System, Buffalo, New York, USA
| |
Collapse
|
8
|
DeGiosio RA, Grubisha MJ, MacDonald ML, McKinney BC, Camacho CJ, Sweet RA. More than a marker: potential pathogenic functions of MAP2. Front Mol Neurosci 2022; 15:974890. [PMID: 36187353 PMCID: PMC9525131 DOI: 10.3389/fnmol.2022.974890] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/29/2022] [Indexed: 12/27/2022] Open
Abstract
Microtubule-associated protein 2 (MAP2) is the predominant cytoskeletal regulator within neuronal dendrites, abundant and specific enough to serve as a robust somatodendritic marker. It influences microtubule dynamics and microtubule/actin interactions to control neurite outgrowth and synaptic functions, similarly to the closely related MAP Tau. Though pathology of Tau has been well appreciated in the context of neurodegenerative disorders, the consequences of pathologically dysregulated MAP2 have been little explored, despite alterations in its immunoreactivity, expression, splicing and/or stability being observed in a variety of neurodegenerative and neuropsychiatric disorders including Huntington’s disease, prion disease, schizophrenia, autism, major depression and bipolar disorder. Here we review the understood structure and functions of MAP2, including in neurite outgrowth, synaptic plasticity, and regulation of protein folding/transport. We also describe known and potential mechanisms by which MAP2 can be regulated via post-translational modification. Then, we assess existing evidence of its dysregulation in various brain disorders, including from immunohistochemical and (phospho) proteomic data. We propose pathways by which MAP2 pathology could contribute to endophenotypes which characterize these disorders, giving rise to the concept of a “MAP2opathy”—a series of disorders characterized by alterations in MAP2 function.
Collapse
Affiliation(s)
- Rebecca A. DeGiosio
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Melanie J. Grubisha
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew L. MacDonald
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brandon C. McKinney
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Carlos J. Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Robert A. Sweet
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Robert A. Sweet
| |
Collapse
|
9
|
Costa RO, Martins LF, Tahiri E, Duarte CB. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1713. [PMID: 35075821 DOI: 10.1002/wrna.1713] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) plays multiple roles in the nervous system, including in neuronal development, in long-term synaptic potentiation in different brain regions, and in neuronal survival. Alterations in these regulatory mechanisms account for several diseases of the nervous system. The synaptic effects of BDNF mediated by activation of tropomyosin receptor kinase B (TrkB) receptors are partly mediated by stimulation of local protein synthesis which is now considered a ubiquitous feature in both presynaptic and postsynaptic compartments of the neuron. The capacity to locally synthesize proteins is of great relevance at several neuronal developmental stages, including during neurite development, synapse formation, and stabilization. The available evidence shows that the effects of BDNF-TrkB signaling on local protein synthesis regulate the structure and function of the developing and mature synapses. While a large number of studies have illustrated a wide range of effects of BDNF on the postsynaptic proteome, a growing number of studies also point to presynaptic effects of the neurotrophin in the local regulation of the protein composition at the presynaptic level. Here, we will review the latest evidence on the role of BDNF in local protein synthesis, comparing the effects on the presynaptic and postsynaptic compartments. Additionally, we overview the relevance of BDNF-associated local protein synthesis in neuronal development and synaptic plasticity, at the presynaptic and postsynaptic compartments, and their relevance in terms of disease. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís F Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Tahiri
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|
11
|
HnRNP K mislocalisation is a novel protein pathology of frontotemporal lobar degeneration and ageing and leads to cryptic splicing. Acta Neuropathol 2021; 142:609-627. [PMID: 34274995 PMCID: PMC8423707 DOI: 10.1007/s00401-021-02340-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/08/2023]
Abstract
Heterogeneous nuclear ribonucleoproteins (HnRNPs) are a group of ubiquitously expressed RNA-binding proteins implicated in the regulation of all aspects of nucleic acid metabolism. HnRNP K is a member of this highly versatile hnRNP family. Pathological redistribution of hnRNP K to the cytoplasm has been linked to the pathogenesis of several malignancies but, until now, has been underexplored in the context of neurodegenerative disease. Here we show hnRNP K mislocalisation in pyramidal neurons of the frontal cortex to be a novel neuropathological feature that is associated with both frontotemporal lobar degeneration and ageing. HnRNP K mislocalisation is mutually exclusive to TDP-43 and tau pathological inclusions in neurons and was not observed to colocalise with mitochondrial, autophagosomal or stress granule markers. De-repression of cryptic exons in RNA targets following TDP-43 nuclear depletion is an emerging mechanism of potential neurotoxicity in frontotemporal lobar degeneration and the mechanistically overlapping disorder amyotrophic lateral sclerosis. We silenced hnRNP K in neuronal cells to identify the transcriptomic consequences of hnRNP K nuclear depletion. Intriguingly, by performing RNA-seq analysis we find that depletion of hnRNP K induces 101 novel cryptic exon events. We validated cryptic exon inclusion in an SH-SY5Y hnRNP K knockdown and in FTLD brain exhibiting hnRNP K nuclear depletion. We, therefore, present evidence for hnRNP K mislocalisation to be associated with FTLD and for this to induce widespread changes in splicing.
Collapse
|
12
|
Colameo D, Rajman M, Soutschek M, Bicker S, von Ziegler L, Bohacek J, Winterer J, Germain PL, Dieterich C, Schratt G. Pervasive compartment-specific regulation of gene expression during homeostatic synaptic scaling. EMBO Rep 2021; 22:e52094. [PMID: 34396684 PMCID: PMC8490987 DOI: 10.15252/embr.202052094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Synaptic scaling is a form of homeostatic plasticity which allows neurons to adjust their action potential firing rate in response to chronic alterations in neural activity. Synaptic scaling requires profound changes in gene expression, but the relative contribution of local and cell‐wide mechanisms is controversial. Here we perform a comprehensive multi‐omics characterization of the somatic and process compartments of primary rat hippocampal neurons during synaptic scaling. We uncover both highly compartment‐specific and correlating changes in the neuronal transcriptome and proteome. Whereas downregulation of crucial regulators of neuronal excitability occurs primarily in the somatic compartment, structural components of excitatory postsynapses are mostly downregulated in processes. Local inhibition of protein synthesis in processes during scaling is confirmed for candidate synaptic proteins. Motif analysis further suggests an important role for trans‐acting post‐transcriptional regulators, including RNA‐binding proteins and microRNAs, in the local regulation of the corresponding mRNAs. Altogether, our study indicates that, during synaptic scaling, compartmentalized gene expression changes might co‐exist with neuron‐wide mechanisms to allow synaptic computation and homeostasis.
