1
|
Ziemka-Nalecz M, Pawelec P, Ziabska K, Zalewska T. Sex Differences in Brain Disorders. Int J Mol Sci 2023; 24:14571. [PMID: 37834018 PMCID: PMC10572175 DOI: 10.3390/ijms241914571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
A remarkable feature of the brain is its sexual dimorphism. Sexual dimorphism in brain structure and function is associated with clinical implications documented previously in healthy individuals but also in those who suffer from various brain disorders. Sex-based differences concerning some features such as the risk, prevalence, age of onset, and symptomatology have been confirmed in a range of neurological and neuropsychiatric diseases. The mechanisms responsible for the establishment of sex-based differences between men and women are not fully understood. The present paper provides up-to-date data on sex-related dissimilarities observed in brain disorders and highlights the most relevant features that differ between males and females. The topic is very important as the recognition of disparities between the sexes might allow for the identification of therapeutic targets and pharmacological approaches for intractable neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5, A. Pawinskiego Str., 02-106 Warsaw, Poland; (M.Z.-N.); (P.P.); (K.Z.)
| |
Collapse
|
2
|
Medel-Matus JS, Orozco-Suárez S, Escalante RG. Factors not considered in the study of drug-resistant epilepsy: Psychiatric comorbidities, age, and gender. Epilepsia Open 2022. [PMID: 34967149 DOI: 10.1002/epi4.12576.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
In basic research and clinical practice, the control of seizures has been the most important goal, but it should not be the only one. There are factors that remain poorly understood in the study of refractory epilepsy such as the age and gender of patients and the presence of psychiatric comorbidities. It is known that in patients with drug-resistant epilepsy (DRE), the comorbidities contribute to the deterioration of the quality of life, increase the severity, and worsen the prognosis of epilepsy. Some studies have demonstrated that patients diagnosed with a co-occurrence of epilepsy and psychiatric disorders are more likely to present refractory seizures and the probability of seizure remission after pharmacotherapy is reduced. The evidence of this association suggests the presence of shared pathogenic mechanisms that may include endocrine disorders, neuroinflammatory processes, disturbances of neurotransmitters, and mechanisms triggered by stress. Additionally, significant demographic, clinical, and electrographic differences have been observed between women and men with epilepsy. Epilepsy affects the female gender in a greater proportion, although there are no studies that report whether refractoriness affects more females. The reasons behind these sex differences are unclear; however, it is likely that sex hormones and sex brain differences related to chromosomal genes play an important role. On the other hand, it has been shown in industrialized countries that prevalence of DRE is higher in the elderly when compared to youngsters. Conversely, this phenomenon is not observed in developing regions, where more cases are found in children and young adults. The correct identification and management of these factors is crucial in order to improve the quality of life of the patients.
Collapse
Affiliation(s)
- Jesús Servando Medel-Matus
- Department of Pediatrics, Neurology Division, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | - Sandra Orozco-Suárez
- Unit of Medical Research in Neurological Diseases, Specialty Hospital "Dr. Bernardo Sepúlveda", National Medical Center S.XXI, Mexico City, Mexico
| | - Ruby G Escalante
- Department of Pediatrics, Neurology Division, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Medel‐Matus JS, Orozco‐Suárez S, Escalante RG. Factors not considered in the study of drug-resistant epilepsy: Psychiatric comorbidities, age, and gender. Epilepsia Open 2022; 7 Suppl 1:S81-S93. [PMID: 34967149 PMCID: PMC9340311 DOI: 10.1002/epi4.12576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 11/10/2022] Open
Abstract
In basic research and clinical practice, the control of seizures has been the most important goal, but it should not be the only one. There are factors that remain poorly understood in the study of refractory epilepsy such as the age and gender of patients and the presence of psychiatric comorbidities. It is known that in patients with drug-resistant epilepsy (DRE), the comorbidities contribute to the deterioration of the quality of life, increase the severity, and worsen the prognosis of epilepsy. Some studies have demonstrated that patients diagnosed with a co-occurrence of epilepsy and psychiatric disorders are more likely to present refractory seizures and the probability of seizure remission after pharmacotherapy is reduced. The evidence of this association suggests the presence of shared pathogenic mechanisms that may include endocrine disorders, neuroinflammatory processes, disturbances of neurotransmitters, and mechanisms triggered by stress. Additionally, significant demographic, clinical, and electrographic differences have been observed between women and men with epilepsy. Epilepsy affects the female gender in a greater proportion, although there are no studies that report whether refractoriness affects more females. The reasons behind these sex differences are unclear; however, it is likely that sex hormones and sex brain differences related to chromosomal genes play an important role. On the other hand, it has been shown in industrialized countries that prevalence of DRE is higher in the elderly when compared to youngsters. Conversely, this phenomenon is not observed in developing regions, where more cases are found in children and young adults. The correct identification and management of these factors is crucial in order to improve the quality of life of the patients.
Collapse
Affiliation(s)
- Jesús Servando Medel‐Matus
- Department of PediatricsNeurology DivisionDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| | - Sandra Orozco‐Suárez
- Unit of Medical Research in Neurological DiseasesSpecialty Hospital “Dr. Bernardo Sepúlveda”National Medical Center S.XXIMexico CityMexico
| | - Ruby G. Escalante
- Department of PediatricsNeurology DivisionDavid Geffen School of Medicine at University of California Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
4
|
Matovu D, Cavalheiro EA. Differences in Evolution of Epileptic Seizures and Topographical Distribution of Tissue Damage in Selected Limbic Structures Between Male and Female Rats Submitted to the Pilocarpine Model. Front Neurol 2022; 13:802587. [PMID: 35449517 PMCID: PMC9017681 DOI: 10.3389/fneur.2022.802587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological evidence shows that clinical features and comorbidities in temporal lobe epilepsy (TLE) may have different manifestations depending on the sex of patients. However, little is known about how sex-related mechanisms can interfere with the processes underlying the epileptic phenomenon. The findings of this study show that male rats with epilepsy in the pilocarpine model have longer-lasting and more severe epileptic seizures, while female rats have a higher frequency of epileptic seizures and a greater number of seizure clusters. Significant sex-linked pathological changes were also observed: epileptic brains of male and female rats showed differences in mass reduction of 41.8% in the amygdala and 18.2% in the olfactory bulb, while loss of neuronal cells was present in the hippocampus (12.3%), amygdala (18.1%), and olfactory bulb (7.5%). Another important sex-related finding was the changes in non-neuronal cells with increments for the hippocampus (36.1%), amygdala (14.7%), and olfactory bulb (37%). Taken together, our study suggests that these neuropathological changes may underlie the differences in the clinical features of epileptic seizures observed in male and female rats.
Collapse
Affiliation(s)
- Daniel Matovu
- Neuroscience Laboratory, Department of Neurology and Neurosurgery, Escola Paulista de Medicina/UNIFESP, São Paulo, Brazil
| | - Esper A Cavalheiro
- Neuroscience Laboratory, Department of Neurology and Neurosurgery, Escola Paulista de Medicina/UNIFESP, São Paulo, Brazil
| |
Collapse
|
5
|
Perez-Rando M, Guirado R, Tellez-Merlo G, Carceller H, Nacher J. Estradiol Regulates Polysialylated Form of the Neural Cell Adhesion Molecule Expression and Connectivity of O-LM Interneurons in the Hippocampus of Adult Female Mice. Neuroendocrinology 2022; 112:51-67. [PMID: 33550289 DOI: 10.1159/000515052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022]
Abstract
The estrous cycle is caused by the changing concentration of ovarian hormones, particularly 17β-estradiol, a hormone whose effect on excitatory circuits has been extensively reported. However, fewer studies have tried to elucidate how this cycle, or this hormone, affects the plasticity of inhibitory networks and the structure of interneurons. Among these cells, somatostatin-expressing O-LM neurons of the hippocampus are especially interesting. They have a role in the modulation of theta oscillations, and they receive direct input from the entorhinal cortex, which place them in the center of hippocampal function. In this study, we report that the expression of polysialylated form of the neural cell adhesion molecule (PSA-NCAM) in the hippocampus, a molecule involved in the plasticity of somatostatin-expressing interneurons in the adult brain, fluctuated through the different stages of the estrous cycle. Likewise, these stages and the expression of PSA-NCAM affected the density of dendritic spines of O-LM cells. We also describe that 17β-estradiol replacement of adult ovariectomized female mice caused an increase in the perisomatic inhibitory puncta in O-LM interneurons as well as an increase in their axonal bouton density. Interestingly, this treatment also induced a decrease in their dendritic spine density, specifically in O-LM interneurons lacking PSA-NCAM expression. Finally, using an ex vivo real-time assay with entorhinal-hippocampal organotypic cultures, we show that this hormone decreased the dynamics in spinogenesis, altogether highlighting the modulatory effect that 17β-estradiol has on inhibitory circuits.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Ramon Guirado
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- Dirección General de Universidades, Gobierno de Aragón, Zaragoza, Spain
| | - Guillermina Tellez-Merlo
- Lab. Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Hector Carceller
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Program in Neurosciences and BIOTECMED Institute, Universitat de València, Burjassot, Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
- CIBERSAM: Spanish National Network for Research in Mental Health, Valencia, Spain
| |
Collapse
|
6
|
Reddy DS, Thompson W, Calderara G. Molecular mechanisms of sex differences in epilepsy and seizure susceptibility in chemical, genetic and acquired epileptogenesis. Neurosci Lett 2021; 750:135753. [PMID: 33610673 PMCID: PMC7994197 DOI: 10.1016/j.neulet.2021.135753] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
This article provides a succinct overview of sex differences in epilepsy and putative molecular mechanisms underlying sex differences in seizure susceptibility in chemical, genetic, and acquired epileptogenesis. The susceptibility to excitability episodes and occurrence of epileptic seizures are generally higher in men than women. The precise molecular mechanisms remain unclear, but differences in regional morphology and neural circuits in men and women may explain differential vulnerability to seizures and epileptogenic cascades. Changes in seizure sensitivity can be attributed to steroid hormones, including fluctuations in neurosteroids as well as neuroplasticity in their receptor signaling systems. Other potential neurobiological bases for sex differences in epilepsies include differences in brain development, neurogenesis, neuronal chloride homeostasis, and neurotrophic and glial responses. In catamenial epilepsy, a gender-specific neuroendocrine condition, epileptic seizures are most often clustered around a specific menstrual period in adult women. A deeper understanding of the molecular and neural network basis of sex differences in seizures and response to antiepileptic drugs is highly warranted for designing effective, sex-specific therapies for epilepsy, epileptogenesis, and seizure disorders.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States.
