1
|
Laule C, Rahmouni K. Leptin and Associated Neural Pathways Underlying Obesity-Induced Hypertension. Compr Physiol 2025; 15:e8. [PMID: 40293220 PMCID: PMC12038170 DOI: 10.1002/cph4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 10/24/2024] [Accepted: 11/05/2024] [Indexed: 04/30/2025]
Abstract
Obesity rates have surged to pandemic levels, placing tremendous burden on our society. This chronic and complex disease is related to the development of many life-threatening illnesses including cardiovascular diseases. Hypertension caused by obesity increases the risk for cardiovascular mortality and morbidity by promoting stroke, myocardial infarction, congestive heart failure, and end-stage renal disease. Overwhelming evidence supports neural origins for obesity-induced hypertension and pinpoints the adipose-derived hormone, leptin, and the sympathetic nervous system as major causal factors. Hyperleptinemia in obesity is associated with selective leptin resistance where leptin's renal sympathoexcitatory and pressor effects are preserved while the metabolic actions are impaired. Understanding the mechanisms driving this phenomenon is critical for developing effective therapeutics. This review describes the neural mechanisms of obesity-induced hypertension with a focus on the molecular and neuronal substrates of leptin action.
Collapse
Affiliation(s)
- Connor Laule
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Obesity Research and Education Initiative, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
- Veterans Affairs Health Care System, Iowa City, Iowa
| |
Collapse
|
2
|
Chang HY, Chen SY, Lin JA, Chen YY, Chen YY, Liu YC, Yen GC. Phyllanthus emblica Fruit Improves Obesity by Reducing Appetite and Enhancing Mucosal Homeostasis via the Gut Microbiota-Brain-Liver Axis in HFD-Induced Leptin-Resistant Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10406-10419. [PMID: 38659208 PMCID: PMC11082930 DOI: 10.1021/acs.jafc.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
The impact of leptin resistance on intestinal mucosal barrier integrity, appetite regulation, and hepatic lipid metabolism through the microbiota-gut-brain-liver axis has yet to be determined. Water extract of Phyllanthus emblica L. fruit (WEPE) and its bioactive compound gallic acid (GA) effectively alleviated methylglyoxal (MG)-triggered leptin resistance in vitro. Therefore, this study investigated how WEPE and GA intervention relieve leptin resistance-associated dysfunction in the intestinal mucosa, appetite, and lipid accumulation through the microbiota-gut-brain-liver axis in high-fat diet (HFD)-fed rats. The results showed that WEPE and GA significantly reduced tissues (jejunum, brain, and liver) MG-evoked leptin resistance, malondialdehyde (MDA), proinflammatory cytokines, SOCS3, orexigenic neuropeptides, and lipid accumulation through increasing leptin receptor, tight junction proteins, antimicrobial peptides, anorexigenic neuropeptides, excretion of fecal triglyceride (TG), and short-chain fatty acids (SCFAs) via a positive correlation with the Allobaculum and Bifidobacterium microbiota. These novel findings suggest that WEPE holds the potential as a functional food ingredient for alleviating obesity and its complications.
Collapse
Affiliation(s)
- Hsin-Yu Chang
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Sheng-Yi Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Jer-An Lin
- Graduate
Institute of Food Safety, National Chung
Hsing University, 145
Xingda Road, Taichung 40227, Taiwan
| | - Ying-Yin Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Ying-Ying Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Yu-Chen Liu
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| |
Collapse
|
3
|
Xie M, Gao J, Wu H, Cheng X, Zhang Z, Song R, Li S, Zhou J, Li C, Zeng G. Molecular Characterization and Expression Pattern of leptin in Yellow Cheek Carp ( Elopichthys bambusa) and Its Transcriptional Changes in Response to Fasting and Refeeding. BIOLOGY 2023; 12:biology12050758. [PMID: 37237570 DOI: 10.3390/biology12050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Leptin, a secretory protein encoded by obese genes, plays an important role in regulating feeding and energy metabolism in fish. To study the structure and function of the Leptin gene in yellow cheek carp (Elopichthys bambusa), the full-length cDNA sequence of leptin was cloned, named EbLep. The full-length cDNA of Eblep was 1140 bp, and the length of the open reading frame (ORF), which can encode a protein of 174 amino acids, was 525 bp. The signal peptide was predicted to contain 33 amino acids. Sequence alignment showed that the amino acid sequence of Leptin was conserved in cyprinid fish. Despite large differences between primary structures, the tertiary structure of the EbLep protein was similar to that of the human protein and had four α-helices. The EbLep mRNA transcript was detected in all tested tissues, with the highest expression in the liver and lowest expression in the spleen. In this study, short-term fasting significantly increased the mRNA expression of EbLep in the liver, which returned to a normal level after 6 days of refeeding and was significantly lower than the normal level after 28 days of refeeding. In the brain, the mRNA expression of EbLep significantly decreased during short-term fasting and significantly increased to a higher value than the control group after 1 h of refeeding. It then rapidly decreased to a lower value than the control group after 6 h of refeeding, returning to the normal level after 1 day of refeeding, and significantly decreasing to a lower value than the control group after 28 days of refeeding. To sum up, the change in the mRNA expression of EbLep in the brain and liver may be an adaptive strategy for different energy levels.