Collapse
Affiliation(s)
- David Colameo
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Marek Rajman
- Institute for Physiological Chemistry, Biochemical-Pharmacological Center Marburg, Philipps-University of Marburg, Marburg, Germany
| | - Michael Soutschek
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Silvia Bicker
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Lukas von Ziegler
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Laboratory of Behavioural and Molecular Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Johannes Bohacek
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Laboratory of Behavioural and Molecular Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Pierre-Luc Germain
- Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland.,Laboratory of Statistical Bioinformatics, Department of Molecular Life Sciences, University of Zürich, Zurich, Switzerland
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Schratt
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
da Silva EMG, Santos LGC, de Oliveira FS, Freitas FCDP, Parreira VDSC, dos Santos HG, Tavares R, Carvalho PC, Neves-Ferreira AGDC, Haibara AS, de Araujo-Souza PS, Dias AAM, Passetti F. Proteogenomics Reveals Orthologous Alternatively Spliced Proteoforms in the Same Human and Mouse Brain Regions with Differential Abundance in an Alzheimer's Disease Mouse Model. Cells 2021; 10:1583. [PMID: 34201730 PMCID: PMC8303486 DOI: 10.3390/cells10071583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 01/19/2023] Open
Abstract
Alternative splicing (AS) may increase the number of proteoforms produced by a gene. Alzheimer's disease (AD) is a neurodegenerative disease with well-characterized AS proteoforms. In this study, we used a proteogenomics strategy to build a customized protein sequence database and identify orthologous AS proteoforms between humans and mice on publicly available shotgun proteomics (MS/MS) data of the corpus callosum (CC) and olfactory bulb (OB). Identical proteotypic peptides of six orthologous AS proteoforms were found in both species: PKM1 (gene PKM/Pkm), STXBP1a (gene STXBP1/Stxbp1), Isoform 3 (gene HNRNPK/Hnrnpk), LCRMP-1 (gene CRMP1/Crmp1), SP3 (gene CADM1/Cadm1), and PKCβII (gene PRKCB/Prkcb). These AS variants were also detected at the transcript level by publicly available RNA-Seq data and experimentally validated by RT-qPCR. Additionally, PKM1 and STXBP1a were detected at higher abundances in a publicly available MS/MS dataset of the AD mouse model APP/PS1 than its wild type. These data corroborate other reports, which suggest that PKM1 and STXBP1a AS proteoforms might play a role in amyloid-like aggregate formation. To the best of our knowledge, this report is the first to describe PKM1 and STXBP1a overexpression in the OB of an AD mouse model. We hope that our strategy may be of use in future human neurodegenerative studies using mouse models.
Collapse
Affiliation(s)
- Esdras Matheus Gomes da Silva
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
- Laboratory of Toxinology, Oswaldo Cruz Institute (FIOCRUZ), Av. Brazil 4365, Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil;
| | - Letícia Graziela Costa Santos
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| | - Flávia Santiago de Oliveira
- Laboratório de Inflamação e Câncer, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil; (F.S.d.O.); (A.A.M.D.)
| | - Flávia Cristina de Paula Freitas
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| | - Vinícius da Silva Coutinho Parreira
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| | - Hellen Geremias dos Santos
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| | - Raphael Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil;
| | - Paulo Costa Carvalho
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| | | | - Andrea Siqueira Haibara
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil;
| | - Patrícia Savio de Araujo-Souza
- Laboratory of Immunogenetics and Histocompatibility, Department of Genetics, Universidade Federal do Paraná, Av. Cel. Francisco H. dos Santos 100, Jardim das Américas, Curitiba, PR 81530-980, Brazil;
| | - Adriana Abalen Martins Dias
- Laboratório de Inflamação e Câncer, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil; (F.S.d.O.); (A.A.M.D.)
| | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba, PR 81310-020, Brazil; (E.M.G.d.S.); (L.G.C.S.); (F.C.d.P.F.); (V.d.S.C.P.); (H.G.d.S.); (P.C.C.)
| |
Collapse
|
14
|
Zhu G, Zhu Q, Zhang W, Hui C, Li Y, Yang M, Pang S, Li Y, Xue G, Chen H. Mitochondrial uncoupling protein 2 is regulated through heterogeneous nuclear ribonucleoprotein K in lead exposure models. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2021; 39:1-16. [PMID: 33576715 DOI: 10.1080/26896583.2020.1854596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synaptic plasticity plays an important role in learning and memory in the developing hippocampus. However, the precise molecular mechanism in lead exposure models remains to be studied. UCP2, an inner mitochondrial anion carrier, regulates synaptic plasticity through uncoupling neurons. And hnRNP K, an RNA binding protein, plays a role in modulating the expression of transcripts coding synaptic plasticity. We aim to investigate whether lead exposure affects UCP2 and hnRNP K expression levels. The Sprague-Dawley rats were exposed to different lead acetate concentrations (0 g/l, 0.5 g/l, 2.0 g/l) during gestational and lactational periods. PC12 cells were also exposed to different lead acetate concentrations (0 μM, 1 μM and 100 μM). We found that the expression levels of UCP2 and hnRNP K had significant declines in the lead exposure rat hippocampus and PC12 cells. Furthermore, the up-regulation of hnRNP K expression level could reverse the expression level of UCP2 in lead exposure models. In conclusion, these results suggest that lead exposure can reduce the expression level of UCP2 which is mediated by decreasing the expression level of hnRNP K.
Collapse
Affiliation(s)
- Gaochun Zhu
- Department of Anatomy, School of Medicine, Nanchang University, Nanchang, P.R. China
| | - Qian Zhu
- Department of Anatomy, School of Medicine, Nanchang University, Nanchang, P.R. China
| | - Wei Zhang
- Department of Anatomy, School of Medicine, Nanchang University, Nanchang, P.R. China
| | - Chen Hui
- Department of Anatomy, School of Medicine, Nanchang University, Nanchang, P.R. China
| | - Yuwen Li
- Queen Mary College, School of Medicine, Nanchang University, Nanchang, P.R. China
| | - Meiyuan Yang
- Department of Anatomy, School of Medicine, Nanchang University, Nanchang, P.R. China
| | - Shimin Pang
- Second Clinical College, School of Medicine, Nanchang University, Nanchang, P.R. China
| | - Yaobing Li
- Department of Anatomy, School of Medicine, Nanchang University, Nanchang, P.R. China
| | - Guoyong Xue
- Department of Anatomy, School of Medicine, Nanchang University, Nanchang, P.R. China
| | - Hongping Chen
- Department of Histology and Embryology, School of Medicine, Nanchang University, Nanchang, P.R. China
| |
Collapse
|
15
|
The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathol 2020; 140:599-623. [PMID: 32748079 PMCID: PMC7547044 DOI: 10.1007/s00401-020-02203-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Dysregulated RNA metabolism is emerging as a crucially important mechanism underpinning the pathogenesis of frontotemporal dementia (FTD) and the clinically, genetically and pathologically overlapping disorder of amyotrophic lateral sclerosis (ALS). Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RNA-binding proteins with diverse, multi-functional roles across all aspects of mRNA processing. The role of these proteins in neurodegeneration is far from understood. Here, we review some of the unifying mechanisms by which hnRNPs have been directly or indirectly linked with FTD/ALS pathogenesis, including their incorporation into pathological inclusions and their best-known roles in pre-mRNA splicing regulation. We also discuss the broader functionalities of hnRNPs including their roles in cryptic exon repression, stress granule assembly and in co-ordinating the DNA damage response, which are all emerging pathogenic themes in both diseases. We then present an integrated model that depicts how a broad-ranging network of pathogenic events can arise from declining levels of functional hnRNPs that are inadequately compensated for by autoregulatory means. Finally, we provide a comprehensive overview of the most functionally relevant cellular roles, in the context of FTD/ALS pathogenesis, for hnRNPs A1-U.
