1
|
Zhou C, Segura-Covarrubias G, Tajima N. Structural Insights into Kainate Receptor Desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645769. [PMID: 40236080 PMCID: PMC11996427 DOI: 10.1101/2025.03.27.645769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Kainate receptors (KARs), along with AMPA and NMDA receptors, belong to the ionotropic glutamate receptor (iGluR) family and play critical roles in mediating excitatory neurotransmission throughout the central nervous system. KARs also regulate neurotransmitter release and modulate neuronal excitability and plasticity. Receptor desensitization plays a critical role in modulating the strength of synaptic transmission and synaptic plasticity. While KARs share overall structural similarity with AMPA receptors, the desensitized state of KARs differs strikingly from that of other iGluRs. Despite extensive studies on KARs, a fundamental question remains unsolved: why do KARs require large conformational changes upon desensitization, unlike other iGluRs? To address this, we present cryo-electron microscopy structures of GluK2 with double cysteine mutations in non-desensitized, shallow-desensitized and deep-desensitized conformations. In the shallow-desensitized conformation, two cysteine crosslinks stabilize the receptors in a conformation that resembles the desensitized state of AMPA receptors. However, unlike the tightly closed pore observed in the deep-desensitized KAR and desensitized AMPAR conformations, the channel pore in the shallow-desensitized state remains incompletely closed. Patch-clamp recordings and fluctuation analysis suggest that this state remains ion-permeable, indicating that the lateral rotational movement of KAR ligand-binding domains (LBDs) is critical for complete channel closure and stabilization of the receptor in desensitization states. Together with the multiple conformations representing different degree of desensitization, our results define the unique mechanism and conformational dynamics of KAR desensitization. Highlights We present cryo-EM structures of GluK2 kainate receptors with engineered cysteine crosslinks at the inter-dimer interface, which restrict subunit lateral rotation and attenuate receptor desensitization.The structure of GluK2 double cysteine mutant in complex with the allosteric potentiator BPAM344 and glutamate represents a non-desensitized state, highlighting the critical conformational changes required for ion channel gating.The glutamate-bound GluK2 mutant adopts multiple conformations, representing both shallow- and deep-desensitized states. Electrophysiological recordings indicate that the GluK2 kainate receptor mutant recovers from desensitization more rapidly, resembling AMPA receptors. Our structural and functional data suggest that shallow-desensitized KARs remain conductive, implying that the large lateral LBD rotation during KAR desensitization is essential for complete channel closure, distinguishing KARs from other iGluRs.
Collapse
|
2
|
León-García F, García-Laynes F, Estrada-Tapia G, Monforte-González M, Martínez-Estevez M, Echevarría-Machado I. In Silico Analysis of Glutamate Receptors in Capsicum chinense: Structure, Evolution, and Molecular Interactions. PLANTS (BASEL, SWITZERLAND) 2024; 13:812. [PMID: 38592787 PMCID: PMC10975470 DOI: 10.3390/plants13060812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Plant glutamate receptors (GLRs) are integral membrane proteins that function as non-selective cation channels, involved in the regulation of developmental events crucial in plants. Knowledge of these proteins is restricted to a few species and their true agonists are still unknown in plants. Using tomato SlGLRs, a search was performed in the pepper database to identify GLR sequences in habanero pepper (Capsicum chinense Jacq.). Structural, phylogenetic, and orthology analysis of the CcGLRs, as well as molecular docking and protein interaction networks, were conducted. Seventeen CcGLRs were identified, which contained the characteristic domains of GLR. The variation of conserved residues in the M2 transmembrane domain between members suggests a difference in ion selectivity and/or conduction. Also, new conserved motifs in the ligand-binding regions are reported. Duplication events seem to drive the expansion of the species, and these were located in the evolution by using orthologs. Molecular docking analysis allowed us to identify differences in the agonist binding pocket between CcGLRs, which suggest the existence of different affinities for amino acids. The possible interaction of some CcGLRs with proteins leads to suggesting specific functions for them within the plant. These results offer important functional clues for CcGLR, probably extrapolated to other Solanaceae.
Collapse
Affiliation(s)
| | | | | | | | | | - Ileana Echevarría-Machado
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Calle 43, #130, x 32 and 34, Mérida 97205, Yucatán, Mexico; (F.L.-G.); (M.M.-G.); (M.M.-E.)
| |
Collapse
|
3
|
Rosano G, Barzasi A, Lynagh T. Loss of activation by GABA in vertebrate delta ionotropic glutamate receptors. Proc Natl Acad Sci U S A 2024; 121:e2313853121. [PMID: 38285949 PMCID: PMC10861852 DOI: 10.1073/pnas.2313853121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory signals between cells by binding neurotransmitters and conducting cations across the cell membrane. In the mammalian brain, most of these signals are mediated by two types of iGluRs: AMPA and NMDA (i.e. iGluRs sensitive to 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid and N-methyl-D-aspartic acid, respectively). Delta-type iGluRs of mammals also form neurotransmitter-binding channels in the cell membrane, but in contrast, their channel is not activated by neurotransmitter binding, raising biophysical questions about iGluR activation and biological questions about the role of delta iGluRs. We therefore investigated the divergence of delta iGluRs from their iGluR cousins using molecular phylogenetics, electrophysiology, and site-directed mutagenesis. We find that delta iGluRs are found in numerous bilaterian animals (e.g., worms, starfish, and vertebrates) and are closely related to AMPA receptors, both genetically and functionally. Surprisingly, we observe that many iGluRs of the delta family are activated by the classical inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Finally, we identify nine amino acid substitutions that likely gave rise to the inactivity of today's mammalian delta iGluRs, and these mutations abolish activity when engineered into active invertebrate delta iGluRs, partly by inducing receptor desensitization. These results offer biophysical insight into iGluR activity and point to a role for GABA in excitatory signaling in invertebrates.
Collapse
Affiliation(s)
- Giulio Rosano
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| | - Allan Barzasi
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| | - Timothy Lynagh
- Michael Sars Centre, University of Bergen, Bergen5008, Norway
| |
Collapse
|
4
|
Simon AA, Navarro-Retamal C, Feijó JA. Merging Signaling with Structure: Functions and Mechanisms of Plant Glutamate Receptor Ion Channels. ANNUAL REVIEW OF PLANT BIOLOGY 2023; 74:415-452. [PMID: 36854472 PMCID: PMC11479355 DOI: 10.1146/annurev-arplant-070522-033255] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant glutamate receptor-like (GLR) genes encode ion channels with demonstrated roles in electrical and calcium (Ca2+) signaling. The expansion of the GLR family along the lineage of land plants, culminating in the appearance of a multiclade system among flowering plants, has been a topic of interest since their discovery nearly 25 years ago. GLRs are involved in many physiological processes, from wound signaling to transcriptional regulation to sexual reproduction. Emerging evidence supports the notion that their fundamental functions are conserved among different groups of plants as well. In this review, we update the physiological and genetic evidence for GLRs, establishing their role in signaling and cell-cell communication. Special emphasis is given to the recent discussion of GLRs' atomic structures. Along with functional assays, a structural view of GLRs' molecular organization presents a window for novel hypotheses regarding the molecular mechanisms underpinning signaling associated with the ionic fluxes that GLRs regulate. Newly uncovered transcriptional regulations associated with GLRs-which propose the involvement of genes from all clades ofArabidopsis thaliana in ways not previously observed-are discussed in the context of the broader impacts of GLR activity. We posit that the functions of GLRs in plant biology are probably much broader than anticipated, but describing their widespread involvement will only be possible with (a) a comprehensive understanding of the channel's properties at the molecular and structural levels, including protein-protein interactions, and (b) the design of new genetic approaches to explore stress and pathogen responses where precise transcriptional control may result in more precise testable hypotheses to overcome their apparent functional redundancies.
Collapse
Affiliation(s)
- Alexander A Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA;
| | - Carlos Navarro-Retamal
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA;
| |
Collapse
|
5
|
Coombs ID, Ziobro J, Krotov V, Surtees T, Cull‐Candy SG, Farrant M. A gain-of-function GRIA2 variant associated with neurodevelopmental delay and seizures: Functional characterization and targeted treatment. Epilepsia 2022; 63:e156-e163. [PMID: 36161652 PMCID: PMC10092096 DOI: 10.1111/epi.17419] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) are ligand-gated cationic channels formed from combinations of GluA1-4 subunits. Pathogenic variants of GRIA1-4 have been described in patients with developmental delay, intellectual disability, autism spectrum disorder, and seizures, with GRIA2 variants typically causing AMPAR loss of function. Here, we identify a novel, heterozygous de novo pathogenic missense mutation in GRIA2 (c.1928 C>T, p.A643V, NM_001083619.1) in a 1-year-old boy with epilepsy, developmental delay, and failure to thrive. We made patch-clamp recordings to compare the functional and pharmacological properties of variant and wild-type receptors expressed in HEK293 cells, with and without the transmembrane AMPAR regulatory protein γ2. This showed GluA2 A643V-containing AMPARs to exhibit a novel gain of function, with greatly slowed deactivation, markedly reduced desensitization, and increased glutamate sensitivity. Perampanel, an antiseizure AMPAR negative allosteric modulator, was able to fully block GluA2 A643V/γ2 currents, suggesting potential therapeutic efficacy. The subsequent introduction of perampanel to the patient's treatment regimen was associated with a marked reduction in seizure burden, a resolution of failure to thrive, and clear developmental gains. Our study reveals that GRIA2 disorder can be caused by a gain-of-function variant, and both predicts and suggests the therapeutic efficacy of perampanel. Perampanel may prove beneficial for patients with other gain-of-function GRIA variants.
