1
|
Sekerková G, Kilic S, Cheng YH, Fredrick N, Osmani A, Kim H, Opal P, Martina M. Phenotypical, genotypical and pathological characterization of the moonwalker mouse, a model of ataxia. Neurobiol Dis 2024; 195:106492. [PMID: 38575093 PMCID: PMC11089908 DOI: 10.1016/j.nbd.2024.106492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/13/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.
Collapse
Affiliation(s)
- Gabriella Sekerková
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| | - Sumeyra Kilic
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Yen-Hsin Cheng
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Natalie Fredrick
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Anne Osmani
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Haram Kim
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA
| | - Marco Martina
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, 300 E. Superior, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Yu H, Wang X, Tian R, Li X, Xu C, Fei J, Li T, Yin Z. Myometrium infection decreases TREK1 through NHE1 and increases contraction in pregnant mice. Am J Physiol Cell Physiol 2024; 326:C1106-C1119. [PMID: 38344766 DOI: 10.1152/ajpcell.00598.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/23/2024]
Abstract
Intrauterine infection during pregnancy can enhance uterine contractions. A two-pore K+ channel TREK1 is crucial for maintaining uterine quiescence and reducing contractility, with its properties regulated by pH changes in cell microenvironment. Meanwhile, the sodium hydrogen exchanger 1 (NHE1) plays a pivotal role in modulating cellular pH homeostasis, and its activation increases smooth muscle tension. By establishing an infected mouse model of Escherichia coli (E. coli) and lipopolysaccharide (LPS), we used Western blotting, real-time quantitative polymerase chain reaction, and immunofluorescence to detect changes of TREK1 and NHE1 expression in the myometrium, and isometric recording measured the uterus contraction. The NHE1 inhibitor cariporide was used to explore the effect of NHE1 on TREK1. Finally, cell contraction assay and siRNA transfection were performed to clarify the relationship between NHE1 and TREK1 in vitro. We found that the uterine contraction was notably enhanced in infected mice with E. coli and LPS administration. Meanwhile, TREK1 expression was reduced, whereas NHE1 expression was upregulated in infected mice. Cariporide alleviated the increased uterine contraction and promoted myometrium TREK1 expression in LPS-injected mice. Furthermore, suppression of NHE1 with siRNA transfection inhibited the contractility of uterine smooth muscle cells and activated the TREK1. Altogether, our findings indicate that infection increases the uterine contraction by downregulating myometrium TREK1 in mice, and the inhibition of TREK1 is attributed to the activation of NHE1.NEW & NOTEWORTHY Present work found that infection during pregnancy will increase myometrium contraction. Infection downregulated NHE1 and followed TREK1 expression and activation decrease in myometrium, resulting in increased myometrium contraction.
Collapse
Affiliation(s)
- Huihui Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xingxing Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ruixian Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xuan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenyi Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiajia Fei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tengteng Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongzhi Yin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Wu Y, Chen J, Zhu R, Huang G, Zeng J, Yu H, He Z, Han C. Integrating TCGA and Single-Cell Sequencing Data for Hepatocellular Carcinoma: A Novel Glycosylation (GLY)/Tumor Microenvironment (TME) Classifier to Predict Prognosis and Immunotherapy Response. Metabolites 2024; 14:51. [PMID: 38248854 PMCID: PMC10818448 DOI: 10.3390/metabo14010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The major liver cancer subtype is hepatocellular carcinoma (HCC). Studies have indicated that a better prognosis is related to the presence of tumor-infiltrating lymphocytes (TILs) in HCC. However, the molecular pathways that drive immune cell variation in the tumor microenvironment (TME) remain poorly understood. Glycosylation (GLY)-related genes have a vital function in the pathogenesis of numerous tumors, including HCC. This study aimed to develop a GLY/TME classifier based on glycosylation-related gene scores and tumor microenvironment scores to provide a novel prognostic model to improve the prediction of clinical outcomes. The reliability of the signatures was assessed using receiver operating characteristic (ROC) and survival analyses and was verified with external datasets. Furthermore, the correlation between glycosylation-related genes and other cells in the immune environment, the immune signature of the GLY/TME classifier, and the efficacy of immunotherapy were also investigated. The GLY score low/TME score high subgroup showed a favorable prognosis and therapeutic response based on significant differences in immune-related molecules and cancer cell signaling mechanisms. We evaluated the prognostic role of the GLY/TME classifier that demonstrated overall prognostic significance for prognosis and therapeutic response before treatment, which may provide new options for creating the best possible therapeutic approaches for patients.
Collapse
Affiliation(s)
- Yun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
| | - Jiaru Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Riting Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
- School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Guoliang Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
| | - Jincheng Zeng
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Medical University, Dongguan 523808, China
| | - Hongbing Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
| | - Zhiwei He
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
| | - Cuifang Han
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, China; (Y.W.); (J.C.); (R.Z.); (G.H.); (J.Z.); (H.Y.)
| |
Collapse
|
4
|
Li Y, Fan C, Wang C, Wang L, Yi Y, Mao X, Chen X, Lan T, Wang W, Yu SY. Stress-induced reduction of Na +/H + exchanger isoform 1 promotes maladaptation of neuroplasticity and exacerbates depressive behaviors. SCIENCE ADVANCES 2022; 8:eadd7063. [PMID: 36367929 PMCID: PMC9651740 DOI: 10.1126/sciadv.add7063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/23/2022] [Indexed: 05/29/2023]
Abstract
Major depression disorder (MDD) is a neuropsychiatric disorder characterized by abnormal neuronal activity in specific brain regions. A factor that is crucial in maintaining normal neuronal functioning is intracellular pH (pHi) homeostasis. In this study, we show that chronic stress, which induces depression-like behaviors in animal models, down-regulates the expression of the hippocampal Na+/H+ exchanger isoform 1, NHE1, a major determinant of pHi in neurons. Knockdown of NHE1 in CA1 hippocampal pyramidal neurons leads to intracellular acidification, promotes dendritic spine loss, lowers excitatory synaptic transmission, and enhances the susceptibility to stress exposure in rats. Moreover, E3 ubiquitin ligase cullin4A may promote ubiquitination and degradation of NHE1 to induce these effects of an unbalanced pHi on synaptic processes. Electrophysiological data further suggest that the abnormal excitability of hippocampal neurons caused by maladaptation of neuroplasticity may be involved in the pathogenesis of this disease. These findings elucidate a mechanism for pHi homeostasis alteration as related to MDD.
