1
|
Kim H, Bae S, Kim SJ. Increased SNAI2 expression and defective collagen adhesion in cells with pediatric dementia, juvenile ceroid lipofuscinosis. Biochem Biophys Res Commun 2024; 738:150561. [PMID: 39154552 DOI: 10.1016/j.bbrc.2024.150561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Dementia-related neurodegenerative diseases (NDDs), including Alzheimer's disease (AD), are known to be caused by accumulation of toxic proteins. However, the molecular mechanisms that cause neurodegeneration and its biophysical effects on cells remain unclear. In this study, we used juvenile neuronal ceroid lipofuscinosis (JNCL), a pediatric dementia with a clear etiology of mutations in ceroid lipofuscinosis neuronal 3 (CLN3), to explore the changes in cell adhesion, a biophysical process that regulates neuronal development and survival. We used JNCL cerebral organoid gene expression datasets to identify the biological pathways that affect neural development, and found enriched gene expression in the epithelial-mesenchymal transition (EMT) pathway and increased expression of its inducer snail family transcriptional repressor 2 (SNAI2). A cell adhesion assay using lymphoblasts from patients with JNCL revealed defective adhesion to cell culture plates, glass surfaces, collagen type I, and neuroblast-like cells. To determine whether inhibition of EMT could improve the cell adhesion of JNCL lymphoblasts, we used all-trans retinoic acid, a well-known EMT inhibitor and inducer of neural differentiation. In JNCL lymphoblasts, ATRA treatment enhanced adhesion to collagen type I and these effects were abolished by Ca2+ chelator. These results provide new insights into the role of CLN3 and cell adhesion in the pathogenesis of NDD.
Collapse
Affiliation(s)
- Hyungkuen Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam, 31499, South Korea
| | - Sechul Bae
- Jung Cosmetic Corporation, Sinchang, Asan, Chungnam, 31537, South Korea
| | - Sung-Jo Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Baebang, Asan, Chungnam, 31499, South Korea.
| |
Collapse
|
2
|
Yasa S, Butz ES, Colombo A, Chandrachud U, Montore L, Tschirner S, Prestel M, Sheridan SD, Müller SA, Groh J, Lichtenthaler SF, Tahirovic S, Cotman SL. Loss of CLN3 in microglia leads to impaired lipid metabolism and myelin turnover. Commun Biol 2024; 7:1373. [PMID: 39438652 PMCID: PMC11496662 DOI: 10.1038/s42003-024-07057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Loss-of-function mutations in CLN3 cause juvenile Batten disease, featuring neurodegeneration and early-stage neuroinflammation. How loss of CLN3 function leads to early neuroinflammation is not yet understood. Here, we have comprehensively studied microglia from Cln3∆ex7/8 mice, a genetically accurate disease model. Loss of CLN3 function in microglia leads to lysosomal storage material accumulation and abnormal morphology of subcellular organelles. Moreover, pathological proteomic signatures are indicative of defects in lysosomal function and abnormal lipid metabolism. Consistent with these findings, CLN3-deficient microglia are unable to efficiently turnover myelin and metabolize the associated lipids, showing defects in lipid droplet formation and cholesterol accumulation. Accordingly, we also observe impaired myelin integrity in aged Cln3∆ex7/8 mouse brain. Autophagy inducers and cholesterol-lowering drugs correct the observed microglial phenotypes. Taken together, these data implicate a cell-autonomous defect in CLN3-deficient microglia that impacts their ability to support neuronal cell health, suggesting microglial targeted therapies should be considered for CLN3 disease.
Collapse
Affiliation(s)
- Seda Yasa
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Elisabeth S Butz
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Uma Chandrachud
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Luca Montore
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Sarah Tschirner
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Prestel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Steven D Sheridan
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Janos Groh
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Susan L Cotman
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Swissa E, Monsonego U, Yang LT, Schori L, Kamintsky L, Mirloo S, Burger I, Uzzan S, Patel R, Sudmant PH, Prager O, Kaufer D, Friedman A. Cortical plasticity is associated with blood-brain barrier modulation. eLife 2024; 12:RP89611. [PMID: 39024007 PMCID: PMC11257677 DOI: 10.7554/elife.89611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Brain microvessels possess the unique properties of a blood-brain barrier (BBB), tightly regulating the passage of molecules from the blood to the brain neuropil and vice versa. In models of brain injury, BBB dysfunction and the associated leakage of serum albumin to the neuropil have been shown to induce pathological plasticity, neuronal hyper-excitability, and seizures. The effect of neuronal activity on BBB function and whether it plays a role in plasticity in the healthy brain remain unclear. Here we show that neuronal activity induces modulation of microvascular permeability in the healthy brain and that it has a role in local network reorganization. Combining simultaneous electrophysiological recording and vascular imaging with transcriptomic analysis in rats, and functional and BBB-mapping MRI in human subjects, we show that prolonged stimulation of the limb induces a focal increase in BBB permeability in the corresponding somatosensory cortex that is associated with long-term synaptic plasticity. We further show that the increased microvascular permeability depends on neuronal activity and involves caveolae-mediated transcytosis and transforming growth factor β signaling. Our results reveal a role of BBB modulation in cortical plasticity in the healthy brain, highlighting the importance of neurovascular interactions for sensory experience and learning.
Collapse
Affiliation(s)
- Evyatar Swissa
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Uri Monsonego
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lynn T Yang
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Lior Schori
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Lyna Kamintsky
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Sheida Mirloo
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| | - Itamar Burger
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Sarit Uzzan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Rishi Patel
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Peter H Sudmant
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
| | - Ofer Prager
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
| | - Daniela Kaufer
- Department of Integrative Biology, University of California, BerkeleyBerkeleyUnited States
- Helen Wills Neuroscience Institute, University of California, BerkeleyBerkeleyUnited States
| | - Alon Friedman
- Department of Brain and Cognitive Sciences, The School of Brain Sciences and Cognition, Zlotowski Center for Neuroscience, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-ShevaIsrael
- Department of Medical Neuroscience, Dalhousie UniversityHalifaxCanada
| |
Collapse
|
4
|
Remtulla AAN, Huber RJ. The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. Eur J Cell Biol 2023; 102:151305. [PMID: 36917916 DOI: 10.1016/j.ejcb.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively referred to as Batten disease, are a group of fatal neurodegenerative disorders that primarily affect children. The etiology of Batten disease is linked to mutations in 13 genes that encode distinct CLN proteins, whose functions have yet to be fully elucidated. The social amoeba Dictyostelium discoideum has been adopted as an efficient and powerful model system for studying the diverse cellular roles of CLN proteins. The genome of D. discoideum encodes several homologs of human CLN proteins, and a growing body of literature supports the conserved roles and networking of CLN proteins in D. discoideum and humans. In humans, CLN proteins have diverse cellular roles related to autophagy, signal transduction, lipid homeostasis, lysosomal ion homeostasis, and intracellular trafficking. Recent work also indicates that CLN proteins play an important role in protein secretion. Remarkably, many of these findings have found parallels in studies with D. discoideum. Accordingly, this review will highlight the translatable value of novel work with D. discoideum in the field of NCL research and propose further avenues of research using this biomedical model organism for studying the NCLs.
Collapse
Affiliation(s)
- Adam A N Remtulla
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada; Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
5
|
Chear S, Perry S, Wilson R, Bindoff A, Talbot J, Ware TL, Grubman A, Vickers JC, Pébay A, Ruddle JB, King AE, Hewitt AW, Cook AL. Lysosomal alterations and decreased electrophysiological activity in CLN3 disease patient-derived cortical neurons. Dis Model Mech 2022; 15:dmm049651. [PMID: 36453132 PMCID: PMC10655821 DOI: 10.1242/dmm.049651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
CLN3 disease is a lysosomal storage disorder associated with fatal neurodegeneration that is caused by mutations in CLN3, with most affected individuals carrying at least one allele with a 966 bp deletion. Using CRISPR/Cas9, we corrected the 966 bp deletion mutation in human induced pluripotent stem cells (iPSCs) of a compound heterozygous patient (CLN3 Δ 966 bp and E295K). We differentiated these isogenic iPSCs, and iPSCs from an unrelated healthy control donor, to neurons and identified disease-related changes relating to protein synthesis, trafficking and degradation, and in neuronal activity, which were not apparent in CLN3-corrected or healthy control neurons. CLN3 neurons showed numerous membrane-bound vacuoles containing diverse storage material and hyperglycosylation of the lysosomal LAMP1 protein. Proteomic analysis showed increase in lysosomal-related proteins and many ribosomal subunit proteins in CLN3 neurons, accompanied by downregulation of proteins related to axon guidance and endocytosis. CLN3 neurons also had lower electrophysical activity as recorded using microelectrode arrays. These data implicate inter-related pathways in protein homeostasis and neurite arborization as contributing to CLN3 disease, and which could be potential targets for therapy.