| | - Wesley Thompson
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
| | - Gianmarco Calderara
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University College of Medicine, Bryan, TX, United States
| |
Collapse
|
7
|
McCarthy E, Shakil F, Saint Ange P, Morris Cameron E, Miller J, Pathak S, Greenberg DA, Velíšková J, Velíšek L. Developmental decrease in parvalbumin-positive neurons precedes increase in flurothyl-induced seizure susceptibility in the Brd2 +/- mouse model of juvenile myoclonic epilepsy. Epilepsia 2020; 61:892-902. [PMID: 32301507 DOI: 10.1111/epi.16499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/02/2020] [Accepted: 03/18/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE BRD2 is a human gene repeatedly linked to and associated with juvenile myoclonic epilepsy (JME). Here, we define the developmental stage when increased seizure susceptibility first manifests in heterozygous Brd2+/- mice, an animal model of JME. We wanted to determine (1) whether seizure susceptibility correlates with the proven decrease of γ-aminobutyric acidergic (GABAergic) neuron numbers and (2) whether the seizure phenotype can be affected by sex hormones. METHODS Heterozygous (Brd2+/-) and wild-type (wt) mice of both sexes were tested for flurothyl-induced seizure susceptibility at postnatal day 15 (P15; wt, n = 13; Brd2+/-, n = 20), at P30 (wt, n = 20; Brd2+/-, n = 20), and in adulthood (5-6 months of age; wt, n = 10; Brd2+/-, n = 12). We measured latency to clonic and tonic-clonic seizure onset (flurothyl threshold). We also compared relative density of parvalbumin-positive (PVA+) and GAD67+ GABA neurons in the striatum and primary motor (M1) neocortex of P15 (n = 6-13 mice per subgroup) and P30 (n = 7-10 mice per subgroup) mice. Additional neonatal Brd2+/- mice were injected with testosterone propionate (females) or formestane (males) and challenged with flurothyl at P30. RESULTS P15 Brd2+/- mice showed no difference in seizure susceptibility compared to P15 wt mice. However, even at this early age, Brd2+/- mice showed fewer PVA+ neurons in the striatum and M1 neocortex. Compared to wt, the striatum in Brd2+/- mice showed an increased proportion of immature PVA+ neurons, with smaller cell bodies and limited dendritic arborization. P30 Brd2+/- mice displayed increased susceptibility to flurothyl-induced clonic seizures compared to wt. Both genotype and sex strongly influenced the density of PVA+ neurons in the striatum. Susceptibility to clonic seizures remained increased in adult Brd2+/- mice, and additionally there was increased susceptibility to tonic-clonic seizures. In P30 females, neonatal testosterone reduced the number of flurothyl-induced clonic seizures. SIGNIFICANCE A decrease in striatal PVA+ GABAergic neurons developmentally precedes the onset of increased seizure susceptibility and likely contributes to the expression of the syndrome.
Collapse
Affiliation(s)
- Emily McCarthy
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Faariah Shakil
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Patrick Saint Ange
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York
| | - Emily Morris Cameron
- Department of Pediatrics, Wexner Medical Center, Ohio State University and Battelle Center for Mathematical Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - James Miller
- Department of Pediatrics, Wexner Medical Center, Ohio State University and Battelle Center for Mathematical Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Shilpa Pathak
- Department of Pediatrics, Wexner Medical Center, Ohio State University and Battelle Center for Mathematical Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - David A Greenberg
- Department of Pediatrics, Wexner Medical Center, Ohio State University and Battelle Center for Mathematical Medicine, Nationwide Children's Hospital, Columbus, Ohio
| | - Jana Velíšková
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Obstetrics & Gynecology, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York
| | - Libor Velíšek
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York.,Department of Neurology, New York Medical College, Valhalla, New York.,Department of Pediatrics, New York Medical College, Valhalla, New York
| |
Collapse
|
8
|
Pottoo FH, Tabassum N, Javed MN, Nigar S, Sharma S, Barkat MA, Harshita, Alam MS, Ansari MA, Barreto GE, Ashraf GM. Raloxifene potentiates the effect of fluoxetine against maximal electroshock induced seizures in mice. Eur J Pharm Sci 2020; 146:105261. [PMID: 32061655 DOI: 10.1016/j.ejps.2020.105261] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/24/2020] [Accepted: 02/07/2020] [Indexed: 01/17/2023]
Abstract
The evidence to guide clinicians regarding rationale polytherapy with current antiepileptic drugs (AEDs) is lacking, and current practice recommendations are largely empirical. The excessive drug loading with combinatorial therapies of existing AEDs are associated with escalated neurotoxicity, and that emergence of pharmacoresistant seizures couldn't be averted. In pursuit of judicious selection of novel AEDs in combinatorial therapies with mechanism based evidences, standardized dose of raloxifene, fluoxetine, bromocriptine and their low dose combinations, were experimentally tested for their impact on maximal electroshock (MES) induced tonic hind limb extension (THLE) in mice. Hippocampal neuropeptide Y (NPY) levels, oxidative stress and histopathological studies were undertaken. The results suggest the potentiating effect of 4 mg/kg raloxifene on 14 mg/kg fluoxetine against MES induced THLE, as otherwise monotherapy with 4 mg/kg raloxifene was unable to produce an effect. The results also depicted better efficacy than carbamazepine (20 mg/kg), standard AED. Most profoundly, MES-induced significant (P < 0.001) reduction in hippocampal NPY levels, that were escalated insignificantly with the duo-drug combination, suggesting some other mechanism in mitigation of electroshock induced seizures. These results were later corroborated with assays to assess oxidative stress and neuronal damage. In conclusion, the results demonstrated the propitious therapeutic benefit of duo-drug low dose combination of drugs; raloxifene and fluoxetine, with diverse mode of actions fetching greater effectiveness in the management of generalized tonic clonic seizures (GTCS).
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441 Saudi Arabia.
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech, University of Kashmir, Srinagar, India.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Research, Jamia Hamdard University, New Delhi, India; School of Pharmaceutical Sciences, Apeejay Stya University, Gurugram, Haryana, India
| | - Shah Nigar
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech, University of Kashmir, Srinagar, India
| | - Shrestha Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Md Abul Barkat
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Harshita
- Department of Pharmaceutics, College of Pharmacy, University of Hafr Al Batin, Al Jamiah, Hafr Al Batin 39524, Saudi Arabia
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R.Mangalam University, Gurgaon, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441 Saudi Arabia
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
9
|
Pottoo FH, Tabassum N, Javed MN, Nigar S, Rasheed R, Khan A, Barkat MA, Alam MS, Maqbool A, Ansari MA, Barreto GE, Ashraf GM. The Synergistic Effect of Raloxifene, Fluoxetine, and Bromocriptine Protects Against Pilocarpine-Induced Status Epilepticus and Temporal Lobe Epilepsy. Mol Neurobiol 2019; 56:1233-1247. [PMID: 29881945 DOI: 10.1007/s12035-018-1121-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/11/2018] [Indexed: 10/14/2022]
Abstract
The present antiepileptic drugs pose several problems in the management of seizures owing to their meager neuroprotective potential, adverse effects on bone, detrimental effects on cognitive function, chronic toxicity, drug interactions, side effects including aggression, agitation, and irritability and sometimes exacerbation of seizures. We followed up progressive preclinical investigation in mice against pilocarpine (PILO)-induced status epilepticus (SE) and temporal lobe epilepsy (TLE). To determine the response of raloxifene (RF) (4 and 8 mg/kg), fluoxetine (FT) (14 and 22 mg/kg), bromocriptine (BC) (6 and 10 mg/kg), and their low-dose combinations, oral treatment was scheduled for 28 days followed by PILO (300 mg/kg, i.p). The response was stalked for intensive behavioral monitoring of convulsions, hippocampal neuropeptide Y (NPY), and oxidative stress discernment along with histomorphological studies. The resultant data confirmed the therapeutic potential of triple drug combination of raloxifene (4 mg/kg) with fluoxetine (14 mg/kg) and bromocriptine (6 mg/kg) compared to monotherapy with raloxifene (4 mg/kg), and bromocriptine (6 mg/kg) as otherwise monotherapy with fluoxetine (14 mg/kg) was ineffective to suppress convulsions; an effect better than sodium valproate (300 mg/kg), a standard AED, was validated. Most profoundly, PILO-induced compensatory increases in hippocampal NPY levels (20.01%), which was escalated (100%) with the triple drug combination. The same pattern of results was superseded for oxidative stress indices and neuronal damage. The results for the first time demonstrate the propitious role of triple drug combination in the management of SE and TLE. Therapeutically, this enhancing profile of drugs fosters a safer and more effective drug-combination regimen. Graphical abstract.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India.
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India.
| | - Md Noushad Javed
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Shah Nigar
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India
| | - Rouqia Rasheed
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India
| | - Ayash Khan
- Department of Pharmaceutical Sciences, Faculty of Applied Sc. and Tech., University of Kashmir, Srinagar, India
| | - Md Abul Barkat
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram, India
| | - Md Sabir Alam
- Department of Pharmacy, School of Medical and Allied Sciences, K.R. Mangalam University, Gurugram, India
| | - Amir Maqbool
- Department of Zoology, Govt. College for Women, M. A. Road, Srinagar, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Pottoo FH, Javed MN, Barkat MA, Alam MS, Nowshehri JA, Alshayban DM, Ansari MA. Estrogen and Serotonin: Complexity of Interactions and Implications for Epileptic Seizures and Epileptogenesis. Curr Neuropharmacol 2019; 17:214-231. [PMID: 29956631 PMCID: PMC6425080 DOI: 10.2174/1570159x16666180628164432] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
A burgeoning literature documents the confluence of ovarian steroids and central serotonergic systems in the injunction of epileptic seizures and epileptogenesis. Estrogen administration in animals reduces neuronal death from seizures by up-regulation of the prosurvival molecule i.e. Bcl-2, anti-oxidant potential and protection of NPY interneurons. Serotonin modulates epileptiform activity in either direction i.e administration of 5-HT agonists or reuptake inhibitors leads to the activation of 5-HT3 and 5-HT1A receptors tending to impede focal and generalized seizures, while depletion of brain 5-HT along with the destruction of serotonergic terminals leads to expanded neuronal excitability hence abatement of seizure threshold in experimental animal models. Serotonergic neurotransmission is influenced by the organizational activity of steroid hormones in the growing brain and the actuation effects of steroids which come in adulthood. It is further established that ovarian steroids bring induction of dendritic spine proliferation on serotonin neurons thus thawing a profound effect on serotonergic transmission. This review features 5-HT1A and 5-HT3 receptors as potential targets for ameliorating seizure-induced neurodegeneration and recurrent hypersynchronous neuronal activity. Indeed 5-HT3 receptors mediate cross-talk between estrogenic and serotonergic pathways, and could be well exploited for combinatorial drug therapy against epileptogenesis.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Address correspondence to these authors at the Department of Epidemic Disease Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia; E-mail: and Department of Pharmacology, College of Clinical Pharmacy, 31441 Imam Abdulrahman Bin Faisal University, (Formerly University of Dammam), Dammam, Saudi Arabia; E-mail:
| | | | | | | | | | | | - Mohammad Azam Ansari
- Address correspondence to these authors at the Department of Epidemic Disease Research, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (Formerly University of Dammam), Dammam 31441, Saudi Arabia; E-mail: and Department of Pharmacology, College of Clinical Pharmacy, 31441 Imam Abdulrahman Bin Faisal University, (Formerly University of Dammam), Dammam, Saudi Arabia; E-mail:
| |
Collapse
|
11
|
Marchese E, Corvino V, Di Maria V, Furno A, Giannetti S, Cesari E, Lulli P, Michetti F, Geloso MC. The Neuroprotective Effects of 17β-Estradiol Pretreatment in a Model of Neonatal Hippocampal Injury Induced by Trimethyltin. Front Cell Neurosci 2018; 12:385. [PMID: 30416427 PMCID: PMC6213803 DOI: 10.3389/fncel.2018.00385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Hippocampal dysfunction plays a central role in neurodevelopmental disorders, resulting in severe impairment of cognitive abilities, including memory and learning. On this basis, developmental studies represent an important tool both to understanding the cellular and molecular phenomena underlying early hippocampal damage and to study possible therapeutic interventions, that may modify the progression of neuronal death. Given the modulatory role played by 17β-estradiol (E2) on hippocampal functions and its neuroprotective properties, the present study investigates the effects of pretreatment with E2 in a model of neonatal hippocampal injury obtained by trimethyltin (TMT) administration, characterized by neuronal loss in CA1 and CA3 subfields and astroglial and microglial activation. At post-natal days (P)5 and P6 animals received E2 administration (0.2 mg/kg/die i.p.) or vehicle. At P7 they received a single dose of TMT (6.5 mg/kg i.p.) and were sacrificed 72 h (P10) or 7 days after TMT treatment (P14). Our findings indicate that pretreatment with E2 exerts a protective effect against hippocampal damage induced by TMT administration early in development, reducing the extent of neuronal death in the CA1 subfield, inducing the activation of genes involved in neuroprotection, lowering the neuroinflammatory response and restoring neuropeptide Y- and parvalbumin- expression, which is impaired in the early phases of TMT-induced damage. Our data support the efficacy of estrogen-based neuroprotective approaches to counteract early occurring hippocampal damage in the developing hippocampus.
