1
|
Tan Z, Bussies PL, Sarn NB, Irfan M, DeSilva T, Eng C. Morphological and functional differences between hippocampal and cortical microglia and its impact on neuronal over-excitation in a germline Pten mutant mouse model. Neuroscience 2025; 570:159-172. [PMID: 39984030 DOI: 10.1016/j.neuroscience.2025.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/22/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
High-throughput, transcriptomic analyses of the brain have revealed significant differences of microglia between the hippocampus and the cortex. However, it remains unclear whether these regional differences translate into different microglial behaviors and impact disease progression. Here, we show that microglia possess higher morphological complexity and phagocytic capacity in the hippocampus compared to the cortex of wild-type mice. These regional differences are preserved in mice harboring a germline Pten mutation, which have a general increase of microglial ramification and phagocytic capacity. Moreover, we find that Pten-mutant microglia protect neurons from over-excitation through pruning excessive excitatory synapses and forming more microglia-neuron junctions. However, Pten-mutation induced neuronal over-excitation is normalized in the hippocampus but not the cortex which we are attributing to regional differences of microglia in both function and morphology. These Pten-mutant microglia may protect Pten mutant mice from developing spontaneous seizures, but cannot eliminate their heightened risk of provoked seizure. Collectively, our findings have revealed a potential protective role of microglia in an over-excited brain, underscoring the impact of microglial regional heterogeneity in disease development and highlighting their prospect as a therapeutic target for epilepsy.
Collapse
Affiliation(s)
- Zhibing Tan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Parker L Bussies
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Nicholas B Sarn
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Muhammad Irfan
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tara DeSilva
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Bosco DB, Kremen V, Haruwaka K, Zhao S, Wang L, Ebner BA, Zheng J, Xie M, Dheer A, Perry JF, Barath A, Nguyen AT, Worrell GA, Wu LJ. Microglial TREM2 promotes phagocytic clearance of damaged neurons after status epilepticus. Brain Behav Immun 2025; 123:540-555. [PMID: 39353548 PMCID: PMC11924143 DOI: 10.1016/j.bbi.2024.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/15/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. Microglial TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about how TREM2 affects microglial function within epileptogenesis. To investigate this, we utilized male TREM2 knockout (KO) mice within the intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both the severity of acute status epilepticus and the number of spontaneous recurrent seizures characteristic of chronic focal epilepsy. Phagocytic clearance of damaged neurons by microglia was also impaired by TREM2 KO and reduced phagocytic activity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between expression of the microglial phagocytic marker CD68 and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity are important to epileptogenic pathology.
Collapse
MESH Headings
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Animals
- Status Epilepticus/metabolism
- Status Epilepticus/genetics
- Microglia/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Mice, Knockout
- Male
- Phagocytosis/physiology
- Phagocytosis/genetics
- Mice
- Neurons/metabolism
- Humans
- Disease Models, Animal
- Kainic Acid
- Mice, Inbred C57BL
- Epilepsy, Temporal Lobe/metabolism
- Epilepsy, Temporal Lobe/genetics
- Seizures/metabolism
- Seizures/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/metabolism
Collapse
Affiliation(s)
- Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Koichiro Haruwaka
- Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Blake A Ebner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jiaying Zheng
- Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jadyn F Perry
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Abhijeet Barath
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Center for Neuroimmunology and Glial Biology, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Hu Y, Tao W. Current perspectives on microglia-neuron communication in the central nervous system: Direct and indirect modes of interaction. J Adv Res 2024; 66:251-265. [PMID: 38195039 PMCID: PMC11674795 DOI: 10.1016/j.jare.2024.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/05/2023] [Accepted: 01/06/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND The incessant communication that takes place between microglia and neurons is essential the development, maintenance, and pathogenesis of the central nervous system (CNS). As mobile phagocytic cells, microglia serve a critical role in surveilling and scavenging the neuronal milieu to uphold homeostasis. AIM OF REVIEW This review aims to discuss the various mechanisms that govern the interaction between microglia and neurons, from the molecular to the organ system level, and to highlight the importance of these interactions in the development, maintenance, and pathogenesis of the CNS. KEY SCIENTIFIC CONCEPTS OF REVIEW Recent research has revealed that microglia-neuron interaction is vital for regulating fundamental neuronal functions, such as synaptic pruning, axonal remodeling, and neurogenesis. The review will elucidate the intricate signaling pathways involved in these interactions, both direct and indirect, to provide a better understanding of the fundamental mechanisms of brain function. Furthermore, gaining insights into these signals could lead to the development of innovative therapies for neural disorders.
Collapse
Affiliation(s)
- Yue Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiwei Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 220023, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Wu L, Zhu Y, Qin Y, Yuan H, Zhang L, Lu T, Chen Q, Hu A. Conditional Knockout of IL-1R1 in Endothelial Cells Attenuates Seizures and Neurodegeneration via Inhibiting Neuroinflammation Mediated by Nrf2/HO-1/NLRP3 Signaling in Status Epilepticus Model. Mol Neurobiol 2024; 61:4289-4303. [PMID: 38087170 PMCID: PMC11236925 DOI: 10.1007/s12035-023-03842-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/29/2023] [Indexed: 07/11/2024]
Abstract
Studies on the bench and at bedside have demonstrated that the process of epileptogenesis is involved in neuroinflammatory responses. As the receptor of proinflammatory cytokine IL-1β, IL-1β type 1 receptor (IL-1R1) is reported to express abundantly in the endothelial cells in epileptic brains, which is deemed to be implicated in the epileptogenic process. However, whether and how endothelial IL-1R1 modulates neuroinflammatory responses in the pathological process of epileptic seizures and/or status epilepticus (SE) remains obscure. Here, we indicated endothelial IL-1R1 is involved in neuroinflammation, facilitating epilepsy progress via Nrf2/HO-1/NLRP3. In vitro, we observed upregulation of inflammatory cytokines in co-culture model under IL-1β challenge, as well as in BV2 cells after stimulation with conditional medium (CM) from IL-1β-stimulated bEnd.3 cells. In vivo, mice with conditional knockout of endothelial IL-1R1 (IL-1R1-CKO) were generated by hybrid IL-1R1flox/flox mice with Tek-Cre mice. IL-1R1-CKO reduced seizure susceptibility in kainic acid (KA)-induced SE model. In addition, IL-1R1-CKO KA mice exhibited lessened hippocampal neuroinflammation, mitigated neuronal damage, and decreased abnormal neurogenesis. In cognitive behavioral tests, IL-1R1-CKO KA mice presented improvement in learning and memory. Furthermore, we also indicated blockage of endothelial IL-1R1 downregulated the expressions of Nrf2/HO-1/NLRP3 pathway-related proteins. Nrf2-siRNA reversed the downregulation of HO-1, NLRP3, caspase-1, and IL-1β. These results demonstrated CKO of endothelial IL-1R1 reduces seizure susceptibility and attenuates SE-related neurobehavioral damage by suppressing hippocampal neuroinflammation via Nrf2/HO-1/NLRP3.
Collapse
Affiliation(s)
- Lianlian Wu
- Experimental Animal Center, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yuhua Zhu
- Experimental Animal Center, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Ying Qin
- Experimental Animal Center, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Honghua Yuan
- Experimental Animal Center, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Lingzhi Zhang
- Experimental Animal Center, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tianyuan Lu
- Experimental Animal Center, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Quangang Chen
- Experimental Animal Center, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Ankang Hu
- Experimental Animal Center, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
5
|
Xi Y, Min Z, Liu M, Lin X, Yuan ZH. Role and recent progress of P2Y12 receptor in cancer development. Purinergic Signal 2024:10.1007/s11302-024-10027-w. [PMID: 38874752 DOI: 10.1007/s11302-024-10027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
P2Y12 receptor (P2Y12R) is an adenosine-activated G protein-coupled receptor (GPCR) that plays a central role in platelet function, hemostasis, and thrombosis. P2Y12R activation can promote platelet aggregation and adhesion to cancer cells, promote tumor angiogenesis, and affect the tumor immune microenvironment (TIME) and tumor drug resistance, which is conducive to the progression of cancers. Meanwhile, P2Y12R inhibitors can inhibit this effect, suggesting that P2Y12R may be a potential therapeutic target for cancer. P2Y12R is involved in cancer development and metastasis, while P2Y12R inhibitors are effective in inhibiting cancer. However, a new study suggests that long-term use of P2Y12R inhibitors may increase the risk of cancer and the mechanism remains to be explored. In this paper, we reviewed the structural and functional characteristics of P2Y12R and its role in cancer. We explored the role of P2Y12R inhibitors in different tumors and the latest advances by summarizing the basic and clinical studies on the effects of P2Y12R inhibitors on tumors.
Collapse
Affiliation(s)
- Yanni Xi
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Zhenya Min
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Mianxue Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
- The Second Clinical Medical College, Nanchang University, Nanchang, 330006, Republic of China
| | - Xueqin Lin
- Department of Nursing, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Republic of China
| | - Zhao-Hua Yuan
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People's Republic of China.
| |
Collapse
|
6
|
Liu X, Zhang Y, Zhao Y, Zhang Q, Han F. The Neurovascular Unit Dysfunction in the Molecular Mechanisms of Epileptogenesis and Targeted Therapy. Neurosci Bull 2024; 40:621-634. [PMID: 38564049 PMCID: PMC11127907 DOI: 10.1007/s12264-024-01193-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/09/2023] [Indexed: 04/04/2024] Open
Abstract
Epilepsy is a multifaceted neurological syndrome characterized by recurrent, spontaneous, and synchronous seizures. The pathogenesis of epilepsy, known as epileptogenesis, involves intricate changes in neurons, neuroglia, and endothelium, leading to structural and functional disorders within neurovascular units and culminating in the development of spontaneous epilepsy. Although current research on epilepsy treatments primarily centers around anti-seizure drugs, it is imperative to seek effective interventions capable of disrupting epileptogenesis. To this end, a comprehensive exploration of the changes and the molecular mechanisms underlying epileptogenesis holds the promise of identifying vital biomarkers for accurate diagnosis and potential therapeutic targets. Emphasizing early diagnosis and timely intervention is paramount, as it stands to significantly improve patient prognosis and alleviate the socioeconomic burden. In this review, we highlight the changes and molecular mechanisms of the neurovascular unit in epileptogenesis and provide a theoretical basis for identifying biomarkers and drug targets.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Ying Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yanming Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Qian Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 211166, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 210019, China.
| |
Collapse
|
7
|
Zhao S, Umpierre AD, Wu LJ. Tuning neural circuits and behaviors by microglia in the adult brain. Trends Neurosci 2024; 47:181-194. [PMID: 38245380 PMCID: PMC10939815 DOI: 10.1016/j.tins.2023.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/04/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
Microglia are the primary immune cells of the CNS, contributing to both inflammatory damage and tissue repair in neurological disorder. In addition, emerging evidence highlights the role of homeostatic microglia in regulating neuronal activity, interacting with synapses, tuning neural circuits, and modulating behaviors. Herein, we review how microglia sense and regulate neuronal activity through synaptic interactions, thereby directly engaging with neural networks and behaviors. We discuss current studies utilizing microglial optogenetic and chemogenetic approaches to modulate adult neural circuits. These manipulations of microglia across different CNS regions lead to diverse behavioral consequences. We propose that spatial heterogeneity of microglia-neuron interaction lays the groundwork for understanding diverse functions of microglia in neural circuits and behaviors.