Collapse
Affiliation(s)
- Min Xie
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Jinwei Gao
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Hao Wu
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Xiaofei Cheng
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Zhou Zhang
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Rui Song
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Shaoming Li
- Hunan Fisheries Science Institute, Changsha 410153, China
| | - Jie Zhou
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410125, China
| | - Cheng Li
- Hunan Fisheries Science Institute, Changsha 410153, China
- Hunan Aquatic Foundation Seed Farm, Changsha 410153, China
| | - Guoqing Zeng
- Hunan Fisheries Science Institute, Changsha 410153, China
| |
Collapse
|
4
|
Watts AG. Paraventricular nucleus-Medullary interactions: How they help enable endocrine responses to metabolic stress. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 27:100401. [PMID: 39575062 PMCID: PMC11580161 DOI: 10.1016/j.coemr.2022.100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The paraventricular hypothalamic nucleus (PVH) organizes neuroendocrine and autonomic responses to rapidly and slowly developing metabolic stressors that limit their impact on energy balance. The PVH together with the lateral hypothalamic area, and the arcuate and dorsomedial nuclei form a network that is defined by its inputs from medullary catecholamine neurons. These medullary neurons convey important glycemia and glucocorticoid feedback information that is integrated by the PVH and the rest of this network to control a variety of responses to metabolic stressors that have rapid (hypoglycemia) or slow onsets (eating a high calorie diet). This review focuses on how the responses to these two challenges are enabled by these catecholamine neurons, and the integrative nature of the network into which they project.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, USC Dornsife College of Letters, Arts & Sciences, University of Southern California, Los Angeles, USA
| |
Collapse
|
5
|
Appetite regulating genes in zebrafish gut; a gene expression study. PLoS One 2022; 17:e0255201. [PMID: 35853004 PMCID: PMC9295983 DOI: 10.1371/journal.pone.0255201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
The underlying molecular pathophysiology of feeding disorders, particularly in peripheral organs, is still largely unknown. A range of molecular factors encoded by appetite-regulating genes are already described to control feeding behaviour in the brain. However, the important role of the gastrointestinal tract in the regulation of appetite and feeding in connection to the brain has gained more attention in the recent years. An example of such inter-organ connection can be the signals mediated by leptin, a key regulator of body weight, food intake and metabolism, with conserved anorexigenic effects in vertebrates. Leptin signals functions through its receptor (lepr) in multiple organs, including the brain and the gastrointestinal tract. So far, the regulatory connections between leptin signal and other appetite-regulating genes remain unclear, particularly in the gastrointestinal system. In this study, we used a zebrafish mutant with impaired function of leptin receptor to explore gut expression patterns of appetite-regulating genes, under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-hours refeeding). We provide evidence that most appetite-regulating genes are expressed in the zebrafish gut. On one hand, we did not observed significant differences in the expression of orexigenic genes (except for hcrt) after changes in the feeding condition. On the other hand, we found 8 anorexigenic genes in wild-types (cart2, cart3, dbi, oxt, nmu, nucb2a, pacap and pomc), as well as 4 genes in lepr mutants (cart3, kiss1, kiss1r and nucb2a), to be differentially expressed in the zebrafish gut after changes in feeding conditions. Most of these genes also showed significant differences in their expression between wild-type and lepr mutant. Finally, we observed that impaired leptin signalling influences potential regulatory connections between anorexigenic genes in zebrafish gut. Altogether, these transcriptional changes propose a potential role of leptin signal in the regulation of feeding through changes in expression of certain anorexigenic genes in the gastrointestinal tract of zebrafish.
Collapse
|
6
|
Naser W, Maymand S, Rivera LR, Connor T, Liongue C, Smith CM, Aston-Mourney K, McCulloch DR, McGee SL, Ward AC. Cytokine-inducible SH2 domain containing protein contributes to regulation of adiposity, food intake, and glucose metabolism. FASEB J 2022; 36:e22320. [PMID: 35470501 DOI: 10.1096/fj.202101882r] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 01/03/2023]
Abstract
The cytokine-inducible SH2 domain containing protein (CISH) is the founding member of the suppressor of cytokine signaling (SOCS) family of negative feedback regulators and has been shown to be a physiological regulator of signaling in immune cells. This study sought to investigate novel functions for CISH outside of the immune system. Mice deficient in CISH were generated and analyzed using a range of metabolic and other parameters, including in response to a high fat diet and leptin administration. CISH knockout mice possessed decreased body fat and showed resistance to diet-induced obesity. This was associated with reduced food intake, but unaltered energy expenditure and microbiota composition. CISH ablation resulted in reduced basal expression of the orexigenic Agrp gene in the arcuate nucleus (ARC) region of the brain. Cish was basally expressed in the ARC, with evidence of co-expression with the leptin receptor (Lepr) gene in Agrp-positive neurons. CISH-deficient mice also showed enhanced leptin responsiveness, although Cish expression was not itself modulated by leptin. CISH-deficient mice additionally exhibited improved insulin sensitivity on a high-fat diet, but not glucose tolerance despite reduced body weight. These data identify CISH as an important regulator of homeostasis through impacts on appetite control, mediated at least in part by negative regulation of the anorexigenic effects of leptin, and impacts on glucose metabolism.
Collapse
Affiliation(s)
- Wasan Naser
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,College of Science, University of Baghdad, Baghdad, Iraq
| | - Saeed Maymand
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Leni R Rivera
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Timothy Connor
- School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Craig M Smith
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Kathryn Aston-Mourney
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Daniel R McCulloch
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Sean L McGee
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria, Australia.,IMPACT, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
7
|
Araújo MC, Soczek SHS, Pontes JP, Marques LAC, Santos GS, Simão G, Bueno LR, Maria-Ferreira D, Muscará MN, Fernandes ES. An Overview of the TRP-Oxidative Stress Axis in Metabolic Syndrome: Insights for Novel Therapeutic Approaches. Cells 2022; 11:cells11081292. [PMID: 35455971 PMCID: PMC9030853 DOI: 10.3390/cells11081292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome (MS) is a complex pathology characterized by visceral adiposity, insulin resistance, arterial hypertension, and dyslipidaemia. It has become a global epidemic associated with increased consumption of high-calorie, low-fibre food and sedentary habits. Some of its underlying mechanisms have been identified, with hypoadiponectinemia, inflammation and oxidative stress as important factors for MS establishment and progression. Alterations in adipokine levels may favour glucotoxicity and lipotoxicity which, in turn, contribute to inflammation and cellular stress responses within the adipose, pancreatic and liver tissues, in addition to hepatic steatosis. The multiple mechanisms of MS make its clinical management difficult, involving both non-pharmacological and pharmacological interventions. Transient receptor potential (TRP) channels are non-selective calcium channels involved in a plethora of physiological events, including energy balance, inflammation and oxidative stress. Evidence from animal models of disease has contributed to identify their specific contributions to MS and may help to tailor clinical trials for the disease. In this context, the oxidative stress sensors TRPV1, TRPA1 and TRPC5, play major roles in regulating inflammatory responses, thermogenesis and energy expenditure. Here, the interplay between these TRP channels and oxidative stress in MS is discussed in the light of novel therapies to treat this syndrome.
Collapse
Affiliation(s)
- Mizael C. Araújo
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Suzany H. S. Soczek
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Jaqueline P. Pontes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Maranhão, São Luís 565085-080, MA, Brazil;
| | - Leonardo A. C. Marques
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Gabriela S. Santos
- Programa de Pós-Graduação, Universidade CEUMA, São Luís 65075-120, MA, Brazil; (M.C.A.); (G.S.S.)
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Laryssa R. Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Marcelo N. Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil; (L.A.C.M.); (M.N.M.)
| | - Elizabeth S. Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; (S.H.S.S.); (G.S.); (L.R.B.); (D.M.-F.)