Collapse
Affiliation(s)
- Ye Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Changmin Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Liyan Wang
- Morphological Experimental Center, Shandong University, School of Basic Medical Sciences, 44 Wenhuaxilu Road, Jinan, Shandong 250012, PR China
| | - Yuhang Yi
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xueqin Mao
- Department of Psychology, Qilu Hospital of Shandong University, 107 Wenhuaxilu Road, Jinan, Shandong 250012, PR China
| | - Xiao Chen
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Shu Yan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
- Shandong Provincial Key Laboratory of Mental Disorders, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
5
|
Muinos-Bühl A, Rombo R, Janzen E, Ling KK, Hupperich K, Rigo F, Bennett CF, Wirth B. Combinatorial ASO-mediated therapy with low dose SMN and the protective modifier Chp1 is not sufficient to ameliorate SMA pathology hallmarks. Neurobiol Dis 2022; 171:105795. [PMID: 35724821 DOI: 10.1016/j.nbd.2022.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating genetically inherited neuromuscular disorder characterized by the progressive loss of motor neurons in the spinal cord, leading to muscle atrophy and weakness. Although SMA is caused by homozygous mutations in SMN1, the disease severity is mainly determined by the copy number of SMN2, an almost identical gene that produces ~10% correctly spliced SMN transcripts. Recently, three FDA- and EMA-approved therapies that either increase correctly spliced SMN2 transcripts (nusinersen and risdiplam) or replace SMN1 (onasemnogen abeparvovec-xioi) have revolutionized the clinical outcome in SMA patients. However, for severely affected SMA individuals carrying only two SMN2 copies even a presymptomatic therapy might be insufficient to fully counteract disease development. Therefore, SMN-independent compounds supporting SMN-dependent therapies represent a promising therapeutic approach. Recently, we have shown a significant amelioration of SMA disease hallmarks in a severely affected SMA mouse carrying a mutant Chp1 allele when combined with low-dose of SMN antisense oligonucleotide (ASO) treatment. CHP1 is a direct interacting partner of PLS3, a strong protective modifier of SMA. Both proteins ameliorate impaired endocytosis in SMA and significantly restore pathological hallmarks in mice. Here, we aimed to pharmacologically reduce CHP1 levels in an ASO-based combinatorial therapy targeting SMN and Chp1. Chp1 modulation is a major challenge since its genetic reduction to ~50% has shown to ameliorate SMA pathology, while the downregulation below that level causes cerebellar ataxia. Efficacy and tolerability studies determined that a single injection of 30 μg Chp1-ASO4 in the CNS is a safe dosage that significantly reduced CHP1 levels to ~50% at postnatal day (PND)14. Unfortunately, neither electrophysiological predictors such as compound muscle action potential (CMAP) or motor unit number estimation (MUNE) nor histological hallmarks of SMA in neuromuscular junction (NMJ), spinal cord or muscle were ameliorated in SMA mice treated with Chp1-ASO4 compared to CTRL-ASO at PND21. Surprisingly, CHP1 levels were almost at control level 4-weeks post injection, indicating a rather short-term effect of the ASO. Therefore, we re-administrated Chp1-ASO4 by i.c.v. bolus injection at PND28. However, no significant improvement of SMA hallmarks were seen at 2 month-of-age either. In conclusion, in contrast to the protective effect of genetically-induced Chp1 reduction on SMA, combinatorial therapy with Chp1- and SMN-ASOs failed to significantly ameliorate the SMA pathology. Chp1-ASOs compared to SMN-ASO proved to have rather short-term effect and even reinjection had no significant impact on SMA progression, suggesting that further optimization of the ASO may be required to fully explore the combination.
Collapse
Affiliation(s)
- A Muinos-Bühl
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany.
| | - R Rombo
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany.
| | - E Janzen
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - K K Ling
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA.
| | - K Hupperich
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - F Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA.
| | - C F Bennett
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA.
| | - B Wirth
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Center for Rare Diseases, University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
6
|
Dong Y, Gao Y, Ilie A, Kim D, Boucher A, Li B, Zhang XC, Orlowski J, Zhao Y. Structure and mechanism of the human NHE1-CHP1 complex. Nat Commun 2021; 12:3474. [PMID: 34108458 PMCID: PMC8190280 DOI: 10.1038/s41467-021-23496-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Sodium/proton exchanger 1 (NHE1) is an electroneutral secondary active transporter present on the plasma membrane of most mammalian cells and plays critical roles in regulating intracellular pH and volume homeostasis. Calcineurin B-homologous protein 1 (CHP1) is an obligate binding partner that promotes NHE1 biosynthetic maturation, cell surface expression and pH-sensitivity. Dysfunctions of either protein are associated with neurological disorders. Here, we elucidate structures of the human NHE1-CHP1 complex in both inward- and inhibitor (cariporide)-bound outward-facing conformations. We find that NHE1 assembles as a symmetrical homodimer, with each subunit undergoing an elevator-like conformational change during cation exchange. The cryo-EM map reveals the binding site for the NHE1 inhibitor cariporide, illustrating how inhibitors block transport activity. The CHP1 molecule differentially associates with these two conformational states of each NHE1 monomer, and this association difference probably underlies the regulation of NHE1 pH-sensitivity by CHP1.