Collapse
Affiliation(s)
- Ian D. Coombs
- Department of Neuroscience, Physiology, and PharmacologyUniversity College LondonLondonUK
| | - Julie Ziobro
- Department of PediatricsUniversity of MichiganAnn ArborMichiganUSA
| | - Volodymyr Krotov
- Department of Neuroscience, Physiology, and PharmacologyUniversity College LondonLondonUK
| | - Taryn‐Leigh Surtees
- Department of NeurologyWashington University in St Louis School of MedicineSt LouisMissouriUSA
| | - Stuart G. Cull‐Candy
- Department of Neuroscience, Physiology, and PharmacologyUniversity College LondonLondonUK
| | - Mark Farrant
- Department of Neuroscience, Physiology, and PharmacologyUniversity College LondonLondonUK
| |
Collapse
|
6
|
Ismail V, Zachariassen LG, Godwin A, Sahakian M, Ellard S, Stals KL, Baple E, Brown KT, Foulds N, Wheway G, Parker MO, Lyngby SM, Pedersen MG, Desir J, Bayat A, Musgaard M, Guille M, Kristensen AS, Baralle D. Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome. Am J Hum Genet 2022; 109:1217-1241. [PMID: 35675825 PMCID: PMC9300760 DOI: 10.1016/j.ajhg.2022.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
GRIA1 encodes the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, which are ligand-gated ion channels that act as excitatory receptors for the neurotransmitter L-glutamate (Glu). AMPA receptors (AMPARs) are homo- or heteromeric protein complexes with four subunits, each encoded by different genes, GRIA1 to GRIA4. Although GluA1-containing AMPARs have a crucial role in brain function, the human phenotype associated with deleterious GRIA1 sequence variants has not been established. Subjects with de novo missense and nonsense GRIA1 variants were identified through international collaboration. Detailed phenotypic and genetic assessments of the subjects were carried out and the pathogenicity of the variants was evaluated in vitro to characterize changes in AMPAR function and expression. In addition, two Xenopus gria1 CRISPR-Cas9 F0 models were established to characterize the in vivo consequences. Seven unrelated individuals with rare GRIA1 variants were identified. One individual carried a homozygous nonsense variant (p.Arg377Ter), and six had heterozygous missense variations (p.Arg345Gln, p.Ala636Thr, p.Ile627Thr, and p.Gly745Asp), of which the p.Ala636Thr variant was recurrent in three individuals. The cohort revealed subjects to have a recurrent neurodevelopmental disorder mostly affecting cognition and speech. Functional evaluation of major GluA1-containing AMPAR subtypes carrying the GRIA1 variant mutations showed that three of the four missense variants profoundly perturb receptor function. The homozygous stop-gain variant completely destroys the expression of GluA1-containing AMPARs. The Xenopus gria1 models show transient motor deficits, an intermittent seizure phenotype, and a significant impairment to working memory in mutants. These data support a developmental disorder caused by both heterozygous and homozygous variants in GRIA1 affecting AMPAR function.
Collapse
Affiliation(s)
- Vardha Ismail
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Coxford Rd, Southampton SO165YA, UK
| | - Linda G Zachariassen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Annie Godwin
- European Xenopus Resource Centre, School of Biological Sciences, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK
| | - Mane Sahakian
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK
| | - Karen L Stals
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK
| | - Emma Baple
- Exeter Genomics Laboratory, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK; University of Exeter Medical School, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter EX2 5DW, UK
| | - Kate Tatton Brown
- South-West Thames Clinical Genetics Service, St George's University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Nicola Foulds
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Coxford Rd, Southampton SO165YA, UK
| | - Gabrielle Wheway
- Faculty of Medicine, University of Southampton, Duthie Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Matthew O Parker
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Old St Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK
| | - Signe M Lyngby
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Miriam G Pedersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Julie Desir
- Département de Génétique Clinique - Institut de Pathologie et de Génétique, Institut de Pathologie et de Génétique, Avenue Georges Lemaître, 25 6041 Gosselies, Belgium
| | - Allan Bayat
- Danish Epilepsy Centre, Department of Epilepsy Genetics and Personalized Medicine, 4293 Dianalund, Denmark; Department of Regional Health Research, University of Southern Denmark, 5230 Odense, Denmark
| | - Maria Musgaard
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 75 Laurier Ave E, Ottawa, ON K1N 6N5, Canada
| | - Matthew Guille
- European Xenopus Resource Centre, School of Biological Sciences, King Henry Building, King Henry I Street, Portsmouth PO1 2DY, UK
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Diana Baralle
- Wessex Clinical Genetics Service, Princess Anne Hospital, University Hospital Southampton NHS Foundation Trust, Coxford Rd, Southampton SO165YA, UK; Faculty of Medicine, University of Southampton, Duthie Building, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
7
|
Stolz JR, Foote KM, Veenstra-Knol HE, Pfundt R, Ten Broeke SW, de Leeuw N, Roht L, Pajusalu S, Part R, Rebane I, Õunap K, Stark Z, Kirk EP, Lawson JA, Lunke S, Christodoulou J, Louie RJ, Rogers RC, Davis JM, Innes AM, Wei XC, Keren B, Mignot C, Lebel RR, Sperber SM, Sakonju A, Dosa N, Barge-Schaapveld DQCM, Peeters-Scholte CMPCD, Ruivenkamp CAL, van Bon BW, Kennedy J, Low KJ, Ellard S, Pang L, Junewick JJ, Mark PR, Carvill GL, Swanson GT. Clustered mutations in the GRIK2 kainate receptor subunit gene underlie diverse neurodevelopmental disorders. Am J Hum Genet 2021; 108:1692-1709. [PMID: 34375587 PMCID: PMC8456161 DOI: 10.1016/j.ajhg.2021.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 also underlie NDDs is less understood because only a single individual has been reported previously. Here, we describe an additional eleven individuals with heterozygous de novo variants in GRIK2 causative for neurodevelopmental deficits that include intellectual disability. Five children harbored recurrent de novo variants (three encoding p.Thr660Lys and two p.Thr660Arg), and four children and one adult were homozygous for a previously reported variant (c.1969G>A [p.Ala657Thr]). Individuals with shared variants had some overlapping behavioral and neurological dysfunction, suggesting that the GRIK2 variants are likely pathogenic. Analogous mutations introduced into recombinant GluK2 KAR subunits at sites within the M3 transmembrane domain (encoding p.Ala657Thr, p.Thr660Lys, and p.Thr660Arg) and the M3-S2 linker domain (encoding p.Ile668Thr) had complex effects on functional properties and membrane localization of homomeric and heteromeric KARs. Both p.Thr660Lys and p.Thr660Arg mutant KARs exhibited markedly slowed gating kinetics, similar to p.Ala657Thr-containing receptors. Moreover, we observed emerging genotype-phenotype correlations, including the presence of severe epilepsy in individuals with the p.Thr660Lys variant and hypomyelination in individuals with either the p.Thr660Lys or p.Thr660Arg variant. Collectively, these results demonstrate that human GRIK2 variants predicted to alter channel function are causative for early childhood development disorders and further emphasize the importance of clarifying the role of KARs in early nervous system development.
Collapse
Affiliation(s)
- Jacob R Stolz
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kendall M Foote
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hermine E Veenstra-Knol
- Department of Genetics, University Medical Center Groningen, Groningen 9700, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6525, the Netherlands
| | - Sanne W Ten Broeke
- Department of Genetics, University Medical Center Groningen, Groningen 9700, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6525, the Netherlands
| | - Laura Roht
- Department of Clinical Genetics, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu 51003, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu 51003, Estonia
| | - Reelika Part
- Department of Neonatal and Infant Medicine, Tallinn Children's Hospital, Tallinn 13419, Estonia
| | - Ionella Rebane
- Department of Neonatal and Infant Medicine, Tallinn Children's Hospital, Tallinn 13419, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu 51003, Estonia
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Edwin P Kirk
- School of Women's and Children's Health, UNSW Medicine, University of New South Wales, Randwick, NSW 2031, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW 2031, Australia
| | - John A Lawson
- Department of Neurology, Sydney Children's Hospital, Randwick, NSW 2031, Australia
| | - Sebastian Lunke
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | | | | | | | - A Micheil Innes
- Departments of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Xing-Chang Wei
- Department of Diagnostic Imaging, Cumming School of Medicine, University of Calgary, AB T2N 4N1, Canada
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Paris 75013, France
| | - Cyril Mignot
- Département de Génétique, Hôpital Pitié-Salpêtrière, Paris 75013, France
| | - Robert Roger Lebel
- Division of Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven M Sperber
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ai Sakonju
- Department of Neurology, Upstate Health Care Center, Syracuse, NY 13210, USA
| | - Nienke Dosa
- Division of Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6525, the Netherlands
| | - Joanna Kennedy
- University Hospital Bristol, NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Karen J Low
- University Hospital Bristol, NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Lewis Pang
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Joseph J Junewick
- Department of Radiology, Helen DeVos Children's Hospital, Grand Rapids, MI 49503, USA
| | - Paul R Mark
- Spectrum Health Medical Genetics, Grand Rapids, MI 49503, USA
| | - Gemma L Carvill
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
8
|
Wilding TJ, Huettner JE. Cadmium activates AMPA and NMDA receptors with M3 helix cysteine substitutions. J Gen Physiol 2021; 152:151704. [PMID: 32342094 PMCID: PMC7335009 DOI: 10.1085/jgp.201912537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/23/2020] [Indexed: 12/20/2022] Open
Abstract
AMPA and NMDA receptors are ligand-gated ion channels that depolarize postsynaptic neurons when activated by the neurotransmitter L-glutamate. Changes in the distribution and activity of these receptors underlie learning and memory, but excessive change is associated with an array of neurological disorders, including cognitive impairment, developmental delay, and epilepsy. All of the ionotropic glutamate receptors (iGluRs) exhibit similar tetrameric architecture, transmembrane topology, and basic framework for activation; conformational changes induced by extracellular agonist binding deform and splay open the inner helix bundle crossing that occludes ion flux through the channel. NMDA receptors require agonist binding to all four subunits, whereas AMPA and closely related kainate receptors can open with less than complete occupancy. In addition to conventional activation by agonist binding, we recently identified two locations along the inner helix of the GluK2 kainate receptor subunit where cysteine (Cys) substitution yields channels that are opened by exposure to cadmium ions, independent of agonist site occupancy. Here, we generate AMPA and NMDA receptor subunits with homologous Cys substitutions and demonstrate similar activation of the mutant receptors by Cd. Coexpression of the auxiliary subunit stargazin enhanced Cd potency for activation of Cys-substituted GluA1 and altered occlusion upon treatment with sulfhydryl-reactive MTS reagents. Mutant NMDA receptors displayed voltage-dependent Mg block of currents activated by agonist and/or Cd as well as asymmetry between Cd effects on Cys-substituted GluN1 versus GluN2 subunits. In addition, Cd activation of each Cys-substituted iGluR was inhibited by protons. These results, together with our earlier work on GluK2, reveal a novel mechanism shared among the three different iGluR subtypes for prying open the gate that controls ion entry into the pore.