- Programa de Pós-Graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
- Correspondence:
| |
Collapse
|
8
|
Watts AG, Kanoski SE, Sanchez-Watts G, Langhans W. The physiological control of eating: signals, neurons, and networks. Physiol Rev 2022; 102:689-813. [PMID: 34486393 PMCID: PMC8759974 DOI: 10.1152/physrev.00028.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
During the past 30 yr, investigating the physiology of eating behaviors has generated a truly vast literature. This is fueled in part by a dramatic increase in obesity and its comorbidities that has coincided with an ever increasing sophistication of genetically based manipulations. These techniques have produced results with a remarkable degree of cell specificity, particularly at the cell signaling level, and have played a lead role in advancing the field. However, putting these findings into a brain-wide context that connects physiological signals and neurons to behavior and somatic physiology requires a thorough consideration of neuronal connections: a field that has also seen an extraordinary technological revolution. Our goal is to present a comprehensive and balanced assessment of how physiological signals associated with energy homeostasis interact at many brain levels to control eating behaviors. A major theme is that these signals engage sets of interacting neural networks throughout the brain that are defined by specific neural connections. We begin by discussing some fundamental concepts, including ones that still engender vigorous debate, that provide the necessary frameworks for understanding how the brain controls meal initiation and termination. These include key word definitions, ATP availability as the pivotal regulated variable in energy homeostasis, neuropeptide signaling, homeostatic and hedonic eating, and meal structure. Within this context, we discuss network models of how key regions in the endbrain (or telencephalon), hypothalamus, hindbrain, medulla, vagus nerve, and spinal cord work together with the gastrointestinal tract to enable the complex motor events that permit animals to eat in diverse situations.
Collapse
Affiliation(s)
- Alan G Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Scott E Kanoski
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Graciela Sanchez-Watts
- The Department of Biological Sciences, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Eidgenössische Technische Hochschule-Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
9
|
Tran LT, Park S, Kim SK, Lee JS, Kim KW, Kwon O. Hypothalamic control of energy expenditure and thermogenesis. Exp Mol Med 2022; 54:358-369. [PMID: 35301430 PMCID: PMC9076616 DOI: 10.1038/s12276-022-00741-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Energy expenditure and energy intake need to be balanced to maintain proper energy homeostasis. Energy homeostasis is tightly regulated by the central nervous system, and the hypothalamus is the primary center for the regulation of energy balance. The hypothalamus exerts its effect through both humoral and neuronal mechanisms, and each hypothalamic area has a distinct role in the regulation of energy expenditure. Recent studies have advanced the understanding of the molecular regulation of energy expenditure and thermogenesis in the hypothalamus with targeted manipulation techniques of the mouse genome and neuronal function. In this review, we elucidate recent progress in understanding the mechanism of how the hypothalamus affects basal metabolism, modulates physical activity, and adapts to environmental temperature and food intake changes. The hypothalamus is a key regulator of metabolism, controlling resting metabolism, activity levels, and responses to external temperature and food intake. The balance between energy intake and expenditure must be tightly controlled, with imbalances resulting in metabolic disorders such as obesity or diabetes. Obin Kwon at Seoul National University College of Medicine and Ki Woo Kim at Yonsei University College of Dentistry, Seoul, both in South Korea, and coworkers reviewed how metabolism is regulated by the hypothalamus, a small hormone-producing brain region. They report that hormonal and neuronal signals from the hypothalamus influence the ratio of lean to fatty tissue, gender-based differences in metabolism, activity levels, and weight gain in response to food intake. They note that further studies to untangle cause-and-effect relationships and other genetic factors will improve our understanding of metabolic regulation.
Collapse
Affiliation(s)
- Le Trung Tran
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Sohee Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Seul Ki Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea
| | - Jin Sun Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ki Woo Kim
- Departments of Oral Biology and Applied Biological Science, BK21 Four, Yonsei University College of Dentistry, Seoul, 03722, Korea.
| | - Obin Kwon
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Departments of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
10
|
Abstract
Hypothalamic kisspeptin (Kiss1) neurons provide indispensable excitatory transmission to gonadotropin-releasing hormone (GnRH) neurons for the coordinated release of gonadotropins, estrous cyclicity, and ovulation. But maintaining reproductive functions is metabolically demanding so there must be a coordination with multiple homeostatic functions, and it is apparent that Kiss1 neurons play that role. There are 2 distinct populations of hypothalamic Kiss1 neurons, namely arcuate nucleus (Kiss1ARH) neurons and anteroventral periventricular and periventricular nucleus (Kiss1AVPV/PeN) neurons in rodents, both of which excite GnRH neurons via kisspeptin release but are differentially regulated by ovarian steroids. Estradiol (E2) increases the expression of kisspeptin in Kiss1AVPV/PeN neurons but decreases its expression in Kiss1ARH neurons. Also, Kiss1ARH neurons coexpress glutamate and Kiss1AVPV/PeN neurons coexpress gamma aminobutyric acid (GABA), both of which are upregulated by E2 in females. Also, Kiss1ARH neurons express critical metabolic hormone receptors, and these neurons are excited by insulin and leptin during the fed state. Moreover, Kiss1ARH neurons project to and excite the anorexigenic proopiomelanocortin neurons but inhibit the orexigenic neuropeptide Y/Agouti-related peptide neurons, highlighting their role in regulating feeding behavior. Kiss1ARH and Kiss1AVPV/PeN neurons also project to the preautonomic paraventricular nucleus (satiety) neurons and the dorsomedial nucleus (energy expenditure) neurons to differentially regulate their function via glutamate and GABA release, respectively. Therefore, this review will address not only how Kiss1 neurons govern GnRH release, but how they control other homeostatic functions through their peptidergic, glutamatergic and GABAergic synaptic connections, providing further evidence that Kiss1 neurons are the key neurons coordinating energy states with reproduction.
Collapse
Affiliation(s)
- Oline K Rønnekleiv
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Jian Qiu
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
11
|
Obara-Michlewska M. The contribution of astrocytes to obesity-associated metabolic disturbances. J Biomed Res 2022; 36:299-311. [PMID: 36131679 PMCID: PMC9548436 DOI: 10.7555/jbr.36.20200020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Marta Obara-Michlewska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw 02-106, Poland
- Marta Obara-Michlewska, Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Street, Warsaw 02-106, Poland. Tel/Fax: +48-22-6046416, E-mail:
| |
Collapse
|
12
|
Imoto D, Yamamoto I, Matsunaga H, Yonekura T, Lee ML, Kato KX, Yamasaki T, Xu S, Ishimoto T, Yamagata S, Otsuguro KI, Horiuchi M, Iijima N, Kimura K, Toda C. Refeeding activates neurons in the dorsomedial hypothalamus to inhibit food intake and promote positive valence. Mol Metab 2021; 54:101366. [PMID: 34728342 PMCID: PMC8609163 DOI: 10.1016/j.molmet.2021.101366] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Objective The regulation of food intake is a major research area in the study of obesity, which plays a key role in the development of metabolic syndrome. Gene targeting studies have clarified the roles of hypothalamic neurons in feeding behavior, but the deletion of a gene has a long-term effect on neurophysiology. Our understanding of short-term changes such as appetite under physiological conditions is therefore still limited. Methods Targeted recombination in active populations (TRAP) is a newly developed method for labeling active neurons by using tamoxifen-inducible Cre recombination controlled by the promoter of activity-regulated cytoskeleton-associated protein (Arc/Arg3.1), a member of immediate early genes. Transgenic mice for TRAP were fasted overnight, re-fed with normal diet, and injected with 4-hydroxytamoxifen 1 h after the refeeding to label the active neurons. The role of labeled neurons was examined by expressing excitatory or inhibitory designer receptors exclusively activated by designer drugs (DREADDs). The labeled neurons were extracted and RNA sequencing was performed to identify genes that are specifically expressed in these neurons. Results Fasting-refeeding activated and labeled neurons in the compact part of the dorsomedial hypothalamus (DMH) that project to the paraventricular hypothalamic nucleus. Chemogenetic activation of the labeled DMH neurons decreased food intake and developed place preference, an indicator of positive valence. Chemogenetic activation or inhibition of these neurons had no influence on the whole-body glucose metabolism. The labeled DMH neurons expressed prodynorphin (pdyn), gastrin-releasing peptide (GRP), cholecystokinin (CCK), and thyrotropin-releasing hormone receptor (Trhr) genes. Conclusions We identified a novel cell type of DMH neurons that can inhibit food intake and promote feeding-induced positive valence. Our study provides insight into the role of DMH and its molecular mechanism in the regulation of appetite and emotion. Fasting-refeeding activates a subset of neurons in the dorsomedial hypothalamus (DMH). Chemogenetic inhibition of the DMH neurons increases food intake. Chemogenetic activation of the DMH neurons inhibits food intake and promotes positive valence. The DMH neurons express pdyn, GRP, CCK and Trhr genes.
