1
|
Pindwarawala M, Abid FA, Lee J, Miller ML, Noppers JS, Rideout AP, Agosto MA. Defective glycosylation and ELFN1 binding of mGluR6 congenital stationary night blindness mutants. Life Sci Alliance 2025; 8:e202403118. [PMID: 39681475 DOI: 10.26508/lsa.202403118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024] Open
Abstract
Synaptic transmission from photoreceptors to ON-bipolar cells (BCs) requires the postsynaptic metabotropic glutamate receptor mGluR6, located at BC dendritic tips. Binding of the neurotransmitter glutamate initiates G protein signaling that regulates the TRPM1 transduction channel. mGluR6 also interacts with presynaptic ELFN adhesion proteins, and these interactions are important for mGluR6 synaptic localization. The mechanisms of mGluR6 trafficking and synaptic targeting remain poorly understood. In this study, we investigated mGluR6 missense mutations from patients with congenital stationary night blindness (CSNB), which is associated with loss of synaptic transmission to ON-BCs. We found that multiple CSNB mutations in the extracellular ligand-binding domain of mGluR6 impart a trafficking defect leading to lack of complex N-glycosylation but efficient plasma membrane insertion, suggesting a Golgi bypass mechanism. These mutants fail to bind ELFN1, consistent with lack of a necessary modification normally acquired in the Golgi. The same mutants were mislocalized in bipolar cells, explaining the loss of function in CSNB. The results reveal a key role of Golgi trafficking in mGluR6 function, and suggest a role of the extracellular domain in Golgi sorting.
Collapse
Affiliation(s)
| | - Faiyaz Ak Abid
- Department of Microbiology and Immunology, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Jaeeun Lee
- Medical Sciences Program, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Michael L Miller
- Medical Sciences Program, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Juliet S Noppers
- Medical Sciences Program, Faculty of Science, Dalhousie University, Halifax, Canada
| | - Andrew P Rideout
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
| | - Melina A Agosto
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Canada
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Canada
- Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Canada
| |
Collapse
|
2
|
Ramakrishnan P, Kenworthy MK, Alexis JA, Thompson JA, Lamey TM, Chen FK. Non-syndromic OTX2-associated pattern dystrophy: a 10-year multimodal imaging study. Doc Ophthalmol 2024; 149:115-123. [PMID: 39023660 PMCID: PMC11442598 DOI: 10.1007/s10633-024-09983-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE To report novel multimodal imaging features and long-term follow-up of Orthodenticle Homeobox 2 (OTX2)-associated pattern Gdystrophy. METHODS A 14-year-old boy referred with glaucoma suspect and macular pigmentation underwent fundus autofluorescence imaging, optical coherence tomography, fluorescein and indocyanine green angiography, visual field test, microperimetry and electrophysiology over a ten-year period. Next-generation sequencing panel identified a de novo heterozygous likely pathogenic OTX2 variant, c.259G>A, [p.(Glu87Lys)]. RESULTS Visual acuity was 20/40 OD and 20/30 OS. Examination showed bilateral enlarged optic nerve heads and increased disc cupping, multiple cilioretinal arteries, a pigmentary maculopathy with stellate-shaped region of hypoautofluorescence, shallow serous macular detachment, subretinal deposits and temporal avascular retina. Angiography showed no source of leakage and absence of retinal neovascularisation despite extensive peripheral non perfusion. Electrophysiological assessments demonstrated mild progressive rod and cone pathway abnormalities, reduced light-adapted b:a ratio, and reduced Arden ratio on electro-oculogram. Ten-year follow-up confirmed a stable disease course despite persistent submacular fluid. There was no associated pituitary structural abnormality or dysfunction. CONCLUSIONS This case study contributes to further understanding of OTX2-associated pattern dystrophy, highlighting its stability over 10 years. Further investigation into inter-individual and intrafamilial variability is warranted.
Collapse
Affiliation(s)
| | - Matthew K Kenworthy
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Jonathan A Alexis
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Tina M Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Fred K Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, WA, Australia.
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia.
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
- Department of Surgery, University of Melbourne, Melbourne, VIC, Australia.
- Lions Eye Institute, Perth, WA, Australia.
| |
Collapse
|
3
|
Barão S, Xu Y, Llongueras JP, Vistein R, Goff L, Nielsen KJ, Bae BI, Smith RS, Walsh CA, Stein-O'Brien G, Müller U. Conserved transcriptional regulation by BRN1 and BRN2 in neocortical progenitors drives mammalian neural specification and neocortical expansion. Nat Commun 2024; 15:8043. [PMID: 39271675 PMCID: PMC11399407 DOI: 10.1038/s41467-024-52443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
The neocortex varies in size and complexity among mammals due to the tremendous variability in the number and diversity of neuronal subtypes across species. The increased cellular diversity is paralleled by the expansion of the pool of neocortical progenitors and the emergence of indirect neurogenesis during brain evolution. The molecular pathways that control these biological processes and are disrupted in neurological disorders remain largely unknown. Here we show that the transcription factors BRN1 and BRN2 have an evolutionary conserved function in neocortical progenitors to control their proliferative capacity and the switch from direct to indirect neurogenesis. Functional studies in mice and ferrets show that BRN1/2 act in concert with NOTCH and primary microcephaly genes to regulate progenitor behavior. Analysis of transcriptomics data from genetically modified macaques provides evidence that these molecular pathways are conserved in non-human primates. Our findings thus demonstrate that BRN1/2 are central regulators of gene expression programs in neocortical progenitors critical to determine brain size during evolution.
Collapse
Affiliation(s)
- Soraia Barão
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Yijun Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - José P Llongueras
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Vistein
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Loyal Goff
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Kristina J Nielsen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Byoung-Il Bae
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06032, USA
| | - Richard S Smith
- Northwestern University, Feinberg School of Medicine, Department of Pharmacology, Chicago, IL, 60611, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Genevieve Stein-O'Brien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
4
|
Honnell V, Sweeney S, Norrie J, Parks M, Ramirez C, Jannu AJ, Xu B, Teubner B, Lee AY, Bell C, Dyer MA. Evolutionary conservation of VSX2 super-enhancer modules in retinal development. Development 2024; 151:dev202435. [PMID: 38994775 PMCID: PMC11266796 DOI: 10.1242/dev.202435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/04/2024] [Indexed: 07/13/2024]
Abstract
Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. We recently identified developmental stage- and cell type-specific modules within the murine Vsx2 SE. Here, we show that the human VSX2 SE modules have similar developmental stage- and cell type-specific activity in reporter gene assays. By inserting the human sequence of one VSX2 SE module into a mouse with microphthalmia, eye size was rescued. To understand the function of these SE modules during human retinal development, we deleted individual modules in human embryonic stem cells and generated retinal organoids. Deleting one module results in small organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion of the other module led to disruptions in bipolar neuron development. This prototypical SE serves as a model for understanding developmental stage- and cell type-specific effects of neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms contributes to phenotypic diversity and disease.
Collapse
Affiliation(s)
- Victoria Honnell
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shannon Sweeney
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jackie Norrie
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Madison Parks
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Asha Jacob Jannu
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett Teubner
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ah Young Lee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Claire Bell
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael A. Dyer
- Department of Developmental Neurobiology at St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
5
|
Barão S, Xu Y, Llongueras JP, Vistein R, Goff L, Nielsen K, Bae BI, Smith RS, Walsh CA, Stein-O'Brien G, Müller U. BRN1/2 Function in Neocortical Size Determination and Microcephaly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565322. [PMID: 37961182 PMCID: PMC10635068 DOI: 10.1101/2023.11.02.565322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mammalian neocortex differs vastly in size and complexity between mammalian species, yet the mechanisms that lead to an increase in brain size during evolution are not known. We show here that two transcription factors coordinate gene expression programs in progenitor cells of the neocortex to regulate their proliferative capacity and neuronal output in order to determine brain size. Comparative studies in mice, ferrets and macaques demonstrate an evolutionary conserved function for these transcription factors to regulate progenitor behaviors across the mammalian clade. Strikingly, the two transcriptional regulators control the expression of large numbers of genes linked to microcephaly suggesting that transcriptional deregulation as an important determinant of the molecular pathogenesis of microcephaly, which is consistent with the finding that genetic manipulation of the two transcription factors leads to severe microcephaly.
Collapse
|
6
|
Miller ML, Pindwarawala M, Agosto MA. Complex N-glycosylation of mGluR6 is required for trans-synaptic interaction with ELFN adhesion proteins. J Biol Chem 2024; 300:107119. [PMID: 38428819 PMCID: PMC10973816 DOI: 10.1016/j.jbc.2024.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/30/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Synaptic transmission from retinal photoreceptors to downstream ON-type bipolar cells (BCs) depends on the postsynaptic metabotropic glutamate receptor mGluR6, located at the BC dendritic tips. Glutamate binding to mGluR6 initiates G-protein signaling that ultimately leads to BC depolarization in response to light. The mGluR6 receptor also engages in trans-synaptic interactions with presynaptic ELFN adhesion proteins. The roles of post-translational modifications in mGluR6 trafficking and function are unknown. Treatment with glycosidase enzymes PNGase F and Endo H demonstrated that both endogenous and heterologously expressed mGluR6 contain complex N-glycosylation acquired in the Golgi. Pull-down experiments with ELFN1 and ELFN2 extracellular domains revealed that these proteins interact exclusively with the complex glycosylated form of mGluR6. Mutation of the four predicted N-glycosylation sites, either singly or in combination, revealed that all four sites are glycosylated. Single mutations partially reduced, but did not abolish, surface expression in heterologous cells, while triple mutants had little or no surface expression, indicating that no single glycosylation site is necessary or sufficient for plasma membrane trafficking. Mutation at N445 severely impaired both ELFN1 and ELFN2 binding. All single mutants exhibited dendritic tip enrichment in rod BCs, as did the triple mutant with N445 as the sole N-glycosylation site, demonstrating that glycosylation at N445 is sufficient but not necessary for dendritic tip localization. The quadruple mutant was completely mislocalized. These results reveal a key role for complex N-glycosylation in regulating mGluR6 trafficking and ELFN binding, and by extension, function of the photoreceptor synapses.