Collapse
|
16
|
Oliveira NCM, Lins ÉM, Massirer KB, Bengtson MH. Translational Control during Mammalian Neocortex Development and Postembryonic Neuronal Function. Semin Cell Dev Biol 2020; 114:36-46. [PMID: 33020045 DOI: 10.1016/j.semcdb.2020.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/09/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022]
Abstract
The control of mRNA translation has key roles in the regulation of gene expression and biological processes such as mammalian cellular differentiation and identity. Methodological advances in the last decade have resulted in considerable progress towards understanding how translational control contributes to the regulation of diverse biological phenomena. In this review, we discuss recent findings in the involvement of translational control in the mammalian neocortex development and neuronal biology. We focus on regulatory mechanisms that modulate translational efficiency during neural stem cells self-renewal and differentiation, as well as in neuronal-related processes such as synapse, plasticity, and memory.
Collapse
Affiliation(s)
- Natássia Cristina Martins Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Érico Moreto Lins
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; PhD Program in Genetics and Molecular Biology (PGBM), UNICAMP, Campinas, SP 13083-862, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering - CBMEG, University of Campinas - UNICAMP, 13083-875, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil
| | - Mário Henrique Bengtson
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas - UNICAMP, 13083-862, Campinas, SP, Brazil; Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, 13083-886, Campinas, SP, Brazil.
| |
Collapse
|
17
|
TSPAN5 Enriched Microdomains Provide a Platform for Dendritic Spine Maturation through Neuroligin-1 Clustering. Cell Rep 2020; 29:1130-1146.e8. [PMID: 31665629 PMCID: PMC6899445 DOI: 10.1016/j.celrep.2019.09.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/09/2019] [Accepted: 09/18/2019] [Indexed: 12/21/2022] Open
Abstract
Tetraspanins are a class of evolutionarily conserved transmembrane proteins with 33 members identified in mammals that have the ability to organize specific membrane domains, named tetraspanin-enriched microdomains (TEMs). Despite the relative abundance of different tetraspanins in the CNS, few studies have explored their role at synapses. Here, we investigate the function of TSPAN5, a member of the tetraspanin superfamily for which mRNA transcripts are found at high levels in the mouse brain. We demonstrate that TSPAN5 is localized in dendritic spines of pyramidal excitatory neurons and that TSPAN5 knockdown induces a dramatic decrease in spine number because of defects in the spine maturation process. Moreover, we show that TSPAN5 interacts with the postsynaptic adhesion molecule neuroligin-1, promoting its correct surface clustering. We propose that membrane compartmentalization by tetraspanins represents an additional mechanism for regulating excitatory synapses. TSPAN5 is expressed in pyramidal neurons and localizes mainly to dendritic spines TSPAN5 interacts with neuroligin-1 and promotes its clustering TSPAN5-neuroligin-1 complex is fundamental for dendritic spine maturation
Collapse
|
18
|
RNA-binding motifs of hnRNP K are critical for induction of antibody diversification by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2020; 117:11624-11635. [PMID: 32385154 DOI: 10.1073/pnas.1921115117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is the key enzyme for class switch recombination (CSR) and somatic hypermutation (SHM) to generate antibody memory. Previously, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was shown to be required for AID-dependent DNA breaks. Here, we defined the function of major RNA-binding motifs of hnRNP K, GXXGs and RGGs in the K-homology (KH) and the K-protein-interaction (KI) domains, respectively. Mutation of GXXG, RGG, or both impaired CSR, SHM, and cMyc/IgH translocation equally, showing that these motifs were necessary for AID-dependent DNA breaks. AID-hnRNP K interaction is dependent on RNA; hence, mutation of these RNA-binding motifs abolished the interaction with AID, as expected. Some of the polypyrimidine sequence-carrying prototypical hnRNP K-binding RNAs, which participate in DNA breaks or repair bound to hnRNP K in a GXXG and RGG motif-dependent manner. Mutation of the GXXG and RGG motifs decreased nuclear retention of hnRNP K. Together with the previous finding that nuclear localization of AID is necessary for its function, lower nuclear retention of these mutants may worsen their functional deficiency, which is also caused by their decreased RNA-binding capacity. In summary, hnRNP K contributed to AID-dependent DNA breaks with all of its major RNA-binding motifs.
Collapse
|
19
|
Cockova Z, Ujcikova H, Telensky P, Novotny J. Protein profiling of SH-SY5Y neuroblastoma cells: The effect of rhein. J Biosci 2019; 44:88. [PMID: 31502566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
4,5-Dihydroxyanthraquinone-2-carboxylic acid (Rhein) has been shown to have various physiological and pharmacological properties including anticancer activity and modulatory effects on bioenergetics. In this study, we explored the impact of rhein on protein profiling of undifferentiated (UC) and differentiated (DC) SH-SY5Y cells. Besides that, the cellular morphology and expression of differentiation markers were investigated to determine the effect of rhein on retinoic acidinduced neuronal cell differentiation. Using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ ionization-time-of-flight mass spectrometry we evaluated the changes in the proteome of both UC and DC SH-SY5Y cells after 24 h treatment with rhein. Validation of selected differentially expressed proteins and the assessment of neuronal differentiation markers were performed by western blotting. Proteomic analysis revealed significant changes in the abundance of 15 proteins linked to specific cellular processes such as cytoskeleton structure and regulation, mitochondrial function, energy metabolism, protein synthesis and neuronal plasticity. We also observed that the addition of rhein to the cultured cells during differentiation resulted in a significantly reduced neurite outgrowth and decreased expression of neuronal markers. These results indicate that rhein may strongly interfere with the differentiation process of SH-SY5Y neuroblastoma cells and is capable of inducing marked proteomic changes in these cells.