Collapse
Affiliation(s)
- Timothy J Wilding
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| |
Collapse
|
9
|
Chen YS, Tu YC, Lai YC, Liu E, Yang YC, Kuo CC. Desensitization of NMDA channels requires ligand binding to both GluN1 and GluN2 subunits to constrict the pore beside the activation gate. J Neurochem 2019; 153:549-566. [PMID: 31821563 DOI: 10.1111/jnc.14939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 11/27/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptor channels are activated by glutamate (or NMDA) and glycine. The channels also undergo desensitization, which denotes decreased channel availability, after prolonged exposure to the activating ligands. Glycine apparently has a paradoxical negative effect on desensitization, as the increase in ambient glycine in concentrations required for channel activation would increase sustained NMDA receptor currents. We hypothesized that this classical "glycine-dependent desensitization" could be glycine-dependent activation in essence. By performing electrophysiological recordings and biophysical analyses with rat brain NMDA receptors heterogeneously expressed in Xenopus laevis oocytes, we characterized that the channel opened by "only" NMDA (in nominally glycine-free condition probably with the inevitable nanomolar glycine) would undergo a novel form of deactivation rather than desensitization, and is thus fully available for subsequent activation. Moreover, external tetrapentylammonium ions (TPentA), tetrabutylammonium ions, and tetrapropylammonium ions (TPA, in higher concentrations) block the pore and prohibit channel desensitization with a simple "foot-in-the-door" hindrance effect. TpentA and TPA have the same voltage dependence but show different flow dependence in binding affinity, revealing a common binding site at an electrical distance of ~0.7 from the outside yet differential involvement of the flux-coupling region in the external pore mouth. The smaller tetraethylammonium ion and the larger tetrahexylammonium and tetraheptylammonium ions may block the channel but could not affect desensitization. We conclude that NMDA receptor desensitization requires concomitant binding of both glycine and glutamate, and thus movement of both GluN1 and GluN2 subunits. Desensitization gate itself embodies a highly restricted pore reduction with a physical distance of ~4 Å from the charged nitrogen atom of bound tetraalkylammonium ions, and is located very close to the activation gate in the bundle-crossing region in the external pore vestibule.
Collapse
Affiliation(s)
- Yu-Shian Chen
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Chi Tu
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Chen Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Erin Liu
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ya-Chin Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan.,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, Taiwan
| | - Chung-Chin Kuo
- Department of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
10
|
Dudić A, Reiner A. Quinoxalinedione deprotonation is important for glutamate receptor binding. Biol Chem 2019; 400:927-938. [PMID: 30903748 DOI: 10.1515/hsz-2018-0464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/15/2019] [Indexed: 01/27/2023]
Abstract
Quinoxalinediones are an important class of competitive antagonists at ionotropic glutamate receptors (iGluRs), where they are widely used to block α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptor responses. In this study we utilize two prototypic quinoxalinedione antagonists, namely DNQX and CNQX, which quench the intrinsic fluorescence of the ligand binding domain (LBD), to perform in vitro binding assays. We find that binding of DNQX and CNQX at the AMPA receptor GluA2 LBD is strongly pH dependent, whereas glutamate binding is not affected by pH. We also show that the deprotonation of DNQX, CNQX and other quinoxalinediones (NBQX and YM90K) occurs close to physiological pH, which can be explained by the lactam-lactim tautomerization of the quinoxalinedione scaffold. Analysis of our binding data indicates that quinoxalinedione deprotonation is a key requirement for binding, as we find a >100-fold higher affinity for binding of the monoanionic form compared to the neutral form. This suggests a large electrostatic contribution to the interaction with a conserved arginine residue located in the binding pocket of iGluRs. The strong pH dependence of quinoxalinedione binding, which has not previously been reported, is relevant for structure-function studies, but also for the use of quinoxalinediones in physiological experiments and envisioned therapeutic applications.
Collapse
Affiliation(s)
- Adela Dudić
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
| | - Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany
| |
Collapse
|
11
|
Gating modules of the AMPA receptor pore domain revealed by unnatural amino acid mutagenesis. Proc Natl Acad Sci U S A 2019; 116:13358-13367. [PMID: 31213549 DOI: 10.1073/pnas.1818845116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are responsible for fast synaptic transmission throughout the vertebrate nervous system. Conformational changes of the transmembrane domain (TMD) underlying ion channel activation and desensitization remain poorly understood. Here, we explored the dynamics of the TMD of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type iGluRs using genetically encoded unnatural amino acid (UAA) photocross-linkers, p-benzoyl-l-phenylalanine (BzF) and p-azido-l-phenylalanine (AzF). We introduced these UAAs at sites throughout the TMD of the GluA2 receptor and characterized the mutants in patch-clamp recordings, exposing them to glutamate and ultraviolet (UV) light. This approach revealed a range of optical effects on the activity of mutant receptors. We found evidence for an interaction between the Pre-M1 and the M4 TMD helix during desensitization. Photoactivation at F579AzF, a residue behind the selectivity filter in the M2 segment, had extraordinarily broad effects on gating and desensitization. This observation suggests coupling to other parts of the receptor and like in other tetrameric ion channels, selectivity filter gating.
Collapse
|
12
|
Dawe GB, Kadir MF, Venskutonytė R, Perozzo AM, Yan Y, Alexander RP, Navarrete C, Santander EA, Arsenault M, Fuentes C, Aurousseau MR, Frydenvang K, Barrera NP, Kastrup JS, Edwardson JM, Bowie D. Nanoscale Mobility of the Apo State and TARP Stoichiometry Dictate the Gating Behavior of Alternatively Spliced AMPA Receptors. Neuron 2019; 102:976-992.e5. [DOI: 10.1016/j.neuron.2019.03.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/08/2019] [Accepted: 03/28/2019] [Indexed: 12/19/2022]
|
13
|
Wilding TJ, Huettner JE. Cadmium opens GluK2 kainate receptors with cysteine substitutions at the M3 helix bundle crossing. J Gen Physiol 2019; 151:435-451. [PMID: 30498132 PMCID: PMC6445585 DOI: 10.1085/jgp.201812234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/01/2018] [Indexed: 02/04/2023] Open
Abstract
Kainate receptors are ligand-gated ion channels that have two major roles in the central nervous system: they mediate a postsynaptic component of excitatory neurotransmission at some glutamatergic synapses and modulate transmitter release at both excitatory and inhibitory synapses. Accumulating evidence implicates kainate receptors in a variety of neuropathologies, including epilepsy, psychiatric disorders, developmental delay, and cognitive impairment. Here, to gain a deeper understanding of the conformational changes associated with agonist binding and channel opening, we generate a series of Cys substitutions in the GluK2 kainate receptor subunit, focusing on the M3 helices that line the ion pore and form the bundle-crossing gate at the extracellular mouth of the channel. Exposure to 50 µM Cd produces direct activation of homomeric mutant channels bearing Cys substitutions in (A657C), or adjacent to (L659C), the conserved SYTANLAAF motif. Activation by Cd is occluded by modification with 2-aminoethyl MTS (MTSEA), indicating that Cd binds directly and specifically to the substituted cysteines. Cd potency for the A657C mutation (EC50 = 10 µM) suggests that binding involves at least two coordinating residues, whereas weaker Cd potency for L659C (EC50 = 2 mM) implies that activation does not require tight coordination by multiple side chains for this substitution. Experiments with heteromeric and chimeric channels indicate that activation by Cd requires Cys substitution at only two of the four subunits within a tetrameric receptor and that activation is similar for substitution within subunits in either the A/C or B/D conformations. We develop simple kinetic models for the A657C substitution that reproduce several features of Cd activation as well as the low-affinity inhibition observed at higher Cd concentrations (5-20 mM). Together, these results demonstrate rapid and reversible channel activation, independent of agonist site occupancy, upon Cd binding to Cys side chains at two specific locations along the GluK2 inner helix.
Collapse
Affiliation(s)
- Timothy J Wilding
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| | - James E Huettner
- Department of Cell Biology and Physiology, Washington University Medical School, St. Louis, MO
| |
Collapse
|
14
|
Shi EY, Yuan CL, Sipple MT, Srinivasan J, Ptak CP, Oswald RE, Nowak LM. Noncompetitive antagonists induce cooperative AMPA receptor channel gating. J Gen Physiol 2019; 151:156-173. [PMID: 30622133 PMCID: PMC6363417 DOI: 10.1085/jgp.201812209] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/05/2018] [Accepted: 12/11/2018] [Indexed: 12/24/2022] Open
Abstract
Glutamate activates individual subunits of AMPA receptors in a stepwise manner. Shi et al. reveal that two noncompetitive antagonists disrupt this gating pattern and that their binding sites at the boundary between the transmembrane and extracellular linker domains is a tunable locus for gating. Glutamate is released from presynaptic nerve terminals in the central nervous system (CNS) and spreads excitation by binding to and activating postsynaptic iGluRs. Of the potential glutamate targets, tetrameric AMPA receptors mediate fast, transient CNS signaling. Each of the four AMPA subunits in the receptor channel complex is capable of binding glutamate at its ligand-binding domains and transmitting the energy of activation to the pore domain. Homotetrameric AMPA receptor channels open in a stepwise manner, consistent with independent activation of individual subunits, and they exhibit complex kinetic behavior that manifests as temporal shifts between four different conductance levels. Here, we investigate how two AMPA receptor-selective noncompetitive antagonists, GYKI-52466 and GYKI-53655, disrupt the intrinsic step-like gating patterns of maximally activated homotetrameric GluA3 receptors using single-channel recordings from cell-attached patches. Interactions of these 2,3-benzodiazepines with residues in the boundary between the extracellular linkers and transmembrane helical domains reorganize the gating behavior of channels. Low concentrations of modulators stabilize open and closed states to different degrees and coordinate the activation of subunits so that channels open directly from closed to higher conductance levels. Using kinetic and structural models, we provide insight into how the altered gating patterns might arise from molecular contacts within the extracellular linker-channel boundary. Our results suggest that this region may be a tunable locus for AMPA receptor channel gating.
Collapse
Affiliation(s)
- Edward Y Shi
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Christine L Yuan
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Matthew T Sipple
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | | | | | - Robert E Oswald
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| | - Linda M Nowak
- Department of Molecular Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
15
|
Wudick MM, Michard E, Oliveira Nunes C, Feijó JA. Comparing Plant and Animal Glutamate Receptors: Common Traits but Different Fates? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4976335. [PMID: 29684179 DOI: 10.1093/jxb/ery153] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Indexed: 06/08/2023]
Abstract
Animal ionotropic glutamate receptors (iGluRs) are ligand-gated channels whose evolution is intimately linked to the one of the nervous system, where the agonist glutamate and co-agonists glycine/D-serine act as neuro-transmitters or -modulators. While iGluRs are specialized in neuronal communication, plant glutamate receptor-like (GLR) homologues have evolved many plant-specific physiological functions, such as sperm signaling in moss, pollen tube growth, root meristem proliferation, innate immune and wound responses. GLRs have been associated with Ca2+ signaling by directly channeling its extracellular influx into the cytosol. Nevertheless, very limited information on functional properties of GLRs is available, and we mostly rely on structure/function data obtained for animal iGluRs to interpret experimental results obtained for plant GLRs. Yet, a deeper characterization and better understanding of plant GLRs is progressively unveiling original and different mode of functions when compared to their mammalian counterparts. Here, we review the function of plant GLRs comparing their predicted structure and physiological roles to the well-documented ones of iGluRs. We conclude that interpreting GLR function based on comparison to their animal counterparts calls for caution, especially when presuming physiological roles and mode of action for plant GLRs from comparison to iGluRs in peripheral, non-neuronal tissues.