Collapse
Affiliation(s)
- Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Epilepsy Center, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Alfredo Furno
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Giannetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Cesari
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, Italy
| | - Paola Lulli
- Laboratorio di Biochimica Clinica e Biologia Molecolare, IRCCS Fondazione Policlinico A. Gemelli, Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy.,Facoltà di Medicina e Chirurgia - IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, Milan, Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
12
|
Iqbal R, Jain GK, Siraj F, Vohora D. Aromatase inhibition by letrozole attenuates kainic acid-induced seizures but not neurotoxicity in mice. Epilepsy Res 2018; 143:60-69. [PMID: 29665500 DOI: 10.1016/j.eplepsyres.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/02/2018] [Accepted: 04/07/2018] [Indexed: 12/11/2022]
Abstract
Evidence shows neurosteroids play a key role in regulating epileptogenesis. Neurosteroids such as testosterone modulate seizure susceptibility through its transformation to metabolites which show proconvulsant and anticonvulsant effects, respectively. Reduction of testosterone by aromatase generates proconvulsant 17-β estradiol. Alternatively, testosterone is metabolized into 5α-dihydrotestosterone (5α-DHT) by 5α-reductase, which is then reduced by 3α-hydroxysteroid oxidoreductase enzyme (3α-HSOR) to form anticonvulsant metabolite 3α-androstanediol (3α-Diol), a potent GABAA receptor modulating neurosteroid. The present study evaluated whether inhibition of aromatase inhibitor letrozole protects against seizures and neuronal degeneration induced by kainic acid (KA) (10 mg/kg, i.p.) in Swiss albino mice. Letrozole (1 mg/kg, i.p.) administered one hour prior to KA significantly increased the onset time of seizures and reduced the% incidence of seizures. Pretreatment with finasteride, a selective inhibitor of 5α-reductase and indomethacin, a selective inhibitor of 3α-hydroxysteroid oxidoreductase enzyme (3α-HSOR), reversed the protective effects of letrozole in KA-induced seizures in mice. Microscopic examination using cresyl violet staining revealed that letrozole did not modify KA-induced neurotoxicity in the CA1, CA3 and DG region of the hippocampus. Letrozole treatment resulted in the reduced levels of 17-β estradiol and elevated the levels of 5α-dihydrotestosterone (DHT) and 3α-Diol in the hippocampus. Finasteride and indomethacin attenuated letrozole-induced elevations of 5α-DHT and 3α-Diol. Our results indicate the potential anticonvulsant effects of letrozole against KA-induced seizures in mice that might be mediated by inhibiting aromatization of testosterone to 17β-estradiol, a proconvulsant hormone and by redirecting the synthesis to anticonvulsant metabolites, 5α-DHT and 3α-Diol. Acute aromatase inhibition, thus, might be used as an adjuvant in the treatment of status epilepticus and can be pursued further.
Collapse
Affiliation(s)
- Ramsha Iqbal
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Gaurav K Jain
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Fouzia Siraj
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, 110029, India
| | - Divya Vohora
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
Iacobas DA, Iacobas S, Nebieridze N, Velíšek L, Velíšková J. Estrogen Protects Neurotransmission Transcriptome During Status Epilepticus. Front Neurosci 2018; 12:332. [PMID: 29973860 PMCID: PMC6019481 DOI: 10.3389/fnins.2018.00332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/30/2018] [Indexed: 01/27/2023] Open
Abstract
Women with epilepsy commonly have premature onset of menopause. The decrease in estrogen levels is associated with increased occurrence of neurodegenerative processes and cognitive decline. Previously, we found that estradiol (E2) replacement in ovariectomized (OVX) female rats significantly reduced the seizure-related damage in the sensitive hilar region of hippocampal dentate gyrus (DG). However, the complex mechanisms by which E2 empowers the genomic fabrics of neurotransmission to resist damaging effects of status epilepticus (SE) are still unclear. We determined the protective effects of the estradiol replacement against kainic acid-induced SE-associated transcriptomic alterations in the DG of OVX rats. Without E2 replacement, SE altered expression of 44% of the DG genes. SE affected all major functional pathways, including apoptosis (61%), Alzheimer's disease (47%), cell cycle (59%), long-term potentiation (62%), and depression (55%), as well as synaptic vesicle cycle (62%), glutamatergic (53%), GABAergic (49%), cholinergic (52%), dopaminergic (55%), and serotonergic (49%) neurotransmission. However, in rats with E2 replacement the percentage of significantly affected genes after SE was reduced to the average 11% (from 8% for apoptosis to 32% for GABAergic synapse). Interestingly, while SE down-regulated most of the synaptic receptor genes in oil-injected females it had little effect on these receptors after E2-replacement. Our novel Pathway Protection analysis indicated that the E2-replacement prevented SE-related damage from 50% for GABA to 75% for dopaminergic transmission. The 15% synergistic expression between genes involved in estrogen signaling (ESG) and neurotransmission explains why low E2 levels result in down-regulation of neurotransmission. Interestingly, in animals with E2-replacement, SE switched 131 synergistically expressed ESG-neurotransmission gene pairs into antagonistically expressed gene pairs. Thus, the ESG pathway acts like a buffer against SE-induced alteration of neurotransmission that may contribute to the E2-mediated maintenance of brain function after the SE injury in postmenopausal women. We also show that the long-term potentiation is lost in OVX rats following SE but not in those with E2 replacement. The electrophysiological findings in OVX female rats with SE are corroborated by the high percentage of long-term potentiation regulated genes (62%) in oil-injected while only 13% of genes were regulated following SE in E2-replaced rats.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Center for Computational Systems Biology, Prairie View A&M University, Prairie View, TX, United States.,DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Sanda Iacobas
- Center for Computational Systems Biology, Prairie View A&M University, Prairie View, TX, United States.,Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Nino Nebieridze
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, United States
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, United States.,Department of Pediatrics, New York Medical College, Valhalla, NY, United States.,Department of Neurology, New York Medical College, Valhalla, NY, United States
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, United States.,Department of Neurology, New York Medical College, Valhalla, NY, United States.,Department of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
14
|
Lee DY, Hong SH, Kim B, Lee DS, Yu K, Lee KS. Neuropeptide Y mitigates ER stress–induced neuronal cell death by activating the PI3K–XBP1 pathway. Eur J Cell Biol 2018; 97:339-348. [DOI: 10.1016/j.ejcb.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/17/2023] Open
|
15
|
Surcheva S, Marchev S, Tashev R, Belcheva S, Vlaskovska M. Action of adrenal and gonadal steroid hormones on kainic acid-evoked seizures in a rat model of epileptogenesis. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1376598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Slavina Surcheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, Sofia, Bulgaria
| | - Stanislav Marchev
- Department of Pharmacology and Toxicology, Medical University of Sofia, Sofia, Bulgaria
| | - Roman Tashev
- Department of Pathophysiology, Medical University of Sofia, Sofia, Bulgaria
| | - Stilyana Belcheva
- Department of Behavioural Neurobiology, Bulgarian Academy of Sciences, Institute of Neurobiology, Sofia, Bulgaria
- Department of Special Education and Logopaedics, Faculty of Pre-school and Primary School Education, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
| | - Mila Vlaskovska
- Department of Pharmacology and Toxicology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
16
|
Everybody's Got the Fever…Be it Fahrenheit or Centigrade. Epilepsy Curr 2017; 17:303-305. [DOI: 10.5698/1535-7597.17.5.303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Chachua T, Di Grazia P, Chern CR, Johnkutty M, Hellman B, Lau HA, Shakil F, Daniel M, Goletiani C, Velíšková J, Velíšek L. Estradiol does not affect spasms in the betamethasone-NMDA rat model of infantile spasms. Epilepsia 2016; 57:1326-36. [PMID: 27328917 PMCID: PMC10765244 DOI: 10.1111/epi.13434] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study attempted to validate the effects of neonatal estradiol in ameliorating the spasms in the prenatally betamethasone-primed N-methyl-d-aspartate (NMDA) model of infantile spasms in rats as shown previously in a mouse Arx gene knock-in expansion model of infantile spasms. METHODS Neonatal rats prenatally exposed to betamethasone (on day 15 of pregnancy) were treated with subcutaneous 40 ng/g estradiol benzoate (EB) between postnatal days (P)3-P10 or P0-P5. A synthetic estrogen analogue, diethylstilbestrol, was used between P0 and P5 (2 μg per rat, s.c.). On P12, P13, and P15, the rats were subjected to NMDA-triggered spasms, and latency to onset and number of spasms were evaluated. Rats with EB on P3-P10 were tested after spasms in the open field, novel object recognition, and elevated plus maze to determine effects of treatment on behavior. Additional rats with P3-P10 or P0-P5 EB were investigated for γ-aminobutyric acid (GABA)ergic neurons (glutamate decarboxylase [GAD]67 expression) in the neocortex. As a positive control, a group of rats received either subcutaneous adrenocorticotropic hormone (ACTH) (2 × 0.3 mg/kg on P12 and 3 × 0.3 mg/kg on P13 and P14) or vehicle after the first episode of spasms on P12. RESULTS Neither EB treatment nor diethylstilbestrol consistently affected expression of spasms in this model, although we found a significant increase in GAD67-immunopositive cells in the neocortex after P3-P10 and P0-P5 EB treatment, consistent with a study in mice. Behavioral tests showed increase in lateralization in male rats treated with P3-P10 EB, a behavioral trait usually associated with female sex. Diethylstilbestrol treatment in male rats resulted in arrested pubertal descent of testes. ACTH had robust effects in suppressing spasms. SIGNIFICANCE Treatment of infantile spasms (IS) using neonatal EB may be justified in those cases of IS that present with detectable deficits in GABAergic neurons. In other types of IS, the efficacy of neonatal EB and its analogues is not supported.