Collapse
Affiliation(s)
- Zuzana Cockova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | | | | |
Collapse
|
20
|
Cockova Z, Ujcikova H, Telensky P, Novotny J. Protein profiling of SH-SY5Y neuroblastoma cells: The effect of rhein. J Biosci 2019. [DOI: 10.1007/s12038-019-9908-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Chen Y, Zeng Y, Xiao Z, Chen S, Li Y, Zou J, Zeng X. Role of heterogeneous nuclear ribonucleoprotein K in tumor development. J Cell Biochem 2019; 120:14296-14305. [PMID: 31127648 DOI: 10.1002/jcb.28867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/11/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is an RNA/DNA special binding protein that participates in regulating the expression of related genes, transcription, RNA alternative splicing, translation, posttranslational modification, cell signal transduction, cell movement, interacts with ncRNAs, and induces angiogenesis. Moreover, several cellular functions forcefully indicated that hnRNP K participates in tumorigenesis. Numerous studies indicated hnRNP K is aberrantly elevated in multiple tumors. In addition, hnRNP K abnormal accumulation in cytoplasmic is also associated with poor prognosis. This suggests that hnRNP K may play a role in the development and progression of tumors. However, related studies demonstrated that hnRNP K acts as a tumor suppressor to suppress tumor formation. Therefore, this paper aims to explore the role of hnRNPK in tumors.
Collapse
Affiliation(s)
- Yuting Chen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China
| | - Ying Zeng
- School of Nursing, University of South China, Hengyang, China
| | - Zheng Xiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China
| | - Shi Chen
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China
| | - Yukun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China
| | - Xi Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang School of Medicine, University of South China, Hengyang, China.,Hunan Province Cooperative innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
22
|
[Regulator proteins of actin dynamics as possible targets of antineoplastic therapies]. DER PATHOLOGE 2018; 39:225-230. [PMID: 30229281 DOI: 10.1007/s00292-018-0495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND The ability of tumor cells to leave the primary tumor is prerequisite for metastatic spread. In previous studies, we identified regulator proteins of actin reorganization with essential functions in both synaptogenesis and tumor cell migration. OBJECTIVE The aim of the studies summarized in this article is to identify signaling pathways associated with actin-related proteins that might represent potential molecular targets for antiinvasive and/or antineoplastic therapies. MATERIALS AND METHODS We used immunohistochemical analyses of protein expression as well as in vitro techniques (cell culture, fluorescence microscopy, RNAi-based knockdown of protein expression, protein biochemistry and in vivo animal experiment substitutes). RESULTS We show that phosphorylation of Abelson interactor 1 (Abi1) is essential for the adhesion and invasion of colorectal carcinoma cells and might be targeted by the tyrosine kinase inhibitor STI571/Glivec®. HnRNP K, a protein interaction partner of Abi1, is upregulated in malignant melanoma in response to ionizing radiation; this upregulation is impaired upon application of the MEK inhibitor PD98059, enhancing radiosensivity of melanoma. Edelfosin, an alkyl-lipid blocker of the Abi1 interaction partner SK3, inhibits invasion of urothelial carcinoma cells. CONCLUSION The studies summarized in this overview confirm a central role for the investigated proteins in tumor cell invasion and resistance to antineoplastic therapies and identify possible molecular targets for novel therapeutic compounds.
Collapse
|
23
|
Abstract
In 1993, Jabs et al. were the first to describe a genetic origin of craniosynostosis. Since this discovery, the genetic causes of the most common syndromes have been described. In 2015, a total of 57 human genes were reported for which there had been evidence that mutations were causally related to craniosynostosis. Facilitated by rapid technological developments, many others have been identified since then. Reviewing the literature, we characterize the most common craniosynostosis syndromes followed by a description of the novel causes that were identified between January 2015 and December 2017.
Collapse
Affiliation(s)
- Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
24
|
The RNA-Binding Protein hnRNP K Mediates the Effect of BDNF on Dendritic mRNA Metabolism and Regulates Synaptic NMDA Receptors in Hippocampal Neurons. eNeuro 2017; 4:eN-NWR-0268-17. [PMID: 29255796 PMCID: PMC5732018 DOI: 10.1523/eneuro.0268-17.2017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important mediator of long-term synaptic potentiation (LTP) in the hippocampus. The local effects of BDNF depend on the activation of translation activity, which requires the delivery of transcripts to the synapse. In this work, we found that neuronal activity regulates the dendritic localization of the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cultured rat hippocampal neurons by stimulating BDNF-Trk signaling. Microarray experiments identified a large number of transcripts that are coimmunoprecipitated with hnRNP K, and about 60% of these transcripts are dissociated from the protein upon stimulation of rat hippocampal neurons with BDNF. In vivo studies also showed a role for TrkB signaling in the dissociation of transcripts from hnRNP K upon high-frequency stimulation (HFS) of medial perforant path-granule cell synapses of male rat dentate gyrus (DG). Furthermore, treatment of rat hippocampal synaptoneurosomes with BDNF decreased the coimmunoprecipitation of hnRNP K with mRNAs coding for glutamate receptor subunits, Ca2+- and calmodulin-dependent protein kinase IIβ (CaMKIIβ) and BDNF. Downregulation of hnRNP K impaired the BDNF-induced enhancement of NMDA receptor (NMDAR)-mediated mEPSC, and similar results were obtained upon inhibition of protein synthesis with cycloheximide. The results demonstrate that BDNF regulates specific populations of hnRNP-associated mRNAs in neuronal dendrites and suggests an important role of hnRNP K in BDNF-dependent forms of synaptic plasticity.
Collapse
|
25
|
Vidaki M, Drees F, Saxena T, Lanslots E, Taliaferro MJ, Tatarakis A, Burge CB, Wang ET, Gertler FB. A Requirement for Mena, an Actin Regulator, in Local mRNA Translation in Developing Neurons. Neuron 2017; 95:608-622.e5. [PMID: 28735747 DOI: 10.1016/j.neuron.2017.06.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/17/2017] [Accepted: 06/29/2017] [Indexed: 12/16/2022]
Abstract
During neuronal development, local mRNA translation is required for axon guidance and synaptogenesis, and dysregulation of this process contributes to multiple neurodevelopmental and cognitive disorders. However, regulation of local protein synthesis in developing axons remains poorly understood. Here, we uncover a novel role for the actin-regulatory protein Mena in the formation of a ribonucleoprotein complex that involves the RNA-binding proteins HnrnpK and PCBP1 and regulates local translation of specific mRNAs in developing axons. We find that translation of dyrk1a, a Down syndrome- and autism spectrum disorders-related gene, is dependent on Mena, both in steady-state conditions and upon BDNF stimulation. We identify hundreds of additional mRNAs that associate with the Mena complex, suggesting that it plays broader role(s) in post-transcriptional gene regulation. Our work establishes a dual role for Mena in neurons, providing a potential link between regulation of actin dynamics and local translation.