Collapse
Affiliation(s)
- Michael M Wudick
- University of Maryland Dept. of Cell Biology and Molecular Genetics, MD, U.S.A
| | - Erwan Michard
- University of Maryland Dept. of Cell Biology and Molecular Genetics, MD, U.S.A
| | | | - José A Feijó
- University of Maryland Dept. of Cell Biology and Molecular Genetics, MD, U.S.A
| |
Collapse
|
16
|
Zhang W, Eibl C, Weeks AM, Riva I, Li YJ, Plested AJR, Howe JR. Unitary Properties of AMPA Receptors with Reduced Desensitization. Biophys J 2017; 113:2218-2235. [PMID: 28863863 DOI: 10.1016/j.bpj.2017.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 01/24/2023] Open
Abstract
Wild-type AMPA receptors display a characteristic rapidly desensitizing phenotype. Many studies point to the dimer interface between pairs of extracellular ligand binding domains as the key region controlling the rate at which the receptors desensitize. However, mutations at the extracellular end of the pore-forming regions (near the putative ion channel gate) have also been shown to alter desensitization. Here we report the behavior of single GluA4 receptors carrying one of two mutations that greatly reduce desensitization at the level of ensemble currents: the dimer interface mutation L484Y and the Lurcher mutation (A623T, GluA4-Lc) in the extracellular end of M3 (the second true transmembrane helix). Analysis of unitary currents in patches with just one active receptor showed that each mutation greatly prolongs bursts of openings without prolonging the apparent duration of individual openings. Each mutation decreases the frequency with which individual receptors visit desensitized states, but both mutant receptors still desensitize multiple times per second. Cyclothiazide (CTZ) reduced desensitization of wild-type receptors and both types of mutant receptor. Analysis of shut-time distributions revealed a form of short-lived desensitization that was resistant to CTZ and was especially prominent for GluA4-Lc receptors. Despite reducing desensitization of GluA4 L484Y receptors, CTZ decreased the amplitude of ensemble currents through GluA2 and GluA4 LY receptor mutants. Single-channel analysis and comparison of the GluA2 L483Y ligand binding domain dimer in complex with glutamate with and without CTZ is consistent with the conclusion that CTZ binding to the dimer interface prevents effects of the LY mutation to modulate receptor activation, resulting in a reduction in the prevalence of large-conductance substates that accounts for the decrease in ensemble current amplitudes. Together, the results show that similar nondesensitizing AMPA-receptor phenotypes of population currents can arise from distinct underlying molecular mechanisms that produce different types of unitary activity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.
| | - Clarissa Eibl
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Autumn M Weeks
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Irene Riva
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Yan-Jun Li
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Andrew J R Plested
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - James R Howe
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
17
|
Geisheker MR, Heymann G, Wang T, Coe BP, Turner TN, Stessman HA, Hoekzema K, Kvarnung M, Shaw M, Friend K, Liebelt J, Barnett C, Thompson EM, Haan E, Guo H, Anderlid BM, Nordgren A, Lindstrand A, Vandeweyer G, Alberti A, Avola E, Vinci M, Giusto S, Pramparo T, Pierce K, Nalabolu S, Michaelson JJ, Sedlacek Z, Santen GW, Peeters H, Hakonarson H, Courchesne E, Romano C, Kooy RF, Bernier RA, Nordenskjöld M, Gecz J, Xia K, Zweifel LS, Eichler EE. Hotspots of missense mutation identify neurodevelopmental disorder genes and functional domains. Nat Neurosci 2017; 20:1043-1051. [PMID: 28628100 PMCID: PMC5539915 DOI: 10.1038/nn.4589] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/19/2017] [Indexed: 12/17/2022]
Abstract
Although de novo missense mutations have been predicted to account for more cases of autism than gene-truncating mutations, most research has focused on the latter. We identified the properties of de novo missense mutations in patients with neurodevelopmental disorders (NDDs) and highlight 35 genes with excess missense mutations. Additionally, 40 amino acid sites were recurrently mutated in 36 genes, and targeted sequencing of 20 sites in 17,688 patients with NDD identified 21 new patients with identical missense mutations. One recurrent site substitution (p.A636T) occurs in a glutamate receptor subunit, GRIA1. This same amino acid substitution in the homologous but distinct mouse glutamate receptor subunit Grid2 is associated with Lurcher ataxia. Phenotypic follow-up in five individuals with GRIA1 mutations shows evidence of specific learning disabilities and autism. Overall, we find significant clustering of de novo mutations in 200 genes, highlighting specific functional domains and synaptic candidate genes important in NDD pathology.
Collapse
Affiliation(s)
| | - Gabriel Heymann
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Tianyun Wang
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bradley P. Coe
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Tychele N. Turner
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Holly A.F. Stessman
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Shaw
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
| | - Kathryn Friend
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- SA Pathology, Adelaide, South Australia, Australia
| | - Jan Liebelt
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia
| | - Christopher Barnett
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Elizabeth M. Thompson
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Eric Haan
- South Australian Clinical Genetics Service, SA Pathology (at Women’s and Children’s Hospital), Adelaide, South Australia, Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Hui Guo
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Antonino Alberti
- Unit of Pediatrics & Medical Genetics, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | - Emanuela Avola
- Unit of Pediatrics & Medical Genetics, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | - Mirella Vinci
- Laboratory of Medical Genetics, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | - Stefania Giusto
- Unit of Neurology, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | - Tiziano Pramparo
- University of California, San Diego, Autism Center of Excellence, La Jolla, California, USA
| | - Karen Pierce
- University of California, San Diego, Autism Center of Excellence, La Jolla, California, USA
| | - Srinivasa Nalabolu
- University of California, San Diego, Autism Center of Excellence, La Jolla, California, USA
| | | | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, Charles University 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Gijs W.E. Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hilde Peeters
- Centre for Human Genetics, KU Leuven and Leuven Autism Research, Leuven, Belgium
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric Courchesne
- University of California, San Diego, Autism Center of Excellence, La Jolla, California, USA
| | - Corrado Romano
- Unit of Pediatrics & Medical Genetics, IRCCS Associazione Oasi Maria Santissima, Troina, Italy
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jozef Gecz
- Robinson Research Institute and the University of Adelaide at the Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kun Xia
- The State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Larry S. Zweifel
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, Washington, USA
| |
Collapse
|
18
|
A novel NMDA receptor positive allosteric modulator that acts via the transmembrane domain. Neuropharmacology 2017; 121:204-218. [DOI: 10.1016/j.neuropharm.2017.04.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/08/2017] [Accepted: 04/26/2017] [Indexed: 12/14/2022]
|
19
|
Structural mechanisms of activation and desensitization in neurotransmitter-gated ion channels. Nat Struct Mol Biol 2017; 23:494-502. [PMID: 27273633 DOI: 10.1038/nsmb.3214] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/29/2016] [Indexed: 12/31/2022]
Abstract
Ion channels gated by neurotransmitters are present across metazoans, in which they are essential for brain function, sensation and locomotion; closely related homologs are also found in bacteria. Structures of eukaryotic pentameric cysteine-loop (Cys-loop) receptors and tetrameric ionotropic glutamate receptors in multiple functional states have recently become available. Here, I describe how these studies relate to established ideas regarding receptor activation and how they have enabled decades' worth of functional work to be pieced together, thus allowing previously puzzling aspects of receptor activity to be understood.
Collapse
|
20
|
Mesbahi-Vasey S, Veras L, Yonkunas M, Johnson JW, Kurnikova MG. All atom NMDA receptor transmembrane domain model development and simulations in lipid bilayers and water. PLoS One 2017; 12:e0177686. [PMID: 28582391 PMCID: PMC5459333 DOI: 10.1371/journal.pone.0177686] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/01/2017] [Indexed: 11/19/2022] Open
Abstract
N-methyl-d-aspartate receptors (NMDARs) are members of the ionotropic glutamate receptor family that mediate excitatory synaptic transmission in the central nervous system. The channels of NMDARs are permeable to Ca2+ but blocked by Mg2+, distinctive properties that underlie essential brain processes such as induction of synaptic plasticity. However, due to limited structural information about the NMDAR transmembrane ion channel forming domain, the mechanism of divalent cation permeation and block is understood poorly. In this paper we developed an atomistic model of the transmembrane domain (TMD) of NMDARs composed of GluN1 and GluN2A subunits (GluN1/2A receptors). The model was generated using (a) a homology model based on the structure of the NaK channel and a partially resolved structure of an AMPA receptor (AMPAR), and (b) a partially resolved X-ray structure of GluN1/2B NMDARs. Refinement and extensive Molecular Dynamics (MD) simulations of the NMDAR TMD model were performed in explicit lipid bilayer membrane and water. Targeted MD with simulated annealing was introduced to promote structure refinement. Putative positions of the Mg2+ and Ca2+ ions in the ion channel divalent cation binding site are proposed. Differences in the structural and dynamic behavior of the channel protein in the presence of Mg2+ or Ca2+ are analyzed. NMDAR protein conformational flexibility was similar with no ion bound to the divalent cation binding site and with Ca2+ bound, whereas Mg2+ binding reduced protein fluctuations. While bound at the binding site both ions retained their preferred ligand coordination numbers: 6 for Mg2+, and 7–8 for Ca2+. Four asparagine side chain oxygens, a back-bone oxygen, and a water molecule participated in binding a Mg2+ ion. The Ca2+ ion first coordination shell ligands typically included four to five side-chain oxygen atoms of the binding site asparagine residues, two water molecules and zero to two backbone oxygens of the GluN2B subunits. These results demonstrate the importance of high-resolution channel structures for elucidation of mechanisms of NMDAR permeation and block.
Collapse
Affiliation(s)
- Samaneh Mesbahi-Vasey
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Lea Veras
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Michael Yonkunas
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Jon W. Johnson
- Department of Neuroscience and Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Maria G. Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Ben-Yaacov A, Gillor M, Haham T, Parsai A, Qneibi M, Stern-Bach Y. Molecular Mechanism of AMPA Receptor Modulation by TARP/Stargazin. Neuron 2017; 93:1126-1137.e4. [PMID: 28238551 DOI: 10.1016/j.neuron.2017.01.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/28/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022]
Abstract
AMPA receptors (AMPARs) mediate the majority of fast excitatory transmission in the brain and critically contribute to synaptic plasticity and pathology. AMPAR trafficking and gating are tightly controlled by auxiliary transmembrane AMPAR regulatory proteins (TARPs). Here, using systematic domain swaps with the TARP-insensitive kainate receptor GluK2, we show that AMPAR interaction with the prototypical TARP stargazin/γ2 primarily involves the AMPAR membrane domains M1 and M4 of neighboring subunits, initiated or stabilized by the AMPAR C-tail, and that these interactions are sufficient to enable full receptor modulation. Moreover, employing TARP chimeras disclosed a key role in this process also for the TARP transmembrane domains TM3 and TM4 and extracellular loop 2. Mechanistically, our data support a two-step action in which binding of TARP to the AMPAR membrane domains destabilizes the channel closed state, thereby enabling an efficient opening upon agonist binding, which then stabilizes the open state via subsequent interactions.