Collapse
Affiliation(s)
- Daigo Imoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Izumi Yamamoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Hirokazu Matsunaga
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Toya Yonekura
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Ming-Liang Lee
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Kan X Kato
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Takeshi Yamasaki
- Laboratory of Animal Experiment, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Shucheng Xu
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Taiga Ishimoto
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Satoshi Yamagata
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Norifumi Iijima
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan; Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kazuhiro Kimura
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Chitoku Toda
- Laboratory of Biochemistry, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan.
| |
Collapse
|
13
|
Arcuate and Preoptic Kisspeptin Neurons Exhibit Differential Projections to Hypothalamic Nuclei and Exert Opposite Postsynaptic Effects on Hypothalamic Paraventricular and Dorsomedial Nuclei in the Female Mouse. eNeuro 2021; 8:ENEURO.0093-21.2021. [PMID: 34281980 PMCID: PMC8354717 DOI: 10.1523/eneuro.0093-21.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/21/2021] [Accepted: 07/11/2021] [Indexed: 01/24/2023] Open
Abstract
Kisspeptin (Kiss1) neurons provide indispensable excitatory input to gonadotropin-releasing hormone (GnRH) neurons, which is important for the coordinated release of gonadotropins, estrous cyclicity and ovulation. However, Kiss1 neurons also send projections to many other brain regions within and outside the hypothalamus. Two different populations of Kiss1 neurons, one in the arcuate nucleus (Kiss1ARH) and another in the anteroventral periventricular nucleus (AVPV) and periventricular nucleus (PeN; Kiss1AVPV/PeN) of the hypothalamus are differentially regulated by ovarian steroids, and are believed to form direct contacts with GnRH neurons as well as other neurons. To investigate the projection fields from Kiss1AVPV/PeN and Kiss1ARH neurons in female mice, we used anterograde projection analysis, and channelrhodopsin-assisted circuit mapping (CRACM) to explore their functional input to select target neurons within the paraventricular (PVH) and dorsomedial (DMH) hypothalamus, key preautonomic nuclei. Cre-dependent viral (AAV1-DIO-ChR2 mCherry) vectors were injected into the brain to label the two Kiss1 neuronal populations. Immunocytochemistry (ICC) for mCherry and neuropeptides combined with confocal microscopy was used to determine the projection-fields of both Kiss1 neuronal groups. Whole-cell electrophysiology and optogenetics were used to elucidate the functional input to the PVH and DMH. Our analysis revealed many common but also several clearly separate projection fields between the two different populations of Kiss1 neurons. In addition, optogenetic stimulation of Kiss1 projections to PVH prodynorphin, Vglut2 and DMH CART-expressing neurons, revealed excitatory glutamatergic input from Kiss1ARH neurons and inhibitory GABAergic input from Kiss1AVPV/PeN neurons. Therefore, these steroid-sensitive Kiss1 neuronal groups can differentially control the excitability of target neurons to coordinate autonomic functions with reproduction.
Collapse
|
14
|
Ahi EP, Tsakoumis E, Brunel M, Schmitz M. Transcriptional study reveals a potential leptin-dependent gene regulatory network in zebrafish brain. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1283-1298. [PMID: 34236575 PMCID: PMC8302498 DOI: 10.1007/s10695-021-00967-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/12/2021] [Indexed: 06/01/2023]
Abstract
The signal mediated by leptin hormone and its receptor is a major regulator of body weight, food intake and metabolism. In mammals and many teleost fish species, leptin has an anorexigenic role and inhibits food intake by influencing the appetite centres in the hypothalamus. However, the regulatory connections between leptin and downstream genes mediating its appetite-regulating effects are still not fully explored in teleost fish. In this study, we used a loss of function leptin receptor zebrafish mutant and real-time quantitative PCR to assess brain expression patterns of several previously identified anorexigenic genes downstream of leptin signal under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-h refeeding). These downstream factors include members of cart genes, crhb and gnrh2, as well as selected genes co-expressed with them based on a zebrafish co-expression database. Here, we found a potential gene expression network (GRN) comprising the abovementioned genes by a stepwise approach of identifying co-expression modules and predicting their upstream regulators. Among the transcription factors (TFs) predicted as potential upstream regulators of this GRN, we found expression pattern of sp3a to be correlated with transcriptional changes of the downstream gene network. Interestingly, the expression and transcriptional activity of Sp3 orthologous gene in mammals have already been implicated to be under the influence of leptin signal. These findings suggest a potentially conserved regulatory connection between leptin and sp3a, which is predicted to act as a transcriptional driver of a downstream gene network in the zebrafish brain.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Emmanouil Tsakoumis
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| | - Mathilde Brunel
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Allmas Allé 5, SE-750 07 Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36 Uppsala, Sweden
| |
Collapse
|
15
|
Singh A, de Araujo AM, Krieger JP, Vergara M, Ip CK, de Lartigue G. Demystifying functional role of cocaine- and amphetamine-related transcript (CART) peptide in control of energy homeostasis: A twenty-five year expedition. Peptides 2021; 140:170534. [PMID: 33757831 PMCID: PMC8369463 DOI: 10.1016/j.peptides.2021.170534] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Cocaine- and amphetamine-related transcript (CART) is a neuropeptide first discovered in the striatum of the rat brain. Later, the genetic sequence and function of CART peptide (CARTp) was found to be conserved among multiple mammalian species. Over the 25 years, since its discovery, CART mRNA (Cartpt) expression has been reported widely throughout the central and peripheral nervous systems underscoring its role in diverse physiological functions. Here, we review the localization and function of CARTp as it relates to energy homeostasis. We summarize the expression changes of central and peripheral Cartpt in response to metabolic states and make use of available large data sets to gain additional insights into the anatomy of the Cartpt expressing vagal neurons and their expression patterns in the gut. Furthermore, we provide an overview of the role of CARTp as an anorexigenic signal and its effect on energy expenditure and body weight control with insights from both pharmacological and transgenic animal studies. Subsequently, we discuss the role of CARTp in the pathophysiology of obesity and review important new developments towards identifying a candidate receptor for CARTp signalling. Altogether, the field of CARTp research has made rapid and substantial progress recently, and we review the case for considering CARTp as a potential therapeutic target for stemming the obesity epidemic.