Collapse
Affiliation(s)
- Marina Vidaki
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Frauke Drees
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tanvi Saxena
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erwin Lanslots
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Matthew J Taliaferro
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Antonios Tatarakis
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher B Burge
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric T Wang
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frank B Gertler
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
26
|
Völgyi K, Gulyássy P, Todorov MI, Puska G, Badics K, Hlatky D, Kékesi KA, Nyitrai G, Czurkó A, Drahos L, Dobolyi A. Chronic Cerebral Hypoperfusion Induced Synaptic Proteome Changes in the rat Cerebral Cortex. Mol Neurobiol 2017; 55:4253-4266. [PMID: 28620701 DOI: 10.1007/s12035-017-0641-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/29/2017] [Indexed: 12/23/2022]
Abstract
Chronic cerebral hypoperfusion (CCH) evokes mild cognitive impairment (MCI) and contributes to the progression of vascular dementia and Alzheimer's disease (AD). How CCH induces these neurodegenerative processes that may spread along the synaptic network and whether they are detectable at the synaptic proteome level of the cerebral cortex remains to be established. In the present study, we report the synaptic protein changes in the cerebral cortex after stepwise bilateral common carotid artery occlusion (BCCAO) induced CCH in the rat. The occlusions were confirmed with magnetic resonance angiography 5 weeks after the surgery. Synaptosome fractions were prepared using sucrose gradient centrifugation from cerebral cortex dissected 7 weeks after the occlusion. The synaptic protein differences between the sham operated and CCH groups were analyzed with label-free nanoUHPLC-MS/MS. We identified 46 proteins showing altered abundance due to CCH. In particular, synaptic protein and lipid metabolism, as well as GABA shunt-related proteins showed increased while neurotransmission and synaptic assembly-related proteins showed decreased protein level changes in CCH rats. Protein network analysis of CCH-induced protein alterations suggested the importance of increased synaptic apolipoprotein E (APOE) level as a consequence of CCH. Therefore, the change in APOE level was confirmed with Western blotting. The identified synaptic protein changes would precede the onset of dementia-like symptoms in the CCH model, suggesting their importance in the development of vascular dementia.
Collapse
Affiliation(s)
- Katalin Völgyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Pázmány Péter sétány 1C, Budapest, H-1117, Hungary.
| | - Péter Gulyássy
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mihail Ivilinov Todorov
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Pázmány Péter sétány 1C, Budapest, H-1117, Hungary.,Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Gina Puska
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | - Kata Badics
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Hlatky
- Preclinical Imaging and Biomarker Laboratory, Pharmacology and Drug Safety Research, Richter Gedeon Plc, Budapest, Hungary
| | - Katalin Adrienna Kékesi
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Nyitrai
- Preclinical Imaging and Biomarker Laboratory, Pharmacology and Drug Safety Research, Richter Gedeon Plc, Budapest, Hungary
| | - András Czurkó
- Preclinical Imaging and Biomarker Laboratory, Pharmacology and Drug Safety Research, Richter Gedeon Plc, Budapest, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and Eötvös Loránd University, Pázmány Péter sétány 1C, Budapest, H-1117, Hungary
| |
Collapse
|
27
|
Epilepsy and intellectual disability linked protein Shrm4 interaction with GABA BRs shapes inhibitory neurotransmission. Nat Commun 2017; 8:14536. [PMID: 28262662 PMCID: PMC5343488 DOI: 10.1038/ncomms14536] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 01/09/2017] [Indexed: 02/07/2023] Open
Abstract
Shrm4, a protein expressed only in polarized tissues, is encoded by the KIAA1202 gene, whose mutations have been linked to epilepsy and intellectual disability. However, a physiological role for Shrm4 in the brain is yet to be established. Here, we report that Shrm4 is localized to synapses where it regulates dendritic spine morphology and interacts with the C terminus of GABAB receptors (GABABRs) to control their cell surface expression and intracellular trafficking via a dynein-dependent mechanism. Knockdown of Shrm4 in rat severely impairs GABABR activity causing increased anxiety-like behaviour and susceptibility to seizures. Moreover, Shrm4 influences hippocampal excitability by modulating tonic inhibition in dentate gyrus granule cells, in a process involving crosstalk between GABABRs and extrasynaptic δ-subunit-containing GABAARs. Our data highlights a role for Shrm4 in synaptogenesis and in maintaining GABABR-mediated inhibition, perturbation of which may be responsible for the involvement of Shrm4 in cognitive disorders and epilepsy. Mutations in the gene encoding Shrm4 are associated with epilepsy and intellectual disability. The authors show that Shrm4 interacts with GABAB receptors and regulates tonic inhibition in the hippocampus, and knockdown of Shrm4 in rats leads to anxiety-like behaviour and seizures.
Collapse
|
28
|
Lintas C, Persico AM. Unraveling molecular pathways shared by Kabuki and Kabuki-like syndromes. Clin Genet 2017; 94:283-295. [PMID: 28139835 DOI: 10.1111/cge.12983] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/19/2017] [Indexed: 12/12/2022]
Abstract
Kabuki syndrome (KS) is a rare genetic syndrome characterized by a typical facial gestalt, variable degrees of intellectual disability, organ malformations, postnatal growth retardation and skeletal abnormalities. So far, KMT2D or KDM6A mutation has been identified as the main cause of KS, accounting for 56%-75% and 3%-8% of cases, respectively. Patients without mutations in 1 of the 2 causative KS genes are often referred to as affected by Kabuki-like syndrome. Overall, they represent approximately 30% of KS cases, pointing toward substantial genetic heterogeneity for this condition. Here, we review all currently available literature describing KS-like phenotypes (or phenocopies) associated with genetic variants located in loci different from KMT2D and KDM6A . We also report on a new KS phenocopy harboring a 5 Mb de novo deletion in chr10p11.22-11.21. An enrichment analysis aimed at identifying functional Gene Ontology classes shared by the 2 known KS causative genes and by new candidate genes currently associated with KS-like phenotypes primarily converges upon abnormal chromatin remodeling and transcriptional dysregulation as pivotal to the pathophysiology of KS phenotypic hallmarks. The identification of mutations in genes belonging to the same functional pathways of KMT2D and KDM6A can help design molecular screenings targeted to KS-like phenotypes.