Collapse
Affiliation(s)
- Sueanne Chear
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Sharn Perry
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Tyson L. Ware
- Department of Paediatrics, Royal Hobart Hospital, Hobart, TAS 7000, Australia
| | - Alexandra Grubman
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - James C. Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Alice Pébay
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan B. Ruddle
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7001, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
6
|
Solomon M, Loeck M, Silva-Abreu M, Moscoso R, Bautista R, Vigo M, Muro S. Altered blood-brain barrier transport of nanotherapeutics in lysosomal storage diseases. J Control Release 2022; 349:1031-1044. [PMID: 35901858 PMCID: PMC10550198 DOI: 10.1016/j.jconrel.2022.07.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/02/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022]
Abstract
Treatment of neurological lysosomal storage disorders (LSDs) are limited because of impermeability of the blood-brain barrier (BBB) to macromolecules. Nanoformulations targeting BBB transcytosis are being explored, but the status of these routes in LSDs is unknown. We studied nanocarriers (NCs) targeted to the transferrin receptor (TfR), ganglioside GM1 or ICAM1, associated to the clathrin, caveolar or cell adhesion molecule (CAM) routes, respectively. We used brain endothelial cells and mouse models of acid sphingomyelinase-deficient Niemann Pick disease (NPD), and postmortem LSD patients' brains, all compared to respective controls. NC transcytosis across brain endothelial cells and brain distribution in mice were affected, yet through different mechanisms. Reduced TfR and clathrin expression were found, along with decreased transcytosis in cells and mouse brain distribution. Caveolin-1 expression and GM1 transcytosis were also reduced, yet increased GM1 levels seemed to compensate, providing similar NC brain distribution in NPD vs. control mice. A tendency to lower NHE-1 levels was seen, but highly increased ICAM1 expression in cells and human brains correlated with increased transcytosis and brain distribution in mice. Thus, transcytosis-related alterations in NPD and likely other LSDs may impact therapeutic access to the brain, illustrating the need for these mechanistic studies.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA.
| | - Maximilian Loeck
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marcelle Silva-Abreu
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ronaldo Moscoso
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Ronelle Bautista
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Marco Vigo
- Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA; Institute for Bioengineering of Catalonia of the Barcelona Institute of Science and Technology, Barcelona, Spain; Institute of Catalonia for Research and Advanced Studies, Barcelona, Spain.
| |
Collapse
|
7
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
8
|
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively known as Batten disease, are a group of neurological diseases that affect all ages and ethnicities worldwide. There are 13 different subtypes of NCL, each caused by a mutation in a distinct gene. The NCLs are characterized by the accumulation of undigestible lipids and proteins in various cell types. This leads to progressive neurodegeneration and clinical symptoms including vision loss, progressive motor and cognitive decline, seizures, and premature death. These diseases have commonly been characterized by lysosomal defects leading to the accumulation of undigestible material but further research on the NCLs suggests that altered protein secretion may also play an important role. This has been strengthened by recent work in biomedical model organisms, including Dictyostelium discoideum, mice, and sheep. Research in D. discoideum has reported the extracellular localization of some NCL-related proteins and the effects of NCL-related gene loss on protein secretion during unicellular growth and multicellular development. Aberrant protein secretion has also been observed in mammalian models of NCL, which has allowed examination of patient-derived cerebrospinal fluid and urine for potential diagnostic and prognostic biomarkers. Accumulated evidence links seven of the 13 known NCL-related genes to protein secretion, suggesting that altered secretion is a common hallmark of multiple NCL subtypes. This Review highlights the impact of altered protein secretion in the NCLs, identifies potential biomarkers of interest and suggests that future work in this area can provide new therapeutic insight. Summary: This Review discusses work in different model systems and humans, examining the impact of altered protein secretion in the neuronal ceroid lipofuscinoses group of diseases to provide novel therapeutic insights.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Life & Health Sciences Building, 1600 West Bank Drive, Peterborough, Ontario K9L 0G2, Canada
| |
Collapse
|
9
|
Haver HN, Scaglione KM. Dictyostelium discoideum as a Model for Investigating Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:759532. [PMID: 34776869 PMCID: PMC8578527 DOI: 10.3389/fncel.2021.759532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
The social amoeba Dictyostelium discoideum is a model organism that is used to investigate many cellular processes including chemotaxis, cell motility, cell differentiation, and human disease pathogenesis. While many single-cellular model systems lack homologs of human disease genes, Dictyostelium's genome encodes for many genes that are implicated in human diseases including neurodegenerative diseases. Due to its short doubling time along with the powerful genetic tools that enable rapid genetic screening, and the ease of creating knockout cell lines, Dictyostelium is an attractive model organism for both interrogating the normal function of genes implicated in neurodegeneration and for determining pathogenic mechanisms that cause disease. Here we review the literature involving the use of Dictyostelium to interrogate genes implicated in neurodegeneration and highlight key questions that can be addressed using Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Holly N. Haver
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
- Department of Neurology, Duke University, Durham, NC, United States
- Duke Center for Neurodegeneration and Neurotherapeutics, Duke University, Durham, NC, United States
| |
Collapse
|
10
|
Cotman SL, Lefrancois S. CLN3, at the crossroads of endocytic trafficking. Neurosci Lett 2021; 762:136117. [PMID: 34274435 DOI: 10.1016/j.neulet.2021.136117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022]
Abstract
The CLN3 gene was identified over two decades ago, but the primary function of the CLN3 protein remains unknown. Recessive inheritance of loss of function mutations in CLN3 are responsible for juvenile neuronal ceroid lipofuscinosis (Batten disease, or CLN3 disease), a fatal childhood onset neurodegenerative disease causing vision loss, seizures, progressive dementia, motor function loss and premature death. CLN3 is a multipass transmembrane protein that primarily localizes to endosomes and lysosomes. Defects in endocytosis, autophagy, and lysosomal function are common findings in CLN3-deficiency model systems. However, the molecular mechanisms underlying these defects have not yet been fully elucidated. In this mini-review, we will summarize the current understanding of the CLN3 protein interaction network and discuss how this knowledge is starting to delineate the molecular pathogenesis of CLN3 disease. Accumulating evidence strongly points towards CLN3 playing a role in regulation of the cytoskeleton and cytoskeletal associated proteins to tether cellular membranes, regulation of membrane complexes such as channels/transporters, and modulating the function of small GTPases to effectively mediate vesicular movement and membrane dynamics.
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Mass General Research Institute, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, United States.
| | - Stéphane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval H7V 1B7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada.
| |
Collapse
|
11
|
Abstract
Epidemiological studies have reported an inverse correlation between cancer and neurodegenerative disorders, and increasing evidence shows that similar genes and pathways are dysregulated in both diseases but in a contrasting manner. Given the genetic convergence of the neuronal ceroid lipofuscinoses (NCLs), a family of rare neurodegenerative disorders commonly known as Batten disease, and other neurodegenerative diseases, we sought to explore the relationship between cancer and the NCLs. In this review, we survey data from The Cancer Genome Atlas and available literature on the roles of NCL genes in different oncogenic processes to reveal links between all the NCL genes and cancer-related processes. We also discuss the potential contributions of NCL genes to cancer immunology. Based on our findings, we propose that further research on the relationship between cancer and the NCLs may help shed light on the roles of NCL genes in both diseases and possibly guide therapy development.
Collapse
|
12
|
Shematorova EK, Shpakovski GV. Current Insights in Elucidation of Possible Molecular Mechanisms of the Juvenile Form of Batten Disease. Int J Mol Sci 2020; 21:ijms21218055. [PMID: 33137890 PMCID: PMC7663513 DOI: 10.3390/ijms21218055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) collectively constitute one of the most common forms of inherited childhood-onset neurodegenerative disorders. They form a heterogeneous group of incurable lysosomal storage diseases that lead to blindness, motor deterioration, epilepsy, and dementia. Traditionally the NCL diseases were classified according to the age of disease onset (infantile, late-infantile, juvenile, and adult forms), with at least 13 different NCL varieties having been described at present. The current review focuses on classic juvenile NCL (JNCL) or the so-called Batten (Batten-Spielmeyer-Vogt; Spielmeyer-Sjogren) disease, which represents the most common and the most studied form of NCL, and is caused by mutations in the CLN3 gene located on human chromosome 16. Most JNCL patients carry the same 1.02-kb deletion in this gene, encoding an unusual transmembrane protein, CLN3, or battenin. Accordingly, the names CLN3-related neuronal ceroid lipofuscinosis or CLN3-disease sometimes have been used for this malady. Despite excessive in vitro and in vivo studies, the precise functions of the CLN3 protein and the JNCL disease mechanisms remain elusive and are the main subject of this review. Although the CLN3 gene is highly conserved in evolution of all mammalian species, detailed analysis of recent genomic and transcriptomic data indicates the presence of human-specific features of its expression, which are also under discussion. The main recorded to date changes in cell metabolism, to some extent contributing to the emergence and progression of JNCL disease, and human-specific molecular features of CLN3 gene expression are summarized and critically discussed with an emphasis on the possible molecular mechanisms of the malady appearance and progression.
Collapse
Affiliation(s)
- Elena K. Shematorova
- Laboratory of Mechanisms of Gene Expression, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Research Center “Kurchatov Institute”, 1, Academika Kurchatova pl., 123182 Moscow, Russia
| | - George V. Shpakovski
- Laboratory of Mechanisms of Gene Expression, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Research Center “Kurchatov Institute”, 1, Academika Kurchatova pl., 123182 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-330-4953; Fax: +7-(495)-335-7103
| |
Collapse
|
13
|
Sex differences in gene expression with galactosylceramide treatment in Cln3Δex7/8 mice. PLoS One 2020; 15:e0239537. [PMID: 33006978 PMCID: PMC7531864 DOI: 10.1371/journal.pone.0239537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CLN3 disease is caused by mutations in the CLN3 gene. The purpose of this study is to discern global expression patterns reflecting therapeutic targets in CLN3 disease. METHODS Differential gene expression in vehicle-exposed mouse brain was determined after intraperitoneal vehicle/Galactosylceramide (GalCer) injections for 40 weeks with GeneChip Mouse Genome 430 2.0 arrays. RESULTS Analysis identified 66 genes in male and 30 in female brains differentially expressed in GalCer-treated versus vehicle-exposed Cln3Δex7/8 mice. Gene ontology revealed aberrations of biological function including developmental, cellular, and behavioral processes. GalCer treatment altered pathways of long-term potentiation/depression, estrogen signaling, synaptic vesicle cycle, ErbB signaling, and prion diseases in males, but prolactin signaling, selenium compound metabolism and steroid biosynthesis in females. Gene-gene network analysis highlighted networks functionally pertinent to GalCer treatment encompassing motor dysfunction, neurodegeneration, memory disorder, inflammation and astrogliosis in males, and, cataracts, inflammation, astrogliosis, and anxiety in females. CONCLUSIONS This study sheds light on global expression patterns following GalCer treatment of Cln3Δex7/8 mice. Understanding molecular effects of GalCer on mouse brain gene expression, paves the way for personalized strategies for treating this debilitating disease in humans.