Collapse
Affiliation(s)
- Arashdeep Singh
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Alan Moreira de Araujo
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Jean-Philippe Krieger
- Department of Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Macarena Vergara
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA
| | - Chi Kin Ip
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia; Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Guillaume de Lartigue
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA; Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Mármol-Sánchez E, Artman JS, Fredholm M, Cirera S. Unraveling molecular mechanisms involved in the development of leptin resistance using the pig as a model. Anim Genet 2020; 52:55-65. [PMID: 33325551 DOI: 10.1111/age.13028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 11/27/2022]
Abstract
The increase in obesity worldwide underlines the need for research concerning its metabolic and genetic determinants. One of the most intriguing mechanisms regarding obesity involves leptin and its signaling cascade. Leptin is a key regulator contributing to the fine-tuned crosstalk between nutrient availability and appetite signaling in the central nervous system. Owing to ethical concerns, many human tissues are not readily available and pigs can serve as a good animal model owing to their comparable anatomy, metabolism and genetics. In the present study, we utilized the pig to investigate the possible impact of increased adiposity on the development of alterations within the leptin signaling pathway. Two divergent groups of pigs (High and Low) were defined based on a high and low amount of mesenteric fat. Cortex, cerebellum, hypothalamus, mesenteric, subcutaneous and retroperitoneal fat tissues were used to study changes in expression levels of 94 mRNA transcripts related to the leptin signaling pathway using the qPCR approach. No significant differences were found at the central nervous system, whereas the expression level of STAT1 was reduced in mesenteric fat and leptin (LEP) and interleukin 6 (IL6) were shown to be consistently increased in all analyzed fat compartments from pigs with a high amount of mesenteric fat. These results could imply the onset of leptin and pro-inflammatory cytokine overexpression at early stages of obesity in the analyzed pigs without affecting any key components in the central nervous system. Thus, these pigs showing a unique leptin deregulation in adipose tissues could be a useful translational resource for studies of obesity and leptin resistance phenotypes.
Collapse
Affiliation(s)
- E Mármol-Sánchez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark.,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - J S Artman
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - M Fredholm
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| | - S Cirera
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, 1870, Denmark
| |
Collapse
|
17
|
Gao Y, Yuan X, Zhu Z, Wang D, Liu Q, Gu W. Research and prospect of peptides for use in obesity treatment (Review). Exp Ther Med 2020; 20:234. [PMID: 33149788 DOI: 10.3892/etm.2020.9364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity and its related diseases, such as type 2 diabetes, hypertension and cardiovascular disease, are steadily increasing worldwide. Over the past few decades, numerous studies have focused on the differentiation and function of brown and beige fat, providing evidence for their therapeutic potential in treating obesity. However, no specific novel drug has been developed to treat obesity in this way. Peptides are a class of chemically active substances, which are linked together by amino acids using peptide bonds. They have specific physiological activities, including browning of white fat. As signal molecules regulated by the neuroendocrine system, the role of polypeptides, such as neuropeptide Y, brain-gut peptide and glucagon-like peptide in obesity and its related complications has been revealed. Notably, with the rapid development of peptidomics, peptide drugs have been widely used in the prevention and treatment of metabolic diseases, due to their short half-life, small apparent distribution volume, low toxicity and low side effects. The present review summarizes the progress and the new trend of peptide research, which may provide novel targets for the prevention and treatment of obesity.
Collapse
Affiliation(s)
- Yao Gao
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xuewen Yuan
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Ziyang Zhu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Dandan Wang
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Qianqi Liu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wei Gu
- Department of Endocrinology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
18
|
Zhang L, Reed F, Herzog H. Leptin signalling on arcuate NPY neurones controls adiposity independent of energy balance or diet composition. J Neuroendocrinol 2020; 32:e12898. [PMID: 32885528 DOI: 10.1111/jne.12898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/29/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022]
Abstract
Central action of the adipocyte hormone leptin via the neuropeptide Y (NPY) system is considered critical for energy homeostatic control. However, the precise mechanisms for this control are still not clear. To specifically investigate how leptin signalling on the NPY neurone contributes to the control of energy homeostasis, we generated an inducible adult-onset NPY neurone-specific leptin receptor (Lepr) knockout model and performed a comprehensive metabolic phenotyping study. Here, we show that the NPY neurone subpopulation that is directly responsive to leptin is not required for the inhibition of fasting-induced hyperphagia by leptin, although it is essential for the regulation of adiposity independent of changes in energy balance or diet composition. Furthermore, under obesogenic conditions such as a high-fat diet, a lack of Lepr signalling on NPY neurones results in significant increases in food intake and concomitant reductions in energy expenditure, leading to accelerated accumulation of fat mass. Collectively, these findings support the notion that Lepr-expressing NPY neurones act as the key relay point where peripheral adipose storage information is sensed, and corresponding responses are initiated to protect adipose reserves.