Collapse
Affiliation(s)
- Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
8
|
Huo M, Zhang Q, Si Y, Zhang Y, Chang H, Zhou M, Zhang D, Fang Y. The role of purinergic signaling in acupuncture-mediated relief of neuropathic and inflammatory pain. Purinergic Signal 2024:10.1007/s11302-024-09985-y. [PMID: 38305986 DOI: 10.1007/s11302-024-09985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Acupuncture is a traditional medicinal practice in China that has been increasingly recognized in other countries in recent decades. Notably, several reports have demonstrated that acupuncture can effectively aid in pain management. However, the analgesic mechanisms through which acupuncture provides such benefits remain poorly understood. Purinergic signaling, which is mediated by purine nucleotides and purinergic receptors, has been proposed to play a central role in acupuncture analgesia. On the one hand, acupuncture affects the transmission of nociception by increasing adenosine triphosphate dephosphorylation and thereby decreasing downstream P2X3, P2X4, and P2X7 receptors signaling activity, regulating the levels of inflammatory factors, neurotrophic factors, and synapsin I. On the other hand, acupuncture exerts analgesic effects by promoting the production of adenosine, enhancing the expression of downstream adenosine A1 and A2A receptors, and regulating downstream inflammatory factors or synaptic plasticity. Together, this systematic overview of the field provides a sound, evidence-based foundation for future research focused on the application of acupuncture as a means of relieving pain.
Collapse
Affiliation(s)
- Mingzhu Huo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Haihe Laboratory of Modern Chinese, Tianjin, 301617, People's Republic of China.
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
9
|
Bosco DB, Kremen V, Haruwaka K, Zhao S, Wang L, Ebner BA, Zheng J, Dheer A, Perry JF, Xie M, Nguyen AT, Worrell GA, Wu LJ. Impaired microglial phagocytosis promotes seizure development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.31.573794. [PMID: 38260601 PMCID: PMC10802340 DOI: 10.1101/2023.12.31.573794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer's disease and amyotrophic lateral sclerosis. However, little is known about the role TREM2 plays in epileptogenesis. To investigate this, we utilized TREM2 knockout (KO) mice within the murine intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both acute status epilepticus and spontaneous recurrent seizures characteristic of chronic focal epilepsy. Mechanistically, phagocytic clearance of damaged neurons by microglia was impaired in TREM2 KO mice and the reduced phagocytic capacity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between microglial phagocytic activity and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity may be important to epileptogenesis and the progression of focal temporal lobe epilepsy.
Collapse
Affiliation(s)
- Dale B. Bosco
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | | | - Shunyi Zhao
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Blake A. Ebner
- Department of Laboratory Medicine and Pathology, Mayo Clinic; Rochester, MN, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Aastha Dheer
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Jadyn F. Perry
- Department of Immunology, Mayo Clinic; Rochester, MN, USA
| | - Manling Xie
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
| | - Aivi T. Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic; Rochester, MN, USA
| | | | - Long-Jun Wu
- Department of Neurology, Mayo Clinic; Rochester, MN, USA
- Department of Immunology, Mayo Clinic; Rochester, MN, USA
- Department of Neuroscience, Mayo Clinic; Jacksonville, FL, USA
| |
Collapse
|
10
|
Vecchiarelli HA, Lopes LT, Paolicelli RC, Stevens B, Wake H, Tremblay MÈ. Synapse Regulation. ADVANCES IN NEUROBIOLOGY 2024; 37:179-208. [PMID: 39207693 DOI: 10.1007/978-3-031-55529-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Microglia are the resident immune cells of the brain. As such, they rapidly detect changes in normal brain homeostasis and accurately respond by fine-tuning in a tightly regulated manner their morphology, gene expression, and functional behavior. Depending on the nature of these changes, microglia can thicken and retract their processes, proliferate and migrate, release numerous signaling factors and compounds influencing neuronal physiology (e.g., cytokines and trophic factors), in addition to secreting proteases able to transform the extracellular matrix, and phagocytosing various types of cellular debris, etc. Because microglia also transform rapidly (on a time scale of minutes) during experimental procedures, studying these very special cells requires methods that are specifically non-invasive. The development of such methods has provided unprecedented insights into the roles of microglia during normal physiological conditions. In particular, transcranial two-photon in vivo imaging revealed that presumably "resting" microglia continuously survey the brain parenchyma with their highly motile processes, in addition to modulating their structural and functional interactions with neuronal circuits along the changes in neuronal activity and behavioral experience occurring throughout the lifespan. In this chapter, we will describe how surveillant microglia interact with synaptic elements and modulate the number, maturation, function, and plasticity of synapses in the healthy developing, mature, and aging brain, with consequences on neuronal activity, learning and memory, and the behavioral outcome.
Collapse
Affiliation(s)
| | | | - Rosa C Paolicelli
- Division of Psychiatry Research, University of Zurich, Schlieren, Switzerland
| | - Beth Stevens
- Department of Neurology, Harvard Medical School, Center for Life Science, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, USA
| | - Hiroaki Wake
- Division of Brain Circuits, National Institute for Basic Biology, Myodaiji-cho, Okazaki, Japan
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
11
|
Dheer A, Bosco DB, Zheng J, Wang L, Zhao S, Haruwaka K, Yi MH, Barath A, Tian DS, Wu LJ. Chemogenetic approaches reveal dual functions of microglia in seizures. Brain Behav Immun 2024; 115:406-418. [PMID: 37926132 PMCID: PMC10841657 DOI: 10.1016/j.bbi.2023.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/14/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023] Open
Abstract
Microglia are key players in maintaining brain homeostasis and exhibit phenotypic alterations in response to epileptic stimuli. However, it is still relatively unknown if these alterations are pro- or anti-epileptic. To unravel this dilemma, we employed chemogenetic manipulation of microglia using the artificial Gi-Dreadd receptor within a kainic acid (KA) induced murine seizure model. Our results indicate that acute Gi-Dreadd activation with Clozapine-N-Oxide can reduce seizure severity. Additionally, we observed increased interaction between microglia and neuronal soma, which correlated with reduced neuronal hyperactivity. Interestingly, prolonged activation of microglial Gi-Dreadds by repeated doses of CNO over 3 days, arrested microglia in a less active, homeostatic-like state, which associated with increased neuronal loss after KA induced seizures. RNAseq analysis revealed that prolonged activation of Gi-Dreadd interferes with interferon β signaling and microglia proliferation. Thus, our findings highlight the importance of microglial Gi signaling not only during status epilepticus (SE) but also within later seizure induced pathology.
Collapse
Affiliation(s)
- Aastha Dheer
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Jiaying Zheng
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Shunyi Zhao
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Min-Hee Yi
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Abhijeet Barath
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
He Y, Liu T, He Q, Ke W, Li X, Du J, Deng S, Shu Z, Wu J, Yang B, Wang Y, Mao Y, Rao Y, Shu Y, Peng B. Microglia facilitate and stabilize the response to general anesthesia via modulating the neuronal network in a brain region-specific manner. eLife 2023; 12:RP92252. [PMID: 38131301 PMCID: PMC10746144 DOI: 10.7554/elife.92252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
General anesthesia leads to a loss of consciousness and an unrousable state in patients. Although general anesthetics are widely used in clinical practice, their underlying mechanisms remain elusive. The potential involvement of nonneuronal cells is unknown. Microglia are important immune cells in the central nervous system (CNS) that play critical roles in CNS function and dysfunction. We unintentionally observed delayed anesthesia induction and early anesthesia emergence in microglia-depleted mice. We found that microglial depletion differentially regulates neuronal activities by suppressing the neuronal network of anesthesia-activated brain regions and activating emergence-activated brain regions. Thus, microglia facilitate and stabilize the anesthesia status. This influence is not mediated by dendritic spine plasticity. Instead, it relies on the activation of microglial P2Y12 and subsequent calcium influx, which facilitates the general anesthesia response. Together, we elucidate the regulatory role of microglia in general anesthesia, extending our knowledge of how nonneuronal cells modulate neuronal activities.
Collapse
Affiliation(s)
- Yang He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Taohui Liu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Quansheng He
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Wei Ke
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Xiaoyu Li
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Jinjin Du
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Suixin Deng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Zhenfeng Shu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Jialin Wu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Baozhi Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Yuqing Wang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- School of Basic Medical Sciences, Jinzhou Medical UniversityJinzhouChina
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan UniversityShanghaiChina
| | - Yousheng Shu
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
| | - Bo Peng
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan UniversityShanghaiChina
- Co-Innovation Center of Neurodegeneration, Nantong UniversityNantongChina
| |
Collapse
|
13
|
Latchney SE, Ruiz Lopez BR, Womble PD, Blandin KJ, Lugo JN. Neuronal deletion of phosphatase and tensin homolog in mice results in spatial dysregulation of adult hippocampal neurogenesis. Front Mol Neurosci 2023; 16:1308066. [PMID: 38130682 PMCID: PMC10733516 DOI: 10.3389/fnmol.2023.1308066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Adult neurogenesis is a persistent phenomenon in mammals that occurs in select brain structures in both healthy and diseased brains. The tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome 10 (Pten) has previously been found to restrict the proliferation of neural stem/progenitor cells (NSPCs) in vivo. In this study, we aimed to provide a comprehensive picture of how conditional deletion of Pten may regulate the genesis of adult NSPCs in the dentate gyrus of the hippocampus and the subventricular zone bordering the lateral ventricles. Using conventional markers and stereology, we quantified multiple stages of neurogenesis, including proliferating cells, immature neurons (neuroblasts), and apoptotic cells in several regions of the dentate gyrus, including the subgranular zone (SGZ), outer granule cell layer (oGCL), molecular layer, and hilus at 4 and 10 weeks of age. Our data demonstrate that conditional deletion of Pten in mice produces successive increases in dentate gyrus proliferating cells and immature neuroblasts, which confirms the known negative roles Pten has on cell proliferation and maturation. Specifically, we observe a significant increase in Ki67+ proliferating cells in the neurogenic SGZ at 4 weeks of age, but not 10 weeks of age. We also observe a delayed increase in neuroblasts at 10 weeks of age. However, our study expands on previous work by providing temporal, subregional, and neurogenesis-stage resolution. Specifically, we found that Pten deletion initially increases cell proliferation in the neurogenic SGZ, but this increase spreads to non-neurogenic dentate gyrus areas, including the hilus, oGCL, and molecular layer, as mice age. We also observed region-specific increases in apoptotic cells in the dentate gyrus hilar region that paralleled the regional increases in Ki67+ cells. Our work is accordant with the literature showing that Pten serves as a negative regulator of dentate gyrus neurogenesis but adds temporal and spatial components to the existing knowledge.
