1
|
Kołodziej-Sobczak D, Sobczak Ł, Łączkowski KZ. Protein Tyrosine Phosphatase 1B (PTP1B): A Comprehensive Review of Its Role in Pathogenesis of Human Diseases. Int J Mol Sci 2024; 25:7033. [PMID: 39000142 PMCID: PMC11241624 DOI: 10.3390/ijms25137033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Overexpression of protein tyrosine phosphatase 1B (PTP1B) disrupts signaling pathways and results in numerous human diseases. In particular, its involvement has been well documented in the pathogenesis of metabolic disorders (diabetes mellitus type I and type II, fatty liver disease, and obesity); neurodegenerative diseases (Alzheimer's disease, Parkinson's disease); major depressive disorder; calcific aortic valve disease; as well as several cancer types. Given this multitude of therapeutic applications, shortly after identification of PTP1B and its role, the pursuit to introduce safe and selective enzyme inhibitors began. Regrettably, efforts undertaken so far have proved unsuccessful, since all proposed PTP1B inhibitors failed, or are yet to complete, clinical trials. Intending to aid introduction of the new generation of PTP1B inhibitors, this work collects and organizes the current state of the art. In particular, this review intends to elucidate intricate relations between numerous diseases associated with the overexpression of PTP1B, as we believe that it is of the utmost significance to establish and follow a brand-new holistic approach in the treatment of interconnected conditions. With this in mind, this comprehensive review aims to validate the PTP1B enzyme as a promising molecular target, and to reinforce future research in this direction.
Collapse
Affiliation(s)
- Dominika Kołodziej-Sobczak
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| | - Łukasz Sobczak
- Hospital Pharmacy, Multidisciplinary Municipal Hospital in Bydgoszcz, Szpitalna 19, 85-826 Bydgoszcz, Poland
| | - Krzysztof Z. Łączkowski
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Jurasza 2, 85-089 Bydgoszcz, Poland;
| |
Collapse
|
2
|
Olloquequi J, Ettcheto M, Cano A, Fortuna A, Bicker J, Sánchez-Lopez E, Paz C, Ureña J, Verdaguer E, Auladell C, Camins A. Licochalcone A: A Potential Multitarget Drug for Alzheimer's Disease Treatment. Int J Mol Sci 2023; 24:14177. [PMID: 37762479 PMCID: PMC10531537 DOI: 10.3390/ijms241814177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Licochalcone A (Lico-A) is a flavonoid compound derived from the root of the Glycyrrhiza species, a plant commonly used in traditional Chinese medicine. While the Glycyrrhiza species has shown promise in treating various diseases such as cancer, obesity, and skin diseases due to its active compounds, the investigation of Licochalcone A's effects on the central nervous system and its potential application in Alzheimer's disease (AD) treatment have garnered significant interest. Studies have reported the neuroprotective effects of Lico-A, suggesting its potential as a multitarget compound. Lico-A acts as a PTP1B inhibitor, enhancing cognitive activity through the BDNF-TrkB pathway and exhibiting inhibitory effects on microglia activation, which enables mitigation of neuroinflammation. Moreover, Lico-A inhibits c-Jun N-terminal kinase 1, a key enzyme involved in tau phosphorylation, and modulates the brain insulin receptor, which plays a role in cognitive processes. Lico-A also acts as an acetylcholinesterase inhibitor, leading to increased levels of the neurotransmitter acetylcholine (Ach) in the brain. This mechanism enhances cognitive capacity in individuals with AD. Finally, Lico-A has shown the ability to reduce amyloid plaques, a hallmark of AD, and exhibits antioxidant properties by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), a key regulator of antioxidant defense mechanisms. In the present review, we discuss the available findings analyzing the potential of Lico-A as a neuroprotective agent. Continued research on Lico-A holds promise for the development of novel treatments for cognitive disorders and neurodegenerative diseases, including AD. Further investigations into its multitarget action and elucidation of underlying mechanisms will contribute to our understanding of its therapeutic potential.
Collapse
Affiliation(s)
- Jordi Olloquequi
- Departament of Biochemistry and Physiology, Physiology Section, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Av. Joan XXIII 27/31, 08028 Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Miren Ettcheto
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Reus, Spain
| | - Amanda Cano
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Ace Alzheimer Center Barcelona, International University of Catalunya (UIC), 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ana Fortuna
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (J.B.)
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), 3000-548 Coimbra, Portugal
| | - Joana Bicker
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (J.B.)
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), 3000-548 Coimbra, Portugal
| | - Elena Sánchez-Lopez
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Nanoscience and Nanotechnology (IN2UB), 08028 Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Jesús Ureña
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carme Auladell
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Antoni Camins
- Departament of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain; (M.E.); (A.C.)
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain; (A.C.); (E.S.-L.); (J.U.); (E.V.); (C.A.)
- Institute of Neuroscience, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Reus, Spain
| |
Collapse
|
3
|
Maccari R, Ottanà R. Can Allostery Be a Key Strategy for Targeting PTP1B in Drug Discovery? A Lesson from Trodusquemine. Int J Mol Sci 2023; 24:ijms24119621. [PMID: 37298571 DOI: 10.3390/ijms24119621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme crucially implicated in aberrations of various signaling pathways that underlie the development of different human pathologies, such as obesity, diabetes, cancer, and neurodegenerative disorders. Its inhibition can prevent these pathogenetic events, thus providing a useful tool for the discovery of novel therapeutic agents. The search for allosteric PTP1B inhibitors can represent a successful strategy to identify drug-like candidates by offering the opportunity to overcome some issues related to catalytic site-directed inhibitors, which have so far hampered the development of drugs targeting this enzyme. In this context, trodusquemine (MSI-1436), a natural aminosterol that acts as a non-competitive PTP1B inhibitor, appears to be a milestone. Initially discovered as a broad-spectrum antimicrobial agent, trodusquemine exhibited a variety of unexpected properties, ranging from antidiabetic and anti-obesity activities to effects useful to counteract cancer and neurodegeneration, which prompted its evaluation in several preclinical and clinical studies. In this review article, we provide an overview of the main findings regarding the activities and therapeutic potential of trodusquemine and their correlation with PTP1B inhibition. We also included some aminosterol analogues and related structure-activity relationships that could be useful for further studies aimed at the discovery of new allosteric PTP1B inhibitors.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Schuppe AW, Liu Y, Gonzalez-Hurtado E, Zhao Y, Jiang X, Ibarraran S, Huang D, Wang E, Lee J, Loria JP, Dixit VD, Li X, Newhouse TR. Unified Total Synthesis of the Limonoid Alkaloids: Strategies for the De Novo Synthesis of Highly Substituted Pyridine Scaffolds. Chem 2022; 8:2856-2887. [PMID: 37396824 PMCID: PMC10311986 DOI: 10.1016/j.chempr.2022.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Highly substituted pyridine scaffolds are found in many biologically active natural products and therapeutics. Accordingly, numerous complementary de novo approaches to obtain differentially substituted pyridines have been disclosed. This article delineates the evolution of the synthetic strategies designed to assemble the demanding tetrasubstituted pyridine core present in the limonoid alkaloids isolated from Xylocarpus granatum, including xylogranatopyridine B, granatumine A and related congeners. In addition, NMR calculations suggested structural misassignment of several limonoid alkaloids, and predicted their C3-epimers as the correct structures, which was further validated unequivocally through chemical synthesis. The materials produced in this study were evaluated for cytotoxicity, anti-oxidant effects, anti-inflammatory action, PTP1B and Nlrp3 inflammasome inhibition, which led to compelling anti-inflammatory activity and anti-oxidant effects being discovered.