Collapse
Affiliation(s)
- Tamar Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Paola Di Grazia
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Chian-Ru Chern
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Meenu Johnkutty
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Benjamin Hellman
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Ho An Lau
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Faariah Shakil
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Margaret Daniel
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Cezar Goletiani
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
18
|
Use of Gonadotropin-Releasing Hormone for Intractable Seizures in a Girl with Precocious Puberty without Hypothalamic Hamartoma. J Pediatr 2016; 174:264-6. [PMID: 27156180 DOI: 10.1016/j.jpeds.2016.03.078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/15/2016] [Accepted: 03/31/2016] [Indexed: 02/07/2023]
Abstract
The use of gonadotropin-releasing hormone analogs has been reported in the treatment of gelastic seizures and precocious puberty associated with hypothalamic hamartomas, but not in other seizure types without hypothalamic hamartoma. We describe a 7.5 year-old girl whose seizures subsided after gonadotropin-releasing hormone analog implant, administered for precocious puberty.
Collapse
|
19
|
Afsordeh N, Heydari A, Salami M, Sadat Alavi S, Arbabi E, Karimi S, Hamidi G. Effect of Estradiol and Soy Extract on the Onset of PTZ-Induced Seizure in Ovariectomized Rats: Implications for Nurses and Midwives. Nurs Midwifery Stud 2016. [DOI: 10.17795/nmsjournal33428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
20
|
Velíšková J, Iacobas D, Iacobas S, Sidyelyeva G, Chachua T, Velíšek L. Oestradiol Regulates Neuropeptide Y Release and Gene Coupling with the GABAergic and Glutamatergic Synapses in the Adult Female Rat Dentate Gyrus. J Neuroendocrinol 2015; 27:911-20. [PMID: 26541912 DOI: 10.1111/jne.12332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/03/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
Neuropeptide Y (NPY) is an endogenous modulator of neuronal activity affecting both GABAergic and glutamatergic transmission. Previously, we found that oestradiol modifies the number of NPY immunoreactive neurones in the hippocampal dentate gyrus. In the present study, we investigated which oestrogen receptor type is responsible for these changes in the number of NPY-positive neurones. Furthermore, we determined the effects of oestrogen receptor activation on NPY release. Finally, we examined the contribution of oestrogen toward the remodelling of the GABAergic and glutamatergic gene networks in terms of coupling with Npy gene expression in ovariectomised rats. We found that activation of either oestrogen receptor type (ERα or ERβ) increases the number of NPY-immunopositive neurones and enhances NPY release in the dentate gyrus. We also found that, compared to oestrogen-lacking ovariectomised rats, oestrogen replacement increases the probability of synergistic/antagonistic coupling between the Npy and GABAergic synapse genes, whereas the glutamatergic synapse genes are less likely to be coupled with Npy under similar conditions. The data together suggest that oestrogens play a critical role in the regulation of NPY system activity and are also involved in the coupling/uncoupling of the Npy gene with the GABAergic and glutamatergic synapses in the female rat dentate gyrus.
Collapse
Affiliation(s)
- J Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - D Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
- DP Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - S Iacobas
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - G Sidyelyeva
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - T Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | - L Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
- Department of Neurology, New York Medical College, Valhalla, NY, USA
- Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| |
Collapse
|
21
|
Corvino V, Di Maria V, Marchese E, Lattanzi W, Biamonte F, Michetti F, Geloso MC. Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats. Front Cell Neurosci 2015; 9:433. [PMID: 26594149 PMCID: PMC4633568 DOI: 10.3389/fncel.2015.00433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022] Open
Abstract
Given the well-documented involvement of estrogens in the modulation of hippocampal functions in both physiological and pathological conditions, the present study investigates the effects of 17-beta estradiol (E2) administration in the rat model of hippocampal neurodegeneration induced by trimethyltin (TMT) administration (8 mg/kg), characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields, associated with astroglial and microglial activation, seizures and cognitive impairment. After TMT/saline treatment, ovariectomized animals received two doses of E2 (0.2 mg/kg intra-peritoneal) or vehicle, and were sacrificed 48 h or 7 days after TMT-treatment. Our results indicate that in TMT-treated animals E2 administration induces the early (48 h) upregulation of genes involved in neuroprotection and synaptogenesis, namely Bcl2, trkB, cadherin 2 and cyclin-dependent-kinase-5. Increased expression levels of glutamic acid decarboxylase (gad) 67, neuropeptide Y (Npy), parvalbumin, Pgc-1α and Sirtuin 1 genes, the latter involved in parvalbumin (PV) synthesis, were also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT treatment showed that although E2 does not significantly influence the extent of TMT-induced neuronal death, significantly enhances the TMT-induced modulation of GABAergic interneuron population size in selected hippocampal subfields. In particular, E2 administration causes, in TMT-treated rats, a significant increase in the number of GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results add information concerning the role of in vivo E2 administration on mechanisms involved in cellular plasticity in the adult brain.
Collapse
Affiliation(s)
- Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Filippo Biamonte
- Institute of Histology and Embryology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
22
|
Zhang Y, Huang Y, Liu X, Wang G, Wang X, Wang Y. Estrogen suppresses epileptiform activity by enhancing Kv4.2-mediated transient outward potassium currents in primary hippocampal neurons. Int J Mol Med 2015; 36:865-72. [PMID: 26179130 DOI: 10.3892/ijmm.2015.2287] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/08/2015] [Indexed: 11/05/2022] Open
Abstract
Catamenial epilepsy is a common phenomenon in female epileptic patients that is, in part, influenced by the 17-β-estradiol level during the menstrual cycle, which modulates the strength of the epileptic seizures. However, the underlying mechanism(s) for catamenial epilepsy remains unknown. In the present study, the effect of 17‑β‑estradiol on modulating epileptiform activities was investigated in cultured hippocampal neurons by focusing on the transient outward potassium current. Using the patch clamp technique, 17‑β‑estradiol was demonstrated to have a dose‑dependent U‑shape effect on epileptiform bursting activities in cultured hippocampal neurons; only the low dose (~0.1 ng/ml) of 17‑β‑estradiol had a suppressive effect on the epileptiform activities. The blockade effect of the low dose 17‑β‑estradiol could be suppressed by phrixotoxin2 (PaTx2), a selective channel blocker for voltage‑gated potassium channel type 4.2 (Kv4.2), which mediates the transient outward potassium current. Furthermore, the 17‑β‑estradiol bell‑shape‑like dose‑dependently enhanced the transient outward potassium current, which was inhibited by the estrogen receptor antagonist ICI 182,780. In conclusion, these results indicate that reduced activation of the transient outward potassium current by a high (or none) 17‑β‑estradiol level may enhance the epileptiform bursting activities in neurons, which may be one of the triggering causes for catamenial epilepsy, and therefore, maintaining a certain low 17‑β‑estradiol level may aid in the control of catamenial epilepsy.
Collapse
Affiliation(s)
- Yuwen Zhang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Yian Huang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Xu Liu
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Guoxiang Wang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| | - Yun Wang
- Department of Neurology, Zhongshan Hospital, Collaborative Innovation Center for Brain Science, Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
23
|
D'Amour J, Magagna-Poveda A, Moretto J, Friedman D, LaFrancois JJ, Pearce P, Fenton AA, MacLusky NJ, Scharfman HE. Interictal spike frequency varies with ovarian cycle stage in a rat model of epilepsy. Exp Neurol 2015; 269:102-19. [PMID: 25864929 PMCID: PMC4446145 DOI: 10.1016/j.expneurol.2015.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/27/2014] [Accepted: 04/02/2015] [Indexed: 01/31/2023]
Abstract
In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility.
Collapse
Affiliation(s)
- James D'Amour
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Cantonal Hospital of Basel, Land Institute of Pathology, Mühlemattstrasse 11, CH-4410 Liestal, Switzerland; Sackler Program in Biomedical Sciences, New York University Langone Medical Center, 550 First Ave., New York, NY 10016, USA
| | - Alejandra Magagna-Poveda
- Cantonal Hospital of Basel, Land Institute of Pathology, Mühlemattstrasse 11, CH-4410 Liestal, Switzerland
| | - Jillian Moretto
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA
| | - Daniel Friedman
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Comprehensive Epilepsy Center, New York University Langone Medical Center, 334 34th St., New York, NY 10016, USA
| | - John J LaFrancois
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA
| | - Patrice Pearce
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andre A Fenton
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Rd, Guelph, ON N1G 2W1, Canada
| | - Helen E Scharfman
- The Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Bldg. 35, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, Physiology & Neuroscience, and Psychiatry, New York University Langone Medical Center, One Park Ave, New York, NY 10016, USA.
| |
Collapse
|
24
|
Schauer C, Tong T, Petitjean H, Blum T, Peron S, Mai O, Schmitz F, Boehm U, Leinders-Zufall T. Hypothalamic gonadotropin-releasing hormone (GnRH) receptor neurons fire in synchrony with the female reproductive cycle. J Neurophysiol 2015; 114:1008-21. [PMID: 26063780 DOI: 10.1152/jn.00357.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/09/2015] [Indexed: 11/22/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) controls mammalian reproduction via the hypothalamic-pituitary-gonadal (hpg) axis, acting on gonadotrope cells in the pituitary gland that express the GnRH receptor (GnRHR). Cells expressing the GnRHR have also been identified in the brain. However, the mechanism by which GnRH acts on these potential target cells remains poorly understood due to the difficulty of visualizing and identifying living GnRHR neurons in the central nervous system. We have developed a mouse strain in which GnRHR neurons express a fluorescent marker, enabling the reliable identification of these cells independent of the hormonal status of the animal. In this study, we analyze the GnRHR neurons of the periventricular hypothalamic nucleus in acute brain slices prepared from adult female mice. Strikingly, we find that the action potential firing pattern of these neurons alternates in synchrony with the estrous cycle, with pronounced burst firing during the preovulatory period. We demonstrate that GnRH stimulation is sufficient to trigger the conversion from tonic to burst firing in GnRHR neurons. Furthermore, we show that this switch in the firing pattern is reversed by a potent GnRHR antagonist. These data suggest that endogenous GnRH acts on GnRHR neurons and triggers burst firing in these cells during late proestrus and estrus. Our data have important clinical implications in that they indicate a novel mode of action for GnRHR agonists and antagonists in neurons of the central nervous system that are not part of the classical hpg axis.