Collapse
Affiliation(s)
- Yanli Dong
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiwei Gao
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Alina Ilie
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - DuSik Kim
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Annie Boucher
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Bin Li
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun C. Zhang
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - John Orlowski
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Yan Zhao
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci 2021; 78:5275-5301. [PMID: 34023917 PMCID: PMC8257523 DOI: 10.1007/s00018-021-03843-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
For a long time, PLS3 (plastin 3, also known as T-plastin or fimbrin) has been considered a rather inconspicuous protein, involved in F-actin-binding and -bundling. However, in recent years, a plethora of discoveries have turned PLS3 into a highly interesting protein involved in many cellular processes, signaling pathways, and diseases. PLS3 is localized on the X-chromosome, but shows sex-specific, inter-individual and tissue-specific expression variability pointing towards skewed X-inactivation. PLS3 is expressed in all solid tissues but usually not in hematopoietic cells. When escaping X-inactivation, PLS3 triggers a plethora of different types of cancers. Elevated PLS3 levels are considered a prognostic biomarker for cancer and refractory response to therapies. When it is knocked out or mutated in humans and mice, it causes osteoporosis with bone fractures; it is the only protein involved in actin dynamics responsible for osteoporosis. Instead, when PLS3 is upregulated, it acts as a highly protective SMN-independent modifier in spinal muscular atrophy (SMA). Here, it seems to counteract reduced F-actin levels by restoring impaired endocytosis and disturbed calcium homeostasis caused by reduced SMN levels. In contrast, an upregulation of PLS3 on wild-type level might cause osteoarthritis. This emphasizes that the amount of PLS3 in our cells must be precisely balanced; both too much and too little can be detrimental. Actin-dynamics, regulated by PLS3 among others, are crucial in a lot of cellular processes including endocytosis, cell migration, axonal growth, neurotransmission, translation, and others. Also, PLS3 levels influence the infection with different bacteria, mycosis, and other pathogens.
Collapse
|
8
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
9
|
Guo Y, Lu Y, Wang J, Zhu L, Liu X. Dysregulated ion channels and transporters activate endoplasmic reticulum stress in rat kidney of fetal growth restriction. Life Sci 2020; 259:118276. [PMID: 32798560 DOI: 10.1016/j.lfs.2020.118276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/30/2022]
Abstract
AIMS The mechanisms underlying the fetal origin of renal disease remains unknown. This study aimed to investigate the profiles of ion channel and transporter proteins in the fetal kidney in fetal growth restriction (FGR)rats, and to explore their association with the fetal origin of renal disease. MAIN METHODS An FGR rat model was developed by administration of a low-protein diet. Then 367 differentially expressed proteins (DEPs) from quantitative proteome analysis were subjected to Ingenuity Pathway Analysis. 22 DEPs associated with ion channels/transporters were evaluated in the fetal kidney. Na+/H+ exchanger1(NHE1) and its downstream unfolded protein response (UPR) pathway were investigated. Furthermore, overexpression of NHE1 were achieved via plasmid transfection to evaluate the potential influence on the UPR pathway and cell apoptosis in human proximal tubular epithelial cell line HK2 cells. KEY FINDINGS Findings were as follows: 1) In the FGR fetal kidney, aquaporin 2/4, solute carrier (SLC) 8a1, 33a1, etc. were downregulated, whereas other transporters including SLC 2a1, 4a1, 9a1, 29a3, etc. were upregulated. 2) NHE1 mRNA levels were markedly elevated in the FGR fetus. Further investigation revealed an increase in the UPR pathway regulators. 3) In vitro study showed that NHE1 overexpression in HK2 cells significantly induced expression of the endoplasmic reticulum stress (ERS) regulators and led to a decrease in the anti-apoptotic potential. SIGNIFICANCE We speculate that maternal protein malnutrition causes dysregulation of ion channels/transporters in the fetal kidney. Upregulated NHE1 may activate the UPR pathway and induce cell apoptosis thus leading to impairment of kidney function.
Collapse
Affiliation(s)
- Yanyan Guo
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Yan Lu
- Department of human resource, Shengjing Hospital of China Medical University, China
| | - Jun Wang
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Liangliang Zhu
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Xiaomei Liu
- Key Laboratory of maternal-fetal medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
10
|
Novel CHP1 mutation in autosomal-recessive cerebellar ataxia: autopsy features of two siblings. Acta Neuropathol Commun 2020; 8:134. [PMID: 32787936 PMCID: PMC7425070 DOI: 10.1186/s40478-020-01008-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 11/10/2022] Open
|
11
|
Liang S, Fuchs S, Mymrikov EV, Stulz A, Kaiser M, Heerklotz H, Hunte C. Calcium affects CHP1 and CHP2 conformation and their interaction with sodium/proton exchanger 1. FASEB J 2020; 34:3253-3266. [DOI: 10.1096/fj.201902093r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Shuo Liang
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- Faculty of Biology University of Freiburg Freiburg Germany
| | - Simon Fuchs
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- Faculty of Biology University of Freiburg Freiburg Germany
| | - Evgeny V. Mymrikov
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- CIBSS ‐ Centre for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
| | - Anja Stulz
- Department of Pharmaceutical Technology and Biopharmacy University of Freiburg Freiburg Germany
| | - Michael Kaiser
- Department of Pharmaceutical Technology and Biopharmacy University of Freiburg Freiburg Germany
| | - Heiko Heerklotz
- CIBSS ‐ Centre for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
- Department of Pharmaceutical Technology and Biopharmacy University of Freiburg Freiburg Germany
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto Canada
- BIOSS Centre for Biological Signalling Studies University of Freiburg Freiburg Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- CIBSS ‐ Centre for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
- BIOSS Centre for Biological Signalling Studies University of Freiburg Freiburg Germany
| |
Collapse
|
12
|
Beaudin M, Matilla-Dueñas A, Soong BW, Pedroso JL, Barsottini OG, Mitoma H, Tsuji S, Schmahmann JD, Manto M, Rouleau GA, Klein C, Dupre N. The Classification of Autosomal Recessive Cerebellar Ataxias: a Consensus Statement from the Society for Research on the Cerebellum and Ataxias Task Force. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1098-1125. [PMID: 31267374 PMCID: PMC6867988 DOI: 10.1007/s12311-019-01052-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is currently no accepted classification of autosomal recessive cerebellar ataxias, a group of disorders characterized by important genetic heterogeneity and complex phenotypes. The objective of this task force was to build a consensus on the classification of autosomal recessive ataxias in order to develop a general approach to a patient presenting with ataxia, organize disorders according to clinical presentation, and define this field of research by identifying common pathogenic molecular mechanisms in these disorders. The work of this task force was based on a previously published systematic scoping review of the literature that identified autosomal recessive disorders characterized primarily by cerebellar motor dysfunction and cerebellar degeneration. The task force regrouped 12 international ataxia experts who decided on general orientation and specific issues. We identified 59 disorders that are classified as primary autosomal recessive cerebellar ataxias. For each of these disorders, we present geographical and ethnical specificities along with distinctive clinical and imagery features. These primary recessive ataxias were organized in a clinical and a pathophysiological classification, and we present a general clinical approach to the patient presenting with ataxia. We also identified a list of 48 complex multisystem disorders that are associated with ataxia and should be included in the differential diagnosis of autosomal recessive ataxias. This classification is the result of a consensus among a panel of international experts, and it promotes a unified understanding of autosomal recessive cerebellar disorders for clinicians and researchers.