Collapse
|
14
|
Kinarivala N, Morsy A, Patel R, Carmona AV, Sajib MS, Raut S, Mikelis CM, Al-Ahmad A, Trippier PC. An iPSC-Derived Neuron Model of CLN3 Disease Facilitates Small Molecule Phenotypic Screening. ACS Pharmacol Transl Sci 2020; 3:931-947. [PMID: 33073192 DOI: 10.1021/acsptsci.0c00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a family of rare lysosomal storage disorders. The most common form of NCL occurs in children harboring a mutation in the CLN3 gene. This form is lethal with no existing cure or treatment beyond symptomatic relief. The pathophysiology of CLN3 disease is complex and poorly understood, with current in vivo and in vitro models failing to identify pharmacological targets for therapeutic intervention. This study reports the characterization of the first CLN3 patient-specific induced pluripotent stem cell (iPSC)-derived model of the blood-brain barrier and establishes the suitability of an iPSC-derived neuron model of the disease to facilitate compound screening. Upon differentiation, hallmarks of CLN3 disease are apparent, including lipofuscin and subunit c of mitochondrial ATP synthase accumulation, mitochondrial dysfunction, and attenuated Bcl-2 expression. The model led to the identification of small molecules that cleared subunit c accumulation by mTOR-independent modulation of autophagy, conferred protective effects through induction of Bcl-2 and rescued mitochondrial dysfunction.
Collapse
Affiliation(s)
- Nihar Kinarivala
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Ahmed Morsy
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Ronak Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Angelica V Carmona
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Snehal Raut
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Abraham Al-Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
15
|
Butz ES, Chandrachud U, Mole SE, Cotman SL. Moving towards a new era of genomics in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165571. [DOI: 10.1016/j.bbadis.2019.165571] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
|
16
|
Zhong Y, Mohan K, Liu J, Al-Attar A, Lin P, Flight RM, Sun Q, Warmoes MO, Deshpande RR, Liu H, Jung KS, Mitov MI, Lin N, Butterfield DA, Lu S, Liu J, Moseley HNB, Fan TWM, Kleinman ME, Wang QJ. Loss of CLN3, the gene mutated in juvenile neuronal ceroid lipofuscinosis, leads to metabolic impairment and autophagy induction in retinal pigment epithelium. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165883. [PMID: 32592935 DOI: 10.1016/j.bbadis.2020.165883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease) is a lysosomal storage disease characterized by progressive blindness, seizures, cognitive and motor failures, and premature death. JNCL is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene, whose function is unclear. Although traditionally considered a neurodegenerative disease, CLN3 disease displays eye-specific effects: Vision loss not only is often one of the earliest symptoms of JNCL, but also has been reported in non-syndromic CLN3 disease. Here we described the roles of CLN3 protein in maintaining healthy retinal pigment epithelium (RPE) and normal vision. Using electroretinogram, fundoscopy and microscopy, we showed impaired visual function, retinal autofluorescent lesions, and RPE disintegration and metaplasia/hyperplasia in a Cln3 ~ 1 kb-deletion mouse model [1] on C57BL/6J background. Utilizing a combination of biochemical analyses, RNA-Seq, Seahorse XF bioenergetic analysis, and Stable Isotope Resolved Metabolomics (SIRM), we further demonstrated that loss of CLN3 increased autophagic flux, suppressed mTORC1 and Akt activities, enhanced AMPK activity, and up-regulated gene expression of the autophagy-lysosomal system in RPE-1 cells, suggesting autophagy induction. This CLN3 deficiency induced autophagy induction coincided with decreased mitochondrial oxygen consumption, glycolysis, the tricarboxylic acid (TCA) cycle, and ATP production. We also reported for the first time that loss of CLN3 led to glycogen accumulation despite of impaired glycogen synthesis. Our comprehensive analyses shed light on how loss of CLN3 affect autophagy and metabolism. This work suggests possible links among metabolic impairment, autophagy induction and lysosomal storage, as well as between RPE atrophy/degeneration and vision loss in JNCL.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Kabhilan Mohan
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Ahmad Al-Attar
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Robert M Flight
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Qiushi Sun
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Marc O Warmoes
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Rahul R Deshpande
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Huijuan Liu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Kyung Sik Jung
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Mihail I Mitov
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | | | - D Allan Butterfield
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Shuyan Lu
- Pfizer Inc., San Diego, CA, United States
| | - Jinze Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Computer Science, University of Kentucky, Lexington, KY, United States; Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Hunter N B Moseley
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States; Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Teresa W M Fan
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Mark E Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States; Markey Cancer Center, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
17
|
Petcherski A, Chandrachud U, Butz ES, Klein MC, Zhao WN, Reis SA, Haggarty SJ, Ruonala MO, Cotman SL. An Autophagy Modifier Screen Identifies Small Molecules Capable of Reducing Autophagosome Accumulation in a Model of CLN3-Mediated Neurodegeneration. Cells 2019; 8:cells8121531. [PMID: 31783699 PMCID: PMC6953052 DOI: 10.3390/cells8121531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Alterations in the autophagosomal–lysosomal pathway are a major pathophysiological feature of CLN3 disease, which is the most common form of childhood-onset neurodegeneration. Accumulating autofluorescent lysosomal storage material in CLN3 disease, consisting of dolichols, lipids, biometals, and a protein that normally resides in the mitochondria, subunit c of the mitochondrial ATPase, provides evidence that autophagosomal–lysosomal turnover of cellular components is disrupted upon loss of CLN3 protein function. Using a murine neuronal cell model of the disease, which accurately mimics the major gene defect and the hallmark features of CLN3 disease, we conducted an unbiased search for modifiers of autophagy, extending previous work by further optimizing a GFP-LC3 based assay and performing a high-content screen on a library of ~2000 bioactive compounds. Here we corroborate our earlier screening results and identify expanded, independent sets of autophagy modifiers that increase or decrease the accumulation of autophagosomes in the CLN3 disease cells, highlighting several pathways of interest, including the regulation of calcium signaling, microtubule dynamics, and the mevalonate pathway. Follow-up analysis on fluspirilene, nicardipine, and verapamil, in particular, confirmed activity in reducing GFP-LC3 vesicle burden, while also demonstrating activity in normalizing lysosomal positioning and, for verapamil, in promoting storage material clearance in CLN3 disease neuronal cells. This study demonstrates the potential for cell-based screening studies to identify candidate molecules and pathways for further work to understand CLN3 disease pathogenesis and in drug development efforts.
Collapse
Affiliation(s)
- Anton Petcherski
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
- Center for Membrane Proteomics, Goethe University of Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Uma Chandrachud
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Elisabeth S. Butz
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Madeleine C. Klein
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Wen-Ning Zhao
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Surya A. Reis
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Stephen J. Haggarty
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Mika O. Ruonala
- Center for Membrane Proteomics, Goethe University of Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Susan L. Cotman
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
- Correspondence: ; Tel.: +1-617-726-9180
| |
Collapse
|
18
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
19
|
Schultz ML, Fawaz MV, Azaria RD, Hollon TC, Liu EA, Kunkel TJ, Halseth TA, Krus KL, Ming R, Morin EE, McLoughlin HS, Bushart DD, Paulson HL, Shakkottai VG, Orringer DA, Schwendeman AS, Lieberman AP. Synthetic high-density lipoprotein nanoparticles for the treatment of Niemann-Pick diseases. BMC Med 2019; 17:200. [PMID: 31711490 PMCID: PMC6849328 DOI: 10.1186/s12916-019-1423-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/10/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Niemann-Pick disease type C is a fatal and progressive neurodegenerative disorder characterized by the accumulation of unesterified cholesterol in late endosomes and lysosomes. We sought to develop new therapeutics for this disorder by harnessing the body's endogenous cholesterol scavenging particle, high-density lipoprotein (HDL). METHODS Here we design, optimize, and define the mechanism of action of synthetic HDL (sHDL) nanoparticles. RESULTS We demonstrate a dose-dependent rescue of cholesterol storage that is sensitive to sHDL lipid and peptide composition, enabling the identification of compounds with a range of therapeutic potency. Peripheral administration of sHDL to Npc1 I1061T homozygous mice mobilizes cholesterol, reduces serum bilirubin, reduces liver macrophage size, and corrects body weight deficits. Additionally, a single intraventricular injection into adult Npc1 I1061T brains significantly reduces cholesterol storage in Purkinje neurons. Since endogenous HDL is also a carrier of sphingomyelin, we tested the same sHDL formulation in the sphingomyelin storage disease Niemann-Pick type A. Utilizing stimulated Raman scattering microscopy to detect endogenous unlabeled lipids, we show significant rescue of Niemann-Pick type A lipid storage. CONCLUSIONS Together, our data establish that sHDL nanoparticles are a potential new therapeutic avenue for Niemann-Pick diseases.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Maria V Fawaz
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ruth D Azaria
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Todd C Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Elaine A Liu
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Thaddeus J Kunkel
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Troy A Halseth
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kelsey L Krus
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Ran Ming
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Emily E Morin
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Hayley S McLoughlin
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - David D Bushart
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Daniel A Orringer
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Anna S Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan College of Pharmacy, B20-102W NCRC, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Andrew P Lieberman
- Department of Pathology, University of Michigan Medical School, 3510 MSRB1, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
20
|
Cellular models of Batten disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165559. [PMID: 31655107 PMCID: PMC7338907 DOI: 10.1016/j.bbadis.2019.165559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCL), otherwise known as Batten disease, are a group of neurodegenerative diseases caused by mutations in 13 known genes. All except one NCL is autosomal recessive in inheritance, with similar aetiology and characterised by the accumulation of autofluorescent storage material in the lysosomes of cells. Age of onset and the rate of progression vary between the NCLs. They are collectively one of the most common lysosomal storage diseases, but the enigma remains of how genetically distinct diseases result in such remarkably similar pathogenesis. Much has been learnt from cellular studies about the function of the proteins encoded by the affected genes. Such research has utilised primitive unicellular models such as yeast and amoeba containing gene orthologues, cells derived from naturally occurring (sheep) and genetically engineered (mouse) animal models or patient-derived cells. Most recently, patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types to study molecular pathogenesis in the cells most profoundly affected by disease. Here, we review how cell models have informed much of the biochemical understanding of the NCLs and how more complex models are being used to further this understanding and potentially act as platforms for therapeutic efficacy studies in the future. Developments made in cellular models for neuronal ceroid lipofuscinosis (NCL) in basic biology and use as therapeutic platforms. Cellular models elucidating function of NCL proteins. NCL proteins implicated in the mTor signalling pathway. Patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types providing insights into the molecular pathogenesis of NCL.