Collapse
Affiliation(s)
- Michael L Miller
- Faculty of Science, Medical Sciences Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mustansir Pindwarawala
- Faculty of Science, Medical Sciences Program, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Melina A Agosto
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
7
|
Hsiang JC, Shen N, Soto F, Kerschensteiner D. Distributed feature representations of natural stimuli across parallel retinal pathways. Nat Commun 2024; 15:1920. [PMID: 38429280 PMCID: PMC10907388 DOI: 10.1038/s41467-024-46348-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024] Open
Abstract
How sensory systems extract salient features from natural environments and organize them across neural pathways is unclear. Combining single-cell and population two-photon calcium imaging in mice, we discover that retinal ON bipolar cells (second-order neurons of the visual system) are divided into two blocks of four types. The two blocks distribute temporal and spatial information encoding, respectively. ON bipolar cell axons co-stratify within each block, but separate laminarly between them (upper block: diverse temporal, uniform spatial tuning; lower block: diverse spatial, uniform temporal tuning). ON bipolar cells extract temporal and spatial features similarly from artificial and naturalistic stimuli. In addition, they differ in sensitivity to coherent motion in naturalistic movies. Motion information is distributed across ON bipolar cells in the upper and the lower blocks, multiplexed with temporal and spatial contrast, independent features of natural scenes. Comparing the responses of different boutons within the same arbor, we find that axons of all ON bipolar cell types function as computational units. Thus, our results provide insights into the visual feature extraction from naturalistic stimuli and reveal how structural and functional organization cooperate to generate parallel ON pathways for temporal and spatial information in the mammalian retina.
Collapse
Affiliation(s)
- Jen-Chun Hsiang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ning Shen
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Honnell V, Sweeney S, Norrie J, Ramirez C, Xu B, Teubner B, Lee AY, Bell C, Dyer MA. Identification of Evolutionarily Conserved VSX2 Enhancers in Retinal Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562742. [PMID: 37905144 PMCID: PMC10614883 DOI: 10.1101/2023.10.17.562742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Super-enhancers (SEs) are expansive regions of genomic DNA that regulate the expression of genes involved in cell identity and cell fate. Recently, we found that distinct modules within a murine SE regulate gene expression of master regulatory transcription factor Vsx2 in a developmental stage- and cell-type specific manner. Vsx2 is expressed in retinal progenitor cells as well as differentiated bipolar neurons and Müller glia. Mutations in VSX2 in humans and mice lead to microphthalmia due to a defect in retinal progenitor cell proliferation. Deletion of a single module within the Vsx2 SE leads to microphthalmia. Deletion of a separate module within the SE leads to a complete loss of bipolar neurons, yet the remainder of the retina develops normally. Furthermore, the Vsx2 SE is evolutionarily conserved in vertebrates, suggesting that these modules are important for retinal development across species. In the present study, we examine the ability of these modules to drive retinal development between species. By inserting the human build of one Vsx2 SE module into a mouse with microphthalmia, eye size was rescued. To understand the implications of these SE modules in a model of human development, we generated human retinal organoids. Deleting one module results in small organoids, recapitulating the small-eyed phenotype of mice with microphthalmia, while deletion of the other module leads to a complete loss of ON cone bipolar neurons. This prototypical SE serves as a model for uncoupling developmental stage- and cell-type specific effects of neurogenic transcription factors with complex expression patterns. Moreover, by elucidating the gene regulatory mechanisms, we can begin to examine how dysregulation of these mechanisms contributes to phenotypic diversity and disease.
Collapse
Affiliation(s)
- Victoria Honnell
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
- Graduate School of Biomedical Sciences at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Shannon Sweeney
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Jackie Norrie
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Beisi Xu
- Center for Applied Bioinformatics at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Brett Teubner
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| | - Ah Young Lee
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Claire Bell
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Michael A. Dyer
- Department of Developmental Neurobiology at St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
9
|
Rotov AY, Firsov ML. Optogenetic Prosthetization of Retinal Bipolar Cells. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Although the experience of optogenetic retinal prosthetics
in animal models dates back to more than 16 years, the first results
obtained on humans have only been reported in the last year. Over this
period, the main challenges of prosthetics became clear and the
approaches to their solution were proposed. In this review, we aim
to present the achievements in the field of optogenetic prosthetization
of retinal bipolar cells with a focus mainly on relatively recent
publications. The review addresses the advantages and disadvantages
of bipolar cell prosthetics as compared to the alternative target,
retinal ganglion cells, and provides a comparative analysis of the
effectiveness of ionotropic light-sensitive proteins (channelrhodopsins)
or metabotropic receptors (rhodopsins) as prosthetic tools.
Collapse
|
10
|
Jones MK, Agarwal D, Mazo KW, Chopra M, Jurlina SL, Dash N, Xu Q, Ogata AR, Chow M, Hill AD, Kambli NK, Xu G, Sasik R, Birmingham A, Fisch KM, Weinreb RN, Enke RA, Skowronska-Krawczyk D, Wahlin KJ. Chromatin Accessibility and Transcriptional Differences in Human Stem Cell-Derived Early-Stage Retinal Organoids. Cells 2022; 11:3412. [PMID: 36359808 PMCID: PMC9657268 DOI: 10.3390/cells11213412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 02/08/2023] Open
Abstract
Retinogenesis involves the specification of retinal cell types during early vertebrate development. While model organisms have been critical for determining the role of dynamic chromatin and cell-type specific transcriptional networks during this process, an enhanced understanding of the developing human retina has been more elusive due to the requirement for human fetal tissue. Pluripotent stem cell (PSC) derived retinal organoids offer an experimentally accessible solution for investigating the developing human retina. To investigate cellular and molecular changes in developing early retinal organoids, we developed SIX6-GFP and VSX2-tdTomato (or VSX2-h2b-mRuby3) dual fluorescent reporters. When differentiated as 3D organoids these expressed GFP at day 15 and tdTomato (or mRuby3) at day 25, respectively. This enabled us to explore transcriptional and chromatin related changes using RNA-seq and ATAC-seq from pluripotency through early retina specification. Pathway analysis of developing organoids revealed a stepwise loss of pluripotency, while optic vesicle and retina pathways became progressively more prevalent. Correlating gene transcription with chromatin accessibility in early eye field development showed that retinal cells underwent a clear change in chromatin landscape, as well as gene expression profiles. While each dataset alone provided valuable information, considering both in parallel provided an informative glimpse into the molecular nature eye development.
Collapse
Affiliation(s)
- Melissa K. Jones
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Devansh Agarwal
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin W. Mazo
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Manan Chopra
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Shawna L. Jurlina
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Dash
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Qianlan Xu
- Center for Translational Vision Research, University of California Irvine, Irvine, CA 92617, USA
| | - Anna R. Ogata
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Melissa Chow
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex D. Hill
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Netra K. Kambli
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biotechnology, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Guorong Xu
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Amanda Birmingham
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California San Diego, La Jolla, CA 92037, USA
| | - Robert N. Weinreb
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Ray A. Enke
- Department of Biology, James Madison University, Harrisonburg, VA 22807, USA
| | | | - Karl J. Wahlin
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Vijayasarathy C, Zeng Y, Marangoni D, Dong L, Pan ZH, Simpson EM, Fariss RN, Sieving PA. Targeted Expression of Retinoschisin by Retinal Bipolar Cells in XLRS Promotes Resolution of Retinoschisis Cysts Sans RS1 From Photoreceptors. Invest Ophthalmol Vis Sci 2022; 63:8. [PMID: 36227606 PMCID: PMC9583743 DOI: 10.1167/iovs.63.11.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/18/2022] [Indexed: 01/14/2023] Open
Abstract
Purpose Loss of retinoschisin (RS1) function underlies X-linked retinoschisis (XLRS) pathology. In the retina, both photoreceptor inner segments and bipolar cells express RS1. However, the loss of RS1 function causes schisis primarily in the inner retina. To understand these cell type-specific phenotypes, we decoupled RS1 effects in bipolar cells from that in photoreceptors. Methods Bipolar cell transgene RS1 expression was achieved using two inner retina-specific promoters: (1) a minimal promoter engineered from glutamate receptor, metabotropic glutamate receptor 6 gene (mini-mGluR6/ Grm6) and (2) MiniPromoter (Ple155). Adeno-associated virus vectors encoding RS1 gene under either the mini-mGluR6 or Ple-155 promoter were delivered to the XLRS mouse retina through intravitreal or subretinal injection on postnatal day 14. Retinal structure and function were assessed 5 weeks later: immunohistochemistry for morphological characterization, optical coherence tomography and electroretinography (ERG) for structural and functional evaluation. Results Immunohistochemical analysis of RS1expression showed that expression with the MiniPromoter (Ple155) was heavily enriched in bipolar cells. Despite variations in vector penetrance and gene transfer efficiency across the injected retinas, those retinal areas with robust bipolar cell RS1 expression showed tightly packed bipolar cells with fewer cavities and marked improvement in inner retinal structure and synaptic function as judged by optical coherence tomography and electroretinography, respectively. Conclusions These results demonstrate that RS1 gene expression primarily in bipolar cells of the XLRS mouse retina, independent of photoreceptor expression, can ameliorate retinoschisis structural pathology and provide further evidence of RS1 role in cell adhesion.
Collapse
Affiliation(s)
- Camasamudram Vijayasarathy
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Yong Zeng
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Dario Marangoni
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
| | - Lijin Dong
- Genetic Engineering Facility, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics at BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert N. Fariss
- Biological Imaging Core, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Paul A. Sieving
- Section for Translational Research in Retinal and Macular Degeneration, National Institutes of Health, Bethesda, Maryland, United States
- Center for Ocular Regenerative Therapy, Department of Ophthalmology, University of California Davis, United States
| |
Collapse
|
12
|
Petridou E, Godinho L. Cellular and Molecular Determinants of Retinal Cell Fate. Annu Rev Vis Sci 2022; 8:79-99. [DOI: 10.1146/annurev-vision-100820-103154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The vertebrate retina is regarded as a simple part of the central nervous system (CNS) and thus amenable to investigations of the determinants of cell fate. Its five neuronal cell classes and one glial cell class all derive from a common pool of progenitors. Here we review how each cell class is generated. Retinal progenitors progress through different competence states, in each of which they generate only a small repertoire of cell classes. The intrinsic state of the progenitor is determined by the complement of transcription factors it expresses. Thus, although progenitors are multipotent, there is a bias in the types of fates they generate during any particular time window. Overlying these competence states are stochastic mechanisms that influence fate decisions. These mechanisms are determined by a weighted set of probabilities based on the abundance of a cell class in the retina. Deterministic mechanisms also operate, especially late in development, when preprogrammed progenitors solely generate specific fates.