Collapse
Affiliation(s)
- Lei Zhang
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, NSW, Australia
- St. Vincent's Clinical School, University of NSW, Sydney, NSW, Australia
| | - Felicia Reed
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, St. Vincent's Hospital, Darlinghurst, NSW, Australia
- School of Medical Sciences, University of NSW, Sydney, NSW, Australia
- Faculty of Medicine, University of NSW, Sydney, NSW, Australia
| |
Collapse
|
19
|
Ahi EP, Brunel M, Tsakoumis E, Schmitz M. Transcriptional study of appetite regulating genes in the brain of zebrafish (Danio rerio) with impaired leptin signalling. Sci Rep 2019; 9:20166. [PMID: 31882937 PMCID: PMC6934527 DOI: 10.1038/s41598-019-56779-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022] Open
Abstract
The hormone leptin is a key regulator of body weight, food intake and metabolism. In mammals, leptin acts as an anorexigen and inhibits food intake centrally by affecting the appetite centres in the hypothalamus. In teleost fish, the regulatory connections between leptin and other appetite-regulating genes are largely unknown. In the present study, we used a zebrafish mutant with a loss of function leptin receptor to investigate brain expression patterns of 12 orexigenic and 24 anorexigenic genes under different feeding conditions (normal feeding, 7-day fasting, 2 and 6-hours refeeding). Expression patterns were compared to wild-type zebrafish, in order to identify leptin-dependent differentially expressed genes under different feeding conditions. We provide evidence that the transcription of certain orexigenic and anorexigenic genes is influenced by leptin signalling in the zebrafish brain. We found that the expression of orexigenic genes was not affected by impaired leptin signalling under normal feeding conditions; however, several orexigenic genes showed increased transcription during fasting and refeeding, including agrp, apln, galr1a and cnr1. This suggests an inhibitory effect of leptin signal on the transcription of these orexigenic genes during short-term fasting and refeeding in functional zebrafish. Most pronounced effects were observed in the group of anorexigenic genes, where the impairment of leptin signalling resulted in reduced gene expression in several genes, including cart family, crhb, gnrh2, mc4r, pomc and spx, in the control group. This suggests a stimulatory effect of leptin signal on the transcription of these anorexigenic genes under normal feeding condition. In addition, we found multiple gain and loss in expression correlations between the appetite-regulating genes, in zebrafish with impaired leptin signal, suggesting the presence of gene regulatory networks downstream of leptin signal in zebrafish brain. The results provide the first evidence for the effects of leptin signal on the transcription of various appetite-regulating genes in zebrafish brain, under different feeding conditions. Altogether, these transcriptional changes suggest an anorexigenic role for leptin signal, which is likely to be mediated through distinct set of appetite-regulating genes under different feeding conditions.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Mathilde Brunel
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, BioCentrum, Allmas Allé 5, SE-750 07 Uppsala, Sweden
| | - Emmanouil Tsakoumis
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden
| | - Monika Schmitz
- Department of Organismal Biology, Comparative Physiology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
20
|
Üner AG, Keçik O, Quaresma PGF, De Araujo TM, Lee H, Li W, Kim HJ, Chung M, Bjørbæk C, Kim YB. Role of POMC and AgRP neuronal activities on glycaemia in mice. Sci Rep 2019; 9:13068. [PMID: 31506541 PMCID: PMC6736943 DOI: 10.1038/s41598-019-49295-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/20/2019] [Indexed: 11/23/2022] Open
Abstract
Leptin regulates both feeding and glycaemia primarily through its receptors expressed on agouti-related peptide (AgRP) and pro-opiomelanocortin-expressing (POMC) neurons; however, it is unknown whether activity of these neuronal populations mediates the regulation of these processes. To determine this, we injected Cre-dependent designer receptors exclusively activated by designer drugs (DREADD) viruses into the hypothalamus of normoglycaemic and diabetic AgRP-ires-cre and POMC-cre mice to chemogenetically activate or inhibit these neuronal populations. Despite robust changes in food intake, activation or inhibition of AgRP neurons did not affect glycaemia, while activation caused significant (P = 0.014) impairment in insulin sensitivity. Stimulation of AgRP neurons in diabetic mice reversed leptin’s ability to inhibit feeding but did not counter leptin’s ability to lower blood glucose levels. Notably, the inhibition of POMC neurons stimulated feeding while decreasing glucose levels in normoglycaemic mice. The findings suggest that leptin’s effects on feeding by AgRP neurons are mediated by changes in neuronal firing, while the control of glucose balance by these cells is independent of chemogenetic activation or inhibition. The firing-dependent glucose lowering mechanism within POMC neurons is a potential target for the development of novel anti-diabetic medicines.
Collapse
Affiliation(s)
- Aykut Göktürk Üner
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA.,Department of Physiology, Faculty of Veterinary Medicine, Adnan Menderes University, Efeler, Aydin, 09010, Turkey
| | - Onur Keçik
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Paula G F Quaresma
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Thiago M De Araujo
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Hyon Lee
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Wenjing Li
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Hyun Jeong Kim
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Michelle Chung
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Christian Bjørbæk
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA
| | - Young-Bum Kim
- Department of Endocrinology, Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Centre and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
21
|
Abstract
Despite decades of research, few medications have gained Food and Drug Administration (FDA) approval for the management of substance abuse disorder. The paucity of successful medications can be attributed, in part, to the lack of clearly identified neurobiological targets for addressing the core pathology of addictive behavior. Commonalities in the behavioral and brain processes involved in the rewarding effects of drugs and foods has prompted the evaluation of candidate medications that target neural pathways involved in both drug and eating disorders. Here, pharmacological strategies for the development of novel medications for drug addiction are presented in the context of potential overlapping neurobiological targets identified for eating disorders (e.g., obesity, overeating, binge-eating) and substance abuse. Mechanisms discussed in this chapter include modulators of the gut-brain axis (e.g., leptin, ghrelin, cholecystokinin, cocaine- and amphetamine-regulated transcript, and pancreatic peptides) and neurotransmitter systems (e.g., opioids, cannabinoids, dopamine, serotonin, and acetylcholine).
Collapse
|
22
|
Idrizaj E, Garella R, Squecco R, Baccari MC. Adipocytes-released Peptides Involved in the Control of Gastrointestinal Motility. Curr Protein Pept Sci 2019; 20:614-629. [PMID: 30663565 DOI: 10.2174/1389203720666190121115356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
The present review focuses on adipocytes-released peptides known to be involved in the control of gastrointestinal motility, acting both centrally and peripherally. Thus, four peptides have been taken into account: leptin, adiponectin, nesfatin-1, and apelin. The discussion of the related physiological or pathophysiological roles, based on the most recent findings, is intended to underlie the close interactions among adipose tissue, central nervous system, and gastrointestinal tract. The better understanding of this complex network, as gastrointestinal motor responses represent peripheral signals involved in the regulation of food intake through the gut-brain axis, may also furnish a cue for the development of either novel therapeutic approaches in the treatment of obesity and eating disorders or potential diagnostic tools.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| |
Collapse
|
23
|
Doslikova B, Tchir D, McKinty A, Zhu X, Marks DL, Baracos VE, Colmers WF. Convergent neuronal projections from paraventricular nucleus, parabrachial nucleus, and brainstem onto gastrocnemius muscle, white and brown adipose tissue in male rats. J Comp Neurol 2019; 527:2826-2842. [PMID: 31045239 DOI: 10.1002/cne.24710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/06/2023]
Abstract
When energy balance is altered by aerobic exercise, starvation, and cold exposure, for example, there appears to be coordination of the responses of skeletal muscle, white adipose (WAT), and brown adipose (BAT) tissues. We hypothesized that WAT, BAT, and skeletal muscle may share an integrated regulation by the central nervous system (CNS); specifically, that neurons in brain regions associated with energy balance would possess neuroanatomical connections to permit coordination of multiple, complementary responses in these downstream tissues. To study this, we used trans-neuronal viral retrograde tract tracing, using isogenic strains of pseudorabies virus (PRV) with distinct fluorescent reporters (either eGFP or mRFP), injected pairwise into male rat gastrocnemius, subcutaneous WAT and interscapular BAT, coupled with neurochemical characterization of specific cell populations for cocaine- and amphetamine-related transcript (CART), oxytocin (OX), corticotrophin releasing hormone (CRH) and calcitonin gene-related peptide (CGRP). Cells in the paraventricular (PVN) and parabrachial (PBN) nuclei and brainstem showed dual projections to muscle + WAT, muscle + BAT, and WAT + BAT. Dual PRV-labeled cells were found in parvocellular, magnocellular and descending/pre-autonomic regions of the PVN, and multiple structural divisions of the PBN and brainstem. In most PBN subdivisions, more than 50% of CGRP cells dually projected to muscle + WAT and muscle + BAT. Similarly, 31-68% of CGRP cells projected both to WAT + BAT. However, dual PRV-labeled cells in PVN only occasionally expressed OX or CRH but not CART. These studies reveal for the first time both separate and shared outflow circuitries among skeletal muscle and subcutaneous WAT and BAT.