Collapse
Affiliation(s)
- Sarah E. Latchney
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Brayan R. Ruiz Lopez
- Department of Biology, St. Mary’s College of Maryland, St. Mary’s City, MD, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Katherine J. Blandin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| |
Collapse
|
14
|
Xie Z, Meng J, Wu Z, Nakanishi H, Hayashi Y, Kong W, Lan F, Narengaowa, Yang Q, Qing H, Ni J. The Dual Nature of Microglia in Alzheimer's Disease: A Microglia-Neuron Crosstalk Perspective. Neuroscientist 2023; 29:616-638. [PMID: 35348415 DOI: 10.1177/10738584211070273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Microglia are critical players in the neuroimmune system, and their involvement in Alzheimer's disease (AD) pathogenesis is increasingly being recognized. However, whether microglia play a positive or negative role in AD remains largely controversial and the precise molecular targets for intervention are not well defined. This partly results from the opposing roles of microglia in AD pathology, and is mainly reflected in the microglia-neuron interaction. Microglia can prune synapses resulting in excessive synapse loss and neuronal dysfunction, but they can also promote synapse formation, enhancing neural network plasticity. Neuroimmune crosstalk accelerates microglial activation, which induces neuron death and enhances the microglial phagocytosis of β-amyloid to protect neurons. Moreover, microglia have dual opposing roles in developing the major pathological features in AD, such as amyloid deposition and blood-brain barrier permeability. This review summarizes the dual opposing role of microglia in AD from the perspective of the interaction between neurons and microglia. Additionally, current AD treatments targeting microglia and the advantages and disadvantages of developing microglia-targeted therapeutic strategies are discussed.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Jie Meng
- Department of Neurology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Yoshinori Hayashi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Wei Kong
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Fei Lan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Narengaowa
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Qinghu Yang
- Research Center for Resource Peptide Drugs, Shanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Department of Biology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
15
|
Yu C, Deng XJ, Xu D. Microglia in epilepsy. Neurobiol Dis 2023; 185:106249. [PMID: 37536386 DOI: 10.1016/j.nbd.2023.106249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
Epilepsy is one of most common chronic neurological disorders, and the antiseizure medications developed by targeting neurocentric mechanisms have not effectively reduced the proportion of patients with drug-resistant epilepsy. Further exploration of the cellular or molecular mechanism of epilepsy is expected to provide new options for treatment. Recently, more and more researches focus on brain network components other than neurons, among which microglia have attracted much attention for their diverse biological functions. As the resident immune cells of the central nervous system, microglia have highly plastic transcription, morphology and functional characteristics, which can change dynamically in a context-dependent manner during the progression of epilepsy. In the pathogenesis of epilepsy, highly reactive microglia interact with other components in the epileptogenic network by performing crucial functions such as secretion of soluble factors and phagocytosis, thus continuously reshaping the landscape of the epileptic brain microenvironment. Indeed, microglia appear to be both pro-epileptic and anti-epileptic under the different spatiotemporal contexts of disease, rendering interventions targeting microglia biologically complex and challenging. This comprehensive review critically summarizes the pathophysiological role of microglia in epileptic brain homeostasis alterations and explores potential therapeutic or modulatory targets for epilepsy targeting microglia.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province 430022, China.
| |
Collapse
|
16
|
Martins TG, Soliman R, Cordero-Maldonado ML, Donato C, Ameli C, Mombaerts L, Skupin A, Peri F, Crawford AD. Seizure-induced increase in microglial cell population in the developing zebrafish brain. Epilepsy Res 2023; 195:107203. [PMID: 37572541 DOI: 10.1016/j.eplepsyres.2023.107203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Epilepsy is a chronic brain disorder characterized by unprovoked and recurrent seizures, of which 60% are of unknown etiology. Recent studies implicate microglia in the pathophysiology of epilepsy. However, their role in this process, in particular following early-life seizures, remains poorly understood due in part to the lack of suitable experimental models allowing the in vivo imaging of microglial activity. Given the advantage of zebrafish larvae for minimally-invasive imaging approaches, we sought for the first time to describe the microglial responses after acute seizures in two different zebrafish larval models: a chemically-induced epileptic model by the systemic injection of kainate at 3 days post-fertilization, and the didys552 genetic epilepsy model, which carries a mutation in scn1lab that leads to spontaneous epileptiform discharges. Kainate-treated larvae exhibited transient brain damage as shown by increased numbers of apoptotic nuclei as early as one day post-injection, which was followed by an increase in the number of microglia in the brain. A similar microglial phenotype was also observed in didys552-/- mutants, suggesting that microglia numbers change in response to seizure-like activity in the brain. Interestingly, kainate-treated larvae also displayed a decreased seizure threshold towards subsequent pentylenetetrazole-induced seizures, as shown by higher locomotor and encephalographic activity in comparison with vehicle-injected larvae. These results are comparable to kainate-induced rodent seizure models and suggest the suitability of these zebrafish seizure models for future studies, in particular to elucidate the links between epileptogenesis and microglial dynamic changes after seizure induction in the developing brain, and to understand how these modulate seizure susceptibility.
Collapse
Affiliation(s)
- Teresa G Martins
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| | - Remon Soliman
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Cristina Donato
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Corrado Ameli
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laurent Mombaerts
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Francesca Peri
- Developmental Biology Group, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Institute for Orphan Drug Discovery, Bremerhaven, Germany.
| |
Collapse
|
17
|
Bollinger JL, Dadosky DT, Flurer JK, Rainer IL, Woodburn SC, Wohleb ES. Microglial P2Y12 mediates chronic stress-induced synapse loss in the prefrontal cortex and associated behavioral consequences. Neuropsychopharmacology 2023; 48:1347-1357. [PMID: 36517583 PMCID: PMC10354016 DOI: 10.1038/s41386-022-01519-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022]
Abstract
Chronic unpredictable stress (CUS) drives microglia-mediated neuronal remodeling and synapse loss in the prefrontal cortex (PFC), contributing to deficits in cognition and behavior. However, it remains unclear what mechanisms guide microglia-neuron interactions in stress. Evidence indicates that neuronal activity-dependent purinergic signaling directs microglial processes and synaptic engagement via P2Y12, a purinergic receptor exclusively expressed by microglia in the brain. Stress alters excitatory neurotransmission in the PFC, thus we aimed to determine if P2Y12 signaling promotes functional changes in microglia in chronic stress. Here we used genetic ablation of P2Y12 (P2ry12-/-) or pharmacological blockade (clopidogrel, ticagrelor) to examine the role of purinergic signaling in stress-induced microglia-neuron interaction. Multiple behavioral, physiological, and cytometric endpoints were analyzed. Deletion of P2Y12 led to a number of fundamental alterations in the PFC, including the heightened microglial number and increased dendritic spine density. Flow cytometry revealed that microglia in P2ry12-/- mice had shifts in surface levels of CX3CR1, CSF1R, and CD11b, suggesting changes in synaptic engagement and phagocytosis in the PFC. In line with this, pharmacological blockade of P2Y12 prevented CUS-induced increases in the proportion of microglia with neuronal inclusions, limited dendritic spine loss in the PFC, and attenuated alterations in stress coping behavior and working memory function. Overall, these findings indicate that microglial P2Y12 is a critical mediator of stress-induced synapse loss in the PFC and subsequent behavioral deficits.
Collapse
Affiliation(s)
- Justin L Bollinger
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David T Dadosky
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James K Flurer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ivanka L Rainer
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Samuel C Woodburn
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology & Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
18
|
Zhang WJ, Li MY, Wang CY, Feng X, Hu DX, Wu LD, Hu JL. P2Y12 receptor involved in the development of chronic nociceptive pain as a sensory information mediator. Biomed Pharmacother 2023; 164:114975. [PMID: 37267639 DOI: 10.1016/j.biopha.2023.114975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Direct or indirect damage to the nervous system (such as inflammation or tumor invasion) can lead to dysfunction and pain. The generation of pain is mainly reflected in the activation of glial cells and the abnormal discharge of sensory neurons, which transmit stronger sensory information to the center. P2Y12 receptor plays important roles in physiological and pathophysiological processes including inflammation and pain. P2Y12 receptor involved in the occurrence of pain as a sensory information mediator, which enhances the activation of microglia and the synaptic plasticity of primary sensory neurons, and reaches the higher center through the ascending conduction pathway (mainly spinothalamic tract) to produce pain. While the application of P2Y12 receptor antagonists (PBS-0739, AR-C69931MX and MRS2359) have better antagonistic activity and produce analgesic pharmacological properties. Therefore, in this article, we discussed the role of the P2Y12 receptor in different chronic pains and its use as a pharmacological target for pain relief.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Mei-Yong Li
- Department of Laboratory medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng-Yi Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Xiao Feng
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Li-Dong Wu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| | - Jia-Ling Hu
- Department of Emergency Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
19
|
Chinnathambi S, Das R. Microglia degrade Tau oligomers deposit via purinergic P2Y12-associated podosome and filopodia formation and induce chemotaxis. Cell Biosci 2023; 13:95. [PMID: 37221563 DOI: 10.1186/s13578-023-01028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/02/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Tau protein forms neurofibrillary tangles and becomes deposited in the brain during Alzheimer's disease (AD). Tau oligomers are the most reactive species, mediating neurotoxic and inflammatory activity. Microglia are the immune cells in the central nervous system, sense the extracellular Tau via various cell surface receptors. Purinergic P2Y12 receptor can directly interact with Tau oligomers and mediates microglial chemotaxis via actin remodeling. The disease-associated microglia are associated with impaired migration and express a reduced level of P2Y12, but elevate the level of reactive oxygen species and pro-inflammatory cytokines. RESULTS Here, we studied the formation and organization of various actin microstructures such as-podosome, filopodia and uropod in colocalization with actin nucleator protein Arp2 and scaffold protein TKS5 in Tau-induced microglia by fluorescence microscopy. Further, the relevance of P2Y12 signaling either by activation or blockage was studied in terms of actin structure formations and Tau deposits degradation by N9 microglia. Extracellular Tau oligomers facilitate the microglial migration via Arp2-associated podosome and filopodia formation through the involvement of P2Y12 signaling. Similarly, Tau oligomers induce the TKS5-associated podosome clustering in microglial lamella in a time-dependent manner. Moreover, the P2Y12 was evidenced to localize with F-actin-rich podosome and filopodia during Tau-deposit degradation. The blockage of P2Y12 signaling resulted in decreased microglial migration and Tau-deposit degradation. CONCLUSIONS The P2Y12 signaling mediate the formation of migratory actin structures like- podosome and filopodia to exhibit chemotaxis and degrade Tau deposit. These beneficial roles of P2Y12 in microglial chemotaxis, actin network remodeling and Tau clearance can be intervened as a therapeutic target in AD.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Hosur Road, Bangalore, 560029, Karnataka, India.
| | - Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
20
|
Chen X, Wang Q, Yang J, Zhang L, Liu TT, Liu J, Deng BL, Liu J. Diagnostic and therapeutic value of P2Y12R in epilepsy. Front Pharmacol 2023; 14:1179028. [PMID: 37234715 PMCID: PMC10206044 DOI: 10.3389/fphar.2023.1179028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
There lacks biomarkers in current epilepsy diagnosis, and epilepsy is thus exposed to inadequate treatment, making it necessarily important to conduct search on new biomarkers and drug targets. The P2Y12 receptor is primarily expressed on microglia in the central nervous system, and acts as intrinsic immune cells in the central nervous system mediating neuroinflammation. In previous studies, P2Y12R in epilepsy has been found capable of controlling neuroinflammation and regulating neurogenesis as well as immature neuronal projections, and its expression is altered. P2Y12R is involved in microglia inhibition of neuronal activity and timely termination of seizures in acute seizures. In status epilepticus, the failure of P2Y12R in the process of "brake buffering" may not terminate the neuronal hyperexcitability timely. In chronic epilepsy, neuroinflammation causes seizures, which can in turn induce neuroinflammation, while on the other hand, neuroinflammation leads to neurogenesis, thereby causing abnormal neuronal discharges that give rise to seizures. In this case, targeting P2Y12R may be a novel strategy for the treatment of epilepsy. The detection of P2Y12R and its expression changes can contribute to the diagnosis of epilepsy. Meanwhile, the P2Y12R single-nucleotide polymorphism is associated with epilepsy susceptibility and endowed with the potential to individualize epilepsy diagnosis. To this end, functions of P2Y12R in the central nervous system were hereby reviewed, the effects of P2Y12R in epilepsy were explored, and the potential of P2Y12R in the diagnosis and treatment of epilepsy was further demonstrated.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qi Wang
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jie Yang
- Zunyi Medical University, Zunyi, China
| | - Li Zhang
- Electrophysiology Unit, Department of Neurology, Chengdu Fourth People’s Hospital, Chengdu, China
| | - Ting-Ting Liu
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Liu
- Department of Geriatric Neurology, Qinglongchang Ward, Chengdu Sixth People’s Hospital, Chengdu, China
| | - Bin-Lu Deng
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of Neurology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Neurology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, Chengdu, China
- Department of Neurology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
21
|
King H, Reiber M, Philippi V, Stirling H, Aulehner K, Bankstahl M, Bleich A, Buchecker V, Glasenapp A, Jirkof P, Miljanovic N, Schönhoff K, von Schumann L, Leenaars C, Potschka H. Anesthesia and analgesia for experimental craniotomy in mice and rats: a systematic scoping review comparing the years 2009 and 2019. Front Neurosci 2023; 17:1143109. [PMID: 37207181 PMCID: PMC10188949 DOI: 10.3389/fnins.2023.1143109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023] Open
Abstract
Experimental craniotomies are a common surgical procedure in neuroscience. Because inadequate analgesia appears to be a problem in animal-based research, we conducted this review and collected information on management of craniotomy-associated pain in laboratory mice and rats. A comprehensive search and screening resulted in the identification of 2235 studies, published in 2009 and 2019, describing craniotomy in mice and/or rats. While key features were extracted from all studies, detailed information was extracted from a random subset of 100 studies/year. Reporting of perioperative analgesia increased from 2009 to 2019. However, the majority of studies from both years did not report pharmacologic pain management. Moreover, reporting of multimodal treatments remained at a low level, and monotherapeutic approaches were more common. Among drug groups, reporting of pre- and postoperative administration of non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019 exceeded that of 2009. In summary, these results suggest that inadequate analgesia and oligoanalgesia are persistent issues associated with experimental intracranial surgery. This underscores the need for intensified training of those working with laboratory rodents subjected to craniotomies. Systematic review registration https://osf.io/7d4qe.
Collapse
Affiliation(s)
- Hannah King
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Philippi
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marion Bankstahl
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aylina Glasenapp
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lara von Schumann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cathalijn Leenaars
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
22
|
Ming LG, Hu DX, Zuo C, Zhang WJ. G protein-coupled P2Y12 receptor is involved in the progression of neuropathic pain. Biomed Pharmacother 2023; 162:114713. [PMID: 37084563 DOI: 10.1016/j.biopha.2023.114713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023] Open
Abstract
The pathological mechanism of neuropathic pain is complex, which seriously affects the physical and mental health of patients, and its treatment is also difficult. The role of G protein-coupled P2Y12 receptor in pain has been widely recognized and affirmed. After nerve injury, stimulated cells can release large amounts of nucleotides into the extracellular matrix, act on P2Y12 receptor. Activated P2Y12 receptor activates intracellular signal transduction and is involved in the development of pain. P2Y12 receptor activation can sensitize primary sensory neurons and receive sensory information. By transmitting the integrated information through the dorsal root of the spinal cord to the secondary neurons of the posterior horn of the spinal cord. The integrated information is then transmitted to the higher center through the ascending conduction tract to produce pain. Moreover, activation of P2Y12 receptor can mediate immune cells to release pro-inflammatory factors, increase damage to nerve cells, and aggravate pain. While inhibits the activation of P2Y12 receptor can effectively relieve pain. Therefore, in this article, we described P2Y12 receptor antagonists and their pharmacological properties. In addition, we explored the potential link between P2Y12 receptor and the nervous system, discussed the intrinsic link of P2Y12 receptor and neuropathic pain and as a potential pharmacological target for pain suppression.
Collapse
Affiliation(s)
- Li-Guo Ming
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Dong-Xia Hu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Cheng Zuo
- Department of Gastrointestinal surgery, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China
| | - Wen-Jun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi Province 343000, China.
| |
Collapse
|
23
|
Chinnathambi S, Das R, Desale SE. Tau aggregates improve the purinergic receptor P2Y12-associated podosome rearrangements in microglial cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119477. [PMID: 37061007 DOI: 10.1016/j.bbamcr.2023.119477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/18/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is associated with protein misfolding, plaque accumulation, neuronal dysfunction, synaptic loss, and cognitive decline. The pathological cascade of AD includes the intracellular Tau hyperphosphorylation and its subsequent aggregation, extracellular Amyloid-β plaque formation and microglia-mediated neuroinflammation. The extracellular release of aggregated Tau is sensed by surveilling microglia through the involvement of various cell surface receptors. Among all, purinergic P2Y12R signaling is involved in microglial chemotaxis towards the damaged neurons. Microglial migration is highly linked with membrane-associated actin remodeling leading to the phagocytosis of extracellular Tau species. Here, we studied the formation of various actin structures such as podosome, lamellipodia and filopodia, in response to extracellular Tau monomers and aggregates. Microglial podosomes are colocalized with actin nucleator protein WASP, Arp2 and TKS5 adaptor protein during Tau-mediated migration. Moreover, the P2Y12 receptors were associated with F-actin-rich podosome structures, which signify the potential of Tau aggregates in microglial chemotaxis through the involvement of actin remodeling.
Collapse
Affiliation(s)
- Subashchandrabose Chinnathambi
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences (NIMHANS), Institute of National Importance, Hosur Road, Bangalore 560029, Karnataka, India.
| | - Rashmi Das
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smita Eknath Desale
- Neurobiology Group, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Chen Y, Chen X, Liang Y. Meta-analysis of HMGB1 levels in the cerebrospinal fluid and serum of patients with epilepsy. Neurol Sci 2023:10.1007/s10072-023-06720-0. [PMID: 36933099 DOI: 10.1007/s10072-023-06720-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Epilepsy pathogenesis and progression are strongly influenced by inflammation. High-mobility group box-1 (HMGB1) is a key proinflammatory factor. The purpose of this study was to quantify and assess the relationship between HMGB1 level and epilepsy. METHODS We searched Embase, Web of Science, PubMed, and the Cochrane Library for studies examining the relationship between HMGB1 and epilepsy. Two independent researchers extracted data and assessed quality using the Cochrane Collaboration tool. Data extracted were analyzed using Stata 15 and Review Manager 5.3. The study protocol was registered prospectively at INPLASY, ID: INPLASY2021120029. RESULTS A total of 12 studies were eligible for inclusion. After exclusion of one study with reduced robustness, 11 studies were included, with a total of 443 patients and 333 matched controls. Two of the articles included cerebrospinal fluid and serum HMGB1 data, which were distinguished by "a" and "b," respectively. The meta-analysis indicated that in comparison with the control group, the HMGB1 level was higher in epilepsy patients (SMD = 0.56, 95% CI = 0.27-0.85, P = 0.0002). Subgroup analysis of specimen types indicated that both serum HMGB1 and cerebrospinal fluid HMGB1 were higher in epilepsy patients than in the control group, with the increase in cerebrospinal fluid HMGB1 being more obvious. Subgroup analysis of disease types demonstrated that the serum HMGB1 level of epileptic seizure patients (including febrile and nonfebrile seizures) was significantly higher than that of matched controls. However, serum HMGB1 levels did not differ significantly between mild epilepsy patients and severe epilepsy patients. Patient age subgroup analysis showed higher HMGB1 in adolescents with epilepsy. Begg's test did not indicate publication bias. CONCLUSIONS This is the first meta-analysis to summarize the association between HMGB1 level and epilepsy. The results of this meta-analysis indicate that epilepsy patients have elevated HMGB1. Large-scale studies with a high level of evidence are needed to reveal the exact relationship between HMGB1 level and epilepsy.
Collapse
Affiliation(s)
- Yue Chen
- Department of Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan, 430005, China.
| | - Xilu Chen
- Department of Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan, 430005, China
| | - Ying Liang
- Department of Clinical Laboratory, General Hospital of the Yangtze River Shipping, Wuhan, 430005, China
| |
Collapse
|
25
|
Wang Q, Shi NR, Lv P, Liu J, Zhang JZ, Deng BL, Zuo YQ, Yang J, Wang X, Chen X, Hu XM, Liu TT, Liu J. P2Y12 receptor gene polymorphisms are associated with epilepsy. Purinergic Signal 2023; 19:155-162. [PMID: 35175489 PMCID: PMC9984642 DOI: 10.1007/s11302-022-09848-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/01/2022] [Indexed: 10/19/2022] Open
Abstract
The basic research indicated that microglial P2Y12 receptors (P2Y12Rs) are involved in the pathophysiology of epilepsy through regulated microglial-neuronal interactions, aberrant neurogenesis, or immature neuronal projections. However, whether the clinic case of epilepsy would be associated with P2Y12 receptor gene polymorphisms is presented with few data. In our study, a total of 176 patients with epilepsy and 50 healthy controls were enrolled. Two single-nucleotide polymorphisms, namely rs1491974 and rs6798347, were selected for analysis. The results revealed that carriers of the G allele of rs1491974 G>A or rs6798347 G>A may be associated with an increased risk of epilepsy (OR = 0.576, 95% CI = 0.368-0.901, p = 0.015; OR = 0.603, 95% CI = 0.367-0.988, p = 0.043). Interestingly, we found that the rs1491974 G>A genotype and allele frequencies have only a significant difference in female instead of male case (p = 0.004 for genotype; p = 0.001 for allele). The subgroup analysis demonstrated that individuals with the rs1491974 G>A genotype might have more frequent seizure (OR = 0.476, 95% CI = 0.255-0.890; p = 0.019). These data implied that both rs1491974 and rs6798347 polymorphisms of P2Y12R would be able to play import roles in epilepsy susceptibility, whereas the rs1491974 polymorphism may be specifically related to seizure frequency.