Collapse
Affiliation(s)
- Marie Beaudin
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Antoni Matilla-Dueñas
- Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Bing-Weng Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan, Republic of China
- National Yang-Ming University School of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
| | - Jose Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Orlando G Barsottini
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Shoji Tsuji
- The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare, Chiba, Japan
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, UMons, Mons, Belgium
| | | | | | - Nicolas Dupre
- Axe Neurosciences, CHU de Québec-Université Laval, Québec, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
13
|
Janzen E, Wolff L, Mendoza-Ferreira N, Hupperich K, Delle Vedove A, Hosseinibarkooie S, Kye MJ, Wirth B. PLS3 Overexpression Delays Ataxia in Chp1 Mutant Mice. Front Neurosci 2019; 13:993. [PMID: 31607845 PMCID: PMC6761326 DOI: 10.3389/fnins.2019.00993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/03/2019] [Indexed: 11/25/2022] Open
Abstract
Many neurodegenerative disorders share common pathogenic pathways such as endocytic defects, Ca2+ misregulation and defects in actin dynamics. Factors acting on these shared pathways are highly interesting as a therapeutic target. Plastin 3 (PLS3), a proven protective modifier of spinal muscular atrophy across species, is a remarkable example of the former, and thereby offers high potential as a cross-disease modifier. Importantly, PLS3 has been linked to numerous proteins associated with various neurodegenerative diseases. Among them, PLS3 directly interacts with calcineurin like EF-hand protein 1 (CHP1), whose loss-of-function results in ataxia. In this study, we aimed to determine whether PLS3 is a cross-disease modifier for ataxia caused by Chp1 mutation in mice. For this purpose, we generated Chp1 mutant mice, named vacillator mice, overexpressing a PLS3 transgene. Here, we show that PLS3 overexpression (OE) delays the ataxic phenotype of the vacillator mice at an early but not later disease stage. Furthermore, we demonstrated that PLS3 OE ameliorates axon hypertrophy and axonal swellings in Purkinje neurons thereby slowing down neurodegeneration. Mechanistically, we found that PLS3 OE in the cerebellum shows a trend of increased membrane targeting and/or expression of Na+/H+ exchanger (NHE1), an important CHP1 binding partner and a causative gene for ataxia, when mutated in humans and mice. This data supports the hypothesis that PLS3 is a cross-disease genetic modifier for CHP1-causing ataxia and spinal muscular atrophy.
Collapse
Affiliation(s)
- Eva Janzen
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Lisa Wolff
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Kristina Hupperich
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Min Jeong Kye
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Rare Diseases Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Janzen E, Mendoza-Ferreira N, Hosseinibarkooie S, Schneider S, Hupperich K, Tschanz T, Grysko V, Riessland M, Hammerschmidt M, Rigo F, Bennett CF, Kye MJ, Torres-Benito L, Wirth B. CHP1 reduction ameliorates spinal muscular atrophy pathology by restoring calcineurin activity and endocytosis. Brain 2019; 141:2343-2361. [PMID: 29961886 PMCID: PMC6061875 DOI: 10.1093/brain/awy167] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Autosomal recessive spinal muscular atrophy (SMA), the leading genetic cause of infant lethality, is caused by homozygous loss of the survival motor neuron 1 (SMN1) gene. SMA disease severity inversely correlates with the number of SMN2 copies, which in contrast to SMN1, mainly produce aberrantly spliced transcripts. Recently, the first SMA therapy based on antisense oligonucleotides correcting SMN2 splicing, namely SPINRAZATM, has been approved. Nevertheless, in type I SMA-affected individuals—representing 60% of SMA patients—the elevated SMN level may still be insufficient to restore motor neuron function lifelong. Plastin 3 (PLS3) and neurocalcin delta (NCALD) are two SMN-independent protective modifiers identified in humans and proved to be effective across various SMA animal models. Both PLS3 overexpression and NCALD downregulation protect against SMA by restoring impaired endocytosis; however, the exact mechanism of this protection is largely unknown. Here, we identified calcineurin-like EF-hand protein 1 (CHP1) as a novel PLS3 interacting protein using a yeast-two-hybrid screen. Co-immunoprecipitation and pull-down assays confirmed a direct interaction between CHP1 and PLS3. Although CHP1 is ubiquitously present, it is particularly abundant in the central nervous system and at SMA-relevant sites including motor neuron growth cones and neuromuscular junctions. Strikingly, we found elevated CHP1 levels in SMA mice. Congruently, CHP1 downregulation restored impaired axonal growth in Smn-depleted NSC34 motor neuron-like cells, SMA zebrafish and primary murine SMA motor neurons. Most importantly, subcutaneous injection of low-dose SMN antisense oligonucleotide in pre-symptomatic mice doubled the survival rate of severely-affected SMA mice, while additional CHP1 reduction by genetic modification prolonged survival further by 1.6-fold. Moreover, CHP1 reduction further ameliorated SMA disease hallmarks including electrophysiological defects, smaller neuromuscular junction size, impaired maturity of neuromuscular junctions and smaller muscle fibre size compared to low-dose SMN antisense oligonucleotide alone. In NSC34 cells, Chp1 knockdown tripled macropinocytosis whereas clathrin-mediated endocytosis remained unaffected. Importantly, Chp1 knockdown restored macropinocytosis in Smn-depleted cells by elevating calcineurin phosphatase activity. CHP1 is an inhibitor of calcineurin, which collectively dephosphorylates proteins involved in endocytosis, and is therefore crucial in synaptic vesicle endocytosis. Indeed, we found marked hyperphosphorylation of dynamin 1 in SMA motor neurons, which was restored to control level by the heterozygous Chp1 mutant allele. Taken together, we show that CHP1 is a novel SMA modifier that directly interacts with PLS3, and that CHP1 reduction ameliorates SMA pathology by counteracting impaired endocytosis. Most importantly, we demonstrate that CHP1 reduction is a promising SMN-independent therapeutic target for a combinatorial SMA therapy.