Collapse
Affiliation(s)
- Alexander W. Schuppe
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Yannan Liu
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Elsie Gonzalez-Hurtado
- Department of Pathology, Immunobiology, Comparative Medicine, Yale School of Medicine, 310 Cedar Street, New Haven, Connecticut 06520, United States
| | - Yizhou Zhao
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Xuefeng Jiang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310018, P. R. China
| | - Sebastian Ibarraran
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - David Huang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Emma Wang
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Jaehoo Lee
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - J. Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
| | - Vishwa Deep Dixit
- Department of Pathology, Immunobiology, Comparative Medicine, Yale School of Medicine, 310 Cedar Street, New Haven, Connecticut 06520, United States
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Rd, Hangzhou 310018, P. R. China
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520-8107, United States
- Lead contact
| |
Collapse
|
5
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
6
|
Babina M, Franke K, Bal G. How "Neuronal" Are Human Skin Mast Cells? Int J Mol Sci 2022; 23:ijms231810871. [PMID: 36142795 PMCID: PMC9505265 DOI: 10.3390/ijms231810871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Mast cells are evolutionarily old cells and the principal effectors in allergic responses and inflammation. They are seeded from the yolk sac during embryogenesis or are derived from hematopoietic progenitors and are therefore related to other leukocyte subsets, even though they form a separate clade in the hematopoietic system. Herein, we systematically bundle information from several recent high-throughput endeavors, especially those comparing MCs with other cell types, and combine such information with knowledge on the genes’ functions to reveal groups of neuronal markers specifically expressed by MCs. We focus on recent advances made regarding human tissue MCs, but also refer to studies in mice. In broad terms, genes hyper-expressed in MCs, but largely inactive in other myelocytes, can be classified into subcategories such as traffic/lysosomes (MLPH and RAB27B), the dopamine system (MAOB, DRD2, SLC6A3, and SLC18A2), Ca2+-related entities (CALB2), adhesion molecules (L1CAM and NTM) and, as an overall principle, the transcription factors and modulators of transcriptional activity (LMO4, PBX1, MEIS2, and EHMT2). Their function in MCs is generally unknown but may tentatively be deduced by comparison with other systems. MCs share functions with the nervous system, as they express typical neurotransmitters (histamine and serotonin) and a degranulation machinery that shares features with the neuronal apparatus at the synapse. Therefore, selective overlaps are plausible, and they further highlight the uniqueness of MCs within the myeloid system, as well as when compared with basophils. Apart from investigating their functional implications in MCs, a key question is whether their expression in the lineage is due to the specific reactivation of genes normally silenced in leukocytes or whether the genes are not switched off during mastocytic development from early progenitors.
Collapse
Affiliation(s)
- Magda Babina
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
- Correspondence:
| | - Kristin Franke
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Gürkan Bal
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology and Allergology IA, 12203 Berlin, Germany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institute of Allergology, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
7
|
R Stewart AF, Chen HH. N-methyl-D-aspartate receptor functions altered by neuronal PTP1B activation in Alzheimer's disease and schizophrenia models. Neural Regen Res 2022; 17:2208-2210. [PMID: 35259833 PMCID: PMC9083166 DOI: 10.4103/1673-5374.335793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexandre F R Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and University of Ottawa Heart Institute; Centre for Infection, Immunity and Inflammation, Ottawa, ON, Canada
| | - Hsiao-Huei Chen
- Centre for Infection, Immunity and Inflammation; Medicine, Cellular and Molecular Medicine, University of Ottawa Brain and Mind Institute, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| |
Collapse
|
8
|
Guns J, Vanherle S, Hendriks JJA, Bogie JFJ. Protein Lipidation by Palmitate Controls Macrophage Function. Cells 2022; 11:cells11030565. [PMID: 35159374 PMCID: PMC8834383 DOI: 10.3390/cells11030565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Macrophages are present in all tissues within our body, where they promote tissue homeostasis by responding to microenvironmental triggers, not only through clearance of pathogens and apoptotic cells but also via trophic, regulatory, and repair functions. To accomplish these divergent functions, tremendous dynamic fine-tuning of their physiology is needed. Emerging evidence indicates that S-palmitoylation, a reversible post-translational modification that involves the linkage of the saturated fatty acid palmitate to protein cysteine residues, directs many aspects of macrophage physiology in health and disease. By controlling protein activity, stability, trafficking, and protein–protein interactions, studies identified a key role of S-palmitoylation in endocytosis, inflammatory signaling, chemotaxis, and lysosomal function. Here, we provide an in-depth overview of the impact of S-palmitoylation on these cellular processes in macrophages in health and disease. Findings discussed in this review highlight the therapeutic potential of modulators of S-palmitoylation in immunopathologies, ranging from infectious and chronic inflammatory disorders to metabolic conditions.
Collapse
Affiliation(s)
- Jeroen Guns
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Jerome J. A. Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
| | - Jeroen F. J. Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium; (J.G.); (S.V.); (J.J.A.H.)
- University MS Center, Hasselt University, 3500 Hasselt, Belgium
- Correspondence: ; Tel.: +32-1126-9261
| |
Collapse
|
9
|
Kazakova O, Giniyatullina G, Babkov D, Wimmer Z. From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues. Int J Mol Sci 2022; 23:ijms23031075. [PMID: 35162998 PMCID: PMC8834734 DOI: 10.3390/ijms23031075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
- Correspondence:
| | - Gulnara Giniyatullina
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Denis Babkov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia;
| | - Zdenek Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technicka’ 5, Prague 6, 16628 Prague, Czech Republic;
| |
Collapse
|
10
|
Palm Oil-Rich Diet Affects Murine Liver Proteome and S-Palmitoylome. Int J Mol Sci 2021; 22:ijms222313094. [PMID: 34884899 PMCID: PMC8657750 DOI: 10.3390/ijms222313094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 01/14/2023] Open
Abstract
Palmitic acid (C16:0) is the most abundant saturated fatty acid in animals serving as a substrate in synthesis and β-oxidation of other lipids, and in the modification of proteins called palmitoylation. The influence of dietary palmitic acid on protein S-palmitoylation remains largely unknown. In this study we performed high-throughput proteomic analyses of a membrane-enriched fraction of murine liver to examine the influence of a palm oil-rich diet (HPD) on S-palmitoylation of proteins. HPD feeding for 4 weeks led to an accumulation of C16:0 and C18:1 fatty acids in livers which disappeared after 12-week feeding, in contrast to an accumulation of C16:0 in peritoneal macrophages. Parallel proteomic studies revealed that HPD feeding induced a sequence of changes of the level and/or S-palmitoylation of diverse liver proteins involved in fatty acid, cholesterol and amino acid metabolism, hemostasis, and neutrophil degranulation. The HPD diet did not lead to liver damage, however, it caused progressing obesity, hypercholesterolemia and hyperglycemia. We conclude that the relatively mild negative impact of such diet on liver functioning can be attributed to a lower bioavailability of palm oil-derived C16:0 vs. that of C18:1 and the efficiency of mechanisms preventing liver injury, possibly including dynamic protein S-palmitoylation.
Collapse
|
11
|
Qu M, Zhou X, Wang X, Li H. Lipid-induced S-palmitoylation as a Vital Regulator of Cell Signaling and Disease Development. Int J Biol Sci 2021; 17:4223-4237. [PMID: 34803494 PMCID: PMC8579454 DOI: 10.7150/ijbs.64046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Lipid metabolites are emerging as pivotal regulators of protein function and cell signaling. The availability of intracellular fatty acid is tightly regulated by glycolipid metabolism and may affect human body through many biological mechanisms. Recent studies have demonstrated palmitate, either from exogenous fatty acid uptake or de novo fatty acid synthesis, may serve as the substrate for protein palmitoylation and regulate protein function via palmitoylation. Palmitoylation, the most-studied protein lipidation, encompasses the reversible covalent attachment of palmitate moieties to protein cysteine residues. It controls various cellular physiological processes and alters protein stability, conformation, localization, membrane association and interaction with other effectors. Dysregulation of palmitoylation has been implicated in a plethora of diseases, such as metabolic syndrome, cancers, neurological disorders and infections. Accordingly, it could be one of the molecular mechanisms underlying the impact of palmitate metabolite on cellular homeostasis and human diseases. Herein, we explore the relationship between lipid metabolites and the regulation of protein function through palmitoylation. We review the current progress made on the putative role of palmitate in altering the palmitoylation of key proteins and thus contributing to the pathogenesis of various diseases, among which we focus on metabolic disorders, cancers, inflammation and infections, neurodegenerative diseases. We also highlight the opportunities and new therapeutics to target palmitoylation in disease development.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuan Zhou
- National Clinical Research Center for Infectious Disease; Department of liver Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Xiaotong Wang
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honggang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
12
|
MicroRNA-139-5p Alleviates High Glucose-Triggered Human Retinal Pigment Epithelial Cell Injury by Targeting LIM-Only Factor 4. Mediators Inflamm 2021; 2021:1629783. [PMID: 34725544 PMCID: PMC8557081 DOI: 10.1155/2021/1629783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR) is a type of diabetes complication, which can result in loss of vision in adults worldwide. Increasing evidence has revealed that microRNAs (miRs) can regulate DR progression. Thus, the present study was aimed at assessing the possible mechanism of miR-139-5p in high glucose- (HG-) incubated retinal pigment epithelial (ARPE-19) cells. The present results demonstrated that miR-139-5p expression was notably reduced in the serum samples of patients with DR, as well as in ARPE-19 cells treated with HG in a time-dependent manner. Moreover, miR-139-5p was markedly overexpressed by transfection of miR-139-5p mimics into ARPE-19 cells. Overexpression of miR-139-5p markedly induced cell viability and repressed HG-triggered apoptosis. Furthermore, overexpression of miR-139-5p relived HG-enhanced oxidative stress injury. It was found that HG induced malondialdehyde levels but decreased superoxide dismutase and glutathione peroxidase activities in ARPE-19 cells. In addition, overexpression of miR-139-5p could markedly decrease intracellular stress. The results demonstrated that overexpression of miR-139-5p effectively repressed HG-activated inflammation, as indicated by the upregulation of inflammation cytokines, including TNF-α, IL-6, and Cox-2, in ARPE-19 cells. Subsequently, it was identified that LIM-only factor 4 (LMO4) could act as a downstream target for miR-139-5p. LMO4 expression was significantly increased in patients with DR and HG-treated ARPE-19 cells. Mechanistically, knockdown of LMO4 reversed the biological role of miR-139-5p in proliferation, apoptosis, oxidative stress, and release of inflammation factors in vitro. Collectively, these results suggested that miR-139-5p significantly decreased ARPE-19 cell injury caused by HG by inducing proliferation and suppressing cell apoptosis, oxidant stress, and inflammation by modulating LMO4.