Collapse
Affiliation(s)
- C Lintas
- Unit of Child and Adolescent NeuroPsychiatry, University Campus Bio-Medico, Rome, Italy.,Laboratory of Molecular Psychiatry and Neurogenetics, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - A M Persico
- Unit of Child and Adolescent NeuroPsychiatry, "G. Martino" University Hospital, University of Messina, Messina, Italy.,Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| |
Collapse
|
29
|
Proteomic Analysis of Mitochondria-Enriched Fraction Isolated from the Frontal Cortex and Hippocampus of Apolipoprotein E Knockout Mice Treated with Alda-1, an Activator of Mitochondrial Aldehyde Dehydrogenase (ALDH2). Int J Mol Sci 2017; 18:ijms18020435. [PMID: 28218653 PMCID: PMC5343969 DOI: 10.3390/ijms18020435] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 02/06/2023] Open
Abstract
The role of different genotypes of apolipoprotein E (apoE) in the etiology of Alzheimer’s disease is widely recognized. It has been shown that altered functioning of apoE may promote 4-hydroxynonenal modification of mitochondrial proteins, which may result in mitochondrial dysfunction, aggravation of oxidative stress, and neurodegeneration. Mitochondrial aldehyde dehydrogenase (ALDH2) is an enzyme considered to perform protective function in mitochondria by the detoxification of the end products of lipid peroxidation, such as 4-hydroxynonenal and other reactive aldehydes. The goal of our study was to apply a differential proteomics approach in concert with molecular and morphological techniques to elucidate the changes in the frontal cortex and hippocampus of apolipoprotein E knockout (apoE−/−) mice upon treatment with Alda-1—a small molecular weight activator of ALDH2. Despite the lack of significant morphological changes in the brain of apoE−/− mice as compared to age-matched wild type animals, the proteomic and molecular approach revealed many changes in the expression of genes and proteins, indicating the impairment of energy metabolism, neuroplasticity, and neurogenesis in brains of apoE−/− mice. Importantly, prolonged treatment of apoE−/− mice with Alda-1 led to the beneficial changes in the expression of genes and proteins related to neuroplasticity and mitochondrial function. The pattern of alterations implies mitoprotective action of Alda-1, however, the accurate functional consequences of the revealed changes require further research.
Collapse
|
30
|
Bryant CD, Yazdani N. RNA-binding proteins, neural development and the addictions. GENES BRAIN AND BEHAVIOR 2016; 15:169-86. [PMID: 26643147 DOI: 10.1111/gbb.12273] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022]
Abstract
Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA-binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability and translation of RNAs during development and adulthood. Dysfunction of RBPs can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer's and Parkinson's diseases as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g. the nuclear spliceome vs. the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions.
Collapse
Affiliation(s)
- C D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - N Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
31
|
Zamboni V, Armentano M, Sarò G, Ciraolo E, Ghigo A, Germena G, Umbach A, Valnegri P, Passafaro M, Carabelli V, Gavello D, Bianchi V, D'Adamo P, de Curtis I, El-Assawi N, Mauro A, Priano L, Ferri N, Hirsch E, Merlo GR. Disruption of ArhGAP15 results in hyperactive Rac1, affects the architecture and function of hippocampal inhibitory neurons and causes cognitive deficits. Sci Rep 2016; 6:34877. [PMID: 27713499 PMCID: PMC5054378 DOI: 10.1038/srep34877] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/19/2016] [Indexed: 11/12/2022] Open
Abstract
During brain development, the small GTPases Rac1/Rac3 play key roles in neuronal migration, neuritogenesis, synaptic formation and plasticity, via control of actin cytoskeleton dynamic. Their activity is positively and negatively regulated by GEFs and GAPs molecules, respectively. However their in vivo roles are poorly known. The ArhGAP15 gene, coding for a Rac-specific GAP protein, is expressed in both excitatory and inhibitory neurons of the adult hippocampus, and its loss results in the hyperactivation of Rac1/Rac3. In the CA3 and dentate gyrus (DG) regions of the ArhGAP15 mutant hippocampus the CR+, PV+ and SST+ inhibitory neurons are reduced in number, due to reduced efficiency and directionality of their migration, while pyramidal neurons are unaffected. Loss of ArhGAP15 alters neuritogenesis and the balance between excitatory and inhibitory synapses, with a net functional result consisting in increased spike frequency and bursts, accompanied by poor synchronization. Thus, the loss of ArhGAP15 mainly impacts on interneuron-dependent inhibition. Adult ArhGAP15−/− mice showed defective hippocampus-dependent functions such as working and associative memories. These findings indicate that a normal architecture and function of hippocampal inhibitory neurons is essential for higher hippocampal functions, and is exquisitely sensitive to ArhGAP15-dependent modulation of Rac1/Rac3.
Collapse
Affiliation(s)
- Valentina Zamboni
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Maria Armentano
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Gabriella Sarò
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Elisa Ciraolo
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Giulia Germena
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Alessandro Umbach
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | | | | | | | | | - Veronica Bianchi
- IRCSS San Raffaele Scientific Institute and San Raffaele University, Division of Neuroscience, Milano, Italy
| | - Patrizia D'Adamo
- IRCSS San Raffaele Scientific Institute and San Raffaele University, Division of Neuroscience, Milano, Italy
| | - Ivan de Curtis
- IRCSS San Raffaele Scientific Institute and San Raffaele University, Division of Neuroscience, Milano, Italy
| | - Nadia El-Assawi
- Department of Neurosciences, University of Turin &Div. of Neurology and Neurorehabilitation, S.Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, Piancavallo (VB), Italy
| | - Alessandro Mauro
- Department of Neurosciences, University of Turin &Div. of Neurology and Neurorehabilitation, S.Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, Piancavallo (VB), Italy
| | - Lorenzo Priano
- Department of Neurosciences, University of Turin &Div. of Neurology and Neurorehabilitation, S.Giuseppe Hospital, Istituto Auxologico Italiano IRCCS, Piancavallo (VB), Italy
| | - Nicola Ferri
- Department of Pharmaceutical and Pharmacological Science, University of Padova, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Giorgio R Merlo
- Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| |
Collapse
|
32
|
Hutchins EJ, Belrose JL, Szaro BG. A novel role for the nuclear localization signal in regulating hnRNP K protein stability in vivo. Biochem Biophys Res Commun 2016; 478:772-6. [DOI: 10.1016/j.bbrc.2016.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/04/2016] [Indexed: 01/12/2023]
|
33
|
Lange L, Pagnamenta AT, Lise S, Clasper S, Stewart H, Akha ES, Quaghebeur G, Knight SJL, Keays DA, Taylor JC, Kini U. A de novo frameshift in HNRNPK causing a Kabuki-like syndrome with nodular heterotopia. Clin Genet 2016; 90:258-62. [PMID: 26954065 PMCID: PMC5006848 DOI: 10.1111/cge.12773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 01/23/2023]
Abstract
Kabuki syndrome is a heterogeneous condition characterized by distinctive facial features, intellectual disability, growth retardation, skeletal abnormalities and a range of organ malformations. Although at least two major causative genes have been identified, these do not explain all cases. Here we describe a patient with a complex Kabuki-like syndrome that included nodular heterotopia, in whom testing for several single-gene disorders had proved negative. Exome sequencing uncovered a de novo c.931_932insTT variant in HNRNPK (heterogeneous nuclear ribonucleoprotein K). Although this variant was identified in March 2012, its clinical relevance could only be confirmed following the August 2015 publication of two cases with HNRNPK mutations and an overlapping phenotype that included intellectual disability, distinctive facial dysmorphism and skeletal/connective tissue abnormalities. Whilst we had attempted (unsuccessfully) to identify additional cases through existing collaborators, the two published cases were 'matched' using GeneMatcher, a web-based tool for connecting researchers and clinicians working on identical genes. Our report therefore exemplifies the importance of such online tools in clinical genetics research and the benefits of periodically reviewing cases with variants of unproven significance. Our study also suggests that loss of function variants in HNRNPK should be considered as a molecular basis for patients with Kabuki-like syndrome.