Collapse
Affiliation(s)
- Qi Wang
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Nan-Rui Shi
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Peng Lv
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Juan Liu
- School of Sports Medicine and Health, Sports Medicine Key Laboratory of Sichuan Province, Chengdu Sport University, Chengdu, 610041, China
| | - Ji-Zhou Zhang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Bin-Lu Deng
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Yan-Qin Zuo
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Jie Yang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xin Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Xiang Chen
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China
| | - Xiu-Min Hu
- School of Acupuncture and Tuina, Chengdu University of Traditional Medicine, Chengdu, 610075, China
| | - Ting-Ting Liu
- Sichuan Academy of Medical Sciences &, Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Jie Liu
- School of Clinical Medicine, Southwest Medical University, 646000, Luzhou, China. .,Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China. .,Sichuan Academy of Medical Sciences &, Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
26
|
Xiao MZ, Liu CX, Zhou LG, Yang Y, Wang Y. Postoperative delirium, neuroinflammation, and influencing factors of postoperative delirium: A review. Medicine (Baltimore) 2023; 102:e32991. [PMID: 36827061 PMCID: PMC11309669 DOI: 10.1097/md.0000000000032991] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/25/2023] Open
Abstract
Postoperative delirium (POD) is an acute cognitive dysfunction that is mainly characterized by memory impairment and disturbances in consciousness. POD can prolong the hospital stay and increase the 1-month mortality rate of patients. The overall incidence of POD is approximately 23%, and its prevalence can go up to 50% in high-risk surgeries. Neuroinflammation is an important pathogenic mechanism of POD that mediates microglial activation and leads to synaptic remodeling. Neuroinflammation, as an indispensable pathogenesis of POD, can occur due to a variety of factors, including aseptic inflammation caused by surgery, effects of anesthetic drugs, disruption of the blood-brain barrier, and epigenetics. Understanding these factors and avoiding the occurrence of risk factors may help prevent POD in time. This review provides a brief overview of POD and neuroinflammation and summarizes various factors affecting POD development mediated by neuroinflammation, which may serve as future targets for the prevention and treatment of POD.
Collapse
Affiliation(s)
- M. Z. Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - C. X. Liu
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - L. G. Zhou
- Department of Anatomy, Hengyang Medical College of University of South China, Hengyang, China
| | - Y. Yang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| | - Y. Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
27
|
The Dialogue Between Neuroinflammation and Adult Neurogenesis: Mechanisms Involved and Alterations in Neurological Diseases. Mol Neurobiol 2023; 60:923-959. [PMID: 36383328 DOI: 10.1007/s12035-022-03102-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022]
Abstract
Adult neurogenesis occurs mainly in the subgranular zone of the hippocampal dentate gyrus and the subventricular zone of the lateral ventricles. Evidence supports the critical role of adult neurogenesis in various conditions, including cognitive dysfunction, Alzheimer's disease (AD), and Parkinson's disease (PD). Several factors can alter adult neurogenesis, including genetic, epigenetic, age, physical activity, diet, sleep status, sex hormones, and central nervous system (CNS) disorders, exerting either pro-neurogenic or anti-neurogenic effects. Compelling evidence suggests that any insult or injury to the CNS, such as traumatic brain injury (TBI), infectious diseases, or neurodegenerative disorders, can provoke an inflammatory response in the CNS. This inflammation could either promote or inhibit neurogenesis, depending on various factors, such as chronicity and severity of the inflammation and underlying neurological disorders. Notably, neuroinflammation, driven by different immune components such as activated glia, cytokines, chemokines, and reactive oxygen species, can regulate every step of adult neurogenesis, including cell proliferation, differentiation, migration, survival of newborn neurons, maturation, synaptogenesis, and neuritogenesis. Therefore, this review aims to present recent findings regarding the effects of various components of the immune system on adult neurogenesis and to provide a better understanding of the role of neuroinflammation and neurogenesis in the context of neurological disorders, including AD, PD, ischemic stroke (IS), seizure/epilepsy, TBI, sleep deprivation, cognitive impairment, and anxiety- and depressive-like behaviors. For each disorder, some of the most recent therapeutic candidates, such as curcumin, ginseng, astragaloside, boswellic acids, andrographolide, caffeine, royal jelly, estrogen, metformin, and minocycline, have been discussed based on the available preclinical and clinical evidence.
Collapse
|
28
|
Kasahara Y, Nakashima H, Nakashima K. Seizure-induced hilar ectopic granule cells in the adult dentate gyrus. Front Neurosci 2023; 17:1150283. [PMID: 36937666 PMCID: PMC10017466 DOI: 10.3389/fnins.2023.1150283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by hypersynchronous spontaneous recurrent seizures, and affects approximately 50 million people worldwide. Cumulative evidence has revealed that epileptogenic insult temporarily increases neurogenesis in the hippocampus; however, a fraction of the newly generated neurons are integrated abnormally into the existing neural circuits. The abnormal neurogenesis, including ectopic localization of newborn neurons in the hilus, formation of abnormal basal dendrites, and disorganization of the apical dendrites, rewires hippocampal neural networks and leads to the development of spontaneous seizures. The central roles of hilar ectopic granule cells in regulating hippocampal excitability have been suggested. In this review, we introduce recent findings about the migration of newborn granule cells to the dentate hilus after seizures and the roles of seizure-induced ectopic granule cells in the epileptic brain. In addition, we delineate possible intrinsic and extrinsic mechanisms underlying this abnormality. Finally, we suggest that the regulation of seizure-induced ectopic cells can be a promising target for epilepsy therapy and provide perspectives on future research directions.
Collapse
|
29
|
Gu N, Yi MH, Murugan M, Xie M, Parusel S, Peng J, Eyo UB, Hunt CL, Dong H, Wu LJ. Spinal microglia contribute to sustained inflammatory pain via amplifying neuronal activity. Mol Brain 2022; 15:86. [PMID: 36289499 PMCID: PMC9609165 DOI: 10.1186/s13041-022-00970-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 01/05/2023] Open
Abstract
Microglia are highly dynamic immune cells of the central nervous system (CNS). Microglial processes interact with neuronal elements constantly on the order of minutes. The functional significance of this acute microglia-neuron interaction and its potential role in the context of pain is still largely unknown. Here, we found that spinal microglia increased their process motility and electrophysiological reactivity within an hour after the insult in a mouse model of formalin-induced acute, sustained, inflammatory pain. Using an ablation strategy to specifically deplete resident microglia in the CNS, we demonstrate that microglia participate in formalin-induced acute sustained pain behaviors by amplifying neuronal activity in the spinal dorsal horn. Moreover, we identified that the P2Y12 receptor, which is specifically expressed in microglia in the CNS, was required for microglial function in formalin-induced pain. Taken together, our study provides a novel insight into the contribution of microglia and the P2Y12 receptor in inflammatory pain that could be used for potential therapeutic strategies.
Collapse
Affiliation(s)
- Nan Gu
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.417295.c0000 0004 1799 374XDepartment of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 PR China
| | - Min-Hee Yi
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Madhuvika Murugan
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Manling Xie
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Sebastian Parusel
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Jiyun Peng
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Ukpong B. Eyo
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Christine L. Hunt
- grid.417467.70000 0004 0443 9942Department of Pain Medicine, Mayo Clinic, Jacksonville, FL 32224 USA
| | - Hailong Dong
- grid.417295.c0000 0004 1799 374XDepartment of Anesthesiology & Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi 710032 PR China
| | - Long-Jun Wu
- grid.430387.b0000 0004 1936 8796Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Immunology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
30
|
Cserép C, Schwarcz AD, Pósfai B, László ZI, Kellermayer A, Környei Z, Kisfali M, Nyerges M, Lele Z, Katona I, Ádám Dénes. Microglial control of neuronal development via somatic purinergic junctions. Cell Rep 2022; 40:111369. [PMID: 36130488 PMCID: PMC9513806 DOI: 10.1016/j.celrep.2022.111369] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/28/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia, the resident immune cells of the brain, play important roles during development. Although bi-directional communication between microglia and neuronal progenitors or immature neurons has been demonstrated, the main sites of interaction and the underlying mechanisms remain elusive. By using advanced methods, here we provide evidence that microglial processes form specialized contacts with the cell bodies of developing neurons throughout embryonic, early postnatal, and adult neurogenesis. These early developmental contacts are highly reminiscent of somatic purinergic junctions that are instrumental for microglia-neuron communication in the adult brain. The formation and maintenance of these junctions is regulated by functional microglial P2Y12 receptors, and deletion of P2Y12Rs disturbs proliferation of neuronal precursors and leads to aberrant cortical cytoarchitecture during development and in adulthood. We propose that early developmental formation of somatic purinergic junctions represents an important interface for microglia to monitor the status of immature neurons and control neurodevelopment.
Collapse
Affiliation(s)
- Csaba Cserép
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary.
| | - Anett D Schwarcz
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Balázs Pósfai
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary; Szentágothai János Doctoral School of Neurosciences, Semmelweis University, 1083 Budapest, Hungary
| | - Zsófia I László
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary; University of Dundee, School of Medicine, Dundee DD1 9SY, UK
| | - Anna Kellermayer
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsuzsanna Környei
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Máté Kisfali
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Miklós Nyerges
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Zsolt Lele
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - István Katona
- "Momentum" Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, 1083 Budapest, Hungary; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, 1083 Budapest, Hungary.
| |
Collapse
|
31
|
Feinberg PA, Becker SC, Chung L, Ferrari L, Stellwagen D, Anaclet C, Durán-Laforet V, Faust TE, Sumbria RK, Schafer DP. Elevated TNF-α Leads to Neural Circuit Instability in the Absence of Interferon Regulatory Factor 8. J Neurosci 2022; 42:6171-6185. [PMID: 35790400 PMCID: PMC9374154 DOI: 10.1523/jneurosci.0601-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Interferon regulatory factor 8 (IRF8) is a transcription factor necessary for the maturation of microglia, as well as other peripheral immune cells. It also regulates the transition of microglia and other immune cells to a pro-inflammatory phenotype. Irf8 is also a known risk gene for multiple sclerosis and lupus, and it has recently been shown to be downregulated in schizophrenia. While most studies have focused on IRF8-dependent regulation of immune cell function, little is known about how it impacts neural circuits. Here, we show by RNAseq from Irf8 -/- male and female mouse brains that several genes involved in regulation of neural activity are dysregulated. We then show that these molecular changes are reflected in heightened neural excitability and a profound increase in susceptibility to lethal seizures in male and female Irf8 -/- mice. Finally, we identify that TNF-α is elevated specifically in microglia in the CNS, and genetic or acute pharmacological blockade of TNF-α in the Irf8 -/- CNS rescued the seizure phenotype. These results provide important insights into the consequences of IRF8 signaling and TNF-α on neural circuits. Our data further suggest that neuronal function is impacted by loss of IRF8, a factor involved in neuropsychiatric and neurodegenerative diseases.SIGNIFICANCE STATEMENT Here, we identify a previously unknown and key role for interferon regulator factor 8 (IRF8) in regulating neural excitability and seizures. We further determine that these effects on neural circuits are through elevated TNF-α in the CNS. As IRF8 has most widely been studied in the context of regulating the development and inflammatory signaling in microglia and other immune cells, we have uncovered a novel function. Further, IRF8 is a risk gene for multiple sclerosis and lupus, IRF8 is dysregulated in schizophrenia, and elevated TNF-α has been identified in a multitude of neurologic conditions. Thus, elucidating these IRF8 and TNF-α-dependent effects on brain circuit function has profound implications for understanding underlying, therapeutically relevant mechanisms of disease.