Collapse
Affiliation(s)
- Anat Ben-Yaacov
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Moshe Gillor
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Tomer Haham
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Alon Parsai
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Mohammad Qneibi
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Yael Stern-Bach
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
22
|
Guzmán YF, Ramsey K, Stolz JR, Craig DW, Huentelman MJ, Narayanan V, Swanson GT. A gain-of-function mutation in the GRIK2 gene causes neurodevelopmental deficits. NEUROLOGY-GENETICS 2017; 3:e129. [PMID: 28180184 PMCID: PMC5286855 DOI: 10.1212/nxg.0000000000000129] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022]
Abstract
Objective: To identify inherited or de novo mutations associated with a suite of neurodevelopmental abnormalities in a 10-year-old patient displaying ataxia, motor and speech delay, and intellectual disability. Methods: We performed whole-exome sequencing of the proband and her parents. A pathogenic gene variant was identified as damaging based on sequence conservation, gene function, and association with disorders having similar phenotypic profiles. Functional characterization of the mutated protein was performed in vitro using a heterologous expression system. Results: A single de novo point mutation in the GRIK2 gene was identified as causative for the neurologic symptoms of the proband. The mutation is predicted to change a codon for alanine to that of a threonine at position 657 (A657T) in the GluK2 kainate receptor (KAR) subunit, a member of the ionotropic glutamate receptor gene family. Whole-cell voltage-clamp recordings revealed that KARs incorporating the GluK2(A657T) subunits show profoundly altered channel gating and are constitutively active in nominally glutamate-free extracellular media. Conclusions: In this study, we associate a de novo gain-of-function mutation in the GRIK2 gene with deficits in motor and higher order cognitive function. These results suggest that disruption of physiologic KAR function precludes appropriate development of the nervous system.
Collapse
Affiliation(s)
- Yomayra F Guzmán
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - Keri Ramsey
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - Jacob R Stolz
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - David W Craig
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - Mathew J Huentelman
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - Vinodh Narayanan
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| | - Geoffrey T Swanson
- Department of Pharmacology (Y.F.G., J.R.S., G.T.S.), Northwestern University Feinberg School of Medicine, Chicago, IL; Center for Rare Childhood Disorders (K.R., D.W.C., M.J.H., V.N.), and Neurogenomics Division (K.R., D.W.C., M.J.H., V.N.), Translational Genomics Research Institute, Phoenix, AZ
| |
Collapse
|
23
|
Ren H, Zhao Y, Wu M, Dwyer DS, Peoples RW. Two adjacent phenylalanines in the NMDA receptor GluN2A subunit M3 domain interactively regulate alcohol sensitivity and ion channel gating. Neuropharmacology 2016; 114:20-33. [PMID: 27876530 DOI: 10.1016/j.neuropharm.2016.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 10/20/2022]
Abstract
The N-methyl-d-aspartate (NMDA) receptor is a key target of ethanol action in the central nervous system. Alcohol inhibition of NMDA receptor function involves small clusters of residues in the third and fourth membrane-associated (M) domains. Previous results from this laboratory have shown that two adjacent positions in the M3 domain, F636 and F637, can powerfully regulate alcohol sensitivity and ion channel gating. In this study, we report that these positions interact with one another in the regulation of both NMDA receptor gating and alcohol action. Using dual mutant cycle analysis, we detected interactions among various substitution mutants at these positions with respect to regulation of glutamate EC50, steady-state to peak current ratios (Iss:Ip), mean open time, and ethanol IC50. This interaction apparently involves a balancing of forces on the M3 helix, such that the disruption of function due to a substitution at one position can be reversed by a similar substitution at the other position. For example, tryptophan substitution at F636 or F637 increased or decreased channel mean open time, respectively, but tryptophan substitution at both positions did not alter open time. Interestingly, the effects of a number of mutations on receptor kinetics and ethanol sensitivity appeared to depend upon subtle structural differences, such as those between the isomeric amino acids leucine and isoleucine, as they could not be explained on the basis of sidechain molecular volume or hydrophilicity.
Collapse
Affiliation(s)
- Hong Ren
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yulin Zhao
- Laboratory of Membrane Excitability and Disease Mount Sinai School of Medicine, 1425 Madison Avenue, ICAHN 9-26, 28, New York, NY 10029, United States.
| | - Man Wu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Donard S Dwyer
- Department of Psychiatry, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Robert W Peoples
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201-1881, United States.
| |
Collapse
|
24
|
Yonkunas M, Kurnikova M. The Hydrophobic Effect Contributes to the Closed State of a Simplified Ion Channel through a Conserved Hydrophobic Patch at the Pore-Helix Crossing. Front Pharmacol 2015; 6:284. [PMID: 26640439 PMCID: PMC4661268 DOI: 10.3389/fphar.2015.00284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 11/10/2015] [Indexed: 11/13/2022] Open
Abstract
Ion selectivity-filter structures are strikingly similar throughout the large family of K++ channels and other p-loop-like receptors (i.e., glutamate receptors). At the same time, the triggers for opening these channels, or gating, are diverse. Two questions that remain unanswered regarding these channels are: (1) what force(s) stabilize the closed non-conducting channel-pore conformation? And (2) what is the free energy associated with transitioning from a closed (non-conducting) to an open (conducting) channel-pore conformation? The effects of charge and hydrophobicity on the conformational states of a model tetrameric biological ion channel are shown utilizing the amino acid sequence from the K+ channel KcsA as the model “channel”. Its widely conserved hydrophobic bundle crossing located adjacent to the lipid head-groups at the intracellular side of the membrane was calculated to have a 5 kcal/mol free energy difference between modeled open and closed conformations. Simulated mutants of amino acids within the hydrophobic region significantly contribute to the size of this difference. Specifically for KcsA, these residues are part of the pH sensor important for channel gating and our results are in agreement with published electrophysiology data. Our simulations support the idea that the hydrophobic effect contributes significantly to the stability of the closed conformation in tetrameric ion channels with a hydrophobic bundle crossing positioned in proximity to the lipid head groups of the biological membrane.
Collapse
Affiliation(s)
- Michael Yonkunas
- Department of Chemistry, Carnegie Mellon University, Pittsburgh PA, USA
| | - Maria Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh PA, USA
| |
Collapse
|
25
|
Radial symmetry in a chimeric glutamate receptor pore. Nat Commun 2015; 5:3349. [PMID: 24561802 PMCID: PMC3962659 DOI: 10.1038/ncomms4349] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/30/2014] [Indexed: 01/07/2023] Open
Abstract
Ionotropic glutamate receptors comprise two conformationally different A/C and B/D subunit pairs. Closed channels exhibit fourfold radial symmetry in the transmembrane domain (TMD) but transition to twofold dimer-of-dimers symmetry for extracellular ligand binding and N-terminal domains. Here, to evaluate symmetry in open pores we analysed interaction between the Q/R editing site near the pore loop apex and the transmembrane M3 helix of kainate receptor subunit GluK2. Chimeric subunits that combined the GluK2 TMD with extracellular segments from NMDA receptors, which are obligate heteromers, yielded channels made up of A/C and B/D subunit pairs with distinct substitutions along M3 and/or Q/R site editing status, in an otherwise identical homotetrameric TMD. Our results indicate that Q/R site interaction with M3 occurs within individual subunits and is essentially the same for both A/C and B/D subunit conformations, suggesting that fourfold pore symmetry persists in the open state.
Collapse
|
26
|
Abstract
Glutamate receptors are ligand-gated ion channels that mediate fast excitatory synaptic transmission throughout the central nervous system. Functional receptors are homo- or heteromeric tetramers with each subunit contributing a re-entrant pore loop that dips into the membrane from the cytoplasmic side. The pore loops form a narrow constriction near their apex with a wide vestibule toward the cytoplasm and an aqueous central cavity facing the extracellular solution. This article focuses on the pore region, reviewing how structural differences among glutamate receptor subtypes determine their distinct functional properties.
Collapse
Affiliation(s)
- James E Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
27
|
Harms JE, Benveniste M, Kessler M, Stone LM, Arai AC, Partin KM. A charge-inverting mutation in the "linker" region of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors alters agonist binding and gating kinetics independently of allosteric modulators. J Biol Chem 2014; 289:10702-10714. [PMID: 24550387 DOI: 10.1074/jbc.m113.526921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AMPA receptors are gated through binding of glutamate to a solvent-accessible ligand-binding domain. Upon glutamate binding, these receptors undergo a series of conformational rearrangements regulating channel function. Allosteric modulators can bind within a pocket adjacent to the ligand-binding domain to stabilize specific conformations and prevent desensitization. Yelshansky et al. (Yelshansky, M. V., Sobolevsky, A. I., Jatzke, C., and Wollmuth, L. P. (2004) J. Neurosci. 24, 4728-4736) described a model of an electrostatic interaction between the ligand-binding domain and linker region to the pore that regulated channel desensitization. To test this hypothesis, we have conducted a series of experiments focusing on the R628E mutation. Using ultrafast perfusion with voltage clamp, we applied glutamate to outside-out patches pulled from transiently transfected HEK 293 cells expressing wild type or R628E mutant GluA2. In response to a brief pulse of glutamate (1 ms), mutant receptors deactivated with significantly slower kinetics than wild type receptors. In addition, R628E receptors showed significantly more steady-state current in response to a prolonged (500-ms) glutamate application. These changes in receptor kinetics occur through a pathway that is independent of that of allosteric modulators, which show an additive effect on R628E receptors. In addition, ligand binding assays revealed the R628E mutation to have increased affinity for agonist. Finally, we reconciled experimental data with computer simulations that explicitly model mutant and modulator interactions. Our data suggest that R628E stabilizes the receptor closed cleft conformation by reducing agonist dissociation and the transition to the desensitized state. These results suggest that the AMPA receptor external vestibule is a viable target for new positive allosteric modulators.