Collapse
Affiliation(s)
- Eleni Petridou
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
- Graduate School of Systemic Neurosciences (GSN), Ludwig Maximilian University of Munich, Planegg-Martinsried, Germany
| | - Leanne Godinho
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany;,
| |
Collapse
|
13
|
Cha MY, Hong YJ, Choi JE, Kwon TS, Kim IJ, Hong KW. Classification of early age facial growth pattern and identification of the genetic basis in two Korean populations. Sci Rep 2022; 12:13828. [PMID: 35970861 PMCID: PMC9378761 DOI: 10.1038/s41598-022-18127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
Childhood to adolescence is an accelerated growth period, and genetic features can influence differences of individual growth patterns. In this study, we examined the genetic basis of early age facial growth (EAFG) patterns. Facial shape phenotypes were defined using facial landmark distances, identifying five growth patterns: continued-decrease, decrease-to-increase, constant, increase-to-decrease, and continued-increase. We conducted genome-wide association studies (GWAS) for 10 horizontal and 11 vertical phenotypes. The most significant association for horizontal phenotypes was rs610831 (TRIM29; β = 0.92, p-value = 1.9 × 10−9) and for vertical phenotypes was rs6898746 (ZSWIM6; β = 0.1103, p-value = 2.5 × 10−8). It is highly correlated with genes already reported for facial growth. This study is the first to classify and characterize facial growth patterns and related genetic polymorphisms.
Collapse
Affiliation(s)
- Mi-Yeon Cha
- Theragen Bio Co., Ltd., 240 Pangyoyeok-ro, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea
| | - Yu-Jin Hong
- Center for Imaging Media Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ja-Eun Choi
- Theragen Bio Co., Ltd., 240 Pangyoyeok-ro, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea
| | - Tae-Song Kwon
- Human ICT CO., Ltd., 111, Dogok-ro, Gangnam-gu, Seoul, 06253, Republic of Korea
| | - Ig-Jae Kim
- Center for Imaging Media Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kyung-Won Hong
- Theragen Bio Co., Ltd., 240 Pangyoyeok-ro, Seongnam-si, Gyeonggi-do, 13493, Republic of Korea.
| |
Collapse
|
14
|
Bian F, Daghsni M, Lu F, Liu S, Gross JM, Aldiri I. Functional analysis of the Vsx2 super-enhancer uncovers distinct cis-regulatory circuits controlling Vsx2 expression during retinogenesis. Development 2022; 149:dev200642. [PMID: 35831950 PMCID: PMC9440754 DOI: 10.1242/dev.200642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022]
Abstract
Vsx2 is a transcription factor essential for retinal proliferation and bipolar cell differentiation, but the molecular mechanisms underlying its developmental roles are unclear. Here, we have profiled VSX2 genomic occupancy during mouse retinogenesis, revealing extensive retinal genetic programs associated with VSX2 during development. VSX2 binds and transactivates its enhancer in association with the transcription factor PAX6. Mice harboring deletions in the Vsx2 regulatory landscape exhibit specific abnormalities in retinal proliferation and in bipolar cell differentiation. In one of those deletions, a complete loss of bipolar cells is associated with a bias towards photoreceptor production. VSX2 occupies cis-regulatory elements nearby genes associated with photoreceptor differentiation and homeostasis in the adult mouse and human retina, including a conserved region nearby Prdm1, a factor implicated in the specification of rod photoreceptors and suppression of bipolar cell fate. VSX2 interacts with the transcription factor OTX2 and can act to suppress OTX2-dependent enhancer transactivation of the Prdm1 enhancer. Taken together, our analyses indicate that Vsx2 expression can be temporally and spatially uncoupled at the enhancer level, and they illuminate important mechanistic insights into how VSX2 is engaged with gene regulatory networks that are essential for retinal proliferation and cell fate acquisition.
Collapse
Affiliation(s)
- Fuyun Bian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Marwa Daghsni
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Issam Aldiri
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Bachu VS, Kandoi S, Park KU, Kaufman ML, Schwanke M, Lamba DA, Brzezinski JA. An enhancer located in a Pde6c intron drives transient expression in the cone photoreceptors of developing mouse and human retinas. Dev Biol 2022; 488:131-150. [PMID: 35644251 PMCID: PMC10676565 DOI: 10.1016/j.ydbio.2022.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
How cone photoreceptors are formed during retinal development is only partially known. This is in part because we do not fully understand the gene regulatory network responsible for cone genesis. We reasoned that cis-regulatory elements (enhancers) active in nascent cones would be regulated by the same upstream network that controls cone formation. To dissect this network, we searched for enhancers active in developing cones. By electroporating enhancer-driven fluorescent reporter plasmids, we observed that a sequence within an intron of the cone-specific Pde6c gene acted as an enhancer in developing mouse cones. Similar fluorescent reporter plasmids were used to generate stable transgenic human induced pluripotent stem cells that were then grown into three-dimensional human retinal organoids. These organoids contained fluorescently labeled cones, demonstrating that the Pde6c enhancer was also active in human cones. We observed that enhancer activity was transient and labeled a minor population of developing rod photoreceptors in both mouse and human systems. This cone-enriched pattern argues that the Pde6c enhancer is activated in cells poised between rod and cone fates. Additionally, it suggests that the Pde6c enhancer is activated by the same regulatory network that selects or stabilizes cone fate choice. To further understand this regulatory network, we identified essential enhancer sequence regions through a series of mutagenesis experiments. This suggested that the Pde6c enhancer was regulated by transcription factor binding at five or more locations. Binding site predictions implicated transcription factor families known to control photoreceptor formation and families not previously associated with cone development. These results provide a framework for deciphering the gene regulatory network that controls cone genesis in both human and mouse systems. Our new transgenic human stem cell lines provide a tool for determining which cone developmental mechanisms are shared and distinct between mice and humans.
Collapse
Affiliation(s)
- Vismaya S Bachu
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sangeetha Kandoi
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Ko Uoon Park
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael L Kaufman
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael Schwanke
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deepak A Lamba
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Joseph A Brzezinski
- Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
16
|
Hussey KA, Hadyniak SE, Johnston RJ. Patterning and Development of Photoreceptors in the Human Retina. Front Cell Dev Biol 2022; 10:878350. [PMID: 35493094 PMCID: PMC9049932 DOI: 10.3389/fcell.2022.878350] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/25/2022] [Indexed: 01/04/2023] Open
Abstract
Humans rely on visual cues to navigate the world around them. Vision begins with the detection of light by photoreceptor cells in the retina, a light-sensitive tissue located at the back of the eye. Photoreceptor types are defined by morphology, gene expression, light sensitivity, and function. Rod photoreceptors function in low-light vision and motion detection, and cone photoreceptors are responsible for high-acuity daytime and trichromatic color vision. In this review, we discuss the generation, development, and patterning of photoreceptors in the human retina. We describe our current understanding of how photoreceptors are patterned in concentric regions. We conclude with insights into mechanisms of photoreceptor differentiation drawn from studies of model organisms and human retinal organoids.
Collapse
|
17
|
Rudnick ND, Kim LA, Comander J. Adeno-associated Viral Vectors in the Retina: Delivering Gene Therapy to the Right Destination. Int Ophthalmol Clin 2022; 62:215-229. [PMID: 35325920 DOI: 10.1097/iio.0000000000000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
18
|
Ianevski A, Giri AK, Aittokallio T. Fully-automated and ultra-fast cell-type identification using specific marker combinations from single-cell transcriptomic data. Nat Commun 2022; 13:1246. [PMID: 35273156 PMCID: PMC8913782 DOI: 10.1038/s41467-022-28803-w] [Citation(s) in RCA: 298] [Impact Index Per Article: 99.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 02/03/2022] [Indexed: 12/29/2022] Open
Abstract
Identification of cell populations often relies on manual annotation of cell clusters using established marker genes. However, the selection of marker genes is a time-consuming process that may lead to sub-optimal annotations as the markers must be informative of both the individual cell clusters and various cell types present in the sample. Here, we developed a computational platform, ScType, which enables a fully-automated and ultra-fast cell-type identification based solely on a given scRNA-seq data, along with a comprehensive cell marker database as background information. Using six scRNA-seq datasets from various human and mouse tissues, we show how ScType provides unbiased and accurate cell type annotations by guaranteeing the specificity of positive and negative marker genes across cell clusters and cell types. We also demonstrate how ScType distinguishes between healthy and malignant cell populations, based on single-cell calling of single-nucleotide variants, making it a versatile tool for anticancer applications. The widely applicable method is deployed both as an interactive web-tool (https://sctype.app), and as an open-source R-package. Cell types are typically identified in single cell transcriptomic data by manual annotation of cell clusters using established marker genes. Here the authors present a fully-automated computational platform that can quickly and accurately distinguish between cell types.