Collapse
Affiliation(s)
- Christian Schauer
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, Homburg, Germany
| | - Tong Tong
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, Homburg, Germany
| | - Hugues Petitjean
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, Homburg, Germany
| | - Thomas Blum
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, Homburg, Germany
| | - Sophie Peron
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, Homburg, Germany
| | - Oliver Mai
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany; and
| | - Frank Schmitz
- Department of Anatomy, University of Saarland School of Medicine, Homburg, Germany
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, Homburg, Germany; and
| | - Trese Leinders-Zufall
- Department of Physiology and Center for Integrative Physiology and Molecular Medicine, University of Saarland School of Medicine, Homburg, Germany;
| |
Collapse
|
25
|
Sandhu KV, Yanagawa Y, Stork O. Transcriptional regulation of glutamic acid decarboxylase in the male mouse amygdala by dietary phyto-oestrogens. J Neuroendocrinol 2015; 27:285-92. [PMID: 25650988 DOI: 10.1111/jne.12262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/30/2015] [Accepted: 01/30/2015] [Indexed: 12/26/2022]
Abstract
Phyto-oestrogens are biologically active components of many human and laboratory animal diets. In the present study, we investigated, in adult male mice with C57BL/6 genetic background, the effects of a reduced phyto-oestrogens intake on anxiety-related behaviour and associated gene expression in the amygdala. After 6 weeks on a low-phyto-oestrogen diet (< 20 μg/g cumulative phyto-oestrogen content), animals showed reduced centre exploration in an open-field task compared to their littermates on a soybean-based standard diet (300 μg/g). Freezing behaviour in an auditory fear memory task, in contrast, was not affected. We hypothesised that this mildly increased anxiety may involve changes in the function of GABAergic local circuit neurones in the amygdala. Using GAD67(+/GFP) mice, we could demonstrate reduced transcription of the GAD67 gene in the lateral and basolateral amygdala under the low-phyto-oestrogen diet. Analysis of mRNA levels in microdissected samples confirmed this regulation and demonstrated concomitant changes in expression of the second glutamic acid decarboxylase (GAD) isoform, GAD65, as well as the anxiolytic neuropeptide Y. These molecular and behavioural alterations occurred without apparent changes in circulating oestrogens or testosterone levels. Our data suggest that expression regulation of interneurone-specific gene products in the amygdala may provide a mechanism for the control of anxiety-related behaviour through dietary phyto-oestrogens.
Collapse
Affiliation(s)
- K V Sandhu
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | | |
Collapse
|
26
|
Olivetti PR, Maheshwari A, Noebels JL. Neonatal estradiol stimulation prevents epilepsy in Arx model of X-linked infantile spasms syndrome. Sci Transl Med 2014; 6:220ra12. [PMID: 24452264 DOI: 10.1126/scitranslmed.3007231] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Infantile spasms are a catastrophic form of pediatric epilepsy with inadequate treatment. In patients, mutation of ARX, a transcription factor selectively expressed in neuronal precursors and adult inhibitory interneurons, impairs cell migration and causes a major inherited subtype of the disease X-linked infantile spasms syndrome. Using an animal model, the Arx((GCG)10+7) mouse, we determined that brief estradiol (E2) administration during early postnatal development prevented spasms in infancy and seizures in adult mutants. E2 was ineffective when delivered after puberty or 30 days after birth. Early E2 treatment altered mRNA levels of three downstream targets of Arx (Shox2, Ebf3, and Lgi1) and restored depleted interneuron populations without increasing GABAergic synaptic density. Postnatal E2 treatment may induce lasting transcriptional changes that lead to enduring disease modification and could potentially serve as a therapy for inherited interneuronopathies.
Collapse
Affiliation(s)
- Pedro R Olivetti
- Blue Bird Circle Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
27
|
Chachua T, Goletiani C, Maglakelidze G, Sidyelyeva G, Daniel M, Morris E, Miller J, Shang E, Wolgemuth DJ, Greenberg DA, Velíšková J, Velíšek L. Sex-specific behavioral traits in the Brd2 mouse model of juvenile myoclonic epilepsy. GENES BRAIN AND BEHAVIOR 2014; 13:702-12. [PMID: 25130458 DOI: 10.1111/gbb.12160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/23/2022]
Abstract
Idiopathic generalized epilepsy represents about 30-35% of all epilepsies in humans. The bromodomain BRD2 gene has been repeatedly associated with the subsyndrome of juvenile myoclonic epilepsy (JME). Our previous work determined that mice haploinsufficient in Brd2 (Brd2+/-) have increased susceptibility to provoked seizures, develop spontaneous seizures and have significantly decreased gamma-aminobutyric acid (GABA) markers in the direct basal ganglia pathway as well as in the neocortex and superior colliculus. Here, we tested male and female Brd2+/- and wild-type littermate mice in a battery of behavioral tests (open field, tube dominance test, elevated plus maze, Morris water maze and Barnes maze) to identify whether Brd2 haploinsufficiency is associated with the human behavioral patterns, the so-called JME personality. Brd2+/- females but not males consistently displayed decreased anxiety. Furthermore, we found a highly significant dominance trait (aggression) in the Brd2+/- mice compared with the wild type, more pronounced in females. Brd2+/- mice of either sex did not differ from wild-type mice in spatial learning and memory tests. Compared with wild-type littermates, we found decreased numbers of GABA neurons in the basolateral amygdala, which is consistent with the increase in aggressive behavior. Our results indicate that Brd2+/- haploinsufficient mice show no cognitive impairment but have behavioral traits similar to those found in patients with JME (recklessness, aggression). This suggests that either the BRD2 gene is directly responsible for influencing many traits of JME or it controls upstream regulators of individual phenotypes.
Collapse
Affiliation(s)
- T Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Scharfman HE, MacLusky NJ. Sex differences in the neurobiology of epilepsy: a preclinical perspective. Neurobiol Dis 2014; 72 Pt B:180-92. [PMID: 25058745 DOI: 10.1016/j.nbd.2014.07.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 10/25/2022] Open
Abstract
When all of the epilepsies are considered, sex differences are not always clear, despite the fact that many sex differences are known in the normal brain. Sex differences in epilepsy in laboratory animals are also unclear, although robust effects of sex on seizures have been reported, and numerous effects of gonadal steroids have been shown throughout the rodent brain. Here we discuss several reasons why sex differences in seizure susceptibility are unclear or are difficult to study. Examples of robust sex differences in laboratory rats, such as the relative resistance of adult female rats to the chemoconvulsant pilocarpine compared to males, are described. We also describe a novel method that has shed light on sex differences in neuropathology, which is a relatively new technique that will potentially contribute to sex differences research in the future. The assay we highlight uses the neuronal nuclear antigen NeuN to probe sex differences in adult male and female rats and mice. In females, weak NeuN expression defines a sex difference that previous neuropathological studies have not described. We also show that in adult rats, social isolation stress can obscure the normal effects of 17β-estradiol to increase excitability in area CA3 of the hippocampus. These data underscore the importance of controlling behavioral stress in studies of seizure susceptibility in rodents and suggest that behavioral stress may be one factor that has led to inconsistencies in outcomes of sex differences research. These and other issues have made it difficult to translate our increasing knowledge about the effects of gonadal hormones on the brain to improved treatment for men and women with epilepsy.
Collapse
Affiliation(s)
- Helen E Scharfman
- Department of Child & Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| | - Neil J MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
29
|
Neurosteroids and their role in sex-specific epilepsies. Neurobiol Dis 2014; 72 Pt B:198-209. [PMID: 24960208 DOI: 10.1016/j.nbd.2014.06.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 05/11/2014] [Accepted: 06/14/2014] [Indexed: 01/21/2023] Open
Abstract
Neurosteroids are involved in sex-specific epilepsies. Allopregnanolone and related endogenous neurosteroids in the brain control excessive neuronal excitability and seizure susceptibility. Neurosteroids activate GABA-A receptors, especially extrasynaptic αγδ-GABA-A receptor subtypes that mediate tonic inhibition and thus dampen network excitability. Our studies over the past decade have shown that neurosteroids are broad-spectrum anticonvulsants and confer seizure protection in various animal models. Neurosteroids also exert antiepileptogenic effects. There is emerging evidence on a critical role for neurosteroids in the pathophysiology of the sex-specific forms of epilepsies such as catamenial epilepsy, a menstrual cycle-related seizure disorder in women. Catamenial epilepsy is a neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around the perimenstrual or periovulatory period. Apart from ovarian hormones, fluctuations in neurosteroid levels could play a critical role in this gender-specific epilepsy. Neurosteroids also regulate the plasticity of synaptic and extrasynaptic GABA-A receptors in the hippocampus and other regions involved in epilepsy pathology. Based on these studies, we proposed a neurosteroid replacement therapy for catamenial epilepsy. Thus, neurosteroids are novel drug targets for pharmacotherapy of epilepsy.
Collapse
|
30
|
Velíšková J, Velíšek L. Gonadal status-dependent effects of in vivo β-estradiol administration to female rats on in vitro epileptiform activity induced by low [Mg2+]₀ in combined hippocampus-entorhinal cortex slices. Epilepsy Res 2013; 107:297-301. [PMID: 24113171 DOI: 10.1016/j.eplepsyres.2013.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/09/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022]
Abstract
There are controversial data regarding estrogen effects on neuronal excitability. We investigated whether β-estradiol (EB) administration to ovariectomized (OVX) or gonadally intact female rats alters epileptiform activity within the dentate gyrus network induced in vitro by removing [Mg2+]o in combined hippocampus-entorhinal cortex slices. In vivo EB administration significantly influenced the epileptiform activity in gonadal status-dependent manner. The onset of epileptiform discharges was modestly delayed in slices from OVX rats replaced with physiologically relevant doses of EB but the number of discharges was not affected. In contrast, EB administration to gonadally intact rats had robust effects such that: EB delayed the onset of discharges but significantly increased their number within the dentate gyrus network. Our data suggest that EB in physiologically relevant concentrations does not seem to negatively affect hippocampal neuronal excitability, nevertheless supraphysiological EB levels may enhance seizure severity.