Collapse
Affiliation(s)
- Jonathan E Harms
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617
| | - Morris Benveniste
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia 30310-1495
| | - Markus Kessler
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629
| | - Leslie M Stone
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617
| | - Amy C Arai
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62794-9629
| | - Kathryn M Partin
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523-1617.
| |
Collapse
|
28
|
Moore BS, Mirshahi UL, Ebersole TL, Mirshahi T. A conserved mechanism for gating in an ionotropic glutamate receptor. J Biol Chem 2013; 288:18842-52. [PMID: 23671286 DOI: 10.1074/jbc.m113.465187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ionotropic glutamate receptor (iGluR) channels control synaptic activity. The crystallographic structure of GluA2, the prototypical iGluR, reveals a clamshell-like ligand-binding domain (LBD) that closes in the presence of glutamate to open a gate on the pore lining α-helix. How LBD closure leads to gate opening remains unclear. Here, we show that bending the pore helix at a highly conserved alanine residue (Ala-621) below the gate is responsible for channel opening. Substituting Ala-621 with the smaller more flexible glycine resulted in a basally active, nondesensitizing channel with ∼39-fold increase in glutamate potency without affecting surface expression or binding. On GluA2(A621G), the partial agonist kainate showed efficacy similar to a full agonist, and competitive antagonists CNQX and DNQX acted as a partial agonists. Met-629 in GluA2 sits above the gate and is critical in transmitting LBD closure to the gate. Substituting Met-629 with the flexible glycine resulted in reduced channel activity and glutamate potency. The pore regions in potassium channels are structurally similar to iGluRs. Whereas potassium channels typically use glycines as a hinge for gating, iGluRs use the less flexible alanine as a hinge at a similar position to maintain low basal activity allowing for ligand-mediated gating.
Collapse
Affiliation(s)
- Bryn S Moore
- Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822-2621, USA
| | | | | | | |
Collapse
|
29
|
Murthy SE, Shogan T, Page JC, Kasperek EM, Popescu GK. Probing the activation sequence of NMDA receptors with lurcher mutations. ACTA ACUST UNITED AC 2012; 140:267-77. [PMID: 22891278 PMCID: PMC3434102 DOI: 10.1085/jgp.201210786] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptor activation involves a dynamic series of structural rearrangements initiated by glutamate binding to glycine-loaded receptors and culminates with the clearing of the permeation pathway, which allows ionic flux. Along this sequence, three rate-limiting transitions can be quantified with kinetic analyses of single-channel currents, even though the structural determinants of these critical steps are unknown. In inactive receptors, the major permeation barrier resides at the intersection of four M3 transmembrane helices, two from each GluN1 and GluN2 subunits, at the level of the invariant SYTANLAAF sequence, known as the lurcher motif. Because the A7 but not A8 residues in this region display agonist-dependent accessibility to extracellular solutes, they were hypothesized to form the glutamate-sensitive gate. We tested this premise by examining the reaction mechanisms of receptors with substitutions in the lurcher motifs of GluN1 or GluN2A subunits. We found that, consistent with their locations relative to the proposed activation gate, A8Y decreased open-state stability, whereas A7Y dramatically stabilized open states, primarily by preventing gate closure; the equilibrium distribution of A7Y receptors was strongly shifted toward active states and resulted in slower microscopic association and dissociation rate constants for glutamate. In addition, for both A8- and A7-substituted receptors, we noticed patterns of kinetic changes that were specific to GluN1 or GluN2 locations. This may be a first indication that the sequence of discernible kinetic transitions during NMDA receptor activation may reflect subunit-dependent movements of M3 helices. Testing this hypothesis may afford insight into the activation mechanism of NMDA receptors.
Collapse
Affiliation(s)
- Swetha E Murthy
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
30
|
Kaniakova M, Krausova B, Vyklicky V, Korinek M, Lichnerova K, Vyklicky L, Horak M. Key amino acid residues within the third membrane domains of NR1 and NR2 subunits contribute to the regulation of the surface delivery of N-methyl-D-aspartate receptors. J Biol Chem 2012; 287:26423-34. [PMID: 22711533 DOI: 10.1074/jbc.m112.339085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
N-methyl-d-aspartate (NMDA) receptors are glutamate ionotropic receptors that play critical roles in synaptic transmission, plasticity, and excitotoxicity. The functional NMDA receptors, heterotetramers composed mainly of two NR1 and two NR2 subunits, likely pass endoplasmic reticulum quality control before they are released from the endoplasmic reticulum and trafficked to the cell surface. However, the mechanism underlying this process is not clear. Using truncated and mutated NMDA receptor subunits expressed in heterologous cells, we found that the M3 domains of both NR1 and NR2 subunits contain key amino acid residues that contribute to the regulation of the number of surface functional NMDA receptors. These key residues are critical neither for the interaction between the NR1 and NR2 subunits nor for the formation of the functional receptors, but rather they regulate the early trafficking of the receptors. We also found that the identified key amino acid residues within both NR1 and NR2 M3 domains contribute to the regulation of the surface expression of unassembled NR1 and NR2 subunits. Thus, our data identify the unique role of the membrane domains in the regulation of the number of surface NMDA receptors.
Collapse
Affiliation(s)
- Martina Kaniakova
- Institute of Physiology, Academy of Sciences of the Czech Republic v.v.i., Videnska 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
31
|
Midgett CR, Gill A, Madden DR. Domain architecture of a calcium-permeable AMPA receptor in a ligand-free conformation. Front Mol Neurosci 2012; 4:56. [PMID: 22232575 PMCID: PMC3249379 DOI: 10.3389/fnmol.2011.00056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/10/2011] [Indexed: 11/22/2022] Open
Abstract
Ligand-gated ion channels couple the free energy of agonist binding to the gating of selective transmembrane ion pores, permitting cells to regulate ion flux in response to external chemical stimuli. However, the stereochemical mechanisms responsible for this coupling remain obscure. In the case of the ionotropic glutamate receptors (iGluRs), the modular nature of receptor subunits has facilitated structural analysis of the N-terminal domain (NTD), and of multiple conformations of the ligand-binding domain (LBD). Recently, the crystallographic structure of an antagonist-bound form of the receptor was determined. However, disulfide trapping of this conformation blocks channel opening, suggesting that channel activation involves additional quaternary packing arrangements. To explore the conformational space available to iGluR channels, we report here a second, clearly distinct domain architecture of homotetrameric, calcium-permeable AMPA receptors, determined by single-particle electron microscopy of untagged and fluorescently tagged constructs in a ligand-free state. It reveals a novel packing of NTD dimers, and a separation of LBD dimers across a central vestibule. In this arrangement, which reconciles diverse functional observations, agonist-induced cleft closure across LBD dimers can be converted into a twisting motion that provides a basis for receptor activation.
Collapse
Affiliation(s)
- Charles R Midgett
- Department of Biochemistry, Dartmouth Medical School Hanover, NH, USA
| | | | | |
Collapse
|
32
|
Yadav R, Rimerman R, Scofield MA, Dravid SM. Mutations in the transmembrane domain M3 generate spontaneously open orphan glutamate δ1 receptor. Brain Res 2011; 1382:1-8. [PMID: 21215726 DOI: 10.1016/j.brainres.2010.12.086] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 12/28/2010] [Accepted: 12/30/2010] [Indexed: 12/22/2022]
Abstract
Glutamate delta-1 receptors (GluRδ1) are expressed in the adult hippocampus and inner ear and have recently been shown to be important for high-frequency hearing. Similar to the closest homolog glutamate delta-2 receptor (GluRδ2), no agonist-induced currents are observed from GluRδ1 receptors. In an effort to understand the function of the GluRδ1 subunit, we probed the conserved transmembrane 3 (TM3) region of the GluRδ1 subunit, where the GluRδ2 lurcher mutation is localized. Four mutations in the TM3 domain A650C, L652A, A654C, and F655A resulted in spontaneously open GluRδ1 channels suggesting that GluRδ1 receptors can form homomeric receptors. The leak currents were partially blocked by pentamidine but showed negligible inhibition by NASP. It has been demonstrated that extracellular Ca(2+) binds and stabilizes the ligand binding domain (LBD) dimer interface leading to potentiation of currents through GluRδ2(Lc) channels. We found that extracellular Ca(2+) potentiated the spontaneous currents through GluRδ1F655A suggesting that extracellular Ca(2+) may interact with the conserved residues at GluRδ1 LBD dimer interface. A recent study suggested that d-serine and glycine bind to the GluRδ2 LBD and reduce spontaneous currents through the GluRδ2(Lc) channels. d-Serine and glycine produced only a modest reduction of spontaneous currents through GluRδ1F655A and had no effect on the spontaneous current through GluRδ1L652A. However, spontaneous currents in a chimeric GluRδ1-δ2(Lc) were robustly inhibited by d-serine. These results suggest that the activation gate is conserved in GluRδ1 receptors. Moreover, the conformational changes induced by d-serine and extracellular Ca(2+) are conserved among GluRδ1 and GluRδ2 receptors.
Collapse
Affiliation(s)
- Roopali Yadav
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
33
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2719] [Impact Index Per Article: 181.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Challenges for and current status of research into positive modulators of AMPA receptors. Br J Pharmacol 2010; 160:181-90. [PMID: 20423333 DOI: 10.1111/j.1476-5381.2010.00726.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
AMPA receptors consist of a family of hetero-oligomeric (tetrameric) receptors arising from four genes, each of which encodes a distinct receptor subunit (GluA1-4). Recombinant homo-tetrameric AMPA receptors, comprising four identical subunits, are functionally active and have been used in in vitro assays. However, the many different subunit permutations make possible the functional and anatomical diversity of AMPA receptors throughout the CNS. Furthermore, AMPA receptor subunit stoichiometry influences the biophysical and functional properties of the receptor. A number of chemically diverse positive modulators of AMPA receptor have been identified which potentiate AMPA receptor-mediated activity in vitro as well as improving cognitive performance in rodents and non-human primates with several being taken further in the clinic. This review article summarizes the current status in the research on positive allosteric modulation of AMPA receptors and outlines the challenges involved in identifying a chemically distinct series of AMPA receptor positive modulators, addressing the challenges created by the heterogeneity of the AMPA receptor populations and the development of structure-activity relationships driven by homomeric, recombinant systems on high-throughput platforms. We also review the role of X-ray crystallography in the selection and prioritization of targets for lead optimization for AMPA receptor positive modulators.
Collapse
|
35
|
X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature 2010; 462:745-56. [PMID: 19946266 DOI: 10.1038/nature08624] [Citation(s) in RCA: 799] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/02/2009] [Indexed: 02/06/2023]
Abstract
Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 A resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatch between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-d-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.
Collapse
|
36
|
Hansen KB, Naur P, Kurtkaya NL, Kristensen AS, Gajhede M, Kastrup JS, Traynelis SF. Modulation of the dimer interface at ionotropic glutamate-like receptor delta2 by D-serine and extracellular calcium. J Neurosci 2009; 29:907-17. [PMID: 19176800 PMCID: PMC2806602 DOI: 10.1523/jneurosci.4081-08.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 12/03/2008] [Accepted: 12/10/2008] [Indexed: 11/21/2022] Open
Abstract
GluRdelta2 is a member of the iGluR family, but despite a prominent role in cerebellar synaptic plasticity, this receptor does not appear to function as an ion channel. Endogenous ligands that modulate the activity of native GluRdelta2 in the cerebellum have not been identified, but two candidate modulators are d-serine and extracellular calcium. Taking advantage of known crystal structures and spontaneously active GluRdelta2 receptors containing the lurcher mutation (GluRdelta2(Lc)), we investigated the mechanism by which calcium and d-serine regulate the activity of GluRdelta2(Lc). Our data suggest that calcium binding stabilizes the dimer interface formed between two agonist-binding domains and increases GluRdelta2(Lc) currents. The data further suggest that d-serine binding induces rearrangements at the dimer interface to diminish GluRdelta2(Lc) currents by a mechanism that resembles desensitization at AMPA and kainate receptors. Thus, we propose that calcium and d-serine binding have opposing effects on the stability of the dimer interface. Furthermore, the effects of calcium are observed at concentrations that are within the physiological range, suggesting that the ability of native GluRdelta2 to respond to ligand binding may be modulated by extracellular calcium. These findings place GluRdelta2 among AMPA and kainate receptors, where the dimer interface is not only a biologically important site for functional regulation, but also an important target for exogenous and endogenous ligands that modulate receptor function.