Collapse
Affiliation(s)
- L Lange
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - A T Pagnamenta
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - S Lise
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - S Clasper
- Oxford Regional Genetics Service, Oxford Radcliffe Hospitals NHS Trust, The Churchill Hospital, Oxford, UK
| | - H Stewart
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - E S Akha
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - G Quaghebeur
- Department of Neuroradiology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - S J L Knight
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - D A Keays
- Institute of Molecular Pathology, Vienna, Austria
| | - J C Taylor
- National Institute for Health Research Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - U Kini
- Department of Clinical Genetics, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| |
Collapse
|
34
|
Borovok N, Nesher E, Levin Y, Reichenstein M, Pinhasov A, Michaelevski I. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation. Mol Cell Proteomics 2015; 15:523-41. [PMID: 26598641 DOI: 10.1074/mcp.m115.051318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Indexed: 01/08/2023] Open
Abstract
Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams.
Collapse
Affiliation(s)
- Natalia Borovok
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Elimelech Nesher
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Yishai Levin
- ¶de Botton Institute for Protein Profiling, The Nancy & Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Reichenstein
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel
| | - Albert Pinhasov
- §Department of Molecular Biology, Ariel University, Ariel 4070000, Israel
| | - Izhak Michaelevski
- From the ‡Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel-Aviv 6997801, Israel; ‖Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
35
|
Hutchins EJ, Belrose JL, Szaro BG. Phosphorylation of heterogeneous nuclear ribonucleoprotein K at an extracellular signal-regulated kinase phosphorylation site promotes neurofilament-medium protein expression and axon outgrowth in Xenopus. Neurosci Lett 2015; 607:59-65. [DOI: 10.1016/j.neulet.2015.09.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 12/18/2022]
|
36
|
Au PYB, You J, Caluseriu O, Schwartzentruber J, Majewski J, Bernier FP, Ferguson M, Valle D, Parboosingh JS, Sobreira N, Innes AM, Kline AD. GeneMatcher aids in the identification of a new malformation syndrome with intellectual disability, unique facial dysmorphisms, and skeletal and connective tissue abnormalities caused by de novo variants in HNRNPK. Hum Mutat 2015; 36:1009-1014. [PMID: 26173930 DOI: 10.1002/humu.22837] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022]
Abstract
We report a new syndrome due to loss-of-function variants in the heterogeneous nuclear ribonucleoprotein K gene (HNRNPK). We describe two probands: one with a de novo frameshift (NM_002140.3: c.953+1dup), and the other with a de novo splice donor site variant (NM_002140.3: c.257G>A). Both probands have intellectual disability, a shared unique craniofacial phenotype, and connective tissue and skeletal abnormalities. The identification of this syndrome was made possible by a new online tool, GeneMatcher, which facilitates connections between clinicians and researchers based on shared interest in candidate genes. This report demonstrates that new Web-based approaches can be effective in helping investigators solve exome sequencing projects, and also highlights the newer paradigm of "reverse phenotyping," where characterization of syndromic features follows the identification of genetic variants.
Collapse
Affiliation(s)
- P Y Billie Au
- Department of Medical Genetics, University of Calgary, Cumming School of Medicine, Alberta, Canada
| | - Jing You
- Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy Schwartzentruber
- Department of Human Genetics, McGill and Genome Quebec Innovation Center, McGill University, Quebec, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill and Genome Quebec Innovation Center, McGill University, Quebec, Canada
| | - Francois P Bernier
- Department of Medical Genetics, University of Calgary, Cumming School of Medicine, Alberta, Canada.,Alberta Children's Hospital, Research Institute for Child and Maternal Health, University of Calgary, Alberta, Canada
| | - Marcia Ferguson
- Harvey Institute for Human Genetics, Department of Pediatrics, Greater Baltimore Medical Center, Baltimore, MD
| | | | - David Valle
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Center for Inherited Disease Research, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jillian S Parboosingh
- Department of Medical Genetics, University of Calgary, Cumming School of Medicine, Alberta, Canada.,Alberta Children's Hospital, Research Institute for Child and Maternal Health, University of Calgary, Alberta, Canada
| | - Nara Sobreira
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - A Micheil Innes
- Department of Medical Genetics, University of Calgary, Cumming School of Medicine, Alberta, Canada.,Alberta Children's Hospital, Research Institute for Child and Maternal Health, University of Calgary, Alberta, Canada
| | - Antonie D Kline
- Harvey Institute for Human Genetics, Department of Pediatrics, Greater Baltimore Medical Center, Baltimore, MD
| |
Collapse
|
37
|
Wang YL, Chen X, Wang ZP. Detrimental effects of postnatal exposure to propofol on memory and hippocampal LTP in mice. Brain Res 2015; 1622:321-7. [PMID: 26168896 DOI: 10.1016/j.brainres.2015.06.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 10/23/2022]
Abstract
Acute effects of propofol on memory and hippocampal long-term potentiation (LTP) in adult animals were reported. However, long-term effect of early postnatal application of propofol on memory was not totally disclosed. In this study, experiments were designed to verify the mechanisms underlying the long-term detrimental effects of propofol on memory and hippocampal synaptic plasticity. A consecutive propofol protocol from postnatal day 7 was applied to model anesthesia, long term memory and hippocampal synaptic plasticity were detected 2 months later. Our results showed that repeated propofol exposure in early phase affect the memory in the adult phase. Through recording the field excitatory postsynaptic potentials (fEPSPs) at Schaffer colletaral-CA1 synapses, both of basal synaptic transmission and hippocampal LTP were decreased after propofol application. While LTD induced by low frequency stimulation and 3,5-dihydroxyphenylglycine (3,5-DHPG) were not affected. Through analyzing the ultrastructure of dendrite in CA1 region, we found that propofol application decreased the spine density, which was consistent with the decrease of PSD-95 expression. In addition, p-AKT level was reduced after first propofol application. Intracerebroventricular injection of Akt inhibitor could mimic the propofol effects on basal synaptic transmission, hippocampal LTP and memory. Taken together, these results suggested that propofol possibly decreased AKT signaling pathway to restrict the spine development, finally leading to hippocampal LTP impairment and memory deficit.