Collapse
Affiliation(s)
- Philip A Feinberg
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Shannon C Becker
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Leeyup Chung
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Loris Ferrari
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - David Stellwagen
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Research Institute of the McGill University Health Center, Montreal, Quebec Canada H3G 1A4
| | - Christelle Anaclet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Violeta Durán-Laforet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Travis E Faust
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| | - Rachita K Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California 92618
- Department of Neurology, University of California, Irvine, California 92868
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
32
|
High-Fat Diet Consumption in Adolescence Induces Emotional Behavior Alterations and Hippocampal Neurogenesis Deficits Accompanied by Excessive Microglial Activation. Int J Mol Sci 2022; 23:ijms23158316. [PMID: 35955450 PMCID: PMC9368636 DOI: 10.3390/ijms23158316] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Adolescence is a developmental epoch characterized by massive neural circuit remodeling; thus, the brain is particularly vulnerable to environmental influences during this period. Excessive high-fat diet (HFD) consumption, which is very common among adolescents, has long been recognized as a potent risk factor for multiple mood disorders, including depression and anxiety. However, the precise mechanisms underlying the influences of HFD consumption in adolescence on emotional health are far from clear. In the present study, C57BL/6 mice were fed a control diet (CD) or HFD for about 4 weeks from postnatal day (P) 28 to P60, spanning most of the adolescence period, and then subjected to behavioral assessments and histological examinations. HFD mice exhibited elevated levels of depression and anxiety, decreased hippocampal neurogenesis, and excessive microglial activation in the ventral hippocampus. Furthermore, in HFD-fed mice, microglia showed increased DCX+ inclusions, suggesting aberrant microglial engulfment of newborn neurons in HFD-fed adolescents. To our knowledge, this is the first observation suggesting that the negative effects of HFD consumption in adolescence on emotion and neuroplasticity may be attributed at least in part to aberrant microglial engulfment of nascent neurons, extending our understanding of the mechanism underlying HFD-related affective disorders in young people.
Collapse
|
33
|
Wu Q, Wang H, Liu X, Zhao Y, Zhang J. The Role of the Negative Regulation of Microglia-Mediated Neuroinflammation in Improving Emotional Behavior After Epileptic Seizures. Front Neurol 2022; 13:823908. [PMID: 35493845 PMCID: PMC9046666 DOI: 10.3389/fneur.2022.823908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveStudies have long shown that uncontrolled inflammatory responses in the brain play a key role in epilepsy pathogenesis. Microglias play an important role in epileptic-induced neuroinflammation, but their role after epileptic seizures is still poorly understood. Alleviating epilepsy and its comorbidities has become a key area of interest for pediatricians.MethodsA pilocarpine-induced rat model of epilepsy was established. The rats were randomly divided into four groups: a control group, epilepsy group, TLR4 inhibitor group (epilepsy+TAK-242), and NF-κB antagonist group (epilepsy+BAY11–7082).Results1. The results of TUNEL staining showed that the expression in rats in the epilepsy group was the most obvious and was significantly different from that in rats in the control, EP+BAY and EP+TAK groups. 2. The expression of TLR4 and NF-κB was highest in rats in the epilepsy group and was significantly different from that in rats in the control, EP+BAY and EP+TAK groups. 3. The fluorescence intensity and number of IBA-1-positive cells in rats in the epilepsy group were highest and significantly different from those in rats in the control, EP+BAY and EP+TAK groups. Western blot analysis of IBA-1 showed that the expression in rats in the epilepsy group was the highest and was statistically significant. 4. CD68 was the highest in rats in the epilepsy group and was statistically significant. 5. In the open-field experiment, the central region residence time of rats in the EP group was delayed, the central region movement distance traveled was prolonged, the total distance traveled was prolonged, and the average speed was increased. Compared with rats in the EP group, rats in the EP+BAY and EP+ TAK groups exhibited improvements to different degrees.ConclusionAt the tissue level, downregulation of the TLR4/NF-κB inflammatory pathway in epilepsy could inhibit microglial activation and the expression of the inflammatory factor CD68, could inhibit hyperphagocytosis, and inhibit the occurrence and exacerbation of epilepsy, thus improving cognitive and emotional disorders after epileptic seizures.
Collapse
|
34
|
Li X, Wang Q, Zhang DW, Wu D, Zhang SW, Wei ZR, Chen X, Li W. Hippocampus RNA Sequencing of Pentylenetetrazole-Kindled Rats and Upon Treatment of Novel Chemical Q808. Front Pharmacol 2022; 13:820508. [PMID: 35345815 PMCID: PMC8957222 DOI: 10.3389/fphar.2022.820508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
The expression of genes altered in epilepsy remains incomplete, particularly in the hippocampus, which exhibits exquisite vulnerability to epilepsy. Q808 is an innovation chemical compound that has potent anti-convulsant effect. Exploring its mechanism can not only explore the pathogenesis of epilepsy but also provide a theoretical basis for its clinical application. The present study aimed to use RNA sequencing (RNA-seq) to reveal the gene transcriptomic profile of chronic pentylenetetrazole (PTZ)-kindled seizure rats and the difference of the PTZ model rat before and after treatment with Q808. Quantitative real-time PCR (qRT-PCR) was performed to validate the RNA-seq results. The protein level was estimated with Western blot. Hippocampal transcriptomic analysis showed that 289 differentially expressed genes (DEGs) were confirmed in the PTZ-kindled seizure group compared with the vehicle control. Gene cluster analysis identified most of the DEGs linked to neuronal apoptosis, neurogenesis, neuronal projections, and neurotransmitter regulation. After analysis across the three groups, 23 hub genes and 21 pathways were identified, and qRT-PCR analysis confirmed that most of the mRNA levels of hub genes were consistent with the RNA-seq results. Q808 treatment increased the level of ACE, a GABA-related protein. Our analysis showed the comprehensive compendium of genes and pathways differentially expressed for PTZ-kindled seizure rats and upon Q808 treatment in PTZ-kindled seizure, which may provide a theoretical basis to explore the mechanism and unique efficacy of Q808 and the pathophysiology of epilepsy in the future.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qing Wang
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Dian-Wen Zhang
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Di Wu
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| | - Si-Wei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zheng-Ren Wei
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Wei Li
- Jilin Provincial Academy of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
35
|
Šimončičová E, Gonçalves de Andrade E, Vecchiarelli HA, Awogbindin IO, Delage CI, Tremblay MÈ. Present and future of microglial pharmacology. Trends Pharmacol Sci 2022; 43:669-685. [PMID: 35031144 DOI: 10.1016/j.tips.2021.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Microglia, brain resident immune cells, modulate development, activity, and plasticity of the central nervous system. Mechanistically implicated in numerous neurological pathologies, microglia emerge as strong contenders for novel neurotherapies. Shifting away from merely an attenuation of excessive microglial inflammatory and phagocytic activities, current therapies aim toward targeting the complex context-dependent microglial heterogeneity, unveiled by large-scale genetic studies and emerging single-cell analyses. Although lacking the necessary selectivity, initial therapies attempting to target specific state-associated microglial properties and functions (e.g., inflammatory activity, phagocytosis, proliferation, metabolism, or surveillance) are currently under pre- or even clinical (Phase I-IV) investigation. Here, we provide an update on current microglial therapeutic research and discuss what the future in the field might look like.
Collapse
Affiliation(s)
- Eva Šimončičová
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Elisa Gonçalves de Andrade
- Neuroscience Graduate Program, University of Victoria, Victoria, BC, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Ifeoluwa O Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
| | - Charlotte I Delage
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada; Department of Molecular Medicine, Université Laval, Québec City, QC, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
36
|
Liu Z, Zhu Z, He Y, Kang Q, Li F, Zhang W, He Y, Lin Y, Huang B, Mo M, Xu P, Zhu X. A Novel Hydrogen Sulfide Donor Reduces Pilocarpine-Induced Status Epilepticus and Regulates Microglial Inflammatory Profile. Front Cell Neurosci 2021; 15:780447. [PMID: 34924959 PMCID: PMC8674866 DOI: 10.3389/fncel.2021.780447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023] Open
Abstract
Although epilepsy is one of the most common neurologic disorders, there is still a lack of effective therapeutic drugs for it. Recently, we synthesized a novel hydrogen sulfide (H2S) donor, which is found to reduce seizures in animal models effectively. But it remains to be determined for its mechanism. In the present study, we found that the novel H2S donor could reduce pilocarpine-induced seizures in mice. It alleviated the epileptic behavior, the hippocampal electroencephalography (EEG) activity of seizures, and the damage of hippocampal neurons in status epilepticus mice. In addition, the novel H2S donor could reduce microglial inflammatory response. It not only reduced the upregulation of pro-inflammatory markers [inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2)] in status epilepticus mice, but also increased the levels of microglial anti-inflammatory marker arginase-1 (Arg-1). In lipopolysaccharide-treated microglia BV2 cells, administration of the H2S donor also significantly reduced the lipopolysaccharide-induced upregulation of the expression of the pro-inflammatory markers and increased the expression of the anti-inflammatory markers. Thus, the novel H2S donor regulates microglial inflammatory profile in status epilepticus mice and in vitro. These results suggested that the novel H2S donor can reduce seizures and regulate microglial inflammatory profile, which may be a novel mechanism and potential therapeutic strategy of the H2S donor anti-seizures.