Collapse
|
21
|
Mirza M, Vainshtein A, DiRonza A, Chandrachud U, Haslett LJ, Palmieri M, Storch S, Groh J, Dobzinski N, Napolitano G, Schmidtke C, Kerkovich DM. The CLN3 gene and protein: What we know. Mol Genet Genomic Med 2019; 7:e859. [PMID: 31568712 PMCID: PMC6900386 DOI: 10.1002/mgg3.859] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background One of the most important steps taken by Beyond Batten Disease Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the State of the Science. We believe that a strong understanding of where we are in our experimental understanding of the CLN3 gene, its regulation, gene product, protein structure, tissue distribution, biomarker use, and pathological responses to its deficiency, lays the groundwork for determining therapeutic action plans. Objectives To present an unbiased comprehensive reference tool of the experimental understanding of the CLN3 gene and gene product of the same name. Methods BBDF compiled all of the available CLN3 gene and protein data from biological databases, repositories of federally and privately funded projects, patent and trademark offices, science and technology journals, industrial drug and pipeline reports as well as clinical trial reports and with painstaking precision, validated the information together with experts in Batten disease, lysosomal storage disease, lysosome/endosome biology. Results The finished product is an indexed review of the CLN3 gene and protein which is not limited in page size or number of references, references all available primary experiments, and does not draw conclusions for the reader. Conclusions Revisiting the experimental history of a target gene and its product ensures that inaccuracies and contradictions come to light, long‐held beliefs and assumptions continue to be challenged, and information that was previously deemed inconsequential gets a second look. Compiling the information into one manuscript with all appropriate primary references provides quick clues to which studies have been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but provides an historical roadmap to completed works.
Collapse
Affiliation(s)
| | | | - Alberto DiRonza
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Uma Chandrachud
- Center for Genomic Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Michela Palmieri
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Stephan Storch
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janos Groh
- Neurology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Niv Dobzinski
- Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, California
| | | | - Carolin Schmidtke
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
22
|
Schmidtke C, Tiede S, Thelen M, Käkelä R, Jabs S, Makrypidi G, Sylvester M, Schweizer M, Braren I, Brocke-Ahmadinejad N, Cotman SL, Schulz A, Gieselmann V, Braulke T. Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. J Biol Chem 2019; 294:9592-9604. [PMID: 31040178 DOI: 10.1074/jbc.ra119.008852] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/21/2019] [Indexed: 12/25/2022] Open
Abstract
Numerous lysosomal enzymes and membrane proteins are essential for the degradation of proteins, lipids, oligosaccharides, and nucleic acids. The CLN3 gene encodes a lysosomal membrane protein of unknown function, and CLN3 mutations cause the fatal neurodegenerative lysosomal storage disorder CLN3 (Batten disease) by mechanisms that are poorly understood. To define components critical for lysosomal homeostasis that are affected by this disease, here we quantified the lysosomal proteome in cerebellar cell lines derived from a CLN3 knock-in mouse model of human Batten disease and control cells. We purified lysosomes from SILAC-labeled, and magnetite-loaded cerebellar cells by magnetic separation and analyzed them by MS. This analysis identified 70 proteins assigned to the lysosomal compartment and 3 lysosomal cargo receptors, of which most exhibited a significant differential abundance between control and CLN3-defective cells. Among these, 28 soluble lysosomal proteins catalyzing the degradation of various macromolecules had reduced levels in CLN3-defective cells. We confirmed these results by immunoblotting and selected protease and glycosidase activities. The reduction of 11 lipid-degrading lysosomal enzymes correlated with reduced capacity for lipid droplet degradation and several alterations in the distribution and composition of membrane lipids. In particular, levels of lactosylceramides and glycosphingolipids were decreased in CLN3-defective cells, which were also impaired in the recycling pathway of the exocytic transferrin receptor. Our findings suggest that CLN3 has a crucial role in regulating lysosome composition and their function, particularly in degrading of sphingolipids, and, as a consequence, in membrane transport along the recycling endosome pathway.
Collapse
Affiliation(s)
- Carolin Schmidtke
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Stephan Tiede
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Melanie Thelen
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland 00014
| | - Sabrina Jabs
- Leibniz-Institut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany 13125
| | - Georgia Makrypidi
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Michaela Schweizer
- the Department of Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20251
| | - Ingke Braren
- Vector Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20251
| | | | - Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Angela Schulz
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany D-53115
| | - Thomas Braulke
- From the Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany 20246,
| |
Collapse
|
23
|
Huber RJ, Mathavarajah S. Comparative transcriptomics reveals mechanisms underlying cln3-deficiency phenotypes in Dictyostelium. Cell Signal 2019; 58:79-90. [PMID: 30771446 DOI: 10.1016/j.cellsig.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 12/28/2022]
Abstract
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL). This devastating neurological disorder, commonly known as Batten disease, is currently untreatable due to a lack of understanding of the physiological role of the protein. Recently, work in the social amoeba Dictyostelium discoideum has provided valuable new insight into the function of CLN3 in the cell. More specifically, research has linked the Dictyostelium homolog (gene: cln3, protein: Cln3) to protein secretion, adhesion, and aggregation during starvation, which initiates multicellular development. In this study, we used comparative transcriptomics to explore the mechanisms underlying the aberrant response of cln3- cells to starvation. During starvation, 1153 genes were differentially expressed in cln3- cells compared to WT. Among the differentially expressed genes were homologs of other human NCL genes including TPP1/CLN2, CLN5, CTSD/CLN10, PGRN/CLN11, and CTSF/CLN13. STRING and GO term analyses revealed an enrichment of genes linked to metabolic, biosynthetic, and catalytic processes. We then coupled the findings from the RNA-seq analysis to biochemical assays, specifically showing that loss of cln3 affects the expression and activity of lysosomal enzymes, increases endo-lysosomal pH, and alters nitric oxide homeostasis. Finally, we show that cln3- cells accumulate autofluorescent storage bodies during starvation and provide evidence linking the function of Cln3 to Tpp1 and CtsD activity. In total, this study enhances our knowledge of the molecular mechanisms underlying Cln3 function in Dictyostelium.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | | |
Collapse
|
24
|
McLaren MD, Mathavarajah S, Huber RJ. Recent Insights into NCL Protein Function Using the Model Organism Dictyostelium discoideum. Cells 2019; 8:cells8020115. [PMID: 30717401 PMCID: PMC6406579 DOI: 10.3390/cells8020115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating neurological disorders that have a global distribution and affect people of all ages. Commonly known as Batten disease, this form of neurodegeneration is linked to mutations in 13 genetically distinct genes. The precise mechanisms underlying the disease are unknown, in large part due to our poor understanding of the functions of NCL proteins. The social amoeba Dictyostelium discoideum has proven to be an exceptional model organism for studying a wide range of neurological disorders, including the NCLs. The Dictyostelium genome contains homologs of 11 of the 13 NCL genes. Its life cycle, comprised of both single-cell and multicellular phases, provides an excellent system for studying the effects of NCL gene deficiency on conserved cellular and developmental processes. In this review, we highlight recent advances in NCL research using Dictyostelium as a biomedical model.
Collapse
Affiliation(s)
- Meagan D McLaren
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Sabateeshan Mathavarajah
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
25
|
Mathavarajah S, McLaren MD, Huber RJ. Cln3 function is linked to osmoregulation in a Dictyostelium model of Batten disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3559-3573. [PMID: 30251676 DOI: 10.1016/j.bbadis.2018.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL), commonly known as Batten disease. Currently, there is no cure for NCL and the mechanisms underlying the disease are not well understood. In the social amoeba Dictyostelium discoideum, the CLN3 homolog, Cln3, localizes predominantly to the contractile vacuole (CV) system. This dynamic organelle functions in osmoregulation, and intriguingly, osmoregulatory defects have been observed in mammalian cell models of CLN3 disease. Therefore, we used Dictyostelium to further study the involvement of CLN3 in this conserved cellular process. First, we assessed the localization of GFP-Cln3 during mitosis and cytokinesis, where CV system function is essential. GFP-Cln3 localized to the CV system during mitosis and cln3- cells displayed defects in cytokinesis. The recovery of cln3- cells from hypotonic stress and their progression through multicellular development was delayed and these effects were exaggerated when cells were treated with ammonium chloride. In addition, Cln3-deficiency reduced the viability of cells during hypotonic stress and impaired the integrity of spores. During hypertonic stress, Cln3-deficiency reduced cell viability and inhibited development. We then performed RNA sequencing to gain insight into the molecular pathways underlying the sensitivity of cln3- cells to osmotic stress. This analysis revealed that cln3-deficiency upregulated the expression of tpp1A, the Dictyostelium homolog of human TPP1/CLN2. We used this information to show a correlated increase in Tpp1 enzymatic activity in cln3- cells. In total, our study provides new insight in the mechanisms underlying the role of CLN3 in osmoregulation and neurodegeneration.