Collapse
Affiliation(s)
- Aleksandr Ianevski
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.,Helsinki Institute for Information Technology (HIIT), Aalto University, Helsinki, Finland
| | - Anil K Giri
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland. .,Helsinki Institute for Information Technology (HIIT), Aalto University, Helsinki, Finland. .,Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway. .,Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
19
|
Bery A, Bagchi U, Bergen AA, Felder-Schmittbuhl MP. Circadian clocks, retinogenesis and ocular health in vertebrates: new molecular insights. Dev Biol 2022; 484:40-56. [DOI: 10.1016/j.ydbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/22/2022]
|
20
|
Honnell V, Norrie JL, Patel AG, Ramirez C, Zhang J, Lai YH, Wan S, Dyer MA. Identification of a modular super-enhancer in murine retinal development. Nat Commun 2022; 13:253. [PMID: 35017532 PMCID: PMC8752785 DOI: 10.1038/s41467-021-27924-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Super-enhancers are expansive regions of genomic DNA comprised of multiple putative enhancers that contribute to the dynamic gene expression patterns during development. This is particularly important in neurogenesis because many essential transcription factors have complex developmental stage- and cell-type specific expression patterns across the central nervous system. In the developing retina, Vsx2 is expressed in retinal progenitor cells and is maintained in differentiated bipolar neurons and Müller glia. A single super-enhancer controls this complex and dynamic pattern of expression. Here we show that deletion of one region disrupts retinal progenitor cell proliferation but does not affect cell fate specification. The deletion of another region has no effect on retinal progenitor cell proliferation but instead leads to a complete loss of bipolar neurons. This prototypical super-enhancer may serve as a model for dissecting the complex gene expression patterns for neurogenic transcription factors during development. Moreover, it provides a unique opportunity to alter expression of individual transcription factors in particular cell types at specific stages of development. This provides a deeper understanding of function that cannot be achieved with traditional knockout mouse approaches.
Collapse
Affiliation(s)
- Victoria Honnell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jackie L Norrie
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Anand G Patel
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cody Ramirez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Yu-Hsuan Lai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shibiao Wan
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
21
|
Agosto MA, Adeosun AAR, Kumar N, Wensel TG. The mGluR6 ligand-binding domain, but not the C-terminal domain, is required for synaptic localization in retinal ON-bipolar cells. J Biol Chem 2021; 297:101418. [PMID: 34793838 PMCID: PMC8671642 DOI: 10.1016/j.jbc.2021.101418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
Signals from retinal photoreceptors are processed in two parallel channels-the ON channel responds to light increments, while the OFF channel responds to light decrements. The ON pathway is mediated by ON type bipolar cells (BCs), which receive glutamatergic synaptic input from photoreceptors via a G-protein-coupled receptor signaling cascade. The metabotropic glutamate receptor mGluR6 is located at the dendritic tips of all ON-BCs and is required for synaptic transmission. Thus, it is critically important for delivery of information from photoreceptors into the ON pathway. In addition to detecting glutamate, mGluR6 participates in interactions with other postsynaptic proteins, as well as trans-synaptic interactions with presynaptic ELFN proteins. Mechanisms of mGluR6 synaptic targeting and functional interaction with other synaptic proteins are unknown. Here, we show that multiple regions in the mGluR6 ligand-binding domain are necessary for both synaptic localization in BCs and ELFN1 binding in vitro. However, these regions were not required for plasma membrane localization in heterologous cells, indicating that secretory trafficking and synaptic localization are controlled by different mechanisms. In contrast, the mGluR6 C-terminus was dispensable for synaptic localization. In mGluR6 null mice, localization of the postsynaptic channel protein TRPM1 was compromised. Introducing WT mGluR6 rescued TRPM1 localization, while a C-terminal deletion mutant had significantly reduced rescue ability. We propose a model in which trans-synaptic ELFN1 binding is necessary for mGluR6 postsynaptic localization, whereas the C-terminus has a role in mediating TRPM1 trafficking. These findings reveal different sequence determinants of the multifunctional roles of mGluR6 in ON-BCs.
Collapse
Affiliation(s)
- Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.
| | - Abiodun Adefola R Adeosun
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Pharmacology and Chemical Biology Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| | - Nitin Kumar
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA; Pharmacology and Chemical Biology Graduate Program, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Daghsni M, Aldiri I. Building a Mammalian Retina: An Eye on Chromatin Structure. Front Genet 2021; 12:775205. [PMID: 34764989 PMCID: PMC8576187 DOI: 10.3389/fgene.2021.775205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of gene expression by chromatin structure has been under intensive investigation, establishing nuclear organization and genome architecture as a potent and effective means of regulating developmental processes. The substantial growth in our knowledge of the molecular mechanisms underlying retinogenesis has been powered by several genome-wide based tools that mapped chromatin organization at multiple cellular and biochemical levels. Studies profiling the retinal epigenome and transcriptome have allowed the systematic annotation of putative cis-regulatory elements associated with transcriptional programs that drive retinal neural differentiation, laying the groundwork to understand spatiotemporal retinal gene regulation at a mechanistic level. In this review, we outline recent advances in our understanding of the chromatin architecture in the mammalian retina during development and disease. We focus on the emerging roles of non-coding regulatory elements in controlling retinal cell-type specific transcriptional programs, and discuss potential implications in untangling the etiology of eye-related disorders.
Collapse
Affiliation(s)
- Marwa Daghsni
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Issam Aldiri
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
23
|
|
24
|
Cui S, Ganjawala TH, Abrams GW, Pan ZH. Effect of Proteasome Inhibitors on the AAV-Mediated Transduction Efficiency in Retinal Bipolar Cells. Curr Gene Ther 2021; 19:404-412. [PMID: 32072884 DOI: 10.2174/1566523220666200211111326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Adeno-associated Virus (AAV) vectors are the most promising vehicles for therapeutic gene delivery to the retina. To develop a practical gene delivery tool, achieving high AAV transduction efficiency in specific cell types is often required. AAV-mediated targeted expression in retinal bipolar cells is needed in certain applications such as optogenetic therapy, however, the transduction efficiency driven by endogenous cell-specific promoters is usually low. Methods that can improve AAV transduction efficiency in bipolar cells need to be developed. OBJECTIVE The study aimed to examine the effect of proteasome inhibitors on AAV-mediated transduction efficiency in retinal bipolar cells. METHODS Quantitative analysis of fluorescent reporter protein expression was performed to assess the effect of two proteasome inhibitors, doxorubicin and MG132, on AAV-mediated transduction efficiency in retinal bipolar cells in mice. RESULTS Our results showed that doxorubicin can increase the AAV transduction efficiency in retinal bipolar cells in a dose-dependent manner. We also observed doxorubicin-mediated cytotoxicity in retinal neurons, but the cytotoxicity could be mitigated by the coapplication of dexrazoxane. Three months after the coapplication of doxorubicin (300 μM) and dexrazoxane, the AAV transduction efficiency in retinal bipolar cells increased by 33.8% and no cytotoxicity was observed in all the layers of the retina. CONCLUSION Doxorubicin could enhance the AAV transduction efficiency in retinal bipolar cells in vivo. The potential long-term cytotoxicity caused by doxorubicin to retinal neurons could be partially mitigated by dexrazoxane. The coapplication of doxorubicin and dexrazoxane may serve as a potential adjuvant regimen for improving AAV transduction efficiency in retinal bipolar cells.
Collapse
Affiliation(s)
- Shengjie Cui
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Tushar H Ganjawala
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Gary W Abrams
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| | - Zhuo-Hua Pan
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, 48201, United States
| |
Collapse
|
25
|
Cuevas E, Holder DL, Alshehri AH, Tréguier J, Lakowski J, Sowden JC. NRL -/- gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells 2021; 39:414-428. [PMID: 33400844 PMCID: PMC8438615 DOI: 10.1002/stem.3325] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022]
Abstract
Organoid cultures represent a unique tool to investigate the developmental complexity of tissues like the human retina. NRL is a transcription factor required for the specification and homeostasis of mammalian rod photoreceptors. In Nrl-deficient mice, photoreceptor precursor cells do not differentiate into rods, and instead follow a default photoreceptor specification pathway to generate S-cone-like cells. To investigate whether this genetic switch mechanism is conserved in humans, we used CRISPR/Cas9 gene editing to engineer an NRL-deficient embryonic stem cell (ESC) line (NRL-/- ), and differentiated it into retinal organoids. Retinal organoids self-organize and resemble embryonic optic vesicles (OVs) that recapitulate the natural histogenesis of rods and cone photoreceptors. NRL-/- OVs develop comparably to controls, and exhibit a laminated, organized retinal structure with markers of photoreceptor synaptogenesis. Using immunohistochemistry and quantitative polymerase chain reaction (qPCR), we observed that NRL-/- OVs do not express NRL, or other rod photoreceptor markers directly or indirectly regulated by NRL. On the contrary, they show an abnormal number of photoreceptors positive for S-OPSIN, which define a primordial subtype of cone, and overexpress other cone genes indicating a conserved molecular switch in mammals. This study represents the first evidence in a human in vitro ESC-derived organoid system that NRL is required to define rod identity, and that in its absence S-cone-like cells develop as the default photoreceptor cell type. It shows how gene edited retinal organoids provide a useful system to investigate human photoreceptor specification, relevant for efforts to generate cells for transplantation in retinal degenerative diseases.
Collapse
Affiliation(s)
- Elisa Cuevas
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Daniel L. Holder
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Ashwak H. Alshehri
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Julie Tréguier
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| | - Jörn Lakowski
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
- Centre for Human Development, Stem Cells and RegenerationUniversity of SouthamptonSouthamptonUK
| | - Jane C. Sowden
- UCL Great Ormond Street Institute of Child HealthUniversity College London and NIHR Great Ormond Street Hospital Biomedical Research CentreLondonUK
| |
Collapse
|
26
|
Integrin α3β1 Promotes Invasive and Metastatic Properties of Breast Cancer Cells through Induction of the Brn-2 Transcription Factor. Cancers (Basel) 2021; 13:cancers13030480. [PMID: 33513758 PMCID: PMC7866210 DOI: 10.3390/cancers13030480] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Metastatic triple-negative breast cancer (TNBC) is highly lethal with limited therapy options. Integrin α3β1 is a cell surface receptor that interacts with the extracellular matrix and facilitates communication between tumor cells and their microenvironment. α3β1 is implicated in breast cancer progression and metastasis, so understanding mechanisms by which α3β1 promotes invasion and metastasis will facilitate the development of this integrin as a potential therapeutic target. Here we identify a novel role for α3β1 in promoting the expression of the transcription factor Brain-2 (Brn-2) in triple-negative breast cancer cells. We further report that Brn-2 promotes invasion and metastasis and partially restores invasion to cells in which expression of α3β1 has been suppressed. Bioinformatic analysis of patient datasets revealed a positive correlation between the expression of the genes encoding the integrin α3 subunit and Brn-2. In summary, our work identifies α3β1-mediated induction of Brn-2 as a mechanism that regulates invasive and metastatic properties of breast cancer cells. Abstract In the current study, we demonstrate that integrin α3β1 promotes invasive and metastatic traits of triple-negative breast cancer (TNBC) cells through induction of the transcription factor, Brain-2 (Brn-2). We show that RNAi-mediated suppression of α3β1 in MDA-MB-231 cells caused reduced expression of Brn-2 mRNA and protein and reduced activity of the BRN2 gene promoter. In addition, RNAi-targeting of Brn-2 in MDA-MB-231 cells decreased invasion in vitro and lung colonization in vivo, and exogenous Brn-2 expression partially restored invasion to cells in which α3β1 was suppressed. α3β1 promoted phosphorylation of Akt in MDA-MB-231 cells, and treatment of these cells with a pharmacological Akt inhibitor (MK-2206) reduced both Brn-2 expression and cell invasion, indicating that α3β1-Akt signaling contributes to Brn-2 induction. Analysis of RNAseq data from patients with invasive breast carcinoma revealed that high BRN2 expression correlates with poor survival. Moreover, high BRN2 expression positively correlates with high ITGA3 expression in basal-like breast cancer, which is consistent with our experimental findings that α3β1 induces Brn-2 in TNBC cells. Together, our study demonstrates a pro-invasive/pro-metastatic role for Brn-2 in breast cancer cells and identifies a role for integrin α3β1 in regulating Brn-2 expression, thereby revealing a novel mechanism of integrin-dependent breast cancer cell invasion.