Collapse
Affiliation(s)
- Eva Janzen
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Svenja Schneider
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Kristina Hupperich
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Theresa Tschanz
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Vanessa Grysko
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Markus Riessland
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | | | - Min Jeong Kye
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Laura Torres-Benito
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Song H, Yuan S, Zhang Z, Zhang J, Zhang P, Cao J, Li H, Li X, Shen H, Wang Z, Chen G. Sodium/Hydrogen Exchanger 1 Participates in Early Brain Injury after Subarachnoid Hemorrhage both in vivo and in vitro via Promoting Neuronal Apoptosis. Cell Transplant 2019; 28:985-1001. [PMID: 30838887 PMCID: PMC6728713 DOI: 10.1177/0963689719834873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sodium/hydrogen exchanger 1 (NHE1) plays an essential role in maintaining intracellular pH (pHi) homeostasis in the central nervous system (CNS) under physiological conditions, and it is also associated with neuronal death and intracellular Na+ and Ca2+ overload induced by cerebral ischemia. However, its roles and underlying mechanisms in early brain injury (EBI) induced by subarachnoid hemorrhage (SAH) have not been fully explored. In this research, a SAH model in adult male rat was established through injecting autologous arterial blood into prechiasmatic cistern. Meanwhile, primary cultured cortical neurons of rat treated with 5 μM oxygen hemoglobin (OxyHb) for 24 h were applied to mimic SAH in vitro. We find that the protein levels of NHE1 are significantly increased in brain tissues of rats after SAH. Downregulation of NHE1 by HOE642 (a specific chemical inhibitor of NHE1) and genetic-knockdown can effectively alleviate behavioral and cognitive dysfunction, brain edema, blood-brain barrier (BBB) injury, inflammatory reactions, oxidative stress, neurondegeneration, and neuronal apoptosis, all of which are involved in EBI following SAH. However, upregulation of NHE1 by genetic-overexpression can produce opposite effects. Additionally, inhibiting NHE1 significantly attenuates OxyHb-induced neuronal apoptosis in vitro and reduces interaction of NHE1 and CHP1 both in vivo and in vitro. Collectively, we can conclude that NHE1 participates in EBI induced by SAH through mediating inflammation, oxidative stress, behavioral and cognitive dysfunction, BBB injury, brain edema, and promoting neuronal degeneration and apoptosis.
Collapse
Affiliation(s)
- Huangcheng Song
- 1 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,2 Department of Neurosurgery, Haimen People's Hospital, Jiangsu Province, China.,Both the authors contributed equally to this article
| | - Shuai Yuan
- 1 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,Both the authors contributed equally to this article
| | - Zhuwei Zhang
- 1 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Juyi Zhang
- 1 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Peng Zhang
- 1 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jie Cao
- 1 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.,3 Department of Neurosurgery, The First People's Hospital of Changzhou, Jiangsu Province, China
| | - Haiying Li
- 1 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- 1 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- 1 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhong Wang
- 1 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- 1 Department of Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
16
|
Mendoza-Ferreira N, Coutelier M, Janzen E, Hosseinibarkooie S, Löhr H, Schneider S, Milbradt J, Karakaya M, Riessland M, Pichlo C, Torres-Benito L, Singleton A, Zuchner S, Brice A, Durr A, Hammerschmidt M, Stevanin G, Wirth B. Biallelic CHP1 mutation causes human autosomal recessive ataxia by impairing NHE1 function. NEUROLOGY-GENETICS 2018; 4:e209. [PMID: 29379881 PMCID: PMC5775069 DOI: 10.1212/nxg.0000000000000209] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022]
Abstract
Objective: To ascertain the genetic and functional basis of complex autosomal recessive cerebellar ataxia (ARCA) presented by 2 siblings of a consanguineous family characterized by motor neuropathy, cerebellar atrophy, spastic paraparesis, intellectual disability, and slow ocular saccades. Methods: Combined whole-genome linkage analysis, whole-exome sequencing, and focused screening for identification of potential causative genes were performed. Assessment of the functional consequences of the mutation on protein function via subcellular fractionation, size-exclusion chromatography, and fluorescence microscopy were done. A zebrafish model, using Morpholinos, was generated to study the pathogenic effect of the mutation in vivo. Results: We identified a biallelic 3-bp deletion (p.K19del) in CHP1 that cosegregates with the disease. Neither focused screening for CHP1 variants in 2 cohorts (ARCA: N = 319 and NeurOmics: N = 657) nor interrogating GeneMatcher yielded additional variants, thus revealing the scarcity of CHP1 mutations. We show that mutant CHP1 fails to integrate into functional protein complexes and is prone to aggregation, thereby leading to diminished levels of soluble CHP1 and reduced membrane targeting of NHE1, a major Na+/H+ exchanger implicated in syndromic ataxia-deafness. Chp1 deficiency in zebrafish, resembling the affected individuals, led to movement defects, cerebellar hypoplasia, and motor axon abnormalities, which were ameliorated by coinjection with wild-type, but not mutant, human CHP1 messenger RNA. Conclusions: Collectively, our results identified CHP1 as a novel ataxia-causative gene in humans, further expanding the spectrum of ARCA-associated loci, and corroborated the crucial role of NHE1 within the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Natalia Mendoza-Ferreira
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Marie Coutelier
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Eva Janzen
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Heiko Löhr
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Svenja Schneider
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Janine Milbradt
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Mert Karakaya
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Markus Riessland
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Christian Pichlo
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Laura Torres-Benito
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Andrew Singleton
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Stephan Zuchner
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Alexis Brice
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Alexandra Durr
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Matthias Hammerschmidt
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Giovanni Stevanin
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| | - Brunhilde Wirth