Collapse
Affiliation(s)
- Zhongrui Liu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ziting Zhu
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yan He
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiyun Kang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Li
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wenlong Zhang
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuehua He
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Baoyi Huang
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiaoqin Zhu
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Neurology, Key Laboratory of Neurogenetics and Channelopathies, Institute of Neuroscience, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
37
|
Chen P, Chen F, Wu Y, Zhou B. New Insights Into the Role of Aberrant Hippocampal Neurogenesis in Epilepsy. Front Neurol 2021; 12:727065. [PMID: 34975709 PMCID: PMC8714646 DOI: 10.3389/fneur.2021.727065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Data accumulated over the past four decades have confirmed that adult hippocampal neurogenesis (HN) plays a key role in the wide spectrum of hippocampal pathology. Epilepsy is a disorder of the central nervous system characterized by spontaneous recurrent seizures. Although neurogenesis in persistent germinative zones is altered in the adult rodent models of epilepsy, the effects of seizure-induced neurogenesis in the epileptic brain, in terms of either a pathological or reparative role, are only beginning to be explored. In this review, we described the most recent advances in neurogenesis in epilepsy and outlooked future directions for neural stem cells (NSCs) and epilepsy-in-a-dish models. We proposed that it may help in refining the underlying molecular mechanisms of epilepsy and improving the therapies and precision medicine for patients with epilepsy.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan, China
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Yue Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Alshebib YA, Hori T, Kashiwagi T. HOP protein expression in the hippocampal dentate gyrus is acutely downregulated in a status epilepticus mouse model. IBRO Neurosci Rep 2021; 11:183-193. [PMID: 34766103 PMCID: PMC8569711 DOI: 10.1016/j.ibneur.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/19/2021] [Indexed: 12/01/2022] Open
Abstract
Status epilepticus (SE) is a neurological emergency, and delayed management can lead to higher morbidity and mortality. It is thought that prolonged seizures stimulate stem cells in the hippocampus and that epileptogenesis may arise from aberrant connections formed by newly born cells, while others have suggested that the acute neuroinflammation and gliosis often seen in epileptic hippocampi contribute to hyperexcitability and epilepsy development. Previous studies have identified the expression of homeodomain-only protein (HOP) in the hippocampal dentate gyrus (HDG) and the heart. HOP was found to be a regulator of cell proliferation and differentiation during heart development, while it maintains the 'heart conduction system' in adulthood. However, little is known about HOP function in the adult HDG, particularly in the SE setting. Here, a HOP immunohistochemical profile in an SE mouse model was established. A total of 24 adult mice were analyzed 3-10 days following the SE episode, the 'acute phase'. Our findings demonstrate a significant downregulation of HOP and BLBP protein expression in the SE group following SE episodes, while HOP/Ki67 coexpression did not remarkably differ. Furthermore, coexpression of HOP/S100β and HOP/Prox1 was not observed, although we noticed insignificant HOP/DCX coexpression level. The findings of this study show no compelling evidence of proliferation, and newly added neurons were not identified during the acute phase following SE, although HOP protein expression was significantly decreased in the HDG. Similar to its counterpart in the adult heart, this suggests that HOP seems to play a key role in regulating signal conduction in adult hippocampus. Moreover, acute changes in HOP expression following SE could be part of an inflammatory response that could subsequently influence epileptogenicity.
Collapse
Key Words
- BLBP, Brain lipid-binding protein
- BrdU, 5-Bromo-2′-deoxyuridine
- Ctrl, control tissue
- DCX, Doublecortin
- EGFP, enhanced green fluorescent protein
- Epileptogenicity
- GCL, granule cell layer
- GFAP, Glial fibrillary acidic protein
- GFP, green fluorescent protein
- HDG, Hippocampal Dentate Gyrus
- HF, Hippocampus Formation
- HOP
- HOP, Homeodomain Only Protein
- Hippocampal Formation
- Homeodomain-Only Protein
- IHC, Immunohistochemistry
- NSC, Neural stem cells
- Neurocardiology
- Prox1, Prospero Homeobox 1
- RGL cell, Radial glia-like cell
- S100β, S100 calcium-binding protein B
- SE, Status Epilepticus
- SGZ, subgranular zone
- SVZ, subventricular zone
- Seizure-induced neuroinflammation
- Status Epileptics
Collapse
Affiliation(s)
- YA Alshebib
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Neurosurgery, Tokyo Neurological Center Hospital, Tokyo 134-0088, Japan
| | - Tomokatsu Hori
- Department of Neurosurgery, Tokyo Neurological Center Hospital, Tokyo 134-0088, Japan
| | - Taichi Kashiwagi
- Department of Histology and Neuroanatomy, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
39
|
Hoshi Y, Shibasaki K, Gailly P, Ikegaya Y, Koyama R. Thermosensitive receptors in neural stem cells link stress-induced hyperthermia to impaired neurogenesis via microglial engulfment. SCIENCE ADVANCES 2021; 7:eabj8080. [PMID: 34826234 PMCID: PMC8626080 DOI: 10.1126/sciadv.abj8080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Social stress impairs hippocampal neurogenesis and causes psychiatric disorders such as depression. Recent studies have highlighted the significance of increased body temperature in stress responses; however, whether and how social stress–induced hyperthermia affects hippocampal neurogenesis remains unknown. Here, using transgenic mice in which the thermosensitive transient receptor potential vanilloid 4 (TRPV4) is conditionally knocked out in Nestin-expressing neural stem cells (NSCs), we found that social defeat stress (SDS)–induced hyperthermia activates TRPV4 in NSCs in the dentate gyrus and thereby impairs hippocampal neurogenesis. Specifically, SDS activated TRPV4 in NSCs and induced the externalization of phosphatidylserine in NSCs, which was recognized by the brain-resident macrophage, microglia, and promoted the microglial engulfment of NSCs. SDS-induced impairment of hippocampal neurogenesis was ameliorated by NSC-specific knockout of TRPV4 or pharmacological removal of microglia. Thus, this study reveals a previously unknown role of thermosensitive receptors expressed by NSCs in stress responses.
Collapse
Affiliation(s)
- Yutaka Hoshi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koji Shibasaki
- Laboratory of Neurochemistry, Graduate School of Human Health Science, University of Nagasaki, Nagasaki 851-2195, Japan
| | - Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka 565-0871, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
- Corresponding author.
| |
Collapse
|
40
|
Cao J, Gan H, Xiao H, Chen H, Jian D, Jian D, Zhai X. Key protein-coding genes related to microglia in immune regulation and inflammatory response induced by epilepsy. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9563-9578. [PMID: 34814358 DOI: 10.3934/mbe.2021469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several studies have shown a link between immunity, inflammatory processes, and epilepsy. Active neuroinflammation and marked immune cell infiltration occur in epilepsy of diverse etiologies. Microglia, as the first line of defense in the central nervous system, are the main effectors of neuroinflammatory processes. Discovery of new biomarkers associated with microglia activation after epileptogenesis indicates that targeting specific molecules may help control seizures. In this research, we used a combination of several bioinformatics approaches, including RNA sequencing, to explore differentially expressed genes (DEGs) in epileptic lesions and control samples, and to construct a protein-protein interaction (PPI) network for DEGs, which was examined utilizing plug-ins in Cytoscape software. Finally, we aimed to identify 10 hub genes in immune and inflammation-related sub-networks, which were subsequently validated in real-time quantitative polymerase chain reaction analysis in a mouse model of kainic acid-induced epilepsy. The expression patterns of nine genes were consistent with sequencing outcomes. Meanwhile, several genes, including CX3CR1, CX3CL1, GPR183, FPR1, P2RY13, P2RY12 and LPAR5, were associated with microglial activation and migration, providing novel candidate targets for immunotherapy in epilepsy and laying the foundation for further research.
Collapse
Affiliation(s)
- Jing Cao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
| | - Hui Gan
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400010, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
| | - Han Xiao
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Hui Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Dan Jian
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| | - Dan Jian
- Institute of Neuroscience, Chongqing Medical University, Chongqing 400010, China
- Department of Pathology, Chongqing Medical University, Chongqing 400010, China
| | - Xuan Zhai
- Ministry of Education Key Laboratory of Child Development and Disorders, Childrenӳ Hospital of Chongqing Medical University, Chongqing, P.R China, Chongqing 400010, China
| |
Collapse
|
41
|
Sun M, Bao W, Huang C, Xia Z, Zhang C, Wang G, Wang R, Li J, Roux S, Li Q, Zou D, Ma K, Bao X. A Novel Probiotic Formula, BIOCG, Protects Against Alzheimer's-Related Cognitive Deficits via Regulation of Dendritic Spine Dynamics. Curr Alzheimer Res 2021; 18:558-572. [PMID: 34674621 DOI: 10.2174/1567205018666211022091110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/27/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The brain-gut-microbiome axis has emerged as an important pathway through which perturbations in the gut and/or microbial microenvironment can impact neurological function. Such alterations have been implicated in a variety of neuropsychiatric disorders, includ- ing depression, anxiety, and Alzheimer's Disease (AD) and the use of probiotics as therapy for th- ese diseases remains promising. However, the mechanisms underlying the gut microenvironment's influence on disease pathogenesis and therapy remain unclear. OBJECTIVE The objective of this study is to investigate the effect of a novel probiotic formula, BIOCG, on cognitive function and pathobiological mechanisms, including amyloid processing and dendritic spine dynamics, in a mouse model of AD. METHODS BIOCG was administered for 3 months to 3xTg or 3xTg; Thy1-YFP AD mice and func- tional outcomes were assessed via behavioral testing and electrophysiology. Mechanisms relevant to AD pathogenesis including dendritic spine morphology and turnover, Amyloid Precursor Pro- tein (APP) processing and microglial phenotype were also evaluated. Finally, we sequenced fecal samples following probiotic treatment to assess the impact on gut microbial composition and corre- late the changes with the above described measures. RESULTS Mice treated with BIOCG demonstrated preserved cognitive abilities and stronger Long- Term Potentiation (LTP), spontaneous Excitatory Postsynaptic Currents (sEPSC), and glutamate-in- duced LTPs, indicative of functional and electrophysiological effects. Moreover, we observed atten- uated AD pathogenesis, including reduced Amyloid Beta (Aβ) burden, as well as more mature den- dritic spines in the BIOCG-treated. Our finding of changes in microglial number and phenotype in the treatment group suggests that this formulation may mediate its effects via attenuation of neu- roinflammation. Sequencing data confirmed that the gut microbiome in treated mice was more varied and harbored a greater proportion of "beneficial" bacteria. CONCLUSION Overall, our results indicate that treatment with BIOCG enhances microbial diversity and, through gut-brain axis interactions, attenuates neuroinflammation to produce histologic and functional improvement in AD pathogenesis.