Collapse
|
13
|
Limbocker R, Errico S, Barbut D, Knowles TPJ, Vendruscolo M, Chiti F, Zasloff M. Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat Prod Rep 2021; 39:742-753. [PMID: 34698757 DOI: 10.1039/d1np00042j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1993 to 2021 (mainly 2017-2021)Alzheimer's and Parkinson's diseases are neurodegenerative conditions affecting over 50 million people worldwide. Since these disorders are still largely intractable pharmacologically, discovering effective treatments is of great urgency and importance. These conditions are characteristically associated with the aberrant deposition of proteinaceous aggregates in the brain, and with the formation of metastable intermediates known as protein misfolded oligomers that play a central role in their aetiology. In this Highlight article, we review the evidence at the physicochemical, cellular, animal model and clinical levels on how the natural products squalamine and trodusquemine offer promising opportunities for chronic treatments for these progressive conditions by preventing both the formation of neurotoxic oligomers and their interaction with cell membranes.
Collapse
Affiliation(s)
- Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy. .,Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Denise Barbut
- Enterin Inc., 3624 Market Street, Philadelphia, Pennsylvania 19104, USA
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. .,Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy.
| | - Michael Zasloff
- Enterin Inc., 3624 Market Street, Philadelphia, Pennsylvania 19104, USA.,MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC 20010, USA.
| |
Collapse
|
14
|
Zhang L, Qin Z, Sharmin F, Lin W, Ricke KM, Zasloff MA, Stewart AFR, Chen HH. Tyrosine phosphatase PTP1B impairs presynaptic NMDA receptor-mediated plasticity in a mouse model of Alzheimer's disease. Neurobiol Dis 2021; 156:105402. [PMID: 34044147 DOI: 10.1016/j.nbd.2021.105402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations in the beta-amyloid protein (APP) cause familial Alzheimer's disease. In hAPP-J20 mice expressing mutant APP, pharmacological inhibition or genetic ablation of the tyrosine phosphatase PTP1B prevents CA3 hippocampus neuron loss and cognitive decline. However, how targeting PTP1B affects the cellular mechanisms underlying these cognitive deficits remains unknown. Changes in synaptic strength at the hippocampus can affect information processing for learning and memory. While prior studies have focused on post-synaptic mechanisms to account for synaptic deficits in Alzheimer's disease models, presynaptic mechanisms may also be affected. Here, using whole cell patch-clamp recording, coefficient of variation (CV) analysis suggested a profound presynaptic deficit in long-term potentiation (LTP) of CA3:CA1 synapses in hAPP-J20 mice. While the membrane-impermeable ionotropic NMDA receptor (NMDAR) blocker norketamine in the post-synaptic recording electrode had no effect on LTP, additional bath application of the ionotropic NMDAR blockers MK801 could replicate the deficit in LTP in wild type mice. In contrast to LTP, the paired-pulse ratio and short-term facilitation (STF) were aberrantly increased in hAPP-J20 mice. These synaptic deficits in hAPP-J20 mice were associated with reduced phosphorylation of NMDAR GluN2B and the synaptic vesicle recycling protein NSF (N-ethylmaleimide sensitive factor). Phosphorylation of both proteins, together with synaptic plasticity and cognitive function, were restored by PTP1B ablation or inhibition by the PTP1B-selective inhibitor Trodusquemine. Taken together, our results indicate that PTP1B impairs presynaptic NMDAR-mediated synaptic plasticity required for spatial learning in a mouse model of Alzheimer's disease. Since Trodusquemine has undergone phase 1/2 clinical trials to treat obesity, it could be repurposed to treat Alzheimer's disease.
Collapse
Affiliation(s)
- Li Zhang
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada
| | - Zhaohong Qin
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada
| | - Fariba Sharmin
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Wei Lin
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada
| | - Konrad M Ricke
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada
| | - Michael A Zasloff
- Georgetown University School of Medicine, MedStar Georgetown Transplant Institute, Washington, DC, 2007, USA
| | - Alexandre F R Stewart
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada.
| | - Hsiao-Huei Chen
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; University of Ottawa Brain and Mind Institute, Ottawa, ON K1H8M5, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Department of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
15
|
Qin Z, Zhang L, Zasloff MA, Stewart AFR, Chen HH. Ketamine's schizophrenia-like effects are prevented by targeting PTP1B. Neurobiol Dis 2021; 155:105397. [PMID: 34015491 DOI: 10.1016/j.nbd.2021.105397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/18/2021] [Accepted: 05/14/2021] [Indexed: 11/26/2022] Open
Abstract
Subanesthetic doses of ketamine induce schizophrenia-like behaviors in mice including hyperlocomotion and deficits in working memory and sensorimotor gating. Here, we examined the effect of in vivo ketamine administration on neuronal properties and endocannabinoid (eCB)-dependent modulation of synaptic transmission onto layer 2/3 pyramidal neurons in brain slices of the prefrontal cortex, a region tied to the schizophrenia-like behavioral phenotypes of ketamine. Since deficits in working memory and sensorimotor gating are tied to activation of the tyrosine phosphatase PTP1B in glutamatergic neurons, we asked whether PTP1B contributes to these effects of ketamine. Ketamine increased membrane resistance and excitability of pyramidal neurons. Systemic pharmacological inhibition of PTP1B by Trodusquemine restored these neuronal properties and prevented each of the three main ketamine-induced behavior deficits. Ketamine also reduced mobilization of eCB by pyramidal neurons, while unexpectedly reducing their inhibitory inputs, and these effects of ketamine were blocked or occluded by PTP1B ablation in glutamatergic neurons. While ablation of PTP1B in glutamatergic neurons prevented ketamine-induced deficits in memory and sensorimotor gating, it failed to prevent hyperlocomotion (a psychosis-like phenotype). Taken together, these results suggest that PTP1B in glutamatergic neurons mediates ketamine-induced deficits in eCB mobilization, memory and sensorimotor gating whereas PTP1B in other cell types contributes to hyperlocomotion. Our study suggests that the PTP1B inhibitor Trodusquemine may represent a new class of fast-acting antipsychotic drugs to treat schizophrenia-like symptoms.