Collapse
Affiliation(s)
- Jana Velíšková
- Departments of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA; Departments of Obstetrics & Gynecology, New York Medical College, Valhalla, NY, USA; Departments of Neurology, New York Medical College, Valhalla, NY, USA.
| | | |
Collapse
|
31
|
Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7:115. [PMID: 23914154 PMCID: PMC3728472 DOI: 10.3389/fncel.2013.00115] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 12/03/2022] Open
Abstract
This article describes the emerging evidence of hormonal influence on epileptogenesis, which is a process whereby a brain becomes progressively epileptic due to an initial precipitating event of diverse origin such as brain injury, stroke, infection, or prolonged seizures. The molecular mechanisms underlying the development of epilepsy are poorly understood. Neuroinflammation and neurodegeneration appear to trigger epileptogenesis. There is an intense search for drugs that truly prevent the development of epilepsy in people at risk. Hormones play an important role in children and adults with epilepsy. Corticosteroids, progesterone, estrogens, and neurosteroids have been shown to affect seizure activity in animal models and in clinical studies. However, the impact of hormones on epileptogenesis has not been investigated widely. There is emerging new evidence that progesterone, neurosteroids, and endogenous hormones may play a role in regulating the epileptogenesis. Corticosterone has excitatory effects and triggers epileptogenesis in animal models. Progesterone has disease-modifying activity in epileptogenic models. The antiepileptogenic effect of progesterone has been attributed to its conversion to neurosteroids, which binds to GABA-A receptors and enhances phasic and tonic inhibition in the brain. Neurosteroids are robust anticonvulsants. There is pilot evidence that neurosteroids may have antiepileptogenic properties. Future studies may generate new insight on the disease-modifying potential of hormonal agents and neurosteroids in epileptogenesis.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center Bryan, TX, USA
| |
Collapse
|
32
|
U-shape suppressive effect of phenol red on the epileptiform burst activity via activation of estrogen receptors in primary hippocampal culture. PLoS One 2013; 8:e60189. [PMID: 23560076 PMCID: PMC3613357 DOI: 10.1371/journal.pone.0060189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 02/22/2013] [Indexed: 02/06/2023] Open
Abstract
Phenol red is widely used in cell culture as a pH indicator. Recently, it also has been reported to have estrogen-like bioactivity and be capable of promoting cell proliferation in different cell lines. However, the effect of phenol red on primary neuronal culture has never been investigated. By using patch clamp technique, we demonstrated that hippocampal pyramidal neurons cultured in neurobasal medium containing no phenol red had large depolarization-associated epileptiform bursting activities, which were rarely seen in neurons cultured in phenol red-containing medium. Further experiment data indicate that the suppressive effect of the phenol red on the abnormal epileptiform burst neuronal activities was U-shape dose related, with the most effective concentration at 28 µM. In addition, this concentration related inhibitory effect of phenol red on the epileptiform neuronal discharges was mimicked by 17-β-estradiol, an estrogen receptor agonist, and inhibited by ICI-182,780, an estrogen receptor antagonist. Our results suggest that estrogen receptor activation by phenol red in the culture medium prevents formation of abnormal, epileptiform burst activity. These studies highlight the importance of phenol red as estrogen receptor stimulator and cautions of careful use of phenol red in cell culture media.
Collapse
|
33
|
Abstract
This review describes the neuroendocrinological aspects of catamenial epilepsy, a menstrual cycle-related seizure disorder in women with epilepsy. Catamenial epilepsy is a multifaceted neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around perimenstrual or periovulatory period. Three types of catamenial seizures (perimenstrual, periovulatory and inadequate luteal) have been identified. The molecular pathophysiology of catamenial epilepsy remains unclear. Cyclical changes in the circulating levels of estrogens and progesterone (P) play a central role in the development of catamenial epilepsy. Endogenous neurosteroids such as allopregnanolone (AP) and allotetrahydrodeoxycorticosterone (THDOC) that modulate seizure susceptibility could play a critical role in catamenial epilepsy. In addition, plasticity in GABA-A receptor subunits could play a role in the enhanced seizure susceptibility in catamenial epilepsy. P-derived neurosteroids such as AP and THDOC potentiate synaptic GABA-A receptor function and also activate extrasynaptic GABA-A receptors in the hippocampus and thus may represent endogenous regulators of catamenial seizure susceptibility. Experimental studies have shown that neurosteroids confer greater seizure protection in animal models of catamenial epilepsy, especially without evident tolerance to their actions during chronic therapy. In the recently completed NIH-sponsored, placebo controlled phase 3 clinical trial, P therapy proved to be beneficial only in women with perimenstrual catamenial epilepsy but not in non-catamenial subjects. Neurosteroid analogs with favorable profile may be useful in the treatment of catamenial epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, 8447 State Highway 47, MREB Building, Bryan, TX 77807, USA.
| |
Collapse
|
34
|
Velíšková J, Desantis KA. Sex and hormonal influences on seizures and epilepsy. Horm Behav 2013; 63:267-77. [PMID: 22504305 PMCID: PMC3424285 DOI: 10.1016/j.yhbeh.2012.03.018] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/28/2012] [Accepted: 03/29/2012] [Indexed: 11/20/2022]
Abstract
Epilepsy is the third most common chronic neurological disorder. Clinical and experimental evidence supports the role of sex and influence of sex hormones on seizures and epilepsy as well as alterations of the endocrine system and levels of sex hormones by epileptiform activity. Conversely, seizures are sensitive to changes in sex hormone levels, which in turn may affect the seizure-induced neuronal damage. The effects of reproductive hormones on neuronal excitability and seizure-induced damage are complex to contradictory and depend on different mechanisms, which have to be accounted for in data interpretation. Both estradiol and progesterone/allopregnanolone may have beneficial effects for patients with epilepsy. Individualized hormonal therapy should be considered as adjunctive treatment in patients with epilepsy to improve seizure control as well as quality of life.
Collapse
Affiliation(s)
- Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, USA.
| | | |
Collapse
|
35
|
Abstract
Complex, multidirectional interactions between hormones, seizures, and the medications used to control them can present a challenge for clinicians treating patients with epilepsy. Many hormones act as neurosteroids, modulating brain excitability via direct binding sites. Thus, changes in endogenous or exogenous hormone levels can affect the occurrence of seizures directly as well as indirectly through pharmacokinetic effects that alter the concentrations of antiepileptic drugs. The underlying structural and physiological brain abnormalities of epilepsy and the metabolic activity of antiepileptic drugs can adversely affect hypothalamic and gonadal functioning. Knowledge of these complex interactions has increased and can now be incorporated in meaningful treatment approaches for men and women with epilepsy.
Collapse
Affiliation(s)
- Cynthia L Harden
- Division of Epilepsy and Electroencephalography, Hofstra North Shore-LIJ School of Medicine at Hofstra University, Hempstead, NY, USA.
| | | |
Collapse
|
36
|
Leung L, Andrews-Zwilling Y, Yoon SY, Jain S, Ring K, Dai J, Wang MM, Tong L, Walker D, Huang Y. Apolipoprotein E4 causes age- and sex-dependent impairments of hilar GABAergic interneurons and learning and memory deficits in mice. PLoS One 2012; 7:e53569. [PMID: 23300939 PMCID: PMC3534053 DOI: 10.1371/journal.pone.0053569] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 12/03/2012] [Indexed: 11/25/2022] Open
Abstract
Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease (AD). ApoE4 has sex-dependent effects, whereby the risk of developing AD is higher in apoE4-expressing females than males. However, the mechanism underlying the sex difference, in relation to apoE4, is unknown. Previous findings indicate that apoE4 causes age-dependent impairments of hilar GABAergic interneurons in female mice, leading to learning and memory deficits. Here, we investigate whether the detrimental effects of apoE4 on hilar GABAergic interneurons are sex-dependent using apoE knock-in (KI) mice across different ages. We found that in female apoE-KI mice, there was an age-dependent depletion of hilar GABAergic interneurons, whereby GAD67- or somatostatin-positive–but not NPY- or parvalbumin-positive–interneuron loss was exacerbated by apoE4. Loss of these neuronal populations was correlated with the severity of spatial learning deficits at 16 months of age in female apoE4-KI mice; however, this effect was not observed in female apoE3-KI mice. In contrast, we found an increase in the numbers of hilar GABAergic interneurons with advancing age in male apoE-KI mice, regardless of apoE genotype. Moreover, male apoE-KI mice showed a consistent ratio of hilar inhibitory GABAergic interneurons to excitatory mossy cells approximating 1.5 that is independent of apoE genotype and age, whereas female apoE-KI mice exhibited an age-dependent decrease in this ratio, which was exacerbated by apoE4. Interestingly, there are no apoE genotype effects on GABAergic interneurons in the CA1 and CA3 subregions of the hippocampus as well as the entorhinal and auditory cortexes. These findings suggest that the sex-dependent effects of apoE4 on developing AD is in part attributable to inherent sex-based differences in the numbers of hilar GABAergic interneurons, which is further modulated by apoE genotype.
Collapse
Affiliation(s)
- Laura Leung
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Yaisa Andrews-Zwilling
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Seo Yeon Yoon
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Sachi Jain
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Karen Ring
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - Jessica Dai
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Max Mu Wang
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Leslie Tong
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
| | - David Walker
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
| | - Yadong Huang
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, United States of America
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- Biomedical Sciences Graduate Program, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
37
|
Brain-derived neurotrophic factor-estrogen interactions in the hippocampal mossy fiber pathway: implications for normal brain function and disease. Neuroscience 2012; 239:46-66. [PMID: 23276673 DOI: 10.1016/j.neuroscience.2012.12.029] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/13/2012] [Indexed: 12/17/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) and the steroid hormone estrogen exhibit potent effects on hippocampal neurons during development and in adulthood. BDNF and estrogen have also been implicated in the etiology of diverse types of neurological disorders or psychiatric illnesses, or have been discussed as potentially important in treatment. Although both are typically studied independently, it has been suggested that BDNF mediates several of the effects of estrogen in the hippocampus, and that these interactions play a role in the normal brain as well as disease. Here we focus on the mossy fiber (MF) pathway of the hippocampus, a critical pathway in normal hippocampal function, and a prime example of a location where numerous studies support an interaction between BDNF and estrogen in the rodent brain. We first review the temporal and spatially regulated expression of BDNF and estrogen in the MFs, as well as their receptors. Then we consider the results of studies that suggest that 17β-estradiol alters hippocampal function by its influence on BDNF expression in the MF pathway. We also address the hypothesis that estrogen influences the hippocampus by mechanisms related not only to the mature form of BDNF, acting at trkB receptors, but also by regulating the precursor, proBDNF, acting at p75NTR. We suggest that the interactions between BDNF and 17β-estradiol in the MFs are potentially important in the normal function of the hippocampus, and have implications for sex differences in functions that depend on the MFs and in diseases where MF plasticity has been suggested to play an important role, Alzheimer's disease, epilepsy and addiction.