Collapse
Affiliation(s)
- Barbora Doslikova
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Devan Tchir
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda McKinty
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Xinxia Zhu
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, Oregon
| | - Vickie E Baracos
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - William F Colmers
- Department of Pharmacology, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Leptin Signaling in the Control of Metabolism and Appetite: Lessons from Animal Models. J Mol Neurosci 2018; 66:390-402. [PMID: 30284225 DOI: 10.1007/s12031-018-1185-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022]
|
25
|
Lee SJ, Sanchez-Watts G, Krieger JP, Pignalosa A, Norell PN, Cortella A, Pettersen KG, Vrdoljak D, Hayes MR, Kanoski SE, Langhans W, Watts AG. Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity. Mol Metab 2018; 11:33-46. [PMID: 29650350 PMCID: PMC6001878 DOI: 10.1016/j.molmet.2018.03.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Objective Glucagon-like peptide-1 (GLP-1) neurons in the hindbrain densely innervate the dorsomedial hypothalamus (DMH), a nucleus strongly implicated in body weight regulation and the sympathetic control of brown adipose tissue (BAT) thermogenesis. Therefore, DMH GLP-1 receptors (GLP-1R) are well placed to regulate energy balance by controlling sympathetic outflow and BAT function. Methods We investigate this possibility in adult male rats by using direct administration of GLP-1 (0.5 ug) into the DMH, knocking down DMH GLP-1R mRNA with viral-mediated RNA interference, and by examining the neurochemical phenotype of GLP-1R expressing cells in the DMH using in situ hybridization. Results GLP-1 administered into the DMH increased BAT thermogenesis and hepatic triglyceride (TG) mobilization. On the other hand, Glp1r knockdown (KD) in the DMH increased body weight gain and adiposity, with a concomitant reduction in energy expenditure (EE), BAT temperature, and uncoupling protein 1 (UCP1) expression. Moreover, DMH Glp1r KD induced hepatic steatosis, increased plasma TG, and elevated liver specific de-novo lipogenesis, effects that collectively contributed to insulin resistance. Interestingly, DMH Glp1r KD increased neuropeptide Y (NPY) mRNA expression in the DMH. GLP-1R mRNA in the DMH, however, was found in GABAergic not NPY neurons, consistent with a GLP-1R-dependent inhibition of NPY neurons that is mediated by local GABAergic neurons. Finally, DMH Glp1r KD attenuated the anorexigenic effects of the GLP-1R agonist exendin-4, highlighting an important role of DMH GLP-1R signaling in GLP-1-based therapies. Conclusions Collectively, our data show that DMH GLP-1R signaling plays a key role for BAT thermogenesis and adiposity. DMH GLP-1R stimulation acutely increases BAT thermogenesis. DMH GLP-1R mRNA knockdown decreases EE and BAT thermogenesis. DMH GLP-1R mRNA knockdown impairs lipid and glucose metabolism. Reduced DMH GLP-1R signaling blunts the anorexigenic responses to Ex-4. DMH GLP-1R signaling indirectly regulates NPY gene expression.
Collapse
Affiliation(s)
- Shin J Lee
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach, Switzerland.
| | - Graciela Sanchez-Watts
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Angelica Pignalosa
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach, Switzerland
| | - Puck N Norell
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach, Switzerland
| | - Alyssa Cortella
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Klaus G Pettersen
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach, Switzerland
| | - Dubravka Vrdoljak
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach, Switzerland
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Scott E Kanoski
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, ETH Zürich, 8603 Schwerzenbach, Switzerland
| | - Alan G Watts
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
26
|
Wee NKY, Enriquez RF, Nguyen AD, Horsnell H, Kulkarni R, Khor EC, Herzog H, Baldock PA. Diet-induced obesity suppresses cortical bone accrual by a neuropeptide Y-dependent mechanism. Int J Obes (Lond) 2018. [PMID: 29523877 DOI: 10.1038/s41366-018-0028-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE To determine whether age and neuropeptide Y (NPY) were involved in the skeletal response to extended periods of diet-induced obesity. METHODS Male wild-type (WT) and NPY null (NPYKO) mice were fed a mild (23% fat) high-fat diet for 10 weeks from 6 or 16 weeks of age. Metabolism and bone density were assessed during feeding. Skeletal changes were assessed by microCT and histomorphometry. RESULTS High-fat feeding in 6-week-old WT mice led to significantly increased body weight, adiposity and serum leptin levels, accompanied with markedly suppressed cortical bone accrual. NPYKO mice were less susceptible to fat accrual but, importantly, displayed a complete lack of suppression of bone accrual or cortical bone loss. In contrast, when skeletally mature (16 week old) mice underwent 10 weeks of fat feeding, the metabolic response to HFD was similar to younger mice, however bone mass was not affected in either WT or NPYKO. Thus, growing mice are particularly susceptible to the detrimental effects of HFD on bone mass, through suppression of bone accrual involving NPY signalling. CONCLUSION This study provides new insights into the relationship between the opposing processes of a positive weight/bone relationship and the negative 'metabolic' effect of obesity on bone mass. This negative effect is particularly active in growing skeletons, which have heightened sensitivity to changes in obesity. In addition, NPY is identified as a fundamental driver of this negative 'metabolic' pathway to bone.
Collapse
Affiliation(s)
- Natalie K Y Wee
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Ronaldo F Enriquez
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Amy D Nguyen
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Harry Horsnell
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Rishikesh Kulkarni
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Ee Cheng Khor
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Paul A Baldock
- Osteoporosis and Bone Biology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
27
|
Abstract
Our understanding of adipose tissue as an endocrine organ has been transformed over the last 20 years. During this time, a number of adipocyte-derived factors or adipokines have been identified. This article will review evidence for how adipokines acting via the central nervous system (CNS) regulate normal physiology and disease pathology. The reported CNS-mediated effects of adipokines are varied and include the regulation of energy homeostasis, autonomic nervous system activity, the reproductive axis, neurodevelopment, cardiovascular function, and cognition. Due to the wealth of information available and the diversity of their known functions, the archetypal adipokines leptin and adiponectin will be focused on extensively. Other adipokines with established CNS actions will also be discussed. Due to the difficulties associated with studying CNS function on a molecular level in humans, the majority of our knowledge, and as such the studies described in this paper, comes from work in experimental animal models; however, where possible the relevant data from human studies are also highlighted. © 2017 American Physiological Society. Compr Physiol 7:1359-1406, 2017.