Collapse
Affiliation(s)
- Miao Sun
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| | - Wenchenyang Bao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| | - Chengyu Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| | - Ziyue Xia
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| | - Changliang Zhang
- Jiangsu Biodep Biotechnology, 6-C2 Dongsheng West Road, Jiangyin 214400, Jiangsu. China
| | - Guangxian Wang
- Jiangsu Biodep Biotechnology, 6-C2 Dongsheng West Road, Jiangyin 214400, Jiangsu. China
| | - Runxin Wang
- Jiangsu Biodep Biotechnology, 6-C2 Dongsheng West Road, Jiangyin 214400, Jiangsu. China
| | - Jiangyu Li
- Admera Health, South Plainfield, NJ07080. United States
| | - Shaun Roux
- Probiotics Australia, 24-30 Blanck Street, Ormeau, QLD, 4208. Australia
| | - Qian Li
- Department of biology, College of Staten Island, Staten Island, NY 10314 . United States
| | - Dongmei Zou
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| | - Kai Ma
- Jiangsu Biodep Biotechnology, 6-C2 Dongsheng West Road, Jiangyin 214400, Jiangsu. China
| | - Xiaofeng Bao
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu. China
| |
Collapse
|
42
|
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res 2021; 14:3367-3392. [PMID: 34305404 PMCID: PMC8298823 DOI: 10.2147/jir.s287740] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022] Open
Abstract
Treatment of epilepsy remains a clinical challenge, with >30% of patients not responding to current antiseizure drugs (ASDs). Moreover, currently available ASDs are merely symptomatic without altering significantly the progression of the disease. Inflammation is increasingly recognized as playing an important role during the generation of hyperexcitable networks in the brain. Accordingly, the suppression of chronic inflammation has been suggested as a promising therapeutic strategy to prevent epileptogenesis and to treat drug-refractory epilepsy. As a consequence, a strong focus of ongoing research is identification of the mechanisms that contribute to sustained inflammation in the brain during epilepsy and whether these can be targeted. ATP is released in response to several pathological stimuli, including increased neuronal activity within the central nervous system, where it functions as a neuro- and gliotransmitter. Once released, ATP activates purinergic P2 receptors, which are divided into metabotropic P2Y and ionotropic P2X receptors, driving inflammatory processes. Evidence from experimental models and patients demonstrates widespread expression changes of both P2Y and P2X receptors during epilepsy, and critically, drugs targeting both receptor subtypes, in particular the P2Y1 and P2X7 subtypes, have been shown to possess both anticonvulsive and antiepileptic potential. This review provides a detailed summary of the current evidence suggesting ATP-gated receptors as novel drug targets for epilepsy and discusses how P2 receptor–driven inflammation may contribute to the generation of seizures and the development of epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| |
Collapse
|
43
|
De Schepper S, Crowley G, Hong S. Understanding microglial diversity and implications for neuronal function in health and disease. Dev Neurobiol 2021; 81:507-523. [PMID: 32757416 PMCID: PMC8438703 DOI: 10.1002/dneu.22777] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/21/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022]
Abstract
Genetic data implicate microglia as central players in brain health and disease, urging the need to better understand what microglia do in the brain. Microglia are critical partners in neuronal wiring and function during development and disease. Emerging literature suggests that microglia have diverse functional roles, raising the intriguing question of which functions of microglia become impaired in disease to undermine proper neuronal function. It is also becoming increasingly clear that microglia exist in heterogeneous cell states. Microglial cell states appear context-dependent, that is, age, sex, location, and health of their microenvironment; these are further influenced by external signaling factors including gut microbiota and lipid metabolites. These data altogether suggest that microglia exist in functional clusters that impact, and are impacted by, surrounding neuronal microenvironment. However, we still lack understanding of how we can translate microglia cell states into function. Here, we summarize the state-of-the-art on the diverse functions of microglia in relation to neuronal health. Then, we discuss heterogeneity during developing, healthy adult and diseased brains, and whether this may be predetermined by origin and/or regulated by local milieu. Finally, we propose that it is critical to gain high-resolution functional discernment into microglia-neuron interactions while preserving the spatial architecture of the tissue. Such insight will reveal specific targets for biomarker and therapeutic development toward microglia-neuron crosstalk in disease.
Collapse
Affiliation(s)
| | - Gerard Crowley
- UK Dementia Research InstituteUniversity College LondonLondonUK
| | - Soyon Hong
- UK Dementia Research InstituteUniversity College LondonLondonUK
| |
Collapse
|
44
|
Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol 2021; 204:102105. [PMID: 34144123 DOI: 10.1016/j.pneurobio.2021.102105] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, All Saints Campus, Manchester M15 6BH, UK
| | - Manvitha Kuchukulla
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA.
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
45
|
Wan Y, Feng B, You Y, Yu J, Xu C, Dai H, Trapp BD, Shi P, Chen Z, Hu W. Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures. Cell Rep 2021; 33:108346. [PMID: 33147450 DOI: 10.1016/j.celrep.2020.108346] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/08/2020] [Accepted: 10/13/2020] [Indexed: 11/26/2022] Open
Abstract
Complex febrile seizures (FSs) lead to a high risk of intractable temporal lobe epilepsy during adulthood, yet the pathological process of complex FSs is largely unknown. Here, we demonstrate that activated microglia extensively associated with glutamatergic neuronal soma displace surrounding GABAergic presynapses in complex FSs. Patch-clamp electrophysiology establishes that the microglial displacement of GABAergic presynapses abrogates a complex-FS-induced increase in GABAergic neurotransmission and neuronal excitability, whereas GABA exerts an excitatory action in this immature stage. Pharmacological inhibition of microglial displacement of GABAergic presynapses or selective ablation of microglia in CD11bDTR mice promotes the generation of complex FSs. Blocking or deleting the P2Y12 receptor (P2Y12R) reduces microglial displacement of GABAergic presynapses and shortens the latency of complex FSs. Together, microglial displacement of GABAergic presynapses, regulated by P2Y12R, reduces neuronal excitability to mitigate the generation of complex FSs. Microglial displacement is a protective event during the pathological process of complex FSs.
Collapse
Affiliation(s)
- Yushan Wan
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Bo Feng
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Yi You
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Jie Yu
- Laboratory of Brain Function and Disease in Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Haibin Dai
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Bruce D Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Peng Shi
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhong Chen
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China; Laboratory of Brain Function and Disease in Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Weiwei Hu
- Department of Pharmacology and Department of Pharmacy of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, People's Republic of China.
| |
Collapse
|
46
|
Caponegro MD, Oh K, Madeira MM, Radin D, Sterge N, Tayyab M, Moffitt RA, Tsirka SE. A distinct microglial subset at the tumor-stroma interface of glioma. Glia 2021; 69:1767-1781. [PMID: 33704822 DOI: 10.1002/glia.23991] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 02/01/2023]
Abstract
The characterization of the tumor microenvironment (TME) in high grade gliomas (HGG) has generated significant interest in an effort to understand how neoplastic lesions in the central nervous system (CNS) are supported and to devise novel therapeutic targets. The TME of the CNS contains unique and specialized cells, including the resident myeloid cells, microglia. Myeloid involvement in HGG, such as glioblastoma, is associated with poor outcomes. Glioma-associated microglia and infiltrating monocytes/macrophages (GAM) accumulate within the neoplastic lesion where they facilitate tumor growth and drive immunosuppression. However, it has been difficult to differentiate whether microglia and macrophages have similar or distinct roles in pathology, and if the spatial organization of these cells informs outcomes. Here, we characterize the tumor-stroma border and identify peritumoral GAM (PGAM) as a unique subpopulation of GAM. Using data mining and analyses of samples derived from both murine and human sources we show that PGAM exhibit a pro-inflammatory and chemotactic phenotype that is associated with peripheral monocyte recruitment, and decreased overall survival. PGAM act as a unique subset of GAM at the tumor-stroma interface. We define a novel gene signature to identify these cells and suggest that PGAM constitute a cellular target of the TME.
Collapse
Affiliation(s)
- Michael D Caponegro
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Ki Oh
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Biomedical Informatics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Miguel M Madeira
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Daniel Radin
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Nicholas Sterge
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Maryam Tayyab
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Richard A Moffitt
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Biomedical Informatics, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Stony Brook Cancer Center, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA.,Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
47
|
Deficiency of Microglial Autophagy Increases the Density of Oligodendrocytes and Susceptibility to Severe Forms of Seizures. eNeuro 2021; 8:ENEURO.0183-20.2021. [PMID: 33472865 PMCID: PMC7890520 DOI: 10.1523/eneuro.0183-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/11/2020] [Accepted: 01/02/2021] [Indexed: 12/14/2022] Open
Abstract
Excessive activation of mTOR in microglia impairs CNS homeostasis and causes severe epilepsy. Autophagy constitutes an important part of mTOR signaling. The contribution of microglial autophagy to CNS homeostasis and epilepsy remains to be determined. Here, we report that ATG7KO mice deficient for autophagy in microglia display a marked increase of myelination markers, a higher density of mature oligodendrocytes (ODCs), and altered lengths of the nodes of Ranvier. Moreover, we found that deficiency of microglial autophagy (ATG7KO) leads to increased seizure susceptibility in three seizure models (pilocarpine, kainic acid, and amygdala kindling). We demonstrated that ATG7KO mice develop severe generalized seizures and display nearly 100% mortality to convulsions induced by pilocarpine and kainic acid. In the amygdala kindling model, we observed significant facilitation of contralateral propagation of seizures, a process underlying the development of generalized seizures. Taken together, our results reveal impaired microglial autophagy as a novel mechanism underlying altered homeostasis of ODCs and increased susceptibility to severe and fatal generalized seizures.
Collapse
|
48
|
Carrera J, Tomberlin J, Kurtz J, Karakaya E, Bostanciklioglu M, Albayram O. Endocannabinoid Signaling for GABAergic-Microglia (Mis)Communication in the Brain Aging. Front Neurosci 2021; 14:606808. [PMID: 33613174 PMCID: PMC7887316 DOI: 10.3389/fnins.2020.606808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
The aging brain seems to be characterized by neuronal loss leading to cognitive decline and progressively worsening symptoms related to neurodegeneration. Also, pro-inflammatory states, if prolonged, may increase neuronal vulnerability via excessive activation of microglia and their pro-inflammatory by-products, which is seen as individuals increase in age. Consequently, microglial activity is tightly regulated by neuron-microglia communications. The endocannabinoid system (ECS) is emerging as a regulator of microglia and the neuronal-microglia communication system. Recently, it has been demonstrated that cannabinoid 1 (CB1) receptor signaling on GABAergic interneurons plays a crucial role in regulating microglial activity. Interestingly, if endocannabinoid signaling on GABAergic neurons are disturbed, the phenotypes mimic central nervous system insult models by activating microglia and leading to accelerated brain aging. Investigating the endocannabinoid receptors, ligands, and genetic deletions yields the potential to understand the communication system and mechanism by which the ECS regulates glial cells and aspects of aging. While there remains much to discover with the ECS, the information gathered and identified already could lead to the development of cell-specific therapeutic interventions that help in reducing the effects of age-related pro-inflammatory states and neurodegeneration.
Collapse
Affiliation(s)
- Jorge Carrera
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jensen Tomberlin
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - John Kurtz
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Eda Karakaya
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | | | - Onder Albayram
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States.,Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Ralph H. Johnson VA Medical Center, Charleston, SC, United States
| |
Collapse
|
49
|
|
50
|
Umpierre AD, Wu LJ. How microglia sense and regulate neuronal activity. Glia 2020; 69:1637-1653. [PMID: 33369790 DOI: 10.1002/glia.23961] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
Microglia are innate immune cells of the central nervous system that sense extracellular cues. Brain injuries, inflammation, and pathology evoke dynamic structural responses in microglia, altering their morphology and motility. The dynamic motility of microglia is hypothesized to be a critical first step in sensing local alterations and engaging in pattern-specific responses. Alongside their pathological responses, microglia also sense and regulate neuronal activity. In this review, we consider the extracellular molecules, receptors, and mechanisms that allow microglia to sense neuronal activity changes under both hypoactivity and hyperactivity. We also highlight emerging in vivo evidence that microglia regulate neuronal activity, ranging from physiological to pathophysiological conditions. In addition, we discuss the emerging role of calcium signaling in microglial responses to the extracellular environment. The dynamic function of microglia in monitoring and influencing neuronal activity may be critical for brain homeostasis and circuit modification in health and disease.
Collapse
Affiliation(s)
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA.,Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|