Collapse
|
38
|
Chachua T, Poon KL, Yum MS, Nesheiwat L, DeSantis K, Velíšková J, Velíšek L. Rapamycin has age-, treatment paradigm-, and model-specific anticonvulsant effects and modulates neuropeptide Y expression in rats. Epilepsia 2012; 53:2015-25. [PMID: 23016669 PMCID: PMC3496841 DOI: 10.1111/j.1528-1167.2012.03674.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Rapamycin (RAP) has certain antiepileptogenic features. However, it is unclear whether these effects can be explained by the anticonvulsant action of RAP, which has not been studied. To address this question, we tested potential anticonvulsant effects of RAP in immature and adult rats using different seizure models and treatment paradigms. In addition, we studied changes in the expression of neuropeptide Y (NPY) induced by RAP, which may serve as an indirect target of the RAP action. METHODS A complex approach was adopted to evaluate the anticonvulsant potential of RAP: We used flurothyl-, pentylenetetrazole (PTZ)-, N-methyl-D-aspartate (NMDA)-, and kainic acid (KA)-induced seizures to test the effects of RAP using different pretreatment protocols in immature and adult rats. We also evaluated expression of NPY within the primary motor cortex, hippocampal CA1, and dentate gyrus (DG) after different pretreatments with RAP in immature rats. KEY FINDINGS We found the following: (1) RAP administered with short-term pretreatment paradigms has a weak anticonvulsant potential in the seizure models with compromised inhibition. (2) Lack of RAP efficacy correlates with decreased NPY expression in the cortex, CA1, and DG. Specifically in immature rats, a single dose of RAP (3 mg/kg) 4 or 24 h before seizure testing had anticonvulsant effects against PTZ-induced seizures. In the flurothyl seizure model only the 4-h pretreatment with RAP was anticonvulsant in the both age groups. Short-term pretreatments with RAP had no effects against NMDA- and KA-induced seizures tested in immature rats. Long-term pretreatments with RAP over 8 days did not show beneficial effect in all tested seizure models in developing rats. Moreover, the long-term pretreatment with RAP had a slight proconvulsant effect on KA-induced seizures. In immature rats, any lack of anticonvulsant effect (including proconvulsant effect of multiple doses of RAP) was associated with downregulation of NPY expression in the cortex and DG. In immature animals, after a single dose of RAP with 24 h delay, we found a decrease of NPY expression in DG, and CA1 as well. SIGNIFICANCE Our data show weak age-, treatment paradigm-, and model-specific anticonvulsant effects of RAP as well as loss of those effects after long-term RAP pretreatment associated with downregulation of NPY expression. These findings suggest that RAP is a poor anticonvulsant and may have beneficial effects only against epileptogenesis. In addition, our data present new insights into mechanisms of RAP action on seizures indicating a possible connection between mammalian target of rapamycin (mTOR) signaling and NPY system.
Collapse
Affiliation(s)
- Tamar Chachua
- Department of Cell Biology & Anatomy, New York Medical College, 40 Sunshine Cottage Rd, Valhalla, NY 10595, U.S.A.
| | | | | | | | | | | | | |
Collapse
|
39
|
Nebieridze N, Zhang XL, Chachua T, Velíšek L, Stanton PK, Velíšková J. β-Estradiol unmasks metabotropic receptor-mediated metaplasticity of NMDA receptor transmission in the female rat dentate gyrus. Psychoneuroendocrinology 2012; 37:1845-54. [PMID: 22541715 PMCID: PMC3432293 DOI: 10.1016/j.psyneuen.2012.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 02/13/2012] [Accepted: 03/26/2012] [Indexed: 02/08/2023]
Abstract
Loss of estrogen in women following menopause is associated with increased risk for cognitive decline, dementia and depression, all of which can be prevented by estradiol replacement. The dentate gyrus plays an important role in cognition, learning and memory. The gatekeeping function of the dentate gyrus to filter incoming activity into the hippocampus is modulated by estradiol in a frequency-dependent manner and involves activation of metabotropic glutamate receptors (mGluR). In the present study, we investigated whether estradiol (EB) modulates the metaplastic effect of inducing synaptic long-term potentiation (LTP) on subsequent propensity for expression of LTP in the dentate gyrus. At medial perforant path-dentate granule cell synapses in hippocampal slices of ovariectomized female rats, EB replacement was critical for an initial induction of LTP to enhance the magnitude of subsequent LTP elicited by a second high-frequency stimulation, metaplasticity, which was not present in slices from oil-treated control animals. EB enhanced expression of group I mGluRs, and the metaplastic effect of EB on LTP required activation of group I mGluRs that led to Src-family tyrosine kinase-mediated phosphorylation of NR2B subunits of N-methyl-d-aspartate receptors (NMDAR) that enhanced the magnitude of NMDAR-dependent LTP. Our data show that EB effects on LTP in the hippocampal dentate gyrus require activation of group I mGluRs, which in turn leads to functional metaplastic regulation of NR2B subunit-containing NMDARs, as opposed to direct effects of EB on NMDARs.
Collapse
Affiliation(s)
- Nino Nebieridze
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Xiao-lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Tamar Chachua
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA
| | - Libor Velíšek
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA,Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Patric K. Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA,Department of Neurology, New York Medical College, Valhalla, New York, USA
| | - Jana Velíšková
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, New York, USA,Department of Obstetrics & Gynecology, New York Medical College, Valhalla, New York, USA,Correspondence: Jana Velíšková, MD, PhD, New York Medical College, Department of Cell Biology & Anatomy, Basic Medical Sciences Bldg., Room #A21, Valhalla, NY 10595, USA, , Phone: (914) 594-4840, Fax: (914) 594-4653
| |
Collapse
|
40
|
Verrotti A, D’Egidio C, Agostinelli S, Verrotti C, Pavone P. Diagnosis and management of catamenial seizures: a review. Int J Womens Health 2012; 4:535-541. [PMID: 23071424 PMCID: PMC3469236 DOI: 10.2147/ijwh.s28872] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Catamenial epilepsy is defined as a pattern of seizures that changes in severity during particular phases of the menstrual cycle, wherein estrogens are proconvulsant, increasing the neuronal excitability; and progesterone is anticonvulsant, enhancing GABA-mediated inhibition. Thus, changes in serum estradiol/progesterone ratio throughout a normal reproductive cycle bring about an increased or decreased risk of seizure occurrence. To date, there are no specific drug treatments for catamenial epilepsy however, non-hormonal and hormonal therapies have been proposed. The aim of this review is to report preclinical and clinical evidences about the relationship between female reproductive steroids and epileptic seizures, and to describe treatment approaches for catamenial epilepsy.
Collapse
Affiliation(s)
| | | | | | - Carla Verrotti
- Department of Obstetrics and Gynecology, University of Parma, Catania, Italy
| | - Piero Pavone
- Unit of Paediatrics, University Hospital “Vittorio Emanuele”, Catania, Italy
| |
Collapse
|
41
|
Velíšek L, Shang E, Velíšková J, Chachua T, Macchiarulo S, Maglakelidze G, Wolgemuth DJ, Greenberg DA. GABAergic neuron deficit as an idiopathic generalized epilepsy mechanism: the role of BRD2 haploinsufficiency in juvenile myoclonic epilepsy. PLoS One 2011; 6:e23656. [PMID: 21887291 PMCID: PMC3161054 DOI: 10.1371/journal.pone.0023656] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/22/2011] [Indexed: 11/23/2022] Open
Abstract
Idiopathic generalized epilepsy (IGE) syndromes represent about 30% of all epilepsies. They have strong, but elusive, genetic components and sex-specific seizure expression. Multiple linkage and population association studies have connected the bromodomain-containing gene BRD2 to forms of IGE. In mice, a null mutation at the homologous Brd2 locus results in embryonic lethality while heterozygous Brd2+/− mice are viable and overtly normal. However, using the flurothyl model, we now show, that compared to the Brd2+/+ littermates, Brd2+/− males have a decreased clonic, and females a decreased tonic-clonic, seizure threshold. Additionally, long-term EEG/video recordings captured spontaneous seizures in three out of five recorded Brd2+/− female mice. Anatomical analysis of specific regions of the brain further revealed significant differences in Brd2+/− vs +/+ mice. Specifically, there were decreases in the numbers of GABAergic (parvalbumin- or GAD67-immunopositive) neurons along the basal ganglia pathway, i.e., in the neocortex and striatum of Brd2+/− mice, compared to Brd2+/+ mice. There were also fewer GABAergic neurons in the substantia nigra reticulata (SNR), yet there was a minor, possibly compensatory increase in the GABA producing enzyme GAD67 in these SNR cells. Further, GAD67 expression in the superior colliculus and ventral medial thalamic nucleus, the main SNR outputs, was significantly decreased in Brd2+/− mice, further supporting GABA downregulation. Our data show that the non-channel-encoding, developmentally critical Brd2 gene is associated with i) sex-specific increases in seizure susceptibility, ii) the development of spontaneous seizures, and iii) seizure-related anatomical changes in the GABA system, supporting BRD2's involvement in human IGE.
Collapse
Affiliation(s)
- Libor Velíšek
- Department of Cell Biology & Anatomy, New York College of Medicine, Valhalla, New York, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Estrogens are essential for normal brain functions. The effects of estrogens on seizures are contradictory. More studies are necessary to determine under which conditions the estrogens have proconvulsant effects and when the estrogens may have beneficial action in patients with epilepsy.
Collapse
Affiliation(s)
- Jana Velísková
- The Saul R Korey Department of Neurology, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
43
|
Osborne DM, Frye CA. Estrogen increases latencies to seizures and levels of 5alpha-pregnan-3alpha-ol-20-one in hippocampus of wild-type, but not 5alpha-reductase knockout, mice. Epilepsy Behav 2009; 16:411-4. [PMID: 19782646 PMCID: PMC3613142 DOI: 10.1016/j.yebeh.2009.08.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/13/2009] [Accepted: 08/16/2009] [Indexed: 12/16/2022]
Abstract
Sex steroids can influence seizures. Estrogen (E(2)), progesterone (P(4)), and its metabolite, 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), in particular, have received much attention for exerting these effects. Typically, it is thought that E(2) precipitates seizures, and progestogens, such as P(4) and 3alpha,5alpha-THP, attenuate seizures. However, E(2) may also have antiseizure effects, perhaps in part through its enhancement of the formation of 3alpha,5alpha-THP, which has GABA(A)/benzodiazepine receptor agonist-like actions. To test this hypothesis, male and female, castrated or ovariectomized, wild-type and 5alpha-reductase knockout mice were implanted with Silastic capsules of E(2) or vehicle and then administered pentylenetetrazol (85 mg/kg, ip). Wild-type, but not 5alpha-reductase knockout, mice administered E(2) had significantly longer latencies to myoclonus and increased levels of 3alpha,5alpha-THP in the hippocampus. Thus, some of the anticonvulsive effects of E(2) may involve formation of 3alpha,5alpha-THP in the hippocampus.