Collapse
Affiliation(s)
- Kasper B Hansen
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
VanDongen A, Blanke M. Activation Mechanisms of the NMDA Receptor. BIOLOGY OF THE NMDA RECEPTOR 2008. [DOI: 10.1201/9781420044157.ch13] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Blanke ML, VanDongen AMJ. The NR1 M3 domain mediates allosteric coupling in the N-methyl-D-aspartate receptor. Mol Pharmacol 2008; 74:454-65. [PMID: 18483226 DOI: 10.1124/mol.107.044115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-Methyl-D-aspartate (NMDA) receptors play a critical role in both development of the central nervous system and adult neuroplasticity. However, although the NMDA receptor presents a valuable therapeutic target, the relationship between its structure and functional properties has yet to be fully elucidated. To further explore the mechanism of receptor activation, we characterized two gain-of-function mutations within the NR1 M3 segment, a transmembrane domain proposed to couple ligand binding and channel opening. Both mutants (A7Q and A7Y) displayed significant glycine-independent currents, indicating that their M3 domains may preferentially adopt a more activated conformation. Substituted cysteine modification experiments revealed that the glycine binding clefts of both A7Q and A7Y are inaccessible to modifying reagents and resistant to competitive antagonism. These data suggest that perturbation of M3 can stabilize the ligand binding domain in a closed cleft conformation, even in the absence of agonist. Both mutants also displayed significant glutamate-independent current and insensitivity to glutamate-site antagonism, indicating partial activation by either glycine or glutamate alone. Furthermore, A7Q and A7Y increased accessibility of the NR2 M3 domain, providing evidence for intersubunit coupling at the transmembrane level and suggesting that these NR1 mutations dominate the properties of the intact heteromeric receptor. The equivalent mutations in NR2 did not exhibit comparable phenotypes, indicating that the NR1 and NR2 M3 domains may play different functional roles. In summary, our data demonstrate that the NR1 M3 segment is functionally coupled to key structural domains in both the NR1 and NR2 subunits.
Collapse
Affiliation(s)
- Marie L Blanke
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolin, USA
| | | |
Collapse
|
39
|
Milstein AD, Nicoll RA. Regulation of AMPA receptor gating and pharmacology by TARP auxiliary subunits. Trends Pharmacol Sci 2008; 29:333-9. [PMID: 18514334 PMCID: PMC2819157 DOI: 10.1016/j.tips.2008.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 12/01/2022]
Abstract
Presynaptic glutamate release elicits brief waves of membrane depolarization in neurons by activating AMPA receptors. Depending on its precise size and shape, current through AMPA receptors gates downstream processes like NMDA receptor activation and action potential generation. Over a decade of research on AMPA receptor structure and function has identified binding sites on AMPA receptors for agonists, antagonists and allosteric modulators as well as key residues underlying differences in the gating behavior of various AMPA receptor subtypes. However, the recent discovery that AMPA receptors are accompanied in the synaptic membrane by a family of auxiliary subunits known as transmembrane AMPA receptor regulatory proteins (TARPs) has revealed that the kinetics and pharmacology of neuronal AMPA receptors differ in many respects from those predicted by classical studies of AMPA receptors in heterologous systems. Here, we summarize recent work and discuss remaining questions concerning the structure and function of native TARP-AMPA receptor complexes.
Collapse
Affiliation(s)
- Aaron D Milstein
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | | |
Collapse
|
40
|
A domain linking the AMPA receptor agonist binding site to the ion pore controls gating and causes lurcher properties when mutated. J Neurosci 2007; 27:12230-41. [PMID: 17989289 DOI: 10.1523/jneurosci.3175-07.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ionotropic, AMPA-type glutamate receptors (GluRs) critically shape excitatory synaptic signals in the CNS. Ligand binding induces conformational changes in the glutamate-binding domain of the receptors that are converted into opening of the channel pore via three short linker sequences, a process referred to as gating. Although crystallization of the glutamate-binding domain and structural models of the ion pore advanced our understanding of ligand-binding dynamics and pore movements, the allosteric coupling of both events by the short linkers has not been described in detail. To study the role of the linkers in gating GluR1, we transplanted them between different GluRs and examined the electrophysiological properties of the resulting chimeric receptors in Xenopus laevis oocytes and HEK293 cells. We found that all three linkers decisively affect receptor functionality, agonist potency, and desensitization. One linker chimera was nondesensitizing and exhibited strongly increased agonist potencies, while fluxing ions even in the absence of agonist, similar to properties reported for the GluR1 lurcher mutation. Combining this new lurcher-like linker chimera with the original lurcher mutation allowed us to reassess the effect of lurcher on GluR1 gating properties. The observed differential but interdependent influence of linker and lurcher mutations on receptor properties suggests that the linkers are part of a fine-tuned structural element that normally stabilizes the closed ion pore. We propose that lurcher-like mutations act by disrupting this element such that ligand-induced conformational changes are not necessarily required to gate the channel.
Collapse
|
41
|
Erreger K, Traynelis SF. Zinc inhibition of rat NR1/NR2A N-methyl-D-aspartate receptors. J Physiol 2007; 586:763-78. [PMID: 18048453 DOI: 10.1113/jphysiol.2007.143941] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Zinc ions (Zn(2+)) are localized in presynaptic vesicles at glutamatergic synapses and released in an activity-dependent manner. Modulation of NMDA-type glutamate receptors by extracellular Zn(2+) may play an important role under physiological conditions and during pathologies such as ischaemia or seizure. Zn(2+) inhibits NMDA receptors containing the NR2A subunit with an IC(50) value in the low nanomolar concentration range. Here we investigate at the single-channel level the mechanism of high affinity Zn(2+) inhibition of recombinant NR1/NR2A receptors expressed in HEK293 cells. Zn(2+) reversibly decreases the mean single-channel open duration and channel open probability determined in excised outside-out patches, but has no effect on single-channel current amplitude. A parallel series of experiments demonstrates that lowering extracellular pH (increasing proton concentration) has a similar effect on NR1/NR2A single-channel properties as Zn(2+). Fitting the sequence of single-channel events with kinetic models suggests that the association of Zn(2+) with its binding site enhances proton binding. Modelling further suggests that protonated channels are capable of opening but with a lower open probability than unprotonated channels. These data and analyses are consistent with Zn(2+)-mediated inhibition of NMDA receptors primarily reflecting enhancement of proton inhibition.
Collapse
Affiliation(s)
- Kevin Erreger
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, Atlanta, GA 30322, USA
| | | |
Collapse
|
42
|
Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, Olsen L, Vestergaard B, Egebjerg J, Gajhede M, Traynelis SF, Kastrup JS. Ionotropic glutamate-like receptor delta2 binds D-serine and glycine. Proc Natl Acad Sci U S A 2007; 104:14116-21. [PMID: 17715062 PMCID: PMC1955790 DOI: 10.1073/pnas.0703718104] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The orphan glutamate-like receptor GluRdelta2 is predominantly expressed in Purkinje cells of the central nervous system. The classification of GluRdelta2 to the ionotropic glutamate receptor family is based on sequence similarities, because GluRdelta2 does not form functional homomeric glutamate-gated ion channels in transfected cells. Studies in GluRdelta2(-/-) knockout mice as well as in mice with naturally occurring mutations in the GluRdelta2 gene have demonstrated an essential role of GluRdelta2 in cerebellar long-term depression, motor learning, motor coordination, and synaptogenesis. However, the lack of a known agonist has hampered investigations on the function of GluRdelta2. In this study, the ligand-binding core of GluRdelta2 (GluRdelta2-S1S2) was found to bind neutral amino acids such as D-serine and glycine, as demonstrated by isothermal titration calorimetry. Direct evidence for binding of D-serine and structural rearrangements in the binding cleft of GluRdelta2-S1S2 is provided by x-ray structures of GluRdelta2-S1S2 in its apo form and in complex with D-serine. Functionally, D-serine and glycine were shown to inactivate spontaneous ion-channel conductance in GluRdelta2 containing the lurcher mutation (EC(50) values, 182 and 507 microM, respectively). These data demonstrate that the GluRdelta2 ligand-binding core is capable of binding ligands and that cleft closure of the ligand-binding core can induce conformational changes that alter ion permeation.
Collapse
Affiliation(s)
- Peter Naur
- *Biostructural Research Unit, Department of Medicinal Chemistry, and
| | - Kasper B. Hansen
- Department of Molecular Neurobiology, Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; and
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322
| | - Anders S. Kristensen
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322
| | - Shashank M. Dravid
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322
| | - Darryl S. Pickering
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lars Olsen
- *Biostructural Research Unit, Department of Medicinal Chemistry, and
| | - Bente Vestergaard
- *Biostructural Research Unit, Department of Medicinal Chemistry, and
| | - Jan Egebjerg
- Department of Molecular Neurobiology, Lundbeck A/S, Ottiliavej 9, DK-2500 Valby, Denmark; and
| | - Michael Gajhede
- *Biostructural Research Unit, Department of Medicinal Chemistry, and
| | - Stephen F. Traynelis
- Department of Pharmacology, Emory University School of Medicine, 1510 Clifton Road, Atlanta, GA 30322
| | - Jette S. Kastrup
- *Biostructural Research Unit, Department of Medicinal Chemistry, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Greger IH, Ziff EB, Penn AC. Molecular determinants of AMPA receptor subunit assembly. Trends Neurosci 2007; 30:407-16. [PMID: 17629578 DOI: 10.1016/j.tins.2007.06.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/10/2007] [Accepted: 06/22/2007] [Indexed: 11/24/2022]
Abstract
AMPA-type (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate) glutamate receptors (AMPARs) mediate post-synaptic depolarization and fast excitatory transmission in the central nervous system. AMPARs are tetrameric ion channels that assemble in the endoplasmic reticulum (ER) in a poorly understood process. The subunit composition determines channel conductance properties and gating kinetics, and also regulates vesicular traffic to and from synaptic sites, and is thus critical for synaptic function and plasticity. The distribution of functionally different AMPARs varies within and between neuronal circuits, and even within individual neurons. In addition, synapses employ channels with specific subunit stoichiometries, depending on the type of input and the frequency of stimulation. Taken together, it appears that assembly is not simply a stochastic process. Recently, progress has been made in understanding the molecular mechanisms underlying subunit assembly and receptor biogenesis in the ER. These processes ultimately determine the size and shape of the postsynaptic response, and are the subject of this review.