Collapse
Affiliation(s)
- Zhaohong Qin
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Li Zhang
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Michael A Zasloff
- Georgetown University School of Medicine, MedStar Georgetown Transplant Institute, Washington D.C. 2007, USA
| | - Alexandre F R Stewart
- University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada; Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; Brain and Mind Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
16
|
Zhu Y, Yu J, Gong J, Shen J, Ye D, Cheng D, Xie Z, Zeng J, Xu K, Shen J, Zhou H, Weng Y, Pan J, Zhan R. PTP1B inhibitor alleviates deleterious microglial activation and neuronal injury after ischemic stroke by modulating the ER stress-autophagy axis via PERK signaling in microglia. Aging (Albany NY) 2021; 13:3405-3427. [PMID: 33495405 PMCID: PMC7906217 DOI: 10.18632/aging.202272] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022]
Abstract
Cerebral ischemia/reperfusion (IR) after ischemic stroke causes deleterious microglial activation. Protein tyrosine phosphatase 1B (PTP1B) exacerbates neuroinflammation, yet the effect of the inhibition on microglial activation and cerebral IR injury is unknown. A cerebral IR rat model was induced by middle cerebral artery occlusion (MCAO) and reperfusion. The PTP1B inhibitor, sc-222227, was administered intracerebroventricularly. Neurologic deficits, infarct volume, and brain water content were examined. An in vitro oxygen glucose deprivation/reoxygenation (OGD/R) model was established in primary microglia and BV-2 cells. Microglial activation/polarization, endoplasmic reticulum (ER) stress, autophagy, and apoptosis were detected using western blot, immunohistology, ELISA, and real-time PCR. Protein interaction was assessed by a proximity ligation assay. The results showed a significant increase in microglial PTP1B expression after IR injury. Sc-222227 attenuated IR-induced microglial activation, ER stress, and autophagy and promoted M2 polarization. Upon OGD/R, sc-222227 mitigated microglial activation by inhibiting ER stress-dependent autophagy, the effect of which was abolished by PERK activation, and PERK inhibition attenuated microglial activation. The PTP1B-phosphorylated PERK protein interaction was significantly increased after OGD/R, but decreased upon sc-222227 treatment. Finally, sc-222227 mitigated neuronal damage and neurologic deficits after IR injury. Treatment targeting microglial PTP1B might be a potential therapeutic strategy for ischemic stroke treatment.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jianbo Yu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jiangbiao Gong
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jie Shen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Di Ye
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dexin Cheng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhikai Xie
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jianping Zeng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Kangli Xu
- Emergency Department Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian Shen
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Hengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yuxiang Weng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jianwei Pan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Renya Zhan
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
17
|
Cruz SA, Qin Z, Ricke KM, Stewart AFR, Chen HH. Neuronal protein-tyrosine phosphatase 1B hinders sensory-motor functional recovery and causes affective disorders in two different focal ischemic stroke models. Neural Regen Res 2021; 16:129-136. [PMID: 32788467 PMCID: PMC7818877 DOI: 10.4103/1673-5374.286970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ischemic brain injury causes neuronal death and inflammation. Inflammation activates protein-tyrosine phosphatase 1B (PTP1B). Here, we tested the significance of PTP1B activation in glutamatergic projection neurons on functional recovery in two models of stroke: by photothrombosis, focal ischemic lesions were induced in the sensorimotor cortex (SM stroke) or in the peri-prefrontal cortex (peri-PFC stroke). Elevated PTP1B expression was detected at 4 days and up to 6 weeks after stroke. While ablation of PTP1B in neurons of neuronal knockout (NKO) mice had no effect on the volume or resorption of ischemic lesions, markedly different effects on functional recovery were observed. SM stroke caused severe sensory and motor deficits (adhesive removal test) in wild type and NKO mice at 4 days, but NKO mice showed drastically improved sensory and motor functional recovery at 8 days. In addition, peri-PFC stroke caused anxiety-like behaviors (elevated plus maze and open field tests), and depression-like behaviors (forced swimming and tail suspension tests) in wild type mice 9 and 28 days after stroke, respectively, with minimal effect on sensory and motor function. Peri-PFC stroke-induced affective disorders were associated with fewer active (FosB+) neurons in the PFC and nucleus accumbens but more FosB+ neurons in the basolateral amygdala, compared to sham-operated mice. In contrast, mice with neuronal ablation of PTP1B were protected from anxiety-like and depression-like behaviors and showed no change in FosB+ neurons after peri-PFC stroke. Taken together, our study identifies neuronal PTP1B as a key component that hinders sensory and motor functional recovery and also contributes to the development of anxiety-like and depression-like behaviors after stroke. Thus, PTP1B may represent a novel therapeutic target to improve stroke recovery. All procedures for animal use were approved by the Animal Care and Use Committee of the University of Ottawa Animal Care and Veterinary Service (protocol 1806) on July 27, 2018.
Collapse
Affiliation(s)
- Shelly A Cruz
- Ottawa Hospital Research Institute, Neuroscience Program; Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada
| | - Zhaohong Qin
- Ottawa Hospital Research Institute, Neuroscience Program; Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada
| | - Konrad M Ricke
- Brain and Mind Institute; Department of Biochemistry, Microbiology and Immunology, University of Ottawa; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Alexandre F R Stewart
- Department of Biochemistry, Microbiology and Immunology; Centre for Infection, Immunity and Inflammation, University of Ottawa; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Neuroscience Program; Brain and Mind Institute; Cellular and Molecular Medicine; Department of Medicine; Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
18
|
Activation of tyrosine phosphatase PTP1B in pyramidal neurons impairs endocannabinoid signaling by tyrosine receptor kinase trkB and causes schizophrenia-like behaviors in mice. Neuropsychopharmacology 2020; 45:1884-1895. [PMID: 32610340 PMCID: PMC7608138 DOI: 10.1038/s41386-020-0755-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a debilitating disorder affecting young adults displaying symptoms of cognitive impairment, anxiety, and early social isolation prior to episodes of auditory hallucinations. Cannabis use has been tied to schizophrenia-like symptoms, indicating that dysregulated endogenous cannabinoid signaling may be causally linked to schizophrenia. Previously, we reported that glutamatergic neuron-selective ablation of Lmo4, an endogenous inhibitor of the tyrosine phosphatase PTP1B, impairs endocannabinoid (eCB) production from the metabotropic glutamate receptor mGluR5. These Lmo4-deficient mice display anxiety-like behaviors that are alleviated by local shRNA knockdown or pharmacological inhibition of PTP1B that restores mGluR5-dependent eCB production in the amygdala. Here, we report that these Lmo4-deficient mice also display schizophrenia-like behaviors: impaired working memory assessed in the Y maze and defective sensory gating by prepulse inhibition of the acoustic startle response. Modulation of inhibitory inputs onto layer 2/3 pyramidal neurons of the prefrontal cortex relies on eCB signaling from the brain-derived neurotrophic factor receptor trkB, rather than mGluR5, and this mechanism was defective in Lmo4-deficient mice. Genetic ablation of PTP1B in the glutamatergic neurons lacking Lmo4 restored tyrosine phosphorylation of trkB, trkB-mediated eCB signaling, and ameliorated schizophrenia-like behaviors. Pharmacological inhibition of PTP1B with trodusquemine also restored trkB phosphorylation and improved schizophrenia-like behaviors by restoring eCB signaling, since the CB1 receptor antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide blocked this effect. Thus, activation of PTP1B in pyramidal neurons contributes to schizophrenia-like behaviors in Lmo4-deficient mice and genetic or pharmacological intervention targeting PTP1B ameliorates schizophrenia-related deficits.
Collapse
|
19
|
Zhang L, Qin Z, Ricke KM, Cruz SA, Stewart AFR, Chen HH. Hyperactivated PTP1B phosphatase in parvalbumin neurons alters anterior cingulate inhibitory circuits and induces autism-like behaviors. Nat Commun 2020; 11:1017. [PMID: 32094367 PMCID: PMC7039907 DOI: 10.1038/s41467-020-14813-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/05/2020] [Indexed: 01/05/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) have social interaction deficits and difficulty filtering information. Inhibitory interneurons filter information at pyramidal neurons of the anterior cingulate cortex (ACC), an integration hub for higher-order thalamic inputs important for social interaction. Humans with deletions including LMO4, an endogenous inhibitor of PTP1B, display intellectual disabilities and occasionally autism. PV-Lmo4KO mice ablate Lmo4 in PV interneurons and display ASD-like repetitive behaviors and social interaction deficits. Surprisingly, increased PV neuron-mediated peri-somatic feedforward inhibition to the pyramidal neurons causes a compensatory reduction in (somatostatin neuron-mediated) dendritic inhibition. These homeostatic changes increase filtering of mediodorsal-thalamocortical inputs but reduce filtering of cortico-cortical inputs and narrow the range of stimuli ACC pyramidal neurons can distinguish. Simultaneous ablation of PTP1B in PV-Lmo4KO neurons prevents these deficits, indicating that PTP1B activation in PV interneurons contributes to ASD-like characteristics and homeostatic maladaptation of inhibitory circuits may contribute to deficient information filtering in ASD.