Collapse
Affiliation(s)
- Yuan-Lin Wang
- Department of Anesthesiology, Huai׳an First People׳s Hospital, Nanjing Medical University, Huai׳an, Jiangsu 223300, China
| | - Xin Chen
- Department of Anesthesiology, Huai׳an First People׳s Hospital, Nanjing Medical University, Huai׳an, Jiangsu 223300, China
| | - Zhi-Ping Wang
- Department of Anesthesiology, Wuxi People׳s Hospital, Affiliated Hospital of Nanjing Medical University, Wuxi 214023, China.
| |
Collapse
|
38
|
Reichenbach N, Herrmann U, Kähne T, Schicknick H, Pielot R, Naumann M, Dieterich DC, Gundelfinger ED, Smalla KH, Tischmeyer W. Differential effects of dopamine signalling on long-term memory formation and consolidation in rodent brain. Proteome Sci 2015; 13:13. [PMID: 25852303 PMCID: PMC4387680 DOI: 10.1186/s12953-015-0069-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/25/2015] [Indexed: 12/01/2022] Open
Abstract
Background Using auditory discrimination learning in gerbils, we have previously shown that activation of auditory-cortical D1/D5 dopamine receptors facilitates mTOR-mediated, protein synthesis-dependent mechanisms of memory consolidation and anterograde memory formation. To understand molecular mechanisms of this facilitatory effect, we tested the impact of local pharmacological activation of different D1/D5 dopamine receptor signalling modes in the auditory cortex. To this end, protein patterns in soluble and synaptic protein-enriched fractions from cortical, hippocampal and striatal brain regions of ligand- and vehicle-treated gerbils were analysed by 2D gel electrophoresis and mass spectrometry 24 h after intervention. Results After auditory-cortical injection of SKF38393 – a D1/D5 dopamine receptor-selective agonist reported to activate the downstream effectors adenylyl cyclase and phospholipase C – prominent proteomic alterations compared to vehicle-treated controls appeared in the auditory cortex, striatum, and hippocampus, whereas only minor changes were detectable in the frontal cortex. In contrast, auditory-cortical injection of SKF83959 – a D1/D5 agonist reported to preferentially stimulate phospholipase C – induced pronounced changes in the frontal cortex. At the molecular level, we detected altered regulation of cytoskeletal and scaffolding proteins, changes in proteins with functions in energy metabolism, local protein synthesis, and synaptic signalling. Interestingly, abundance and/or subcellular localisation of the predominantly presynaptic protein α-synuclein displayed dopaminergic regulation. To assess the role of α-synuclein for dopaminergic mechanisms of memory modulation, we tested the impact of post-conditioning systemic pharmacological activation of different D1/D5 dopamine receptor signalling modes on auditory discrimination learning in α-synuclein-mutant mice. In C57BL/6JOlaHsd mice, bearing a spontaneous deletion of the α-synuclein-encoding gene, but not in the related substrains C57BL/6JCrl and C57BL/6JRccHsd, adenylyl cyclase-mediated signalling affected acquisition rates over future learning episodes, whereas phospholipase C-mediated signalling affected final memory performance. Conclusions Dopamine signalling modes via D1/D5 receptors in the auditory cortex differentially impact protein profiles related to rearrangement of cytomatrices, energy metabolism, and synaptic neurotransmission in cortical, hippocampal, and basal brain structures. Altered dopamine neurotransmission in α-synuclein-deficient mice revealed that distinct D1/D5 receptor signalling modes may control different aspects of memory consolidation. Electronic supplementary material The online version of this article (doi:10.1186/s12953-015-0069-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole Reichenbach
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Present address: Research Group Neurovascular Diseases, German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, Bonn, 53175 Germany
| | - Ulrike Herrmann
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Present address: Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Braunschweig, 38106 Germany
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, 39120 Germany
| | - Horst Schicknick
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany
| | - Rainer Pielot
- Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Medical School, Otto von Guericke University, Magdeburg, 39120 Germany
| | - Daniela C Dieterich
- Research Group Neuralomics, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Institute for Pharmacology and Toxicology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, 39120 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| | - Eckart D Gundelfinger
- Department Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany ; Molecular Neurobiology, Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, 39120 Germany
| | - Karl-Heinz Smalla
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| | - Wolfgang Tischmeyer
- Special Lab Molecular Biological Techniques, Leibniz Institute for Neurobiology, Magdeburg, 39118 Germany ; Center for Behavioral Brain Sciences, Magdeburg, 39106 Germany
| |
Collapse
|
39
|
Lee PT, Chao PK, Ou LC, Chuang JY, Lin YC, Chen SC, Chang HF, Law PY, Loh HH, Chao YS, Su TP, Yeh SH. Morphine drives internal ribosome entry site-mediated hnRNP K translation in neurons through opioid receptor-dependent signaling. Nucleic Acids Res 2014; 42:13012-25. [PMID: 25361975 PMCID: PMC4245930 DOI: 10.1093/nar/gku1016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein K (hnRNP K) binds to the promoter region of mu-opioid receptor (MOR) to regulate its transcriptional activity. How hnRNP K contributes to the analgesic effects of morphine, however, is largely unknown. We provide evidence that morphine increases hnRNP K protein expression via MOR activation in rat primary cortical neurons and HEK-293 cells expressing MORs, without increasing mRNA levels. Using the bicistronic reporter assay, we examined whether morphine-mediated accumulation of hnRNP K resulted from translational control. We identified potential internal ribosome entry site elements located in the 5′ untranslated regions of hnRNP K transcripts that were regulated by morphine. This finding suggests that internal translation contributes to the morphine-induced accumulation of hnRNP K protein in regions of the central nervous system correlated with nociceptive and antinociceptive modulatory systems in mice. Finally, we found that down-regulation of hnRNP K mediated by siRNA attenuated morphine-induced hyperpolarization of membrane potential in AtT20 cells. Silencing hnRNP K expression in the spinal cord increased nociceptive sensitivity in wild-type mice, but not in MOR-knockout mice. Thus, our findings identify the role of translational control of hnRNP K in morphine-induced analgesia through activation of MOR.
Collapse
Affiliation(s)
- Pin-Tse Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Po-Kuan Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Li-Chin Ou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Jian-Ying Chuang
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC
| | - Yen-Chang Lin
- Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan, ROC
| | - Shu-Chun Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Hsiao-Fu Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Ping-Yee Law
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, MN 55455, USA
| | - Horace H Loh
- Department of Pharmacology, University of Minnesota, Medical School, Minneapolis, MN 55455, USA
| | - Yu-Sheng Chao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, USA
| | - Shiu-Hwa Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 35053, Taiwan, ROC
| |
Collapse
|