Collapse
Affiliation(s)
- Ingo H Greger
- MRC Laboratory of Molecular Biology, Neurobiology Division, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
44
|
Sobolevsky AI, Prodromou ML, Yelshansky MV, Wollmuth LP. Subunit-specific contribution of pore-forming domains to NMDA receptor channel structure and gating. ACTA ACUST UNITED AC 2007; 129:509-25. [PMID: 17504910 PMCID: PMC2151626 DOI: 10.1085/jgp.200609718] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are ligand-gated ion channels that contribute to fundamental physiological processes such as learning and memory and, when dysfunctional, to pathophysiological conditions such as neurodegenerative diseases, stroke, and mental illness. NMDARs are obligate heteromultimers typically composed of NR1 and NR2 subunits with the different subunits underlying the functional versatility of NMDARs. To study the contribution of the different subunits to NMDAR channel structure and gating, we compared the effects of cysteine-reactive agents on cysteines substituted in and around the M1, M3, and M4 segments of the NR1 and NR2C subunits. Based on the voltage dependence of cysteine modification, we find that, both in NR1 and NR2C, M3 appears to be the only transmembrane segment that contributes to the deep (or voltage dependent) portion of the ion channel pore. This contribution, however, is subunit specific with more positions in NR1 than in NR2C facing the central pore. Complimentarily, NR2C makes a greater contribution than NR1 to the shallow (or voltage independent) portion of the pore with more NR2C positions in pre-M1 and M3-S2 linker lining the ion-conducting pathway. Substituted cysteines in the M3 segments in NR1 and NR2C showed strong, albeit different, state-dependent reactivity, suggesting that they play central but structurally distinct roles in gating. A weaker state dependence was observed for the pre-M1 regions in both subunits. Compared to M1 and M3, the M4 segments in both NR1 and NR2C subunits had limited accessibility and the weakest state dependence, suggesting that they are peripheral to the central pore. Finally, we propose that Lurcher mutation-like effects, which were identified in and around all three transmembrane segments, occur for positions located at dynamic protein–protein or protein–lipid interfaces that have state-dependent accessibility to methanethiosulfonate (MTS) reagents and therefore can affect the equilibrium between open and closed states following reactions with MTS reagents.
Collapse
Affiliation(s)
- Alexander I Sobolevsky
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
45
|
Tomita S, Shenoy A, Fukata Y, Nicoll RA, Bredt DS. Stargazin interacts functionally with the AMPA receptor glutamate-binding module. Neuropharmacology 2007; 52:87-91. [PMID: 16919685 DOI: 10.1016/j.neuropharm.2006.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 07/03/2006] [Accepted: 07/06/2006] [Indexed: 10/24/2022]
Abstract
Neuronal AMPA receptors comprise pore forming glutamate receptor (GluR) proteins and auxiliary transmembrane AMPA receptor regulatory (TARP) subunits. TARPs traffic AMPA receptors to synapses and regulate channel gating. Both intracellular and extracellular regions in TARPs regulate AMPA receptors; however, the details for these interactions remain unknown. Here, we employ site-directed mutagenesis to determine functional interactions between GluR1 and the prototypical TARP, stargazin. We find that a point mutation in the glutamate-binding region of GluR1 corresponding to the Lurcher allele of GluRdelta2, abolishes stargazin's effects on receptor trafficking and channel gating. A point mutation that prevents receptor desensitization modulates the effects of stargazin on channel gating but preserves receptor trafficking. These studies identify a functional interaction of stargazin with the extracellular glutamate-binding domain of AMPA receptors.
Collapse
Affiliation(s)
- Susumu Tomita
- Department of Physiology, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
46
|
Reconstitution of invertebrate glutamate receptor function depends on stargazin-like proteins. Proc Natl Acad Sci U S A 2006; 103:10781-6. [PMID: 16818877 DOI: 10.1073/pnas.0604482103] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) are a major subtype of ionotropic glutamate receptors (iGluRs) that mediate rapid excitatory synaptic transmission in the vertebrate brain. Putative AMPARs are also expressed in the nervous system of invertebrates. In Caenorhabditis elegans, the GLR-1 receptor subunit is expressed in neural circuits that mediate avoidance behaviors and is required for glutamate-gated current in the AVA and AVD interneurons. Glutamate-gated currents can be recorded from heterologous cells that express vertebrate AMPARs; however, when C. elegans GLR-1 is expressed in heterologous cells, little or no glutamate-gated current is detected. This finding suggests that other receptor subunits or auxiliary proteins are required for function. Here, we identify Ce STG-1, a C. elegans stargazin-like protein, and show that expression of Ce STG-1 together with GLR-1 and the CUB-domain protein SOL-1 reconstitutes glutamate-gated currents in Xenopus oocytes. Ce STG-1 and homologues cloned from Drosophila (Dro STG1) and Apis mellifera (Apis STG1) have evolutionarily conserved functions and can partially substitute for one another to reconstitute glutamate-gated currents from rat, Drosophila, and C. elegans. Furthermore, we show that Ce STG-1 and Apis STG1 are primarily required for function independent of possible roles in promoting the surface expression of invertebrate AMPARs.
Collapse
|
47
|
Zhang W, Robert A, Vogensen SB, Howe JR. The relationship between agonist potency and AMPA receptor kinetics. Biophys J 2006; 91:1336-46. [PMID: 16731549 PMCID: PMC1518651 DOI: 10.1529/biophysj.106.084426] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AMPA-type glutamate receptors are tetrameric ion channels that mediate fast excitatory synaptic transmission in the mammalian brain. When agonists occupy the binding domain of individual receptor subunits, this domain closes, triggering rearrangements that couple agonist binding to channel opening. Here we compare the kinetic behavior of GluR2 channels activated by four different ligands, glutamate, AMPA, quisqualate, and 2-Me-Tet-AMPA, full agonists that vary in potency by up to two orders of magnitude. After reduction of desensitization with cyclothiazide, deactivation decays were strongly agonist dependent. The time constants of decay increased with potency, and slow components in the multiexponential decays became more prominent. The desensitization decays of agonist-activated currents also contained multiple exponential components, but they were similar for the four agonists. The time course of recovery from desensitization produced by each agonist was described by two sigmoid components, and the speed of recovery varied substantially. Recovery was fastest for glutamate and slowest for 2-Me-Tet-AMPA, and the amplitude of the slow component of recovery increased with agonist potency. The multiple kinetic components appear to arise from closed-state transitions that precede channel gating. Stargazin increases the slow kinetic components, and they likely contribute to the biexponential decay of excitatory postsynaptic currents.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520-8066, USA
| | | | | | | |
Collapse
|
48
|
Abstract
At synapses throughout the brain and spinal cord, the amino-acid glutamate is the major excitatory neurotransmitter. During evolution, a family of glutamate-receptor ion channels seems to have been assembled from a kit consisting of discrete ligand-binding, ion-channel, modulatory and cytoplasmic domains. Crystallographic studies that exploit this unique architecture have greatly aided structural analysis of the ligand-binding core, but the results also pose a formidable challenge, namely that of resolving the allosteric mechanisms by which individual domains communicate and function in an intact receptor.
Collapse
Affiliation(s)
- Mark L Mayer
- Building 35, Room 3B1002, Porter Neuroscience Research Center, 35 Lincoln Drive, Bethesda, Maryland 20892, USA.
| |
Collapse
|
49
|
Robert A, Armstrong N, Gouaux JE, Howe JR. AMPA receptor binding cleft mutations that alter affinity, efficacy, and recovery from desensitization. J Neurosci 2006; 25:3752-62. [PMID: 15829627 PMCID: PMC6724928 DOI: 10.1523/jneurosci.0188-05.2005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamate binds to AMPA receptors within a deep cleft between two globular protein domains (domains 1 and 2). Once glutamate binds, the cleft closes, and agonist-bound structures of the isolated ligand binding core suggest that closure of the binding cleft is sufficiently complete that it essentially prevents ligand dissociation. There is also considerable evidence supporting the view that cleft closure is the initial conformational change that triggers receptor activation and desensitization, and it has been clearly demonstrated that there is a correlation between the degree of cleft closure and agonist efficacy. It is unknown, however, whether the stability of binding cleft closure also influences receptor-channel properties. The crystallographic structures indicate that closed-cleft conformations are stabilized by the formation of hydrogen bonds that involve amino acid side chains of residues in domains 1 and 2. We show here that mutations that disrupt one such cross-cleft hydrogen bond (in the AMPA receptor subunit GluR2) decrease both agonist affinity and efficacy. The same mutations also hasten recovery from desensitization. We conclude that the stability of binding cleft closure has a significant impact on AMPA receptor function and is a major determinant of the apparent affinity of agonists. The results suggest that the stability of cleft closure has been tuned so that glutamate dissociates as rapidly as possible yet remains a full agonist.
Collapse
Affiliation(s)
- Antoine Robert
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
50
|
Zheng Y, Brockie PJ, Mellem JE, Madsen DM, Walker CS, Francis MM, Maricq AV. SOL-1 is an auxiliary subunit that modulates the gating of GLR-1 glutamate receptors in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2006; 103:1100-5. [PMID: 16418277 PMCID: PMC1347967 DOI: 10.1073/pnas.0504612103] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most rapid excitatory synaptic signaling in the brain is mediated by postsynaptic ionotropic glutamate receptors (iGluRs) that are gated open by the neurotransmitter glutamate. In Caenorhabditis elegans, sol-1 encodes a CUB-domain transmembrane protein that is required for currents that are mediated by the GLR-1 iGluR. Mutations in sol-1 do not affect GLR-1 expression, localization, membrane insertion, or stabilization at synapses, suggesting that SOL-1 is required for iGluR function. Here, we provide evidence that SOL-1 is an auxiliary subunit that modulates the gating of GLR-1 receptors. We show that mutant variants of GLR-1 with altered gating partially restore glutamate-gated current and GLR-1-dependent behaviors in sol-1 mutants. Domain analysis of SOL-1 indicates that extracellular CUB domain 3 is required for function and that a secreted variant partially restores glutamate-gated currents and behavior. Also, we show that endogenous glutamatergic synaptic currents are absent in sol-1 mutants. Our data suggest that GLR-1 iGluRs are not simply stand-alone molecules and require the SOL-1 auxiliary protein to promote the open state of the receptor. Our analysis presents the possibility that glutamatergic signaling in other organisms may be similarly modified by SOL-1-like transmembrane proteins.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | | | | | | | | | | | | |
Collapse
|