Collapse
Affiliation(s)
| | - Meagan D McLaren
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
26
|
Burkovetskaya M, Bosch ME, Karpuk N, Fallet R, Kielian T. Caspase 1 activity influences juvenile Batten disease (CLN3) pathogenesis. J Neurochem 2018; 148:652-668. [PMID: 29873075 DOI: 10.1111/jnc.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is an autosomal recessive lysosomal storage disease caused by loss-of-function mutations in CLN3. Symptoms appear between 5 and 10 years of age, beginning with blindness and seizures, followed by progressive cognitive and motor decline, and premature death. Glial activation and impaired neuronal activity are early signs of pathology in the Cln3Δex7/8 mouse model of JNCL, whereas neuron death occurs much later in the disease process. We previously reported that Cln3Δex7/8 microglia are primed toward a pro-inflammatory phenotype typified by exaggerated caspase 1 inflammasome activation and here we extend those findings to demonstrate heightened caspase activity in the Cln3Δex7/8 mouse brain. Based on the ability of caspase 1 to cleave a large number of substrates that have been implicated in JNCL pathology, we examined the functional implications of caspase 1 inflammasome activity by crossing Cln3Δex7/8 and caspase 1-deficient mice to create Cln3Δex7/8 /Casp-1-/- animals. Caspase 1 deletion influenced motor behavior deficits and astrocyte activation in the context of CLN3 mutation, since both were significantly reversed in Cln3Δex7/8 /Casp-1-/- mice, with phenotypes approaching that of wild-type animals. We also report a progressive age-dependent reduction in whisker length in Cln3Δex7/8 mice that was partially caspase 1-dependent. However, not all CLN3 phenotypes were reversed following caspase 1 deletion, since no significant differences in lysosomal accumulation or microglial activation were observed between Cln3Δex7/8 and Cln3Δex7/8 /Casp-1-/- mice. Although the molecular targets of aberrant caspase 1 activity in the context of CLN3 mutation remain to be identified, our studies suggest that caspase 1 may represent a potential therapeutic target to mitigate some attributes of CLN3 disease. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Maria Burkovetskaya
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Megan E Bosch
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nikolay Karpuk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rachel Fallet
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
27
|
Muro S. Alterations in Cellular Processes Involving Vesicular Trafficking and Implications in Drug Delivery. Biomimetics (Basel) 2018; 3:biomimetics3030019. [PMID: 31105241 PMCID: PMC6352689 DOI: 10.3390/biomimetics3030019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| |
Collapse
|
28
|
Schultz ML, Tecedor L, Lysenko E, Ramachandran S, Stein CS, Davidson BL. Modulating membrane fluidity corrects Batten disease phenotypes in vitro and in vivo. Neurobiol Dis 2018; 115:182-193. [PMID: 29660499 PMCID: PMC5969532 DOI: 10.1016/j.nbd.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses are a class of inherited neurodegenerative diseases characterized by the accumulation of autofluorescent storage material. The most common neuronal ceroid lipofuscinosis has juvenile onset with rapid onset blindness and progressive degeneration of cognitive processes. The juvenile form is caused by mutations in the CLN3 gene, which encodes the protein CLN3. While mouse models of Cln3 deficiency show mild disease phenotypes, it is apparent from patient tissue- and cell-based studies that its loss impacts many cellular processes. Using Cln3 deficient mice, we previously described defects in mouse brain endothelial cells and blood-brain barrier (BBB) permeability. Here we expand on this to other components of the BBB and show that Cln3 deficient mice have increased astrocyte endfeet area. Interestingly, this phenotype is corrected by treatment with a commonly used GAP junction inhibitor, carbenoxolone (CBX). In addition to its action on GAP junctions, CBX has also been proposed to alter lipid microdomains. In this work, we show that CBX modifies lipid microdomains and corrects membrane fluidity alterations in Cln3 deficient endothelial cells, which in turn improves defects in endocytosis, caveolin-1 distribution at the plasma membrane, and Cdc42 activity. In further work using the NIH Library of Integrated Network-based Cellular Signatures (LINCS), we discovered other small molecules whose impact was similar to CBX in that they improved Cln3-deficient cell phenotypes. Moreover, Cln3 deficient mice treated orally with CBX exhibited recovery of impaired BBB responses and reduced auto-fluorescence. CBX and the compounds identified by LINCS, many of which have been used in humans or approved for other indications, may find therapeutic benefit in children suffering from CLN3 deficiency through mechanisms independent of their original intended use.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Luis Tecedor
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Elena Lysenko
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Shyam Ramachandran
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Colleen S Stein
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
29
|
Studniarczyk D, Needham EL, Mitchison HM, Farrant M, Cull-Candy SG. Altered Cerebellar Short-Term Plasticity but No Change in Postsynaptic AMPA-Type Glutamate Receptors in a Mouse Model of Juvenile Batten Disease. eNeuro 2018; 5:ENEURO.0387-17.2018. [PMID: 29780879 PMCID: PMC5956745 DOI: 10.1523/eneuro.0387-17.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Juvenile Batten disease is the most common progressive neurodegenerative disorder of childhood. It is associated with mutations in the CLN3 gene, causing loss of function of CLN3 protein and degeneration of cerebellar and retinal neurons. It has been proposed that changes in granule cell AMPA-type glutamate receptors (AMPARs) contribute to the cerebellar dysfunction. In this study, we compared AMPAR properties and synaptic transmission in cerebellar granule cells from wild-type and Cln3 knock-out mice. In Cln3Δex1-6 cells, the amplitude of AMPA-evoked whole-cell currents was unchanged. Similarly, we found no change in the amplitude, kinetics, or rectification of synaptic currents evoked by individual quanta, or in their underlying single-channel conductance. We found no change in cerebellar expression of GluA2 or GluA4 protein. By contrast, we observed a reduced number of quantal events following mossy-fiber stimulation in Sr2+, altered short-term plasticity in conditions of reduced extracellular Ca2+, and reduced mossy fiber vesicle number. Thus, while our results suggest early presynaptic changes in the Cln3Δex1-6 mouse model of juvenile Batten disease, they reveal no evidence for altered postsynaptic AMPARs.
Collapse
Affiliation(s)
- Dorota Studniarczyk
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Elizabeth L. Needham
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Hannah M. Mitchison
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Stuart G. Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
30
|
Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis. Int J Mol Sci 2018; 19:ijms19020625. [PMID: 29470438 PMCID: PMC5855847 DOI: 10.3390/ijms19020625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 01/02/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis.
Collapse
|
31
|
Llavero Hurtado M, Fuller HR, Wong AMS, Eaton SL, Gillingwater TH, Pennetta G, Cooper JD, Wishart TM. Proteomic mapping of differentially vulnerable pre-synaptic populations identifies regulators of neuronal stability in vivo. Sci Rep 2017; 7:12412. [PMID: 28963550 PMCID: PMC5622084 DOI: 10.1038/s41598-017-12603-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Synapses are an early pathological target in many neurodegenerative diseases ranging from well-known adult onset conditions such as Alzheimer and Parkinson disease to neurodegenerative conditions of childhood such as spinal muscular atrophy (SMA) and neuronal ceroid lipofuscinosis (NCLs). However, the reasons why synapses are particularly vulnerable to such a broad range of neurodegeneration inducing stimuli remains unknown. To identify molecular modulators of synaptic stability and degeneration, we have used the Cln3−/− mouse model of a juvenile form of NCL. We profiled and compared the molecular composition of anatomically-distinct, differentially-affected pre-synaptic populations from the Cln3−/− mouse brain using proteomics followed by bioinformatic analyses. Identified protein candidates were then tested using a Drosophila CLN3 model to study their ability to modify the CLN3-neurodegenerative phenotype in vivo. We identified differential perturbations in a range of molecular cascades correlating with synaptic vulnerability, including valine catabolism and rho signalling pathways. Genetic and pharmacological targeting of key ‘hub’ proteins in such pathways was sufficient to modulate phenotypic presentation in a Drosophila CLN3 model. We propose that such a workflow provides a target rich method for the identification of novel disease regulators which could be applicable to the study of other conditions where appropriate models exist.
Collapse
Affiliation(s)
- Maica Llavero Hurtado
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Heidi R Fuller
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, Keele, ST5 5BG, UK
| | - Andrew M S Wong
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RX, UK
| | - Samantha L Eaton
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | | | - Giuseppa Pennetta
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Jonathan D Cooper
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 9RX, UK.,Los Angeles Biomedical Research Institute, and David Geffen School of Medicine, University of California Los Angeles, Torrance, CA, 90502, USA
| | - Thomas M Wishart
- Division of Neurobiology, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK. .,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
32
|
Solomon M, Muro S. Lysosomal enzyme replacement therapies: Historical development, clinical outcomes, and future perspectives. Adv Drug Deliv Rev 2017; 118:109-134. [PMID: 28502768 PMCID: PMC5828774 DOI: 10.1016/j.addr.2017.05.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023]
Abstract
Lysosomes and lysosomal enzymes play a central role in numerous cellular processes, including cellular nutrition, recycling, signaling, defense, and cell death. Genetic deficiencies of lysosomal components, most commonly enzymes, are known as "lysosomal storage disorders" or "lysosomal diseases" (LDs) and lead to lysosomal dysfunction. LDs broadly affect peripheral organs and the central nervous system (CNS), debilitating patients and frequently causing fatality. Among other approaches, enzyme replacement therapy (ERT) has advanced to the clinic and represents a beneficial strategy for 8 out of the 50-60 known LDs. However, despite its value, current ERT suffers from several shortcomings, including various side effects, development of "resistance", and suboptimal delivery throughout the body, particularly to the CNS, lowering the therapeutic outcome and precluding the use of this strategy for a majority of LDs. This review offers an overview of the biomedical causes of LDs, their socio-medical relevance, treatment modalities and caveats, experimental alternatives, and future treatment perspectives.