Collapse
Affiliation(s)
| | - Cheryl A. Frye
- Department of Psychology, University at Albany—SUNY, Albany, NY, USA,Department of Biological Sciences, University at Albany—SUNY, Albany, NY, USA,Center for Life Sciences, University at Albany—SUNY, Albany, NY, USA,Center for Neuroscience Research, University at Albany—SUNY, Albany, NY, USA,Corresponding author. Address: Life Sciences Room 1058, University at Albany—SUNY, Albany, NY 12222, USA. Fax: +1 518 591 8848. (C.A. Frye)
| |
Collapse
|
44
|
Frye CA, Ryan A, Rhodes M. Antiseizure effects of 3alpha-androstanediol and/or 17beta-estradiol may involve actions at estrogen receptor beta. Epilepsy Behav 2009; 16:418-22. [PMID: 19854112 DOI: 10.1016/j.yebeh.2009.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 09/03/2009] [Accepted: 09/06/2009] [Indexed: 10/20/2022]
Abstract
Testosterone (T), the principal androgen secreted by the testes, can have antiseizure effects. Some of these effects may be mediated by T's metabolites. T is metabolized to 3alpha-androstanediol (3alpha-diol). T, but not 3alpha-diol, binds androgen receptor. We investigated effects of 3alpha-diol (1 mg/kg, SC) and/or an androgen receptor blocker (flutamide 10 mg, SC), 1 hour prior to administration of pentylenetetrazol (85 mg/kg, IP). Juvenile male rats administered 3alpha-diol had less seizure activity than those administered vehicle. Flutamide had no effects. T is aromatized to 17beta-estradiol (E(2)), which, like 3alpha-diol, acts at estrogen receptors (ERs). Selective estrogen receptor modulators that favor ERalpha (propyl pyrazole triol, 17alpha-E(2)) or ERbeta (diarylpropionitrile, coumestrol, 3alpha-diol), or both (17beta-E(2)), were administered (0.1 mg/kg, SC) to juvenile male rats 1 hour before pentylenetetrazol. Estrogens with activity at ERbeta, but not those selective for ERalpha, produced antiseizure effects. Actions at ERbeta may underlie some antiseizure effects of T's metabolites.
Collapse
Affiliation(s)
- Cheryl A Frye
- Department of Psychology, University at Albany-SUNY, Albany, NY 12222, USA.
| | | | | |
Collapse
|
45
|
Reddy DS. The role of neurosteroids in the pathophysiology and treatment of catamenial epilepsy. Epilepsy Res 2009; 85:1-30. [PMID: 19406620 PMCID: PMC2696558 DOI: 10.1016/j.eplepsyres.2009.02.017] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/23/2009] [Accepted: 02/25/2009] [Indexed: 01/14/2023]
Abstract
Catamenial epilepsy is a multifaceted neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around perimenstrual or periovulatory period. Generally, a twofold or greater increase in seizure frequency during a particular phase of the menstrual cycle could be considered as catamenial epilepsy. Based on this criteria, recent clinical studies indicate that catamenial epilepsy affects 31-60% of the women with epilepsy. Three types of catamenial seizures (perimenstrual, periovulatory and inadequate luteal) have been identified. However, there is no specific drug available today for catamenial epilepsy, which has not been successfully treated with conventional antiepileptic drugs. Elucidation of the pathophysiology of catamenial epilepsy is a prerequisite to develop specific targeted approaches for treatment or prevention of the disorder. Cyclical changes in the circulating levels of estrogens and progesterone play a central role in the development of catamenial epilepsy. There is emerging evidence that endogenous neurosteroids with anticonvulsant or proconvulsant effects could play a critical role in catamenial epilepsy. It is thought that perimenstrual catamenial epilepsy is associated with the withdrawal of anticonvulsant neurosteroids. Progesterone and other hormonal agents have been shown in limited trials to be moderately effective in catamenial epilepsy, but may cause endocrine side effects. Synthetic neurosteroids, which enhance the tonic GABA-A receptor function, might provide an effective approach for the catamenial epilepsy therapy without producing hormonal side effects.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, 228 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| |
Collapse
|
46
|
Engel J, Moshé SL. Commentary: hormones, diet, and botanicals. Neurotherapeutics 2009; 6:421-3. [PMID: 19332339 PMCID: PMC5084223 DOI: 10.1016/j.nurt.2009.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/05/2009] [Indexed: 10/21/2022] Open
Abstract
In contrast to the high technology-driven interventions discussed in the previous presentations, hormonal therapy, diet, and botanicals are natural interventions that make use of homeostatic or traditional approaches. Clear advantages of these largely adjunctive therapies are discussed, as well as unique obstacles to bringing these alternative interventions into the mainstream.
Collapse
Affiliation(s)
- Jerome Engel
- Department of Neurology, and the Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1769, USA.
| | | |
Collapse
|
47
|
Estradiol facilitates the release of neuropeptide Y to suppress hippocampus-dependent seizures. J Neurosci 2009; 29:1457-68. [PMID: 19193892 DOI: 10.1523/jneurosci.4688-08.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
About one-third of women with epilepsy have a catamenial seizure pattern, in which seizures fluctuate with the menstrual cycle. Catamenial seizures occur more frequently when the ratio of circulating estradiol to progesterone is high, suggesting that estradiol is proconvulsant. We used adult female rats to test how estradiol-induced suppression of GABAergic inhibition in the hippocampus affects behavioral seizures induced by kainic acid. As expected, estradiol decreased the latency to initiate seizures, indicating increased seizure susceptibility. At the same time, however, estradiol also shortened the duration of late-stage seizures, indicating decreased seizure severity. Additional analyses showed that the decrease in seizure severity was attributable to greater release of the anticonvulsant neuropeptide, neuropeptide Y (NPY). First, blocking hippocampal NPY during seizures eliminated the estradiol-induced decrease in seizure duration. Second, light and electron microscopic studies indicated that estradiol increases the potentially releasable pool of NPY in inhibitory presynaptic boutons and facilitates the release of NPY from inhibitory boutons during seizures. Finally, the presence of estrogen receptor-alpha on large dense-core vesicles (LDCVs) in the hippocampus suggests that estradiol could facilitate neuropeptide release by acting directly on LDCVs themselves. Understanding how estradiol regulates NPY-containing LDCVs could point to molecular targets for novel anticonvulsant therapies.
Collapse
|
48
|
Neuroprotection against excitotoxic brain injury in mice after ovarian steroid depletion. Brain Res 2009; 1265:37-46. [PMID: 19236850 DOI: 10.1016/j.brainres.2009.02.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/10/2009] [Indexed: 11/21/2022]
Abstract
Ovarian steroid hormones influence not only seizure phenomena, but also the neuronal cell death that follows. In the present study, we applied two models of ovarian steroid loss, ovariectomy and chemically-induced ovarian failure, to evaluate kainate-induced seizure activity and the susceptibility of hippocampal neurons to seizure-induced neurodegeneration. Young adult female FVB/NJ mice were ovariectomized with (OVX+E, n=6) or without (OVX, n=8) estrogen replacement. A separate group of females received the ovotoxin, 4-vinylcyclohexene diepoxide (VCD, n=8) to deplete ovarian follicles. Mice underwent kainate-induced status epilepticus and were evaluated for seizure activity (3 h) and delayed hippocampal neuronal injury (7 days). While there were no differences in latency or duration of severe seizures among control, OVX and VCD-treated mice, OVX+E mice exhibited seizures of a significantly longer duration. However, both VCD-induced ovarian failure and OVX led to a dramatic reduction in the extent of excitotoxic cell death, with slightly greater effects observed in VCD-treated mice. Estradiol administration to OVX mice also exerted a significant neuroprotective effect against kainate-induced cell death. These results support and extend earlier findings suggesting that the hormonal milieu may have differential effects on seizure susceptibility that are separate and distinct from those influencing hippocampal neuronal vulnerability. Collectively, these findings highlight the complex interactions among the loss of ovarian steroid hormones, estrogen replacement, seizures, and seizure-induced cell death.
Collapse
|
49
|
Scharfman HE, MacLusky NJ. Estrogen-growth factor interactions and their contributions to neurological disorders. Headache 2008; 48 Suppl 2:S77-89. [PMID: 18700946 DOI: 10.1111/j.1526-4610.2008.01200.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Estrogen has diverse and powerful effects in the brain, including actions on neurons, glia, and the vasculature. It is not surprising, therefore, that there are many changes in the female brain as serum estradiol levels rise and fall during the normal ovarian cycle. At times of life when estradiol levels change dramatically, such as puberty, postpartum, or menopause, there also are dramatic changes in the central nervous system. Changes that occur because of fluctuations in serum estrogen levels are potentially relevant to neurological disorders because symptoms often vary with the time of the ovarian cycle. Moreover, neurological disorders (eg, seizures and migraine) often increase in frequency in women when estradiol levels change. In this review, the contribution of 2 growth factors targeted by estrogen, the neurotrophin brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), will be discussed. Estrogen-sensitive response elements are present on the genes for both BDNF and VEGF, and they are potent modulators of neuronal, glial, and vascular function, making them logical candidates to mediate the multitude of effects of estrogen. In addition, BDNF induces neuropeptide Y, which has diverse actions that are relevant to estrogen action and to the same neurological disorders.
Collapse
Affiliation(s)
- Helen E Scharfman
- Nathan Kline Institute for Psychiatric Research & New York University School of Medicine, Orangeburg, NY 10962, USA
| | | |
Collapse
|
50
|
Velísek L, Velísková J, Chudomel O, Poon KL, Robeson K, Marshall B, Sharma A, Moshé SL. Metabolic environment in substantia nigra reticulata is critical for the expression and control of hypoglycemia-induced seizures. J Neurosci 2008; 28:9349-62. [PMID: 18799669 PMCID: PMC2615494 DOI: 10.1523/jneurosci.3195-08.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 07/31/2008] [Indexed: 11/21/2022] Open
Abstract
Seizures represent a common and serious complication of hypoglycemia. Here we studied mechanisms of control of hypoglycemic seizures induced by insulin injection in fasted and nonfasted rats. We demonstrate that fasting predisposes rats to more rapid and consistent development of hypoglycemic seizures. However, the fasting-induced decrease in baseline blood glucose concentration cannot account for the earlier onset of seizures in fasted versus nonfasted rats. Data obtained with c-Fos immunohistochemistry and [14C]2-deoxyglucose uptake implicate a prominent involvement of the substantia nigra reticulata (SNR) among other structures in the hypoglycemic seizure control. This is supported by data showing that fasting decreases the SNR expression of K(ATP) channels, which link metabolism with activity, and is further confirmed with microinfusions of K(ATP) channel agonist and antagonist. Data obtained with whole-cell and perforated patch recordings from SNR neurons in slices in vitro demonstrate that both presynaptic and postsynaptic K(ATP) channels participate in the failure of the SNR to control hypoglycemic seizures. The results suggest that fasting and insulin-induced hypoglycemia can lead to impairment in the function of the SNR, leading thus to hypoglycemic seizures.
Collapse
Affiliation(s)
- Libor Velísek
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | | | | | | | | | |
Collapse
|