Collapse
Affiliation(s)
- Li Zhang
- Ottawa Hospital Research Institute, Neuroscience, Ottawa, Canada. .,University of Ottawa Brain and Mind Institute, Ottawa, Canada.
| | - Zhaohong Qin
- Ottawa Hospital Research Institute, Neuroscience, Ottawa, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, Canada
| | - Konrad M Ricke
- Ottawa Hospital Research Institute, Neuroscience, Ottawa, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, Canada.,University of Ottawa Heart Institute, Ottawa, Canada.,Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Shelly A Cruz
- Ottawa Hospital Research Institute, Neuroscience, Ottawa, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, Canada
| | - Alexandre F R Stewart
- University of Ottawa Heart Institute, Ottawa, Canada. .,Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada. .,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada.
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Neuroscience, Ottawa, Canada. .,University of Ottawa Brain and Mind Institute, Ottawa, Canada. .,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada. .,Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada. .,Medicine, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
20
|
Neuronal Protein Tyrosine Phosphatase 1B Hastens Amyloid β-Associated Alzheimer's Disease in Mice. J Neurosci 2020; 40:1581-1593. [PMID: 31915254 DOI: 10.1523/jneurosci.2120-19.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, resulting in the progressive decline of cognitive function in patients. Familial forms of AD are tied to mutations in the amyloid precursor protein, but the cellular mechanisms that cause AD remain unclear. Inflammation and amyloidosis from amyloid β (Aβ) aggregates are implicated in neuron loss and cognitive decline. Inflammation activates the protein-tyrosine phosphatase 1B (PTP1B), and this could suppress many signaling pathways that activate glycogen synthase kinase 3β (GSK3β) implicated in neurodegeneration. However, the significance of PTP1B in AD pathology remains unclear. Here, we show that pharmacological inhibition of PTP1B with trodusquemine or selective ablation of PTP1B in neurons prevents hippocampal neuron loss and spatial memory deficits in a transgenic AD mouse model with Aβ pathology (hAPP-J20 mice of both sexes). Intriguingly, while systemic inhibition of PTP1B reduced inflammation in the hippocampus, neuronal PTP1B ablation did not. These results dissociate inflammation from neuronal loss and cognitive decline and demonstrate that neuronal PTP1B hastens neurodegeneration and cognitive decline in this model of AD. The protective effect of PTP1B inhibition or ablation coincides with the restoration of GSK3β inhibition. Neuronal ablation of PTP1B did not affect cerebral amyloid levels or plaque numbers, but reduced Aβ plaque size in the hippocampus. In summary, our preclinical study suggests that targeting PTP1B may be a new strategy to intervene in the progression of AD.SIGNIFICANCE STATEMENT Familial forms of Alzheimer's disease (AD) are tied to mutations in the amyloid precursor protein, but the cellular mechanisms that cause AD remain unclear. Here, we used a mouse model expressing human amyloid precursor protein bearing two familial mutations and asked whether activation of a phosphatase PTP1B participates in the disease process. Systemic inhibition of this phosphatase using a selective inhibitor prevented cognitive decline, neuron loss in the hippocampus, and attenuated inflammation. Importantly, neuron-targeted ablation of PTP1B also prevented cognitive decline and neuron loss but did not reduce inflammation. Therefore, neuronal loss rather than inflammation was critical for AD progression in this mouse model, and that disease progression could be ameliorated by inhibition of PTP1B.
Collapse
|
21
|
Salazar J, Chávez-Castillo M, Rojas J, Ortega A, Nava M, Pérez J, Rojas M, Espinoza C, Chacin M, Herazo Y, Angarita L, Rojas DM, D'Marco L, Bermudez V. Is "Leptin Resistance" Another Key Resistance to Manage Type 2 Diabetes? Curr Diabetes Rev 2020; 16:733-749. [PMID: 31886750 DOI: 10.2174/1573399816666191230111838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/08/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Although novel pharmacological options for the treatment of type 2 diabetes mellitus (DM2) have been observed to modulate the functionality of several key organs in glucose homeostasis, successful regulation of insulin resistance (IR), body weight management, and pharmacological treatment of obesity remain notable problems in endocrinology. Leptin may be a pivotal player in this scenario, as an adipokine which centrally regulates appetite and energy balance. In obesity, excessive caloric intake promotes a low-grade inflammatory response, which leads to dysregulations in lipid storage and adipokine secretion. In turn, these entail alterations in leptin sensitivity, leptin transport across the blood-brain barrier and defects in post-receptor signaling. Furthermore, hypothalamic inflammation and endoplasmic reticulum stress may increase the expression of molecules which may disrupt leptin signaling. Abundant evidence has linked obesity and leptin resistance, which may precede or occur simultaneously to IR and DM2. Thus, leptin sensitivity may be a potential early therapeutic target that demands further preclinical and clinical research. Modulators of insulin sensitivity have been tested in animal models and small clinical trials with promising results, especially in combination with agents such as amylin and GLP-1 analogs, in particular, due to their central activity in the hypothalamus.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Joselyn Rojas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Angel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - José Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | | | - Maricarmen Chacin
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Yaneth Herazo
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Lissé Angarita
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad Andres Bello, Sede Concepcion, Chile
| | - Diana Marcela Rojas
- Escuela de Nutricion y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Luis D'Marco
- Hospital Clinico de Valencia, INCLIVA, Servicio de Nefrologia, Valencia, Spain
| | - Valmore Bermudez
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
22
|
Stewart AFR, Chen HH. Activation of tyrosine phosphatases in the progression of Alzheimer's disease. Neural Regen Res 2020; 15:2245-2246. [PMID: 32594039 PMCID: PMC7749463 DOI: 10.4103/1673-5374.284986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Cruz SA, Qin Z, Stewart AF, Chen HH. Dabrafenib, an inhibitor of RIP3 kinase-dependent necroptosis, reduces ischemic brain injury. Neural Regen Res 2018; 13:252-256. [PMID: 29557374 PMCID: PMC5879896 DOI: 10.4103/1673-5374.226394] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2017] [Indexed: 12/15/2022] Open
Abstract
Ischemic brain injury triggers neuronal cell death by apoptosis via caspase activation and by necroptosis through activation of the receptor-interacting protein kinases (RIPK) associated with the tumor necrosis factor-alpha (TNF-α)/death receptor. Recent evidence shows RIPK inhibitors are neuroprotective and alleviate ischemic brain injury in a number of animal models, however, most have not yet undergone clinical trials and safety in humans remains in question. Dabrafenib, originally identified as a B-raf inhibitor that is currently used to treat melanoma, was later revealed to be a potent RIPK3 inhibitor at micromolar concentrations. Here, we investigated whether Dabrafenib would show a similar neuroprotective effect in mice subjected to ischemic brain injury by photothrombosis. Dabrafenib administered intraperitoneally at 10 mg/kg one hour after photothrombosis-induced focal ischemic injury significantly reduced infarct lesion size in C57BL6 mice the following day, accompanied by a markedly attenuated upregulation of TNF-α. However, subsequent lower doses (5 mg/kg/day) failed to sustain this neuroprotective effect after 4 days. Dabrafenib blocked lipopolysaccharides-induced activation of TNF-α in bone marrow-derived macrophages, suggesting that Dabrafenib may attenuate TNF-α-induced necroptotic pathway after ischemic brain injury. Since Dabrafenib is already in clinical use for the treatment of melanoma, it might be repurposed for stroke therapy.