- Institute of Human Genetics (N.M.-F., E.J., S.H., S.S., J.M., M.K., M.R., L.T.-B., B.W.), Center for Molecular Medicine Cologne, Institute for Genetics and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany; Institute for Zoology, Developmental Biology (H.L., M.H.), Institute of Biochemistry (C.P.), University of Cologne, Germany; Institut du Cerveau et de la Moelle épinière (M.C., A.B., A.D., G.S.), INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, France; Ecole Pratique des Hautes Etudes (M.C., G.S.), PSL Research University, Paris, France; Laboratory of Molecular and Cellular Neuroscience (M.R.), The Rockefeller University, New York, NY; Laboratory of Neurogenetics (A.S.), National Institute on Aging, National Institutes of Health, Bethesda, MD; John P. Hussman Institute for Human Genomics (S.Z.), University of Miami, Miller School of Medicine, FL; and APHP (A.B., A.D., G.S.), Hôpital de la Pitié-Salpêtrière, Centre de réference de neurogénétique, Paris, France
| |
Collapse
|
17
|
Lin Z, Changfu H, Fengling Z, Wei G, Lei B, Yiping L, Miao Z, Zhongzheng Y, Youliang Z, Shuyin D, Wu Y. Long non-coding RNA deep sequencing reveals the role of macrophage in liver disorders. Oncotarget 2017; 8:114966-114979. [PMID: 29383134 PMCID: PMC5777746 DOI: 10.18632/oncotarget.23154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Liver disorders such as hepatitis, cirrhosis and hepatocellular carcinoma are a series of the most life threatening diseases along with extensive inflammatory cellular infiltrations. Macrophage has been proved to be key regulators and initiators of inflammation, and long non-coding RNAs (lncRNAs) are recommended to play critical roles in the occurrence and development of a variety of diseases. To uncover the role of macrophage in liver disorders via lncRNA sequencing method, we first applied a lncRNA classification pipeline to identify 1247 lncRNAs represented on the Affymetrix Mouse Genome 430/430A 2.0 array. We then analyzed the lncRNA expression patterns in a set of previously published gene expression profiles of silica particle exposed macrophages and liver respectively, and identified and validated sets of differentially expressed lncRNAs shared by macrophages and liver. The functional enrichment analysis of these lncRNAs was processed on the basis of their expression signatures, three aspects including cis, trans and co-acting proteins were proposed. This is the first time to correlate macrophage with liver disorders via co-expressed lncRNAs. Our findings indicated that roles of macrophage in liver disorders were double-edged, the differentially expressed lncRNAs and their corresponding regulatory genes or proteins may serve as potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Zhang Lin
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China.,Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250001, China.,Key Laboratory of Reproductive Endocrinology, Shandong University, Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan 250001, China
| | - Hao Changfu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao Fengling
- Department of Occupational Disease, Henan Provincial Institute of Occupational Health, Zhengzhou 450052, China
| | - Guo Wei
- Department of Occupational Disease, Henan Provincial Institute of Occupational Health, Zhengzhou 450052, China
| | - Bao Lei
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Li Yiping
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhang Miao
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yue Zhongzheng
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao Youliang
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Duan Shuyin
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yao Wu
- Department of Occupational and Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Takagishi Y, Katanosaka K, Mizoguchi H, Murata Y. Disrupted axon-glia interactions at the paranode in myelinated nerves cause axonal degeneration and neuronal cell death in the aged Caspr mutant mouse shambling. Neurobiol Aging 2016; 43:34-46. [PMID: 27255813 DOI: 10.1016/j.neurobiolaging.2016.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 12/16/2022]
Abstract
Emerging evidence suggests that axonal degeneration is a disease mechanism in various neurodegenerative diseases and that the paranodes at the nodes of Ranvier may be the initial site of pathogenesis. We investigated the pathophysiology of the disease process in the central and peripheral nervous systems of a Caspr mutant mouse, shambling (shm), which is affected by disrupted paranodal structures and impaired nerve conduction of myelinated nerves. The shm mice manifest a progressive neurological phenotype as mice age. We found extensive axonal degeneration and a loss of neurons in the central nervous system and peripheral nervous system in aged shm mice. Axonal alteration of myelinated nerves was defined by abnormal distribution and expression of neurofilaments and derangements in the status of phosphorylated and non/de-phosphorylated neurofilaments. Autophagy-related structures were also accumulated in degenerated axons and neurons. In conclusion, our results suggest that disrupted axon-glia interactions at the paranode cause the cytoskeletal alteration in myelinated axons leading to neuronal cell death, and the process involves detrimental autophagy and aging as factors that promote the pathogenesis.
Collapse
Affiliation(s)
- Yoshiko Takagishi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan.
| | - Kimiaki Katanosaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiroyuki Mizoguchi
- Research Center for Next-Generation Drug Development, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshiharu Murata
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
19
|
Allman E, Wang Q, Walker RL, Austen M, Peters MA, Nehrke K. Calcineurin homologous proteins regulate the membrane localization and activity of sodium/proton exchangers in C. elegans. Am J Physiol Cell Physiol 2015; 310:C233-42. [PMID: 26561640 DOI: 10.1152/ajpcell.00291.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/09/2015] [Indexed: 11/22/2022]
Abstract
Calcineurin B homologous proteins (CHP) are N-myristoylated, EF-hand Ca(2+)-binding proteins that bind to and regulate Na(+)/H(+) exchangers, which occurs through a variety of mechanisms whose relative significance is incompletely understood. Like mammals, Caenorhabditis elegans has three CHP paralogs, but unlike mammals, worms can survive CHP loss-of-function. However, mutants for the CHP ortholog PBO-1 are unfit, and PBO-1 has been shown to be required for proton signaling by the basolateral Na(+)/H(+) exchanger NHX-7 and for proton-coupled intestinal nutrient uptake by the apical Na(+)/H(+) exchanger NHX-2. Here, we have used this genetic model organism to interrogate PBO-1's mechanism of action. Using fluorescent tags to monitor Na(+)/H(+) exchanger trafficking and localization, we found that loss of either PBO-1 binding or activity caused NHX-7 to accumulate in late endosomes/lysosomes. In contrast, NHX-2 was stabilized at the apical membrane by a nonfunctional PBO-1 protein and was only internalized following its complete loss. Additionally, two pbo-1 paralogs were identified, and their expression patterns were analyzed. One of these contributed to the function of the excretory cell, which acts like a kidney in worms, establishing an alternative model for testing the role of this protein in membrane transporter trafficking and regulation. These results lead us to conclude that the role of CHP in Na(+)/H(+) exchanger regulation differs between apical and basolateral transporters. This further emphasizes the importance of proper targeting of Na(+)/H(+) exchangers and the critical role of CHP family proteins in this process.