Collapse
|
27
|
McClements ME, Staurenghi F, MacLaren RE, Cehajic-Kapetanovic J. Optogenetic Gene Therapy for the Degenerate Retina: Recent Advances. Front Neurosci 2020; 14:570909. [PMID: 33262683 PMCID: PMC7686539 DOI: 10.3389/fnins.2020.570909] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
The degeneration of light-detecting rod and cone photoreceptors in the human retina leads to severe visual impairment and ultimately legal blindness in millions of people worldwide. Multiple therapeutic options at different stages of degeneration are being explored but the majority of ongoing clinical trials involve adeno-associated viral (AAV) vector-based gene supplementation strategies for select forms of inherited retinal disease. Over 300 genes are associated with inherited retinal degenerations and only a small proportion of these will be suitable for gene replacement therapy. However, while the origins of disease may vary, there are considerable similarities in the physiological changes that occur in the retina. When early therapeutic intervention is not possible and patients suffer loss of photoreceptor cells but maintain remaining layers of cells in the neural retina, there is an opportunity for a universal gene therapy approach that can be applied regardless of the genetic origin of disease. Optogenetic therapy offers such a strategy by aiming to restore vision though the provision of light-sensitive molecules to surviving cell types of the retina that enable light perception through the residual neurons. Here we review the recent progress in attempts to restore visual function to the degenerate retina using optogenetic therapy. We focus on multiple pre-clinical models used in optogenetic strategies, discuss their strengths and limitations, and highlight considerations including vector and transgene designs that have advanced the field into two ongoing clinical trials.
Collapse
Affiliation(s)
- Michelle E. McClements
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Federica Staurenghi
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Robert E. MacLaren
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory Ophthalmology, Department of Clinical Neurosciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
28
|
Chan CSY, Lonfat N, Zhao R, Davis AE, Li L, Wu MR, Lin CH, Ji Z, Cepko CL, Wang S. Cell type- and stage-specific expression of Otx2 is regulated by multiple transcription factors and cis-regulatory modules in the retina. Development 2020; 147:dev187922. [PMID: 32631829 PMCID: PMC7406324 DOI: 10.1242/dev.187922] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
Transcription factors (TFs) are often used repeatedly during development and homeostasis to control distinct processes in the same and/or different cellular contexts. Considering the limited number of TFs in the genome and the tremendous number of events that need to be regulated, re-use of TFs is necessary. We analyzed how the expression of the homeobox TF, orthodenticle homeobox 2 (Otx2), is regulated in a cell type- and stage-specific manner during development in the mouse retina. We identified seven Otx2 cis-regulatory modules (CRMs), among which the O5, O7 and O9 CRMs mark three distinct cellular contexts of Otx2 expression. We discovered that Otx2, Crx and Sox2, which are well-known TFs regulating retinal development, bind to and activate the O5, O7 or O9 CRMs, respectively. The chromatin status of these three CRMs was found to be distinct in vivo in different retinal cell types and at different stages. We conclude that retinal cells use a cohort of TFs with different expression patterns and multiple CRMs with different chromatin configurations to regulate the expression of Otx2 precisely.
Collapse
Affiliation(s)
- Candace S Y Chan
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Nicolas Lonfat
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Rong Zhao
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander E Davis
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Liang Li
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Man-Ru Wu
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Cheng-Hui Lin
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| | - Zhe Ji
- Department of Bioengineering, Northwestern University, Evanston, IL 60208, USA
| | - Constance L Cepko
- Departments of Genetics and Ophthalmology, Blavatnik Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Stanford, CA 94304, USA
| |
Collapse
|
29
|
Goodson NB, Kaufman MA, Park KU, Brzezinski JA. Simultaneous deletion of Prdm1 and Vsx2 enhancers in the retina alters photoreceptor and bipolar cell fate specification, yet differs from deleting both genes. Development 2020; 147:dev190272. [PMID: 32541005 PMCID: PMC10666920 DOI: 10.1242/dev.190272] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
The transcription factor OTX2 is required for photoreceptor and bipolar cell formation in the retina. It directly activates the transcription factors Prdm1 and Vsx2 through cell type-specific enhancers. PRDM1 and VSX2 work in opposition, such that PRDM1 promotes photoreceptor fate and VSX2 bipolar cell fate. To determine how OTX2+ cell fates are regulated in mice, we deleted Prdm1 and Vsx2 or their cell type-specific enhancers simultaneously using a CRISPR/Cas9 in vivo retina electroporation strategy. Double gene or enhancer targeting effectively removed PRDM1 and VSX2 protein expression. However, double enhancer targeting favored bipolar fate outcomes, whereas double gene targeting favored photoreceptor fate. Both conditions generated excess amacrine cells. Combined, these fate changes suggest that photoreceptors are a default fate outcome in OTX2+ cells and that VSX2 must be present in a narrow temporal window to drive bipolar cell formation. Prdm1 and Vsx2 also appear to redundantly restrict the competence of OTX2+ cells, preventing amacrine cell formation. By taking a combinatorial deletion approach of both coding sequences and enhancers, our work provides new insights into the complex regulatory mechanisms that control cell fate choice.
Collapse
Affiliation(s)
- Noah B Goodson
- Sue Anschutz Rodgers Eye Center, Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Neuroscience Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A Kaufman
- Sue Anschutz Rodgers Eye Center, Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ko U Park
- Sue Anschutz Rodgers Eye Center, Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joseph A Brzezinski
- Sue Anschutz Rodgers Eye Center, Department of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Agosto MA, Wensel TG. LRRTM4 is a member of the transsynaptic complex between rod photoreceptors and bipolar cells. J Comp Neurol 2020; 529:221-233. [PMID: 32390181 DOI: 10.1002/cne.24944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022]
Abstract
Leucine rich repeat transmembrane (LRRTM) proteins are synaptic adhesion molecules with roles in synapse formation and signaling. LRRTM4 transcripts were previously shown to be enriched in rod bipolar cells (BCs), secondary neurons of the retina that form synapses with rod photoreceptors. Using two different antibodies, LRRTM4 was found to reside primarily at rod BC dendritic tips, where it colocalized with the transduction channel protein, TRPM1. LRRTM4 was not detected at dendritic tips of ON-cone BCs. Following somatic knockout of LRRTM4 in BCs by subretinal injection and electroporation of CRISPR/Cas9, LRRTM4 was abolished or reduced in the dendritic tips of transfected cells. Knockout cells had a normal complement of TRPM1 at their dendritic tips, while GPR179 accumulation was partially reduced. In experiments with heterologously expressed protein, the extracellular domain of LRRTM4 was found to engage in heparan-sulfate dependent binding with pikachurin. These results implicate LRRTM4 in the GPR179-pikachurin-dystroglycan transsynaptic complex at rod synapses.
Collapse
Affiliation(s)
- Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
31
|
Prdm1 overexpression causes a photoreceptor fate-shift in nascent, but not mature, bipolar cells. Dev Biol 2020; 464:111-123. [PMID: 32562755 DOI: 10.1016/j.ydbio.2020.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
The transcription factors Prdm1 (Blimp1) and Vsx2 (Chx10) work downstream of Otx2 to regulate photoreceptor and bipolar cell fates in the developing retina. Mice that lack Vsx2 fail to form bipolar cells while Prdm1 mutants form excess bipolars at the direct expense of photoreceptors. Excess bipolars in Prdm1 mutants appear to derive from rods, suggesting that photoreceptor fate remains mutable for some time after cells become specified. Here we tested whether bipolar cell fate is also plastic during development. To do this, we created a system to conditionally misexpress Prdm1 at different stages of bipolar cell development. We found that Prdm1 blocks bipolar cell formation if expressed before the fate choice decision occurred. When we misexpressed Prdm1 just after the decision to become a bipolar cell was made, some cells were reprogrammed into photoreceptors. In contrast, Prdm1 misexpression in mature bipolar cells did not affect cell fate. We also provide evidence that sustained misexpression of Prdm1 was selectively toxic to photoreceptors. Our data show that bipolar fate is malleable, but only for a short temporal window following fate specification. Prdm1 and Vsx2 act by stabilizing photoreceptor and bipolar fates in developing OTX2+ cells of the retina.