Collapse
Affiliation(s)
- Shelly A. Cruz
- Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa, Brain and Mind Institute, Ottawa, Canada
- Canadian Partnership for Storke Recovery, Ottawa, Canada
| | - Zhaohong Qin
- Ottawa Hospital Research Institute, Ottawa, Canada
- Canadian Partnership for Storke Recovery, Ottawa, Canada
| | | | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, Canada
- University of Ottawa, Brain and Mind Institute, Ottawa, Canada
- Canadian Partnership for Storke Recovery, Ottawa, Canada
| |
Collapse
|
24
|
Vieira MNN, Lima-Filho RAS, De Felice FG. Connecting Alzheimer's disease to diabetes: Underlying mechanisms and potential therapeutic targets. Neuropharmacology 2017; 136:160-171. [PMID: 29129775 DOI: 10.1016/j.neuropharm.2017.11.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a risk factor for type 2 diabetes and vice versa, and a growing body of evidence indicates that these diseases are connected both at epidemiological, clinical and molecular levels. Recent studies have begun to reveal common pathogenic mechanisms shared by AD and type 2 diabetes. Impaired neuronal insulin signaling and endoplasmic reticulum (ER) stress are present in animal models of AD, similar to observations in peripheral tissue in T2D. These findings shed light into novel diabetes-related mechanisms leading to brain dysfunction in AD. Here, we review the literature on selected mechanisms shared between these diseases and discuss how the identification of such mechanisms may lead to novel therapeutic targets in AD. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Marcelo N N Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Ricardo A S Lima-Filho
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
25
|
Normandeau CP, Naumova D, Thompson SL, Ebrahimzadeh M, Liu YQ, Reynolds L, Ren HY, Hawken ER, Dumont ÉC. Advances in understanding and treating mental illness: proceedings of the 40th Canadian College of Neuropsychopharmacology Annual Meeting Symposia. J Psychiatry Neurosci 2017; 42:353-358. [PMID: 28834528 PMCID: PMC5573577 DOI: 10.1503.jpn/170120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | | | - Éric C. Dumont
- Correspondence to: É.C. Dumont, Queen’s University, Biosciences Complex, Room 1445, 116 Barrie Street, Kingston, ON K7L 3N6;
| |
Collapse
|
26
|
Cruz SA, Hari A, Qin Z, Couture P, Huang H, Lagace DC, Stewart AFR, Chen HH. Loss of IRF2BP2 in Microglia Increases Inflammation and Functional Deficits after Focal Ischemic Brain Injury. Front Cell Neurosci 2017; 11:201. [PMID: 28769762 PMCID: PMC5515910 DOI: 10.3389/fncel.2017.00201] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke causes neuronal cell death and triggers a cascade of inflammatory signals that contribute to secondary brain damage. Microglia, the brain-resident macrophages that remove dead neurons, play a critical role in the brain’s response to ischemic injury. Our previous studies showed that IRF2 binding protein 2 (IRF2BP2) regulates peripheral macrophage polarization, limits their inflammatory response and reduces susceptibility to atherosclerosis. Here, we show that loss of IRF2BP2 in microglia leads to increased inflammatory cytokine expression in response to lipopolysaccharide challenge and impaired activation of anti-inflammatory markers in response to interleukin-4 (IL4) stimulation. Focal ischemic brain injury of the sensorimotor cortex induced by photothrombosis caused more severe functional deficits in mice with IRF2BP2 ablated in macrophages/microglia, associated with elevated expression of inflammatory cytokines in the brain. These mutant mice had larger infarctions 4 days after stroke associated with fewer anti-inflammatory M2 microglia/macrophages recruited to the peri-infarct area, suggesting an impaired clearance of injured tissues. Since IRF2BP2 modulates interferon signaling, and interferon beta (IFNβ) has been reported to be anti-inflammatory and reduce ischemic brain injury, we asked whether loss of IRF2BP2 in macrophages/microglia would affect the response to IFNβ in our stroke model. IFNβ suppressed inflammatory cytokine production of macrophages and reduced infarct volumes at 4 days after photothrombosis in wild type mice. The anti-inflammatory effect of IFNβ was lost in IRF2BP2-deficient macrophages and IFNβ failed to protect mice lacking IRF2BP2 in macrophages/microglia from ischemic injury. In summary, IRF2BP2 expression in macrophages/microglia is important to limit inflammation and stroke injury, in part by mediating the beneficial effect of IFNβ.
Collapse
Affiliation(s)
- Shelly A Cruz
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,Canadian Partnership for Stroke RecoveryOttawa, ON, Canada
| | - Aswin Hari
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,Canadian Partnership for Stroke RecoveryOttawa, ON, Canada
| | - Zhaohong Qin
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada
| | - Pascal Couture
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,Cellular and Molecular Medicine, University of OttawaOttawa, ON, Canada
| | - Hua Huang
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,University of Ottawa Heart InstituteOttawa, ON, Canada
| | - Diane C Lagace
- Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,Canadian Partnership for Stroke RecoveryOttawa, ON, Canada.,Cellular and Molecular Medicine, University of OttawaOttawa, ON, Canada
| | - Alexandre F R Stewart
- University of Ottawa Heart InstituteOttawa, ON, Canada.,Biochemistry, Microbiology and Immunology, University of OttawaOttawa, ON, Canada
| | - Hsiao-Huei Chen
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,Canadian Partnership for Stroke RecoveryOttawa, ON, Canada.,Cellular and Molecular Medicine, University of OttawaOttawa, ON, Canada.,Medicine, University of OttawaOttawa, ON, Canada
| |
Collapse
|
27
|
Mendes NF, Castro G, Guadagnini D, Tobar N, Cognuck SQ, Elias LLK, Boer PA, Prada PO. Knocking down amygdalar PTP1B in diet-induced obese rats improves insulin signaling/action, decreases adiposity and may alter anxiety behavior. Metabolism 2017; 70:1-11. [PMID: 28403933 DOI: 10.1016/j.metabol.2017.01.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/03/2017] [Accepted: 01/27/2017] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Protein tyrosine phosphatase 1B (PTP1B) has been extensively implicated in the regulation of body weight, food intake, and energy expenditure. The role of PTP1B appears to be cell and brain region dependent. RESULTS Herein, we demonstrated that chronic high-fat feeding enhanced PTP1B expression in the central nucleus of the amygdala (CeA) of rats compared to rats on chow. Knocking down PTP1B with oligonucleotide antisense (ASO) decreased its expression and was sufficient to improve the anorexigenic effect of insulin through IR/Akt signaling in the CeA. ASO treatment reduces body weight, fat mass, serum leptin levels, and food intake and also increases energy expenditure, without altering ambulatory activity. These changes were explained, at least in part, by the improvement of insulin sensitivity in the CeA, decreasing NPY and enhancing oxytocin expression. There was a slight decline in fasting blood glucose and serum insulin levels possibly due to leanness in rats treated with ASO. Surprisingly, the elevated plus maze test revealed an anxiolytic behavior after reduction of PTP1B in the CeA. CONCLUSIONS Thus, the present study highlights the deleterious role that the amygdalar PTP1B has on energy homeostasis in obesity states. The reduction of PTP1B in the CeA may be a strategy for the treatment of obesity, insulin resistance and anxiety disorders.
Collapse
Affiliation(s)
| | - Gisele Castro
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Dioze Guadagnini
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Natalia Tobar
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Susana Quiros Cognuck
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, USP, Brazil
| | | | - Patricia Aline Boer
- Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil
| | - Patricia Oliveira Prada
- School of Applied Sciences, State University of Campinas, UNICAMP, Brazil; Department of Internal Medicine, State University of Campinas, UNICAMP, Brazil.
| |
Collapse
|
28
|
Vieira MNN, Lyra E Silva NM, Ferreira ST, De Felice FG. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy? Front Aging Neurosci 2017; 9:7. [PMID: 28197094 PMCID: PMC5281585 DOI: 10.3389/fnagi.2017.00007] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/12/2017] [Indexed: 01/21/2023] Open
Abstract
Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD.
Collapse
Affiliation(s)
- Marcelo N N Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Natalia M Lyra E Silva
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de JaneiroRio de Janeiro, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's UniversityKingston, ON, Canada
| |
Collapse
|
29
|
Kwon O, Kim KW, Kim MS. Leptin signalling pathways in hypothalamic neurons. Cell Mol Life Sci 2016; 73:1457-77. [PMID: 26786898 PMCID: PMC11108307 DOI: 10.1007/s00018-016-2133-1] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/20/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Abstract
Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways.