Collapse
Affiliation(s)
- Melani Solomon
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA
| | - Silvia Muro
- Institute for Bioscience and Biotechnology Research, University Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University Maryland, College Park, MD 20742, USA.
| |
Collapse
|
33
|
Loss of Cln3 impacts protein secretion in the social amoeba Dictyostelium. Cell Signal 2017; 35:61-72. [DOI: 10.1016/j.cellsig.2017.03.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/12/2017] [Accepted: 03/27/2017] [Indexed: 12/30/2022]
|
34
|
Mohammed A, O'Hare MB, Warley A, Tear G, Tuxworth RI. in vivo localization of the neuronal ceroid lipofuscinosis proteins, CLN3 and CLN7, at endogenous expression levels. Neurobiol Dis 2017; 103:123-132. [PMID: 28365214 PMCID: PMC5441185 DOI: 10.1016/j.nbd.2017.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
The neuronal ceroid lipofuscinoses are a group of recessively inherited, childhood-onset neurodegenerative conditions. Several forms are caused by mutations in genes encoding putative lysosomal membrane proteins. Studies of the cell biology underpinning these disorders are hampered by the poor antigenicity of the membrane proteins, which makes visualization of the endogenous proteins difficult. We have used Drosophila to generate knock-in YFP-fusions for two of the NCL membrane proteins: CLN7 and CLN3. The YFP-fusions are expressed at endogenous levels and the proteins can be visualized live without the need for overexpression. Unexpectedly, both CLN7 and CLN3 have restricted expression in the CNS of Drosophila larva and are predominantly expressed in the glia that form the insect blood-brain-barrier. CLN7 is also expressed in neurons in the developing visual system. Analogous with murine CLN3, Drosophila CLN3 is strongly expressed in the excretory and osmoregulatory Malpighian tubules, but the knock-in also reveals unexpected localization of the protein to the apical domain adjacent to the lumen. In addition, some CLN3 protein in the tubules is localized within mitochondria. Our in vivo imaging of CLN7 and CLN3 suggests new possibilities for function and promotes new ideas about the cell biology of the NCLs.
Collapse
Affiliation(s)
- Alamin Mohammed
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Megan B O'Hare
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Alice Warley
- Centre for Ultrastructural Imaging, King's College London, London, SE1 1UL, UK
| | - Guy Tear
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
35
|
Huber RJ. Using the social amoeba Dictyostelium to study the functions of proteins linked to neuronal ceroid lipofuscinosis. J Biomed Sci 2016; 23:83. [PMID: 27881166 PMCID: PMC5122030 DOI: 10.1186/s12929-016-0301-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL), also known as Batten disease, is a debilitating neurological disorder that affects both children and adults. Thirteen genetically distinct genes have been identified that when mutated, result in abnormal lysosomal function and an excessive accumulation of ceroid lipofuscin in neurons, as well as other cell types outside of the central nervous system. The NCL family of proteins is comprised of lysosomal enzymes (PPT1/CLN1, TPP1/CLN2, CTSD/CLN10, CTSF/CLN13), proteins that peripherally associate with membranes (DNAJC5/CLN4, KCTD7/CLN14), a soluble lysosomal protein (CLN5), a protein present in the secretory pathway (PGRN/CLN11), and several proteins that display different subcellular localizations (CLN3, CLN6, MFSD8/CLN7, CLN8, ATP13A2/CLN12). Unfortunately, the precise functions of many of the NCL proteins are still unclear, which has made targeted therapy development challenging. The social amoeba Dictyostelium discoideum has emerged as an excellent model system for studying the normal functions of proteins linked to human neurological disorders. Intriguingly, the genome of this eukaryotic soil microbe encodes homologs of 11 of the 13 known genes linked to NCL. The genetic tractability of the organism, combined with its unique life cycle, makes Dictyostelium an attractive model system for studying the functions of NCL proteins. Moreover, the ability of human NCL proteins to rescue gene-deficiency phenotypes in Dictyostelium suggests that the biological pathways regulating NCL protein function are likely conserved from Dictyostelium to human. In this review, I will discuss each of the NCL homologs in Dictyostelium in turn and describe how future studies can exploit the advantages of the system by testing new hypotheses that may ultimately lead to effective therapy options for this devastating and currently untreatable neurological disorder.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
| |
Collapse
|
36
|
Huber RJ, Myre MA, Cotman SL. Aberrant adhesion impacts early development in a Dictyostelium model for juvenile neuronal ceroid lipofuscinosis. Cell Adh Migr 2016; 11:399-418. [PMID: 27669405 DOI: 10.1080/19336918.2016.1236179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL), also known as Batten disease, refers to a group of severe neurodegenerative disorders that primarily affect children. The most common subtype of the disease is caused by loss-of-function mutations in CLN3, which is conserved across model species from yeast to human. The precise function of the CLN3 protein is not known, which has made targeted therapy development challenging. In the social amoeba Dictyostelium discoideum, loss of Cln3 causes aberrant mid-to-late stage multicellular development. In this study, we show that Cln3-deficiency causes aberrant adhesion and aggregation during the early stages of Dictyostelium development. cln3- cells form ∼30% more multicellular aggregates that are comparatively smaller than those formed by wild-type cells. Loss of Cln3 delays aggregation, but has no significant effect on cell speed or cAMP-mediated chemotaxis. The aberrant aggregation of cln3- cells cannot be corrected by manually pulsing cells with cAMP. Moreover, there are no significant differences between wild-type and cln3- cells in the expression of genes linked to cAMP chemotaxis (e.g., adenylyl cyclase, acaA; the cAMP receptor, carA; cAMP phosphodiesterase, pdsA; g-protein α 9 subunit, gpaI). However, during this time in development, cln3- cells show reduced cell-substrate and cell-cell adhesion, which correlate with changes in the levels of the cell adhesion proteins CadA and CsaA. Specifically, loss of Cln3 decreases the intracellular level of CsaA and increases the amount of soluble CadA in conditioned media. Together, these results suggest that the aberrant aggregation of cln3- cells is due to reduced adhesion during the early stages of development. Revealing the molecular basis underlying this phenotype may provide fresh new insight into CLN3 function.
Collapse
Affiliation(s)
- Robert J Huber
- a Department of Biology , Trent University , Peterborough , Ontario , Canada
| | - Michael A Myre
- b Department of Biological Sciences , University of Massachusetts Lowell , Lowell , Massachusetts , USA
| | - Susan L Cotman
- c Center for Human Genetic Research, Massachusetts General Hospital , Harvard Medical School , Boston , Massachusetts , USA
| |
Collapse
|
37
|
Oetjen S, Kuhl D, Hermey G. Revisiting the neuronal localization and trafficking of CLN3 in juvenile neuronal ceroid lipofuscinosis. J Neurochem 2016; 139:456-470. [DOI: 10.1111/jnc.13744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Sandra Oetjen
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
38
|
Hersrud SL, Kovács AD, Pearce DA. Antigen presenting cell abnormalities in the Cln3(-/-) mouse model of juvenile neuronal ceroid lipofuscinosis. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1324-36. [PMID: 27101989 PMCID: PMC4899816 DOI: 10.1016/j.bbadis.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/10/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
Abstract
Mutations of the CLN3 gene lead to juvenile neuronal ceroid lipofuscinosis (JNCL), an autosomal recessive lysosomal storage disorder that causes progressive neurodegeneration in children and adolescents. There is evidence of immune system involvement in pathology that has been only minimally investigated. We characterized bone marrow stem cell-derived antigen presenting cells (APCs), peritoneal macrophages, and leukocytes from spleen and blood, harvested from the Cln3(-/-) mouse model of JNCL. We detected dramatically elevated CD11c surface levels and increased total CD11c protein in Cln3(-/-) cell samples compared to wild type. This phenotype was specific to APCs and also to a loss of CLN3, as surface levels did not differ from wild type in other leukocyte subtypes nor in cells from two other NCL mouse models. Subcellularly, CD11c was localized to lipid rafts, indicating that perturbation of surface levels is attributable to derangement of raft dynamics, which has previously been shown in Cln3 mutant cells. Interrogation of APC function revealed that Cln3(-/-) cells have increased adhesiveness to CD11c ligands as well as an abnormal secretory pattern that closely mimics what has been previously reported for Cln3 mutant microglia. Our results show that CLN3 deficiency alters APCs, which can be a major contributor to the autoimmune response in JNCL.
Collapse
Affiliation(s)
- Samantha L Hersrud
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States
| | - Attila D Kovács
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, United States; Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, United States.
| |
Collapse
|
39
|
Worzfeld T, Schwaninger M. Apicobasal polarity of brain endothelial cells. J Cereb Blood Flow Metab 2016; 36:340-62. [PMID: 26661193 PMCID: PMC4759676 DOI: 10.1177/0271678x15608644] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/07/2015] [Indexed: 01/24/2023]
Abstract
Normal brain homeostasis depends on the integrity of the blood-brain barrier that controls the access of nutrients, humoral factors, and immune cells to the CNS. The blood-brain barrier is composed mainly of brain endothelial cells. Forming the interface between two compartments, they are highly polarized. Apical/luminal and basolateral/abluminal membranes differ in their lipid and (glyco-)protein composition, allowing brain endothelial cells to secrete or transport soluble factors in a polarized manner and to maintain blood flow. Here, we summarize the basic concepts of apicobasal cell polarity in brain endothelial cells. To address potential molecular mechanisms underlying apicobasal polarity in brain endothelial cells, we draw on investigations in epithelial cells and discuss how polarity may go awry in neurological diseases.
Collapse
Affiliation(s)
- Thomas Worzfeld
- Institute of Pharmacology, Biochemical-Pharmacological Center (BPC), University of Marburg, Marburg, Germany Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Markus Schwaninger
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany German Research Centre for Cardiovascular Research, DZHK, Lübeck, Germany
| |
Collapse
|
40
|
Rappaport J, Manthe RL, Solomon M, Garnacho C, Muro S. A Comparative Study on the Alterations of Endocytic Pathways in Multiple Lysosomal Storage Disorders. Mol Pharm 2016; 13:357-368. [PMID: 26702793 DOI: 10.1021/acs.molpharmaceut.5b00542] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many cellular activities and pharmaceutical interventions involve endocytosis and delivery to lysosomes for processing. Hence, lysosomal processing defects can cause cell and tissue damage, as in lysosomal storage diseases (LSDs) characterized by lysosomal accumulation of undegraded materials. This storage causes endocytic and trafficking alterations, which exacerbate disease and hinder treatment. However, there have been no systematic studies comparing different endocytic routes in LSDs. Here, we used genetic and pharmacological models of four LSDs (type A Niemann-Pick, type C Niemann-Pick, Fabry, and Gaucher diseases) and evaluated the pinocytic and receptor-mediated activity of the clathrin-, caveolae-, and macropinocytic routes. Bulk pinocytosis was diminished in all diseases, suggesting a generic endocytic alteration linked to lysosomal storage. Fluid-phase (dextran) and ligand (transferrin) uptake via the clathrin route were lower for all LSDs. Fluid-phase and ligand (cholera toxin B) uptake via the caveolar route were both affected but less acutely in Fabry or Gaucher diseases. Epidermal growth factor-induced macropinocytosis was altered in Niemann-Pick cells but not other LSDs. Intracellular trafficking of ligands was also distorted in LSD versus wild-type cells. The extent of these endocytic alterations paralleled the level of cholesterol storage in disease cell lines. Confirming this, pharmacological induction of cholesterol storage in wild-type cells disrupted endocytosis, and model therapeutics restored uptake in proportion to their efficacy in attenuating storage. This suggests a proportional and reversible relationship between endocytosis and lipid (cholesterol) storage. By analogy, the accumulation of biological material in other diseases, or foreign material from drugs or their carriers, may cause similar deficits, warranting further investigation.