Collapse
|
32
|
Buck TM, Wijnholds J. Recombinant Adeno-Associated Viral Vectors (rAAV)-Vector Elements in Ocular Gene Therapy Clinical Trials and Transgene Expression and Bioactivity Assays. Int J Mol Sci 2020; 21:E4197. [PMID: 32545533 PMCID: PMC7352801 DOI: 10.3390/ijms21124197] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Inherited retinal dystrophies and optic neuropathies cause chronic disabling loss of visual function. The development of recombinant adeno-associated viral vectors (rAAV) gene therapies in all disease fields have been promising, but the translation to the clinic has been slow. The safety and efficacy profiles of rAAV are linked to the dose of applied vectors. DNA changes in the rAAV gene cassette affect potency, the expression pattern (cell-specificity), and the production yield. Here, we present a library of rAAV vectors and elements that provide a workflow to design novel vectors. We first performed a meta-analysis on recombinant rAAV elements in clinical trials (2007-2020) for ocular gene therapies. We analyzed 33 unique rAAV gene cassettes used in 57 ocular clinical trials. The rAAV gene therapy vectors used six unique capsid variants, 16 different promoters, and six unique polyadenylation sequences. Further, we compiled a list of promoters, enhancers, and other sequences used in current rAAV gene cassettes in preclinical studies. Then, we give an update on pro-viral plasmid backbones used to produce the gene therapy vectors, inverted terminal repeats, production yield, and rAAV safety considerations. Finally, we assess rAAV transgene and bioactivity assays applied to cells or organoids in vitro, explants ex vivo, and clinical studies.
Collapse
Affiliation(s)
- Thilo M. Buck
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center (LUMC), 2333 ZC Leiden, The Netherlands;
- Netherlands Institute of Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
33
|
Comparison of AAV-Mediated Optogenetic Vision Restoration between Retinal Ganglion Cell Expression and ON Bipolar Cell Targeting. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:15-23. [PMID: 32548211 PMCID: PMC7287188 DOI: 10.1016/j.omtm.2020.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 01/06/2023]
Abstract
The loss of photoreceptors in individuals with retinal degenerative diseases leads to partial or complete blindness. Optogenetic therapy is a promising approach for restoring vision to the blind. Multiple strategies have been employed by targeting genetically encoded light sensors, particularly channelrhodopsins, to surviving retinal neurons in animal models. In particular, the strategy of targeting retinal bipolar cells has commonly been expected to result in better vision than ubiquitous expression in retinal ganglion cells. However, a direct comparison of the channelrhodopsin-restored vision between these two strategies has not been performed. Here, we compared the restored visual functions achieved by adeno-associated virus (AAV)-mediated expression of a channelrhodopsin in ON-type bipolar cells and retinal ganglion cells driven by an improved mGluR6 promoter and a CAG promoter, respectively, in a blind mouse model by performing electrophysiological recordings and behavioral assessments. Unexpectedly, the efficacy of the restored vision based on light sensitivity and visual acuity was much higher following ubiquitous retinal ganglion cell expression than that of the strategy targeting ON-type bipolar cells. Our study suggests that, at least based on currently available gene delivery techniques, the expression of genetically encoded light sensors in retinal ganglion cells is likely a practical and advantageous strategy for optogenetic vision restoration.
Collapse
|
34
|
Ghinia Tegla MG, Buenaventura DF, Kim DY, Thakurdin C, Gonzalez KC, Emerson MM. OTX2 represses sister cell fate choices in the developing retina to promote photoreceptor specification. eLife 2020; 9:e54279. [PMID: 32347797 PMCID: PMC7237216 DOI: 10.7554/elife.54279] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
During vertebrate retinal development, subsets of progenitor cells generate progeny in a non-stochastic manner, suggesting that these decisions are tightly regulated. However, the gene-regulatory network components that are functionally important in these progenitor cells are largely unknown. Here we identify a functional role for the OTX2 transcription factor in this process. CRISPR/Cas9 gene editing was used to produce somatic mutations of OTX2 in the chick retina and identified similar phenotypes to those observed in human patients. Single cell RNA sequencing was used to determine the functional consequences OTX2 gene editing on the population of cells derived from OTX2-expressing retinal progenitor cells. This confirmed that OTX2 is required for the generation of photoreceptors, but also for repression of specific retinal fates and alternative gene regulatory networks. These include specific subtypes of retinal ganglion and horizontal cells, suggesting that in this context, OTX2 functions to repress sister cell fate choices.
Collapse
Affiliation(s)
| | - Diego F Buenaventura
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
- PhD Program in Biology, The Graduate Center of the City University of New York (CUNY)New YorkUnited States
| | - Diana Y Kim
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
| | - Cassandra Thakurdin
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
| | - Kevin C Gonzalez
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
| | - Mark M Emerson
- Department of Biology, The City College of New York, City University of New York (CUNY)New YorkUnited States
- PhD Program in Biology, The Graduate Center of the City University of New York (CUNY)New YorkUnited States
- PhD Program in Biochemistry, The Graduate Center of the City University of New York (CUNY)New YorkUnited States
| |
Collapse
|
35
|
Cherry TJ, Yang MG, Harmin DA, Tao P, Timms AE, Bauwens M, Allikmets R, Jones EM, Chen R, De Baere E, Greenberg ME. Mapping the cis-regulatory architecture of the human retina reveals noncoding genetic variation in disease. Proc Natl Acad Sci U S A 2020; 117:9001-9012. [PMID: 32265282 PMCID: PMC7183164 DOI: 10.1073/pnas.1922501117] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The interplay of transcription factors and cis-regulatory elements (CREs) orchestrates the dynamic and diverse genetic programs that assemble the human central nervous system (CNS) during development and maintain its function throughout life. Genetic variation within CREs plays a central role in phenotypic variation in complex traits including the risk of developing disease. We took advantage of the retina, a well-characterized region of the CNS known to be affected by pathogenic variants in CREs, to establish a roadmap for characterizing regulatory variation in the human CNS. This comprehensive analysis of tissue-specific regulatory elements, transcription factor binding, and gene expression programs in three regions of the human visual system (retina, macula, and retinal pigment epithelium/choroid) reveals features of regulatory element evolution that shape tissue-specific gene expression programs and defines regulatory elements with the potential to contribute to Mendelian and complex disorders of human vision.
Collapse
Affiliation(s)
- Timothy J Cherry
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101;
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98101
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98101
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101
| | - Marty G Yang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
- Program in Neuroscience, Harvard Medical School, Boston, MA 02115
| | - David A Harmin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Peter Tao
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115
| | - Andrew E Timms
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101
| | - Miriam Bauwens
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Evan M Jones
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030-3411
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030-3411
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, 9000 Ghent, Belgium
| | | |
Collapse
|
36
|
Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. Emerging approaches for restoration of hearing and vision. Physiol Rev 2020; 100:1467-1525. [DOI: 10.1152/physrev.00035.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Impairments of vision and hearing are highly prevalent conditions limiting the quality of life and presenting a major socioeconomic burden. For long, retinal and cochlear disorders have remained intractable for causal therapies, with sensory rehabilitation limited to glasses, hearing aids, and electrical cochlear or retinal implants. Recently, the application of gene therapy and optogenetics to eye and ear has generated hope for a fundamental improvement of vision and hearing restoration. To date, one gene therapy for the restoration of vision has been approved and undergoing clinical trials will broaden its application including gene replacement, genome editing, and regenerative approaches. Moreover, optogenetics, i.e. controlling the activity of cells by light, offers a more general alternative strategy. Over little more than a decade, optogenetic approaches have been developed and applied to better understand the function of biological systems, while protein engineers have identified and designed new opsin variants with desired physiological features. Considering potential clinical applications of optogenetics, the spotlight is on the sensory systems. Multiple efforts have been undertaken to restore lost or hampered function in eye and ear. Optogenetic stimulation promises to overcome fundamental shortcomings of electrical stimulation, namely poor spatial resolution and cellular specificity, and accordingly to deliver more detailed sensory information. This review aims at providing a comprehensive reference on current gene therapeutic and optogenetic research relevant to the restoration of hearing and vision. We will introduce gene-therapeutic approaches and discuss the biotechnological and optoelectronic aspects of optogenetic hearing and vision restoration.
Collapse
Affiliation(s)
| | | | | | | | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Goettingen, Germany
| |
Collapse
|
37
|
Empowering Retinal Gene Therapy with a Specific Promoter for Human Rod and Cone ON-Bipolar Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:505-519. [PMID: 32258214 PMCID: PMC7114634 DOI: 10.1016/j.omtm.2020.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Optogenetic gene therapy holds promise to restore high-quality vision in blind patients and recently reached clinical trials. Although the ON-bipolar cells, the first retinal interneurons, make the most attractive targets for optogenetic vision restoration, they have remained inaccessible to human gene therapy due to the lack of a robust cell-specific promoter. We describe the design and functional evaluation of 770En_454P(hGRM6), a human GRM6 gene-derived, short promoter that drives strong and highly specific expression in both the rod- and cone-type ON-bipolar cells of the human retina. Expression also in cone-type ON-bipolar cells is of importance, since the cone-dominated macula mediates high-acuity vision and is the primary target of gene therapies. 770En_454P(hGRM6)-driven middle-wave opsin expression in ON-bipolar cells achieved lasting restoration of high visual acuity in the rd1 mouse model of late retinal degeneration. The new promoter enables precise manipulation of the inner retinal network and paves the way for clinical application of gene therapies for high-resolution optogenetic vision restoration, raising hopes of significantly improving the life quality of people suffering from blindness.
Collapse
|
38
|
Campla CK, Mast H, Dong L, Lei J, Halford S, Sekaran S, Swaroop A. Targeted deletion of an NRL- and CRX-regulated alternative promoter specifically silences FERM and PDZ domain containing 1 (Frmpd1) in rod photoreceptors. Hum Mol Genet 2020; 28:804-817. [PMID: 30445545 DOI: 10.1093/hmg/ddy388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Regulation of cell type-specific gene expression is critical for generating neuronal diversity. Transcriptome analyses have unraveled extensive heterogeneity of transcribed sequences in retinal photoreceptors because of alternate splicing and/or promoter usage. Here we show that Frmpd1 (FERM and PDZ domain containing 1) is transcribed from an alternative promoter specifically in the retina. Electroporation of Frmpd1 promoter region, -505 to +382 bp, activated reporter gene expression in mouse retina in vivo. A proximal promoter sequence (-8 to +33 bp) of Frmpd1 binds to neural retina leucine zipper (NRL) and cone-rod homeobox protein (CRX), two rod-specific differentiation factors, and is necessary for activating reporter gene expression in vitro and in vivo. Clustered regularly interspaced short palindromic repeats/Cas9-mediated deletion of the genomic region, including NRL and CRX binding sites, in vivo completely eliminated Frmpd1 expression in rods and dramatically reduced expression in rod bipolar cells, thereby overcoming embryonic lethality caused by germline Frmpd1 deletion. Our studies demonstrate that a cell type-specific regulatory control region is a credible target for creating loss-of-function alleles of widely expressed genes.