Collapse
Affiliation(s)
- Obin Kwon
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea
| | - Ki Woo Kim
- Department of Pharmacology, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Min-Seon Kim
- Division of Endocrinology and Metabolism, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
- Appetite Regulation Laboratory, Asan Institute for Life Science, Seoul, 05505, Korea.
| |
Collapse
|
30
|
Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 2015; 1:FSO25. [PMID: 28031898 PMCID: PMC5137856 DOI: 10.4155/fso.15.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed.
Collapse
|
31
|
Abstract
The ability to use environmental cues to predict rewarding events is essential to survival. The basolateral amygdala (BLA) plays a central role in such forms of associative learning. Aberrant cue-reward learning is thought to underlie many psychopathologies, including addiction, so understanding the underlying molecular mechanisms can inform strategies for intervention. The transcriptional regulator LIM-only 4 (LMO4) is highly expressed in pyramidal neurons of the BLA, where it plays an important role in fear learning. Because the BLA also contributes to cue-reward learning, we investigated the role of BLA LMO4 in this process using Lmo4-deficient mice and RNA interference. Lmo4-deficient mice showed a selective deficit in conditioned reinforcement. Knockdown of LMO4 in the BLA, but not in the nucleus accumbens, recapitulated this deficit in wild-type mice. Molecular and electrophysiological studies identified a deficit in dopamine D2 receptor signaling in the BLA of Lmo4-deficient mice. These results reveal a novel, LMO4-dependent transcriptional program within the BLA that is essential to cue-reward learning.
Collapse
|
32
|
Chen HH, Keyhanian K, Zhou X, Vilmundarson RO, Almontashiri NAM, Cruz SA, Pandey NR, Lerma Yap N, Ho T, Stewart CA, Huang H, Hari A, Geoffrion M, McPherson R, Rayner KJ, Stewart AFR. IRF2BP2 Reduces Macrophage Inflammation and Susceptibility to Atherosclerosis. Circ Res 2015. [PMID: 26195219 DOI: 10.1161/circresaha.114.305777] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RATIONALE Inflammation impairs macrophage cholesterol clearance from vascular tissues and promotes atherosclerosis. Inflammatory macrophages suppress expression of the transcription cofactor interferon regulatory factor 2-binding protein 2 (IRF2BP2), and genetic variants near IRF2BP2 associate with ischemic heart disease progression in humans. OBJECTIVES To test whether IRF2BP2 in macrophages affects atherosclerosis in mice and humans. METHODS AND RESULTS We generated mice that delete IRF2BP2 in macrophages. IRF2BP2-deficient macrophages worsened atherosclerosis in irradiated low-density lipoprotein receptor null-recipient mice and in apolipoprotein E null mice. IRF2BP2-deficient macrophages were inflammatory and had impaired cholesterol efflux because of their inability to activate the cholesterol transporter ABCA1 in response to cholesterol loading. Their expression of the anti-inflammatory transcription factor Krüppel-like factor 2 was markedly reduced. Promoter studies revealed that IRF2BP2 is required for MEF2-dependent activation of Krüppel-like factor 2. Importantly, restoring Krüppel-like factor 2 in IRF2BP2-deficient macrophages attenuated M1 inflammatory and rescued M2 anti-inflammatory gene activation and improved the cholesterol efflux deficit by restoring ABCA1 activation in response to cholesterol loading. In a cohort of 1066 angiographic cases and 1011 controls, homozygous carriers of a deletion polymorphism (rs3045215) in the 3' untranslated region sequence of human IRF2BP2 mRNA had a higher risk of coronary artery disease (recessive model, odds ratio [95% confidence interval]=1.560 [1.179-2.065], P=1.73E-03) and had lower IRF2BP2 (and Krüppel-like factor 2) protein levels in peripheral blood mononuclear cells. The effect of this deletion polymorphism to suppress protein expression was confirmed in luciferase reporter studies. CONCLUSION Ablation of IRF2BP2 in macrophages worsens atherosclerosis in mice, and a deletion variant that lowers IRF2BP2 expression predisposes to coronary artery disease in humans.
Collapse
Affiliation(s)
- Hsiao-Huei Chen
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.).
| | - Kianoosh Keyhanian
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Xun Zhou
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Ragnar O Vilmundarson
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Naif A M Almontashiri
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Shelly A Cruz
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Nihar R Pandey
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Nida Lerma Yap
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Tiffany Ho
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Chloe A Stewart
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Hua Huang
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Aswin Hari
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Michele Geoffrion
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Ruth McPherson
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Katey J Rayner
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.)
| | - Alexandre F R Stewart
- From the Department of Cellular and Molecular Medicine, University of Ottawa, and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (H.-H.C., K.K., X.Z., S.A.C., N.R.P., C.A.S., H.H., A.H.); the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, and the University of Ottawa Heart Institute, Ottawa, Ontario, Canada (R.O.V., N.A.M.A., N.L.Y., T.H., M.G., R.M., K.J.R., A.F.R.S.); and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada (H.H.C., R.M., A.F.R.S.).
| |
Collapse
|
33
|
Krishnan N, Tonks NK. Anxious moments for the protein tyrosine phosphatase PTP1B. Trends Neurosci 2015; 38:462-5. [PMID: 26166619 DOI: 10.1016/j.tins.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 11/16/2022]
Abstract
Chronic stress can lead to the development of anxiety and mood disorders. Thus, novel therapies for preventing adverse effects of stress are vitally important. Recently, the protein tyrosine phosphatase PTP1B was identified as a novel regulator of stress-induced anxiety. This opens up exciting opportunities to exploit PTP1B inhibitors as anxiolytics.
Collapse
Affiliation(s)
- Navasona Krishnan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Nicholas K Tonks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA.
| |
Collapse
|
34
|
Ren W, Sun Y, Du K. Glut4 palmitoylation at Cys223 plays a critical role in Glut4 membrane trafficking. Biochem Biophys Res Commun 2015; 460:709-14. [PMID: 25824042 DOI: 10.1016/j.bbrc.2015.03.094] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 03/17/2015] [Indexed: 02/05/2023]
Abstract
Recently, we identified Glut4 as a palmitoylated protein in adipocytes. To understand the role of Glut4 palmitoylation in Glut4 membrane trafficking, a process that is essential for maintenance of whole body glucose homeostasis, we have characterized Glut4 palmitoylation. We found that Glut4 is palmitoylated at Cys223 and Glut4 palmitoylation at Cys223 is essential for insulin dependent Glut4 membrane translocation as substitution of Cys223 with a serine residue in Glut4 (C223S Glut4) diminished Glut4 responsiveness to insulin in membrane translocation in both adipocytes and CHO-IR cells. We have examined C223S Glut4 subcellular localization and observed that it was absence from tubular-vesicle structure, where insulin responsive Glut4 vesicles were presented. Together, our studies uncover a novel mechanism under which Glut4 palmitoylation regulates Glut4 sorting to insulin responsive vesicles, thereby insulin-dependent Glut4 membrane translocation.
Collapse
Affiliation(s)
- Wenying Ren
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Yingmin Sun
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA
| | - Keyong Du
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA 02111, USA.
| |
Collapse
|
35
|
Qin Z, Zhou X, Pandey NR, Vecchiarelli HA, Stewart CA, Zhang X, Lagace DC, Brunel JM, Béïque JC, Stewart AFR, Hill MN, Chen HH. Chronic stress induces anxiety via an amygdalar intracellular cascade that impairs endocannabinoid signaling. Neuron 2015; 85:1319-31. [PMID: 25754825 DOI: 10.1016/j.neuron.2015.02.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 01/09/2015] [Accepted: 02/03/2015] [Indexed: 01/27/2023]
Abstract
Collapse of endocannabinoid (eCB) signaling in the amygdala contributes to stress-induced anxiety, but the mechanisms of this effect remain unclear. eCB production is tied to the function of the glutamate receptor mGluR5, itself dependent on tyrosine phosphorylation. Herein, we identify a novel pathway linking eCB regulation of anxiety through phosphorylation of mGluR5. Mice lacking LMO4, an endogenous inhibitor of the tyrosine phosphatase PTP1B, display reduced mGluR5 phosphorylation, eCB signaling, and profound anxiety that is reversed by genetic or pharmacological suppression of amygdalar PTP1B. Chronically stressed mice exhibited elevated plasma corticosterone, decreased LMO4 palmitoylation, elevated PTP1B activity, reduced amygdalar eCB levels, and anxiety behaviors that were restored by PTP1B inhibition or by glucocorticoid receptor antagonism. Consistently, corticosterone decreased palmitoylation of LMO4 and its inhibition of PTP1B in neuronal cells. Collectively, these data reveal a stress-responsive corticosterone-LMO4-PTP1B-mGluR5 cascade that impairs amygdalar eCB signaling and contributes to the development of anxiety.