Collapse
Affiliation(s)
- Jeff Rappaport
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Rachel L Manthe
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742-4450, USA
| | - Carmen Garnacho
- Department of Normal and Pathological Histology and Cytology, University of Seville School of Medicine, Seville 41009, Spain
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA.,Institute for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, MD 20742-4450, USA
| |
Collapse
|
41
|
Ouseph MM, Kleinman ME, Wang QJ. Vision loss in juvenile neuronal ceroid lipofuscinosis (CLN3 disease). Ann N Y Acad Sci 2016; 1371:55-67. [PMID: 26748992 DOI: 10.1111/nyas.12990] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL; also known as CLN3 disease) is a devastating neurodegenerative lysosomal storage disorder and the most common form of Batten disease. Progressive visual and neurological symptoms lead to mortality in patients by the third decade. Although ceroid-lipofuscinosis, neuronal 3 (CLN3) has been identified as the sole disease gene, the biochemical and cellular bases of JNCL and the functions of CLN3 are yet to be fully understood. As severe ocular pathologies manifest early in disease progression, the retina is an ideal tissue to study in the efforts to unravel disease etiology and design therapeutics. There are significant discrepancies in the ocular phenotypes between human JNCL and existing murine models, impeding investigations on the sequence of events occurring during the progression of vision impairment. This review focuses on current understanding of vision loss in JNCL and discusses future research directions toward molecular dissection of the pathogenesis of the disease and associated vision problems in order to ultimately improve the quality of patient life and cure the disease.
Collapse
Affiliation(s)
| | | | - Qing Jun Wang
- Department of Molecular and Cellular Biochemistry.,Department of Toxicology and Cancer Biology.,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
42
|
Wavre-Shapton ST, Calvi AA, Turmaine M, Seabra MC, Cutler DF, Futter CE, Mitchison HM. Photoreceptor phagosome processing defects and disturbed autophagy in retinal pigment epithelium of Cln3Δex1-6 mice modelling juvenile neuronal ceroid lipofuscinosis (Batten disease). Hum Mol Genet 2015; 24:7060-74. [PMID: 26450516 PMCID: PMC4654058 DOI: 10.1093/hmg/ddv406] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022] Open
Abstract
Retinal degeneration and visual impairment are the first signs of juvenile neuronal ceroid lipofuscinosis caused by CLN3 mutations, followed by inevitable progression to blindness. We investigated retinal degeneration in Cln3(Δex1-6) null mice, revealing classic 'fingerprint' lysosomal storage in the retinal pigment epithelium (RPE), replicating the human disease. The lysosomes contain mitochondrial F0-ATP synthase subunit c along with undigested membranes, indicating a reduced degradative capacity. Mature autophagosomes and basal phagolysosomes, the terminal degradative compartments of autophagy and phagocytosis, are also increased in Cln3(Δex1) (-6) RPE, reflecting disruption to these key pathways that underpin the daily phagocytic turnover of photoreceptor outer segments (POS) required for maintenance of vision. The accumulated autophagosomes have post-lysosome fusion morphology, with undigested internal contents visible, while accumulated phagosomes are frequently docked to cathepsin D-positive lysosomes, without mixing of phagosomal and lysosomal contents. This suggests lysosome-processing defects affect both autophagy and phagocytosis, supported by evidence that phagosomes induced in Cln3(Δex1) (-) (6)-derived mouse embryonic fibroblasts have visibly disorganized membranes, unprocessed internal vesicles and membrane contents, in addition to reduced LAMP1 membrane recruitment. We propose that defective lysosomes in Cln3(Δex1) (-) (6) RPE have a reduced degradative capacity that impairs the final steps of the intimately connected autophagic and phagocytic pathways that are responsible for degradation of POS. A build-up of degradative organellar by-products and decreased recycling of cellular materials is likely to disrupt processes vital to maintenance of vision by the RPE.
Collapse
Affiliation(s)
- Silène T Wavre-Shapton
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK, Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Alessandra A Calvi
- Nuclear Dynamics and Architecture, Institute of Medical Biology, Singapore 138648, Singapore
| | - Mark Turmaine
- Faculty of Life Sciences, Division of Biosciences and
| | - Miguel C Seabra
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Daniel F Cutler
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK and MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, London, UK
| | - Clare E Futter
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK,
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Programme and Birth Defects Research Centre, Institute of Child Health, University College London, London WC1N 1EH, UK,
| |
Collapse
|
43
|
Mao D, Che J, Han S, Zhao H, Zhu Y, Zhu H. RNAi-mediated knockdown of the CLN3 gene inhibits proliferation and promotes apoptosis in drug-resistant ovarian cancer cells. Mol Med Rep 2015; 12:6635-41. [PMID: 26299671 PMCID: PMC4626189 DOI: 10.3892/mmr.2015.4238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 06/22/2015] [Indexed: 01/15/2023] Open
Abstract
CLN3 is a recently identified anti-apoptotic gene, which has been demonstrated to be highly expressed in a diverse range of cancer cell lines, including ovarian cancer. In the present study, RNA interference, mediated by a lentivirus expressing CLN3 short hairpin RNA (shRNA) was utilized to knockdown the expression of CLN3 in the A2780 human ovarian cancer cell line, and its cisplatin-resistant and carboplatin-resistant sublines, A2780/DDP and A2780/CBP cells. It was revealed that the mRNA and protein expression levels of CLN3 were significantly reduced in the CLN3-specific shRNA-transduced cells, compared with the untransduced and control shRNA-transduced cells. In addition, specific knockdown of CLN3 in these cells inhibited cell proliferation and led to cell cycle arrest at the G0/G1 phase, with eventual apoptosis. CLN3 knockdown caused increases in the levels of Bax, FAX, cleaved-caspase 3, cleaved-caspase 8 and cleaved-RARP, but decreased the level of Bcl-2. Finally, it was observed that CLN3 depletion markedly reduced the half maximum inhibitory concentration in the A2780/DDP and A2780/CBP cells. Taken together, these data suggested that CLN3 is involved in tumorigenesis and drug resistance in ovarian cancer, and may serve as a promising therapeutic target for its treatment.
Collapse
Affiliation(s)
- Dongwei Mao
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianhua Che
- Department of Gynaecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150037, P.R. China
| | - Shiyu Han
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Honghui Zhao
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yumei Zhu
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hong Zhu
- Department of Gynaecology and Obstetrics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
44
|
Cell biology of the NCL proteins: What they do and don't do. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2242-55. [PMID: 25962910 DOI: 10.1016/j.bbadis.2015.04.027] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 02/06/2023]
Abstract
The fatal, primarily childhood neurodegenerative disorders, neuronal ceroid lipofuscinoses (NCLs), are currently associated with mutations in 13 genes. The protein products of these genes (CLN1 to CLN14) differ in their function and their intracellular localization. NCL-associated proteins have been localized mostly in lysosomes (CLN1, CLN2, CLN3, CLN5, CLN7, CLN10, CLN12 and CLN13) but also in the Endoplasmic Reticulum (CLN6 and CLN8), or in the cytosol associated to vesicular membranes (CLN4 and CLN14). Some of them such as CLN1 (palmitoyl protein thioesterase 1), CLN2 (tripeptidyl-peptidase 1), CLN5, CLN10 (cathepsin D), and CLN13 (cathepsin F), are lysosomal soluble proteins; others like CLN3, CLN7, and CLN12, have been proposed to be lysosomal transmembrane proteins. In this review, we give our views and attempt to summarize the proposed and confirmed functions of each NCL protein and describe and discuss research results published since the last review on NCL proteins. This article is part of a Special Issue entitled: "Current Research on the Neuronal Ceroid Lipofuscinoses (Batten Disease)".
Collapse
|
45
|
Rappaport J, Manthe RL, Garnacho C, Muro S. Altered Clathrin-Independent Endocytosis in Type A Niemann-Pick Disease Cells and Rescue by ICAM-1-Targeted Enzyme Delivery. Mol Pharm 2015; 12:1366-76. [PMID: 25849869 DOI: 10.1021/mp5005959] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pharmaceutical intervention often requires therapeutics and/or their carriers to enter cells via endocytosis. Therefore, endocytic aberrancies resulting from disease represent a key, yet often overlooked, parameter in designing therapeutic strategies. In the case of lysosomal storage diseases (LSDs), characterized by lysosomal accumulation of undegraded substances, common clinical interventions rely on endocytosis of recombinant enzymes. However, the lysosomal defect in these diseases can affect endocytosis, as we recently demonstrated for clathrin-mediated uptake in patient fibroblasts with type A Niemann-Pick disease (NPD), a disorder characterized by acid sphingomylinase (ASM) deficiency and subsequent sphingomyelin storage. Using similar cells, we have examined if this is also the case for clathrin-independent pathways, including caveolae-mediated endocytosis and macropinocytosis. We observed impaired caveolin-1 enrichment at ligand-binding sites in NPD relative to wild type fibroblasts, corresponding with altered uptake of ligands and fluid-phase markers by both pathways. Similarly, aberrant lysosomal storage of sphingomyelin induced by pharmacological means also diminished uptake. Partial degradation of the lysosomal storage by untargeted recombinant ASM led to partial uptake enhancement, whereas both parameters were restored to wild type levels by ASM delivery using model polymer nanocarriers specifically targeted to intercellular adhesion molecule-1. Carriers also restored caveolin-1 enrichment at ligand-binding sites and uptake through the caveolar and macropinocytic routes. These results demonstrate a link between lysosomal storage in NPD and alterations in clathrin-independent endocytosis, which could apply to other LSDs. Hence, this study shall guide the design of therapeutic approaches using viable endocytic pathways.