Collapse
Affiliation(s)
- Erik Allman
- Departments of Pharmacology and Physiology and Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania
| | - Qian Wang
- Departments of Pharmacology and Physiology and Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Rachel L Walker
- Departments of Pharmacology and Physiology and Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Molly Austen
- Departments of Pharmacology and Physiology and Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | | | - Keith Nehrke
- Departments of Pharmacology and Physiology and Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York;
| |
Collapse
|
20
|
Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration. J Neurosci 2015; 35:4587-98. [PMID: 25788676 DOI: 10.1523/jneurosci.2757-14.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structural microtubule-associated proteins (MAPs) are critical for the organization of neuronal microtubules (MTs). Microtubule-associated protein 1A (MAP1A) is one of the most abundantly expressed MAPs in the mammalian brain. However, its in vivo function remains largely unknown. Here we describe a spontaneous mouse mutation, nm2719, which causes tremors, ataxia, and loss of cerebellar Purkinje neurons in aged homozygous mice. The nm2719 mutation disrupts the Map1a gene. We show that targeted deletion of mouse Map1a gene leads to similar neurodegenerative defects. Before neuron death, Map1a mutant Purkinje cells exhibited abnormal focal swellings of dendritic shafts and disruptions in axon initial segment (AIS) morphology. Furthermore, the MT network was reduced in the somatodendritic and AIS compartments, and both the heavy and light chains of MAP1B, another brain-enriched MAP, was aberrantly distributed in the soma and dendrites of mutant Purkinje cells. MAP1A has been reported to bind to the membrane-associated guanylate kinase (MAGUK) scaffolding proteins, as well as to MTs. Indeed, PSD-93, the MAGUK specifically enriched in Purkinje cells, was reduced in Map1a(-/-) Purkinje cells. These results demonstrate that MAP1A functions to maintain both the neuronal MT network and the level of PSD-93 in neurons of the mammalian brain.
Collapse
|
21
|
Lee GH, Kim HR, Chae HJ. BI-1 enhances Fas-induced cell death through a Na+/H+-associated mechanism. BMB Rep 2015; 47:393-8. [PMID: 24314142 PMCID: PMC4163852 DOI: 10.5483/bmbrep.2014.47.7.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Indexed: 11/20/2022] Open
Abstract
The role of Bax inhibitor-1 (BI-1) in the protective mechanism against apoptotic stimuli has been studied; however, as little is known about its role in death receptor-mediated cell death, this study was designed to investigate the effect of BI-1 on Fas-induced cell death, and the underlying mechanisms. HT1080 adenocarcinoma cells were cultured in high concentration of glucose media and transfected with vector alone (Neo cells) or BI-1-vector (BI-1 cells), and treated with Fas. In cell viability, apoptosis, and caspase-3 analyses, the BI-1 cells showed enhanced sensitivity to Fas. Fas significantly decreased cytosolic pH in BI-1 cells, compared with Neo cells, and this decrease correlated with BI-1 oligomerization, mitochondrial Ca2+ accumulation, and significant inhibition of sodium-hydrogen exchanger (NHE) activity. Compared with Neo cells, a single treatment of BI-1 cells with the NHE inhibitor EIPA or siRNA against NHE significantly increased cell death, which suggests that the viability of BI-1 cells is affected by the maintenance of intracellular pH homeostasis through NHE.
Collapse
Affiliation(s)
- Geum-Hwa Lee
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| | - Hyung-Ryong Kim
- Department of Dental Pharmacology, Wonkwang Dental Research Institute, School of Dentistry, Wonkwang University, Iksan 570-749, Korea
| | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju 560-182, Korea
| |
Collapse
|
22
|
Valberg SJ, Lewis SS, Shivers JL, Barnes NE, Konczak J, Draper ACE, Armién AG. The Equine Movement Disorder “Shivers” Is Associated With Selective Cerebellar Purkinje Cell Axonal Degeneration. Vet Pathol 2015; 52:1087-98. [DOI: 10.1177/0300985815571668] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
“Shivers” is a progressive equine movement disorder of unknown etiology. Clinically, horses with shivers show difficulty walking backward, assume hyperflexed limb postures, and have hind limb tremors during backward movement that resembles shivering. At least initially, forward movements are normal. Given that neither the neurophysiologic nor the pathologic mechanisms of the disease is known, nor has a neuroanatomic locus been identified, we undertook a detailed neuroanatomic and neuropathologic analysis of the complete sensorimotor system in horses with shivers and clinically normal control horses. No abnormalities were identified in the examined hind limb and forelimb skeletal muscles nor the associated peripheral nerves. Eosinophilic segmented axonal spheroids were a common lesion. Calretinin-positive axonal spheroids were present in many regions of the central nervous system, particularly the nucleus cuneatus lateralis; however, their numbers did not differ significantly from those of control horses. When compared to controls, calretinin-negative, calbindin-positive, and glutamic acid decarboxylase–positive spheroids were increased 80-fold in Purkinje cell axons within the deep cerebellar nuclei of horses with shivers. Unusual lamellar or membranous structures resembling marked myelin decompaction were present between myelin sheaths of presumed Purkinje cell axons in the deep cerebellar nuclei of shivers but not control horses. The immunohistochemical and ultrastructural characteristics of the lesions combined with their functional neuroanatomic distribution indicate, for the first time, that shivers is characterized by end-terminal neuroaxonal degeneration in the deep cerebellar nuclei, which results in context-specific hypermetria and myoclonus.