Collapse
Affiliation(s)
- Zhaohong Qin
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Xun Zhou
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Nihar R Pandey
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Haley A Vecchiarelli
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Chloe A Stewart
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada
| | - Xia Zhang
- Royal Ottawa Mental Health Centre, Ottawa, ON K1Z7K4, Canada; Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada
| | - Diane C Lagace
- Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada
| | - Jean Michel Brunel
- Centre de Recherche en Cancérologie de Marseille, Laboratory of Integrative Structural & Chemical Biology (iSCB), Aix-Marseille Université, 13385 Marseille Cedex 5, France
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada
| | - Alexandre F R Stewart
- Department of Biochemistry, Microbiology and Immunology, Ottawa, ON K1H8M5, Canada; University of Ottawa Heart Institute, Ottawa, ON K1Y4W7, Canada; Department of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary, AB T2N4N1, Canada
| | - Hsiao-Huei Chen
- Ottawa Hospital Research Institute, Ottawa, ON K1H8M5, Canada; Department of Cellular and Molecular Medicine, Ottawa, ON K1H8M5, Canada; Department of Medicine, University of Ottawa, Ottawa, ON K1H8M5, Canada.
| |
Collapse
|
36
|
Qin Z, Pandey NR, Zhou X, Stewart CA, Hari A, Huang H, Stewart AF, Brunel JM, Chen HH. Functional properties of Claramine: A novel PTP1B inhibitor and insulin-mimetic compound. Biochem Biophys Res Commun 2015; 458:21-7. [DOI: 10.1016/j.bbrc.2015.01.040] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/10/2015] [Indexed: 12/29/2022]
|
37
|
Joseph S, Kwan AH, Stokes PH, Mackay JP, Cubeddu L, Matthews JM. The structure of an LIM-only protein 4 (LMO4) and Deformed epidermal autoregulatory factor-1 (DEAF1) complex reveals a common mode of binding to LMO4. PLoS One 2014; 9:e109108. [PMID: 25310299 PMCID: PMC4195752 DOI: 10.1371/journal.pone.0109108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/27/2014] [Indexed: 12/23/2022] Open
Abstract
LIM-domain only protein 4 (LMO4) is a widely expressed protein with important roles in embryonic development and breast cancer. It has been reported to bind many partners, including the transcription factor Deformed epidermal autoregulatory factor-1 (DEAF1), with which LMO4 shares many biological parallels. We used yeast two-hybrid assays to show that DEAF1 binds both LIM domains of LMO4 and that DEAF1 binds the same face on LMO4 as two other LMO4-binding partners, namely LIM domain binding protein 1 (LDB1) and C-terminal binding protein interacting protein (CtIP/RBBP8). Mutagenic screening analysed by the same method, indicates that the key residues in the interaction lie in LMO4LIM2 and the N-terminal half of the LMO4-binding domain in DEAF1. We generated a stable LMO4LIM2-DEAF1 complex and determined the solution structure of that complex. Although the LMO4-binding domain from DEAF1 is intrinsically disordered, it becomes structured on binding. The structure confirms that LDB1, CtIP and DEAF1 all bind to the same face on LMO4. LMO4 appears to form a hub in protein-protein interaction networks, linking numerous pathways within cells. Competitive binding for LMO4 therefore most likely provides a level of regulation between those different pathways.
Collapse
Affiliation(s)
- Soumya Joseph
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Ann H. Kwan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Philippa H. Stokes
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Liza Cubeddu
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
- School of Science and Health, University of Western Sydney, Campbelltown, NSW Australia
| | | |
Collapse
|
38
|
Pandey NR, Zhou X, Zaman T, Cruz SA, Qin Z, Lu M, Keyhanian K, Brunel JM, Stewart AF, Chen HH. LMO4 is required to maintain hypothalamic insulin signaling. Biochem Biophys Res Commun 2014; 450:666-72. [DOI: 10.1016/j.bbrc.2014.06.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/06/2014] [Indexed: 01/09/2023]
|
39
|
Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord 2014; 15:79-97. [PMID: 24264858 DOI: 10.1007/s11154-013-9282-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Insulin resistance is a major disorder that links obesity to type 2 diabetes mellitus (T2D). It involves defects in the insulin actions owing to a reduced ability of insulin to trigger key signaling pathways in major metabolic tissues. The pathogenesis of insulin resistance involves several inhibitory molecules that interfere with the tyrosine phosphorylation of the insulin receptor and its downstream effectors. Among those, growing interest has been developed toward the protein tyrosine phosphatases (PTPs), a large family of enzymes that can inactivate crucial signaling effectors in the insulin signaling cascade by dephosphorylating their tyrosine residues. Herein we briefly review the role of several PTPs that have been shown to be implicated in the regulation of insulin action, and then focus on the Src homology 2 (SH2) domain-containing SHP1 and SHP2 enzymes, since recent reports have indicated major roles for these PTPs in the control of insulin action and glucose metabolism. Finally, the therapeutic potential of targeting PTPs for combating insulin resistance and alleviating T2D will be discussed.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, Cardiology Axis of the Institut Universitaire de Cardiologie et de Pneumologie de Québec (Hôpital Laval), Ste-Foy, Québec, Canada, G1V 4G2
| | | | | |
Collapse
|
40
|
LMO4 is essential for paraventricular hypothalamic neuronal activity and calcium channel expression to prevent hyperphagia. J Neurosci 2014; 34:140-8. [PMID: 24381275 DOI: 10.1523/jneurosci.3419-13.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dramatic increase in the prevalence of obesity reflects a lack of progress in combating one of the most serious health problems of this century. Recent studies have improved our understanding of the appetitive network by focusing on the paraventricular hypothalamus (PVH), a key region responsible for the homeostatic balance of food intake. Here we show that mice with PVH-specific ablation of LIM domain only 4 (Lmo4) become rapidly obese when fed regular chow due to hyperphagia rather than to reduced energy expenditure. Brain slice recording of LMO4-deficient PVH neurons showed reduced basal cellular excitability together with reduced voltage-activated Ca(2+) currents. Real-time PCR quantification revealed that LMO4 regulates the expression of Ca(2+) channels (Cacna1h, Cacna1e) that underlie neuronal excitability. By increasing neuronal activity using designer receptors exclusively activated by designer drugs technology, we could suppress food intake of PVH-specific LMO4-deficient mice. Together, these results demonstrate that reduced neural activity in LMO4-deficient PVH neurons accounts for hyperphagia. Thus, maintaining PVH activity is important to prevent hyperphagia-induced obesity.
Collapse
|
41
|
Blaskovic S, Adibekian A, Blanc M, van der Goot GF. Mechanistic effects of protein palmitoylation and the cellular consequences thereof. Chem Phys Lipids 2014; 180:44-52. [PMID: 24534427 DOI: 10.1016/j.chemphyslip.2014.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 12/21/2022]
Abstract
S-palmitoylation involves the attachment of a 16-carbon long fatty acid chain to the cysteine residues of proteins. The process is enzymatic and dynamic with DHHC enzymes mediating palmitoylation and acyl-protein thioesterases reverting the reaction. Proteins that undergo this modification span almost all cellular functions. While the increase in hydrophobicity generated by palmitoylation has the obvious consequence of triggering membrane association, the effects on transmembrane proteins are less intuitive and span a vast range. We review here the current knowledge on palmitoylating and depalmitoylating enzymes, the methods that allow the study of this lipid modification and which drugs can affect it, and finally we focus on four cellular processes for which recent studies reveal an involvement of palmitoylation: endocytosis, reproduction and cell growth, fat and sugar homeostasis and signal transduction at the synapse.
Collapse
Affiliation(s)
- Sanja Blaskovic
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland
| | - Alexander Adibekian
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Mathieu Blanc
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland
| | - Gisou F van der Goot
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|