Collapse
Affiliation(s)
- Jeff Rappaport
- †Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742-4450, United States
| | - Rachel L Manthe
- †Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742-4450, United States
| | - Carmen Garnacho
- ‡Department of Normal and Pathological Histology and Cytology, University of Seville School of Medicine, Seville 41009, Spain
| | - Silvia Muro
- †Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742-4450, United States.,§Institute for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742-4450, United States
| |
Collapse
|
46
|
Chandrachud U, Walker MW, Simas AM, Heetveld S, Petcherski A, Klein M, Oh H, Wolf P, Zhao WN, Norton S, Haggarty SJ, Lloyd-Evans E, Cotman SL. Unbiased Cell-based Screening in a Neuronal Cell Model of Batten Disease Highlights an Interaction between Ca2+ Homeostasis, Autophagy, and CLN3 Protein Function. J Biol Chem 2015; 290:14361-80. [PMID: 25878248 DOI: 10.1074/jbc.m114.621706] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Indexed: 11/06/2022] Open
Abstract
Abnormal accumulation of undigested macromolecules, often disease-specific, is a major feature of lysosomal and neurodegenerative disease and is frequently attributed to defective autophagy. The mechanistic underpinnings of the autophagy defects are the subject of intense research, which is aided by genetic disease models. To gain an improved understanding of the pathways regulating defective autophagy specifically in juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), a neurodegenerative disease of childhood, we developed and piloted a GFP-microtubule-associated protein 1 light chain 3 (GFP-LC3) screening assay to identify, in an unbiased fashion, genotype-sensitive small molecule autophagy modifiers, employing a JNCL neuronal cell model bearing the most common disease mutation in CLN3. Thapsigargin, a sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) Ca(2+) pump inhibitor, reproducibly displayed significantly more activity in the mouse JNCL cells, an effect that was also observed in human-induced pluripotent stem cell-derived JNCL neural progenitor cells. The mechanism of thapsigargin sensitivity was Ca(2+)-mediated, and autophagosome accumulation in JNCL cells could be reversed by Ca(2+) chelation. Interrogation of intracellular Ca(2+) handling highlighted alterations in endoplasmic reticulum, mitochondrial, and lysosomal Ca(2+) pools and in store-operated Ca(2+) uptake in JNCL cells. These results further support an important role for the CLN3 protein in intracellular Ca(2+) handling and in autophagic pathway flux and establish a powerful new platform for therapeutic screening.
Collapse
Affiliation(s)
- Uma Chandrachud
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Mathew W Walker
- the Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Alexandra M Simas
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Sasja Heetveld
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Anton Petcherski
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Madeleine Klein
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Hyejin Oh
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Pavlina Wolf
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Wen-Ning Zhao
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Stephanie Norton
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Stephen J Haggarty
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| | - Emyr Lloyd-Evans
- the Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Susan L Cotman
- From the Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114 and
| |
Collapse
|
47
|
Pahnke J, Langer O, Krohn M. Alzheimer's and ABC transporters--new opportunities for diagnostics and treatment. Neurobiol Dis 2014; 72 Pt A:54-60. [PMID: 24746857 PMCID: PMC4199932 DOI: 10.1016/j.nbd.2014.04.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 03/28/2014] [Accepted: 04/08/2014] [Indexed: 12/26/2022] Open
Abstract
Much has been said about the increasing number of demented patients and the main risk factor 'age'. Frustratingly, we do not know the precise pattern and all modulating factors that provoke the pathologic changes in the brains of affected elderly. We have to diagnose early to be able to stop the progression of diseases that irreversibly destroy brain substance. Familiar AD cases have mislead some researchers for almost 20 years, which has unfortunately narrowed the scientific understanding and has, thus, lead to insufficient funding of independent approaches. Therefore, basic researchers hardly have been able to develop causative treatments and clinicians still do not have access to prognostic and early diagnostic tools. During the recent years it became clear that insufficient Aβ export, physiologically facilitated by the ABC transporter superfamily at the brain's barriers, plays a fundamental role in disease initiation and progression. Furthermore, export mechanisms that are deficient in affected elderly are new targets for activation and, thus, treatment, but ideally also for prevention. In sporadic AD disturbed clearance of β-amyloid from the brain is so far the most important factor for its accumulation in the parenchyma and vessel walls. Here, we review findings about the contribution of ABC transporters and of the perivascular drainage/glymphatic system on β-amyloid clearance. We highlight their potential value for innovative early diagnostics using PET and describe recently described, effective ABC transporter-targeting agents as potential causative treatment for neurodegenerative proteopathies/dementias.
Collapse
Affiliation(s)
- Jens Pahnke
- Neurodegeneration Research Lab (NRL), Department of Neurology, University of Magdeburg, Leipziger Str. 44, Bldg. 64, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44, Bldg. 64, 39120 Magdeburg, Germany.
| | - Oliver Langer
- Health and Environment Department, AIT - Austrian Institute of Technology GmbH, 2444 Seibersdorf, Austria; Department of Clinical Pharmacology, Medical University of Vienna, Währinger-Gürtel 18-20, 1090 Vienna, Austria
| | - Markus Krohn
- Neurodegeneration Research Lab (NRL), Department of Neurology, University of Magdeburg, Leipziger Str. 44, Bldg. 64, 39120 Magdeburg, Germany
| |
Collapse
|
48
|
Huber RJ, Myre MA, Cotman SL. Loss of Cln3 function in the social amoeba Dictyostelium discoideum causes pleiotropic effects that are rescued by human CLN3. PLoS One 2014; 9:e110544. [PMID: 25330233 PMCID: PMC4201555 DOI: 10.1371/journal.pone.0110544] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 09/15/2014] [Indexed: 12/15/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCL) are a group of inherited, severe neurodegenerative disorders also known as Batten disease. Juvenile NCL (JNCL) is caused by recessive loss-of-function mutations in CLN3, which encodes a transmembrane protein that regulates endocytic pathway trafficking, though its primary function is not yet known. The social amoeba Dictyostelium discoideum is increasingly utilized for neurological disease research and is particularly suited for investigation of protein function in trafficking. Therefore, here we establish new overexpression and knockout Dictyostelium cell lines for JNCL research. Dictyostelium Cln3 fused to GFP localized to the contractile vacuole system and to compartments of the endocytic pathway. cln3− cells displayed increased rates of proliferation and an associated reduction in the extracellular levels and cleavage of the autocrine proliferation repressor, AprA. Mid- and late development of cln3− cells was precocious and cln3− slugs displayed increased migration. Expression of either Dictyostelium Cln3 or human CLN3 in cln3− cells suppressed the precocious development and aberrant slug migration, which were also suppressed by calcium chelation. Taken together, our results show that Cln3 is a pleiotropic protein that negatively regulates proliferation and development in Dictyostelium. This new model system, which allows for the study of Cln3 function in both single cells and a multicellular organism, together with the observation that expression of human CLN3 restores abnormalities in Dictyostelium cln3− cells, strongly supports the use of this new model for JNCL research.
Collapse
Affiliation(s)
- Robert J. Huber
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| | - Michael A. Myre
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susan L. Cotman
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
49
|
Geoghegan JC, Keiser NW, Okulist A, Martins I, Wilson MS, Davidson BL. Chondroitin Sulfate is the Primary Receptor for a Peptide-Modified AAV That Targets Brain Vascular Endothelium In Vivo. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e202. [PMID: 25313621 PMCID: PMC4217075 DOI: 10.1038/mtna.2014.50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 08/19/2014] [Indexed: 01/31/2023]
Abstract
Recently, we described a peptide-modified AAV2 vector (AAV-GMN) containing a capsid-displayed peptide that directs in vivo brain vascular targeting and transduction when delivered intravenously. In this study, we sought to identify the receptor that mediates transduction by AAV-GMN. We found that AAV-GMN, but not AAV2, readily transduces the murine brain endothelial cell line bEnd.3, a result that mirrors previously observed in vivo transduction profiles of brain vasculature. Studies in vitro revealed that the glycosaminoglycan, chondroitin sulfate C, acts as the primary receptor for AAV-GMN. Unlike AAV2, chondroitin sulfate expression is required for cell transduction by AAV-GMN, and soluble chondroitin sulfate C can robustly inhibit AAV-GMN transduction of brain endothelial cells. Interestingly, AAV-GMN retains heparin-binding properties, though in contrast to AAV2, it poorly transduces cells that express heparan sulfate but not chondroitin sulfate, indicating that the peptide insertion negatively impacts heparan-mediated transduction. Lastly, when delivered directly, this modified virus can transduce multiple brain regions, indicating that the potential of AAV-GMN as a therapeutic gene delivery vector for central nervous system disorders is not restricted to brain vascular endothelium.
Collapse
Affiliation(s)
- James C Geoghegan
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Nicholas W Keiser
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, Iowa, USA
| | - Anna Okulist
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Inês Martins
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Matthew S Wilson
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Beverly L Davidson
- 1] Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA [2] Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
50
|
Hullin-Matsuda F, Taguchi T, Greimel P, Kobayashi T. Lipid compartmentalization in the endosome system. Semin Cell Dev Biol 2014; 31:48-56. [DOI: 10.1016/j.semcdb.2014.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 04/01/2014] [Accepted: 04/03/2014] [Indexed: 11/15/2022]
|