Collapse
Affiliation(s)
- S. J. Valberg
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - S. S. Lewis
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - J. L. Shivers
- Veterinary Diagnostic Laboratory, University of Minnesota, St Paul, MN, USA
| | - N. E. Barnes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - J. Konczak
- School of Kinesiology, University of Minnesota, Minneapolis, MN USA
| | - A. C. E. Draper
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - A. G. Armién
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
- Veterinary Diagnostic Laboratory, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
23
|
Jinadasa T, Szabó EZ, Numat M, Orlowski J. Activation of AMP-activated protein kinase regulates hippocampal neuronal pH by recruiting Na(+)/H(+) exchanger NHE5 to the cell surface. J Biol Chem 2015; 289:20879-97. [PMID: 24936055 DOI: 10.1074/jbc.m114.555284] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Strict regulation of intra- and extracellular pH is an important determinant of nervous system function as many voltage-, ligand-, and H(+)-gated cationic channels are exquisitely sensitive to transient fluctuations in pH elicited by neural activity and pathophysiologic events such as hypoxia-ischemia and seizures. Multiple Na(+)/H(+) exchangers (NHEs) are implicated in maintenance of neural pH homeostasis. However, aside from the ubiquitous NHE1 isoform, their relative contributions are poorly understood. NHE5 is of particular interest as it is preferentially expressed in brain relative to other tissues. In hippocampal neurons, NHE5 regulates steady-state cytoplasmic pH, but intriguingly the bulk of the transporter is stored in intracellular vesicles. Here, we show that NHE5 is a direct target for phosphorylation by the AMP-activated protein kinase (AMPK), a key sensor and regulator of cellular energy homeostasis in response to metabolic stresses. In NHE5-transfected non-neuronal cells, activation of AMPK by the AMP mimetic AICAR or by antimycin A, which blocks aerobic respiration and causes acidification, increased cell surface accumulation and activity of NHE5, and elevated intracellular pH. These effects were effectively blocked by the AMPK antagonist compound C, the NHE inhibitor HOE694, and mutation of a predicted AMPK recognition motif in the NHE5 C terminus. This regulatory pathway was also functional in primary hippocampal neurons, where AMPK activation of NHE5 protected the cells from sustained antimycin A-induced acidification. These data reveal a unique role for AMPK and NHE5 in regulating the pH homeostasis of hippocampal neurons during metabolic stress.
Collapse
|
24
|
Diering GH, Numata M. Endosomal pH in neuronal signaling and synaptic transmission: role of Na(+)/H(+) exchanger NHE5. Front Physiol 2014; 4:412. [PMID: 24454292 PMCID: PMC3888932 DOI: 10.3389/fphys.2013.00412] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/27/2013] [Indexed: 12/27/2022] Open
Abstract
Neuronal precursor cells extend multiple neurites during development, one of which extends to form an axon whereas others develop into dendrites. Chemical stimulation of N-methyl D-aspartate (NMDA) receptor in fully-differentiated neurons induces projection of dendritic spines, small spikes protruding from dendrites, thereby establishing another layer of polarity within the dendrite. Neuron-enriched Na+/H+ exchanger NHE5 contributes to both neurite growth and dendritic spine formation. In resting neurons and neuro-endocrine cells, neuron-enriched NHE5 is predominantly associated with recycling endosomes where it colocalizes with nerve growth factor (NGF) receptor TrkA. NHE5 potently acidifies the lumen of TrkA-positive recycling endosomes and regulates cell-surface targeting of TrkA, whereas chemical stimulation of NMDA receptors rapidly recruits NHE5 to dendritic spines, alkalinizes dendrites and down-regulates the dendritic spine formation. Possible roles of NHE5 in neuronal signaling via proton movement in subcellular compartments are discussed.
Collapse
Affiliation(s)
- Graham H Diering
- Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia Vancouver, BC, Canada
| |
Collapse
|
25
|
Diering GH, Numata Y, Fan S, Church J, Numata M. Endosomal acidification by Na+/H+ exchanger NHE5 regulates TrkA cell-surface targeting and NGF-induced PI3K signaling. Mol Biol Cell 2013; 24:3435-48. [PMID: 24006492 PMCID: PMC3814139 DOI: 10.1091/mbc.e12-06-0445] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/21/2013] [Accepted: 08/28/2013] [Indexed: 01/19/2023] Open
Abstract
To facilitate polarized vesicular trafficking and signal transduction, neuronal endosomes have evolved sophisticated mechanisms for pH homeostasis. NHE5 is a member of the Na(+)/H(+) exchanger family and is abundantly expressed in neurons and associates with recycling endosomes. Here we show that NHE5 potently acidifies recycling endosomes in PC12 cells. NHE5 depletion by plasmid-based short hairpin RNA significantly reduces cell surface abundance of TrkA, an effect similar to that observed after treatment with the V-ATPase inhibitor bafilomycin. A series of cell-surface biotinylation experiments suggests that anterograde trafficking of TrkA from recycling endosomes to plasma membrane is the likeliest target affected by NHE5 depletion. NHE5 knockdown reduces phosphorylation of Akt and Erk1/2 and impairs neurite outgrowth in response to nerve growth factor (NGF) treatment. Of interest, although both phosphoinositide 3-kinase-Akt and Erk signaling are activated by NGF-TrkA, NGF-induced Akt-phosphorylation appears to be more sensitively affected by perturbed endosomal pH. Furthermore, NHE5 depletion in rat cortical neurons in primary culture also inhibits neurite formation. These results collectively suggest that endosomal pH modulates trafficking of Trk-family receptor tyrosine kinases, neurotrophin signaling, and possibly neuronal differentiation.
Collapse
Affiliation(s)
- Graham H. Diering
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yuka Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Steven Fan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John Church
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|