Collapse
Affiliation(s)
- Christie K Campla
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.,Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Hannah Mast
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jingqi Lei
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Halford
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Sumathi Sekaran
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Orlandi C, Omori Y, Wang Y, Cao Y, Ueno A, Roux MJ, Condomitti G, de Wit J, Kanagawa M, Furukawa T, Martemyanov KA. Transsynaptic Binding of Orphan Receptor GPR179 to Dystroglycan-Pikachurin Complex Is Essential for the Synaptic Organization of Photoreceptors. Cell Rep 2020; 25:130-145.e5. [PMID: 30282023 PMCID: PMC6203450 DOI: 10.1016/j.celrep.2018.08.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 08/16/2018] [Accepted: 08/23/2018] [Indexed: 01/05/2023] Open
Abstract
Establishing synaptic contacts between neurons is paramount for nervous system function. This process involves transsynaptic interactions between a host of cell adhesion molecules that act in cooperation with the proteins of the extracellular matrix to specify uniquephysiological propertiesofindividual synaptic connections. However, understanding of the molecular mechanisms that generate functional diversity in an input-specific fashion is limited. In this study, we identify that major components of the extracellular matrix proteins present in the synaptic cleft—members oftheheparansulfateproteoglycan (HSPG) family—associate with the GPR158/179 group of orphan receptors. Using the mammalian retina as a model system, we demonstrate that the HSPG member Pikachurin, released by photoreceptors, recruits a key post-synaptic signaling complex of downstream ON-bipolar neurons in coordination with the presynaptic dystroglycan glycoprotein complex. We further demonstrate that this transsynaptic assembly plays an essential role in synaptic transmission of photoreceptor signals. Orlandi et al. identify transsynaptic assembly at photoreceptor synapses involving pre-synaptic dystrophindystroglycan complex and the postsynaptic orphan receptor GPR179 bridged by HSPG protein Pikachurin in the cleft and demonstrate its role in shaping transmission of photoreceptor signals.
Collapse
Affiliation(s)
- Cesare Orlandi
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yoshihiro Omori
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Yuchen Wang
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yan Cao
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Akiko Ueno
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Michel J Roux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Centre National de la Recherche Scientifique, UMR7104, INSERM, U1258, Illkirch, France
| | - Giuseppe Condomitti
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Herestraat 49, 3000 Leuven, Belgium
| | - Motoi Kanagawa
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takahisa Furukawa
- Laboratory for Molecular and Developmental Biology, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kirill A Martemyanov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
40
|
He F, Nichols RM, Kailasam L, Wensel TG, Agosto MA. Critical Role for Phosphatidylinositol-3 Kinase Vps34/PIK3C3 in ON-Bipolar Cells. Invest Ophthalmol Vis Sci 2019; 60:2861-2874. [PMID: 31260037 PMCID: PMC6607926 DOI: 10.1167/iovs.19-26586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Purpose Phosphatidylinositol-3-phosphate (PI(3)P), and Vps34, the type III phosphatidylinositol 3-kinase primarily responsible for its production, are important for function and survival of sensory neurons, where they have key roles in membrane processing events, such as autophagy, endosome processing, and fusion of membranes bearing ubiquitinated cargos with lysosomes. We examined their roles in the most abundant class of secondary neurons in the vertebrate retina, the ON-bipolar cells (ON-BCs). Methods A conditional Vps34 knockout mouse line was generated by crossing Vps34 floxed mice with transgenic mice expressing Cre recombinase in ON-BCs. Structural changes in the retina were determined by immunofluorescence and electron microscopy, and bipolar cell function was determined by electroretinography. Results Vps34 deletion led to selective death of ON-BCs, a thinning of the inner nuclear layer, and a progressive decline of electroretinogram b-wave amplitudes. There was no evidence for loss of other retinal neurons, or disruption of rod-horizontal cell contacts in the outer plexiform layer. Loss of Vps34 led to aberrant accumulation of membranes positive for autophagy markers LC3, p62, and ubiquitin, accumulation of endosomal membranes positive for Rab7, and accumulation of lysosomes. Similar effects were observed in Purkinje cells of the cerebellum, leading to severe and progressive ataxia. Conclusions These results support an essential role for PI(3)P in fusion of autophagosomes with lysosomes and in late endosome maturation. The cell death resulting from Vps34 knockout suggests that these processes are essential for the health of ON-BCs.
Collapse
Affiliation(s)
- Feng He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Ralph M Nichols
- Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States
| | - Lavanya Kailasam
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Theodore G Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States.,Department of Ophthalmology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas, United States
| | - Melina A Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
41
|
Norrie JL, Lupo MS, Xu B, Al Diri I, Valentine M, Putnam D, Griffiths L, Zhang J, Johnson D, Easton J, Shao Y, Honnell V, Frase S, Miller S, Stewart V, Zhou X, Chen X, Dyer MA. Nucleome Dynamics during Retinal Development. Neuron 2019; 104:512-528.e11. [PMID: 31493975 PMCID: PMC6842117 DOI: 10.1016/j.neuron.2019.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/02/2019] [Accepted: 07/29/2019] [Indexed: 01/28/2023]
Abstract
More than 8,000 genes are turned on or off as progenitor cells produce the 7 classes of retinal cell types during development. Thousands of enhancers are also active in the developing retinae, many having features of cell- and developmental stage-specific activity. We studied dynamic changes in the 3D chromatin landscape important for precisely orchestrated changes in gene expression during retinal development by ultra-deep in situ Hi-C analysis on murine retinae. We identified developmental-stage-specific changes in chromatin compartments and enhancer-promoter interactions. We developed a machine learning-based algorithm to map euchromatin and heterochromatin domains genome-wide and overlaid it with chromatin compartments identified by Hi-C. Single-cell ATAC-seq and RNA-seq were integrated with our Hi-C and previous ChIP-seq data to identify cell- and developmental-stage-specific super-enhancers (SEs). We identified a bipolar neuron-specific core regulatory circuit SE upstream of Vsx2, whose deletion in mice led to the loss of bipolar neurons.
Collapse
Affiliation(s)
- Jackie L Norrie
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marybeth S Lupo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Issam Al Diri
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Marc Valentine
- Cytogenetics Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Daniel Putnam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Lyra Griffiths
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiakun Zhang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dianna Johnson
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Victoria Honnell
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sharon Frase
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Valerie Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
42
|
Murphy DP, Hughes AEO, Lawrence KA, Myers CA, Corbo JC. Cis-regulatory basis of sister cell type divergence in the vertebrate retina. eLife 2019; 8:e48216. [PMID: 31633482 PMCID: PMC6802965 DOI: 10.7554/elife.48216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022] Open
Abstract
Multicellular organisms evolved via repeated functional divergence of transcriptionally related sister cell types, but the mechanisms underlying sister cell type divergence are not well understood. Here, we study a canonical pair of sister cell types, retinal photoreceptors and bipolar cells, to identify the key cis-regulatory features that distinguish them. By comparing open chromatin maps and transcriptomic profiles, we found that while photoreceptor and bipolar cells have divergent transcriptomes, they share remarkably similar cis-regulatory grammars, marked by enrichment of K50 homeodomain binding sites. However, cell class-specific enhancers are distinguished by enrichment of E-box motifs in bipolar cells, and Q50 homeodomain motifs in photoreceptors. We show that converting K50 motifs to Q50 motifs represses reporter expression in bipolar cells, while photoreceptor expression is maintained. These findings suggest that partitioning of Q50 motifs within cell type-specific cis-regulatory elements was a critical step in the evolutionary divergence of the bipolar transcriptome from that of photoreceptors.
Collapse
Affiliation(s)
- Daniel P Murphy
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Andrew EO Hughes
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Karen A Lawrence
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Connie A Myers
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Joseph C Corbo
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| |
Collapse
|
43
|
Abstract
Enhancer activity is determined by both the activity and occupancy of transcription factors as well as the specific sequences they bind. Experimental investigation of this dynamic requires the ability to manipulate components of the system, ideally in as close to an in vivo context as possible. Here we use electroporation of plasmid reporters to define critical parameters of a specific cis-regulatory element, ThrbCRM1, during retinal development. ThrbCRM1 is associated with cone photoreceptor genesis and activated in a subset of developing retinal cells that co-express the Otx2 and Onecut1 (OC1) transcription factors. Variation of reporter plasmid concentration was used to generate dose response curves and revealed an effect of binding site availability on the number and strength of cells with reporter activity. Critical sequence elements of the ThrbCRM1 element were defined using both mutagenesis and misexpression of the Otx2 and OC1 transcription factors in the developing retina. Additionally, these experiments suggest that the ThrbCRM1 element is co-regulated by Otx2 and OC1 even under conditions of sub-optimal binding of OC1.
Collapse
Affiliation(s)
- Benjamin Souferi
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, USA
| | - Mark M Emerson
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, USA .,Graduate Center, City University of New York, New York, NY 10031, USA
| |
Collapse
|
44
|
Abstract
This chapter provides an overview of the early developmental origins of six ocular tissues: the cornea, lens, ciliary body, iris, neural retina, and retina pigment epithelium. Many of these tissue types are concurrently specified and undergo a complex set of morphogenetic movements that facilitate their structural interconnection. Within the context of vertebrate eye organogenesis, we also discuss the genetic hierarchies of transcription factors and signaling pathways that regulate growth, patterning, cell type specification and differentiation.
Collapse
Affiliation(s)
- Joel B Miesfeld
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States
| | - Nadean L Brown
- Department of Cell Biology & Human Anatomy, University of California Davis School of Medicine, Davis, CA, United States.
| |
Collapse
|
45
|
Buenaventura DF, Ghinia-Tegla MG, Emerson MM. Fate-restricted retinal progenitor cells adopt a molecular profile and spatial position distinct from multipotent progenitor cells. Dev Biol 2018; 443:35-49. [PMID: 30145104 DOI: 10.1016/j.ydbio.2018.06.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/14/2018] [Accepted: 06/23/2018] [Indexed: 12/22/2022]
Abstract
During development, multipotent retinal progenitor cells generate a large number of unique cell types. Recent evidence suggests that there are fate-restricted progenitor cell states in addition to multipotent ones. Here we report a transcriptomic analysis of fate- restricted progenitor cells biased to produce cone photoreceptors and horizontal cells, marked by the THRB cis-regulatory element ThrbCRM1. Comparison to a control population enriched in multipotent progenitor cells identified several genes considered to be pan-progenitor, such as VSX2, LHX2, and PAX6, as downregulated in these fate- restricted retinal progenitor cells. This differential regulation occurs in chick and in a different restricted progenitor population in mouse suggesting that this is a conserved feature of progenitor dynamics during retinal development. S-phase labeling also revealed that nuclear positions of restricted progenitor populations occupy distinct spatial niches within the developing chick retina. Using a conserved regulatory element proximal to the VSX2 gene, a potential negative feedback mechanism from specific transcription factors enriched in cone/horizontal cell progenitor cells was identified. This study identifies conserved molecular and cellular changes that occur during the generation of fate restricted retinal progenitor cells from multipotent retinal progenitor cells.
Collapse
Affiliation(s)
- Diego F Buenaventura
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, United States; Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, United States
| | - Miruna G Ghinia-Tegla
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, United States
| | - Mark M Emerson
- Department of Biology, The City College of New York, City University of New York, New York, NY 10031, United States; Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, United States.
| |
Collapse
|
46
|
Agosto MA, Anastassov IA, Robichaux MA, Wensel TG. A Large Endoplasmic Reticulum-Resident Pool of TRPM1 in Retinal ON-Bipolar Cells. eNeuro 2018; 5:ENEURO.0143-18.2018. [PMID: 30027108 PMCID: PMC6051591 DOI: 10.1523/eneuro.0143-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/22/2022] Open
Abstract
The chemical signal of light onset, a decrease in glutamate release from rod and cone photoreceptors, is processed by a postsynaptic G protein signaling cascade in ON-bipolar cells (BPCs). The metabotropic glutamate receptor mGluR6, along with other cascade elements, is localized synaptically at the BPC dendritic tips. The effector ion channel protein transient receptor potential melastatin-1 (TRPM1), in contrast, is located not only at the dendritic tips but also in BPC bodies and axons. Little is known about the intracellular localization of TRPM1, or its trafficking route to the dendritic tip plasma membrane. Recombinant TRPM1 expressed in mammalian cells colocalized with endoplasmic reticulum (ER) markers, with little or none detected at the plasma membrane. In mouse retina, somatic TRPM1 was similarly intracellular, and not at the plasma membrane. Labeling of ER membranes by expression of a fluorescent marker showed that in BPCs the ER extends into axons and dendrites, but not dendritic tips. In cell bodies, TRPM1 colocalized with the ER, and not with the Golgi apparatus. Fluorescence protease protection (FPP) assays with TRPM1-GFP fusions in heterologous cells revealed that the N and C termini are both accessible to the cytoplasm, consistent with the transmembrane domain topology of related TRP channels. These results indicate that the majority of TRPM1 is present in the ER, from which it can potentially be transported to the dendritic tips as needed for ON light responses. The excess of ER-resident TRPM1 relative to the amount needed at the dendritic tips suggests a potential new function for TRPM1 in the ER.
Collapse
Affiliation(s)
- Melina A. Agosto
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Ivan A. Anastassov
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Michael A. Robichaux
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Theodore G. Wensel
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
47
|
Mitani T, Yabuta Y, Ohta H, Nakamura T, Yamashiro C, Yamamoto T, Saitou M, Kurimoto K. Principles for the regulation of multiple developmental pathways by a versatile transcriptional factor, BLIMP1. Nucleic Acids Res 2017; 45:12152-12169. [PMID: 28981894 PMCID: PMC5716175 DOI: 10.1093/nar/gkx798] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/30/2017] [Indexed: 11/14/2022] Open
Abstract
Single transcription factors (TFs) regulate multiple developmental pathways, but the underlying mechanisms remain unclear. Here, we quantitatively characterized the genome-wide occupancy profiles of BLIMP1, a key transcriptional regulator for diverse developmental processes, during the development of three germ-layer derivatives (photoreceptor precursors, embryonic intestinal epithelium and plasmablasts) and the germ cell lineage (primordial germ cells). We identified BLIMP1-binding sites shared among multiple developmental processes, and such sites were highly occupied by BLIMP1 with a stringent recognition motif and were located predominantly in promoter proximities. A subset of bindings common to all the lineages exhibited a new, strong recognition sequence, a GGGAAA repeat. Paradoxically, however, the shared/common bindings had only a slight impact on the associated gene expression. In contrast, BLIMP1 occupied more distal sites in a cell type-specific manner; despite lower occupancy and flexible sequence recognitions, such bindings contributed effectively to the repression of the associated genes. Recognition motifs of other key TFs in BLIMP1-binding sites had little impact on the expression-level changes. These findings suggest that the shared/common sites might serve as potential reservoirs of BLIMP1 that functions at the specific sites, providing the foundation for a unified understanding of the genome regulation by BLIMP1, and, possibly, TFs in general.
Collapse
Affiliation(s)
- Tadahiro Mitani
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukihiro Yabuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Ohta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomonori Nakamura
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Chika Yamashiro
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,AMED-CREST, AMED 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
48
|
Efficacy and Safety of Glycosidic Enzymes for Improved Gene Delivery to the Retina following Intravitreal Injection in Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 9:192-202. [PMID: 29766027 PMCID: PMC5948313 DOI: 10.1016/j.omtm.2017.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/19/2017] [Indexed: 11/21/2022]
Abstract
Viral gene delivery is showing great promise for treating retinal disease. Although subretinal vector delivery has mainly been used to date, intravitreal delivery has potential advantages if low retinal transduction efficiency can be overcome. To this end, we investigated the effects of co-injection of glycosaminoglycan-degrading enzymes, singly or in combination, with AAV2 as a method of increasing retinal transduction. Experiments using healthy mice demonstrated that these enzymes enhance retinal transduction. We found that heparinase III produced the greatest individual effect, and this was enhanced further by combination with hyaluronan lyase. In addition, this optimized AAV2-enzyme combination led to a marked improvement in transduction in retinas with advanced retinal degeneration compared with AAV2 alone. Safety studies measuring retinal function by flash electroretinography indicated that retinal function was unaffected in the acute period and at least 12 months after enzyme treatment, whereas pupillometry confirmed that retinal ganglion cell activity was unaffected. Retinal morphology was not altered by the enzyme injection. Collectively these data confirm the efficacy and safety of this intravitreal approach in enhancing retinal transduction efficiency by AAV in rodents. Translating this method into other species, such as non-human primates, or for clinical applications will have challenges and require further studies.
Collapse
|
49
|
Abstract
Photoreceptors are highly specialized primary sensory neurons that sense light and initiate vision. This critical role is well demonstrated by the fact that visual impairment accompanies photoreceptor loss or dysfunction in many human diseases. With the remarkable advances in stem cell research, one therapeutic approach is to use stem cells to generate photoreceptors and then engraft them into diseased eyes. Knowledge of the molecular mechanisms that control photoreceptor genesis during normal development can greatly aid in the production of photoreceptor cells for this approach. This article will discuss advances in our understanding of the molecular mechanisms that regulate photoreceptor fate determination during development. Recent lineage studies have shown that there are distinct retinal progenitor cells (RPCs) that produce specific combinations of daughter cell types, including photoreceptors and other types of retinal cells. Gene regulatory networks, in which transcription factors interact via cis-regulatory DNA elements, have been discovered that operate within distinct RPCs, and/or newly postmitotic cells, to direct the choice of photoreceptor fate.
Collapse
Affiliation(s)
- Sui Wang
- Department of Genetics and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 2Howard Hughes Medical Institute, Boston, Massachusetts, United States
| | - Constance L Cepko
- Department of Genetics and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States 2Howard Hughes Medical Institute, Boston, Massachusetts, United States
| |
Collapse
|
50
|
van Wyk M, Hulliger EC, Girod L, Ebneter A, Kleinlogel S. Present Molecular Limitations of ON-Bipolar Cell Targeted Gene Therapy. Front Neurosci 2017; 11:161. [PMID: 28424574 PMCID: PMC5372788 DOI: 10.3389/fnins.2017.00161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Recent studies have demonstrated the safety and efficacy of ocular gene therapy based on adeno-associated viral vectors (AAVs). Accordingly, a surge in promising new gene therapies is entering clinical trials, including the first optogenetic therapy for vision restoration. To date, optogenetic therapies for vision restoration target either the retinal ganglion cells (GCs) or presynaptic ON-bipolar cells (OBCs). Initiating light responses at the level of the OBCs has significant advantages over optogenetic activation of GCs. For example, important neural circuitries in the inner retina, which shape the receptive fields of GCs, remain intact when activating the OBCs. Current drawbacks of AAV-mediated gene therapies targeting OBCs include (1) a low transduction efficiency, (2) off-target expression in unwanted cell populations, and (3) a poor performance in human tissue compared to the murine retina. Here, we examined side-by-side the performance of three state-of-the art AAV capsid variants, AAV7m8, AAVBP2, and AAV7m8(Y444F) in combination with the 4xGRM6-SV40 promoter construct in the healthy and degenerated mouse retina and in human post-mortem retinal explants. We find that (1) the 4xGRM6-SV40 promoter is not OBC specific, (2) that all AAV variants possess broad cellular transduction patterns, with differences between the transduction patterns of capsid variants AAVBP2 and AAV7m8 and, most importantly, (3) that all vectors target OBCs in healthy tissue but not in the degenerated rd1 mouse model, potentially limiting the possibilities for an OBC-targeted optogenetic therapy for vision restoration in the blind.
Collapse
Affiliation(s)
- Michiel van Wyk
- Institute of Physiology, University of BernBern, Switzerland
| | | | - Lara Girod
- Institute of Physiology, University of BernBern, Switzerland
| | - Andreas Ebneter
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of BernBern, Switzerland
| | | |
Collapse
|