Collapse
Affiliation(s)
- Craig Beall
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Lydia Hanna
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| | - Kate L J Ellacott
- Biomedical Neuroscience Research Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, Devon, United Kingdom
| |
Collapse
|
28
|
Miller GD. Appetite Regulation: Hormones, Peptides, and Neurotransmitters and Their Role in Obesity. Am J Lifestyle Med 2017; 13:586-601. [PMID: 31662725 DOI: 10.1177/1559827617716376] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/18/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
Understanding body weight regulation will aid in the development of new strategies to combat obesity. This review examines energy homeostasis and food intake behaviors, specifically with regards to hormones, peptides, and neurotransmitters in the periphery and central nervous system, and their potential role in obesity. Dysfunction in feeding signals by the brain is a factor in obesity. The hypothalamic (arcuate nucleus) and brainstem (nucleus tractus solitaris) areas integrate behavioral, endocrine, and autonomic responses via afferent and efferent pathways from and to the brainstem and peripheral organs. Neurons present in the arcuate nucleus express pro-opiomelanocortin, Neuropeptide Y, and Agouti Related Peptide, with the former involved in lowering food intake, and the latter two acutely increasing feeding behaviors. Action of peripheral hormones from the gut, pancreas, adipose, and liver are also involved in energy homeostasis. Vagal afferent neurons are also important in regulating energy homeostasis. Peripheral signals respond to the level of stored and currently available fuel. By studying their actions, new agents maybe developed that disable orexigenic responses and enhance anorexigenic signals. Although there are relatively few medications currently available for obesity treatment, a number of agents are in development that work through these pathways.
Collapse
Affiliation(s)
- Gary D Miller
- Department of Health and Exercise Science, Wake Forest University, Winston-Salem, North Carolina
| |
Collapse
|
29
|
Perez-Tilve D. Novel Hypothalamic Mechanisms in the Pathophysiological Control of Body Weight and Metabolism. Endocrinology 2017; 158:1085-1094. [PMID: 28200100 DOI: 10.1210/en.2016-1944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 02/03/2017] [Indexed: 12/31/2022]
Abstract
The incidence of obesity, with its impact on the development of comorbidities, including diabetes and cardiovascular disease, represents one of the greatest global health threats of the 21st century. This is particularly damning considering the vast progress that has been made in understanding the factors and molecular mechanisms playing a role in the control of energy balance by the central nervous system, especially during the past 3 decades. Despite the wealth of newfound knowledge, effective therapies for prevention of and/or intervention in obesity have not been forthcoming. That said, recent technological advances and the revisiting of previously discarded concepts have identified novel neural mechanisms involved in the control of energy homeostasis, thereby providing potential new targets and experimental approaches that may bring us closer to effective therapies to improve metabolic control. This review summarizes some of the most recent findings, with special emphasis on the role of neural circuits of the hypothalamus.
Collapse
Affiliation(s)
- Diego Perez-Tilve
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
30
|
Chmielowska M, Baranowska B, Wolinska-Witort E, Martynska L, Kalisz M, Litwiniuk A, Bik W. The effect of CART on pituitary hormones release from cultured pituitary cells harvested from fasted and fed ad libitum male rats. Peptides 2017; 91:20-25. [PMID: 28300671 DOI: 10.1016/j.peptides.2017.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 02/23/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
Cocaine and Amphetamine-Regulated Transcript (CART) is widely expressed in the central nervous system and in several endocrine organs. CART is an important factor in the regulation of energy homeostasis. The aim of the study was to assess the role of CART in physiological response of pituitary cells in a course of starvation. The pituitary cells harvested from starved and fed ad libitum male rats were cultured for 48h and treated with: 0.1nM, 1nM, 10nM or 100nM doses of CART. The medium was collected after 60min and stored at -70°C until samples were further assayed for: LH, FSH, PRL, GH, TSH and ACTH. We revealed that in cultures of pituitary cells collected from fasted rats the basal levels of the examined hormones were reduced. Incubation of pituitary cells of non-starved rats with any dose of CART reduced the concentration of LH and TSH, while the levels of the other hormones were decreased after administration only specific doses of CART. In cells of fasted rats no change in the concentration of gonadotrophins was observed. The PRL level was increased only in the 1nM dose of CART, while the 10nM and 100nM CART doses markedly enhanced GH and TSH. Moreover, administration of 1nM, 10nM and 100nM of CART to cultured cells of fasted rats resulted in a significant rise of the ACTH. Our results indicate that CART can directly affect the physiological release of PRL, ACTH, TSH and GH in pituitary cells of starved animals. Moreover, CART did not alter the LH and FSH suppression level, which is correlated with food deprivation. This data stays in contrast with the already proposed role of CART as an anorexigenic hypothalamic factor.
Collapse
Affiliation(s)
- M Chmielowska
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - B Baranowska
- Department of Neurology, Second Faculty of Medicine, Medical University of Warsaw, Bielanski Hospital, Ceglowska 80, 01-809 Warsaw, Poland
| | - E Wolinska-Witort
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - L Martynska
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - M Kalisz
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - A Litwiniuk
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - W Bik
- Department of Clinical Neuroendocrinology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
31
|
Shaban H, O’Connor R, Ovsepian SV, Dinan TG, Cryan JF, Schellekens H. Electrophysiological approaches to unravel the neurobiological basis of appetite and satiety: use of the multielectrode array as a screening strategy. Drug Discov Today 2017; 22:31-42. [DOI: 10.1016/j.drudis.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/03/2016] [Accepted: 09/06/2016] [Indexed: 01/10/2023]
|
32
|
Contribution of adaptive thermogenesis to the hypothalamic regulation of energy balance. Biochem J 2016; 473:4063-4082. [DOI: 10.1042/bcj20160012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 08/13/2016] [Accepted: 08/30/2016] [Indexed: 12/12/2022]
Abstract
Obesity and its related disorders are among the most pervasive diseases in contemporary societies, and there is an urgent need for new therapies and preventive approaches. Given (i) our poor social capacity to correct unhealthy habits, and (ii) our evolutionarily genetic predisposition to store excess energy as fat, the current environment of caloric surplus makes the treatment of obesity extremely difficult. During the last few decades, an increasing number of methodological approaches have increased our knowledge of the neuroanatomical basis of the control of energy balance. Compelling evidence underlines the role of the hypothalamus as a homeostatic integrator of metabolic information and its ability to adjust energy balance. A greater understanding of the neural basis of the hypothalamic regulation of energy balance might indeed pave the way for new therapeutic targets. In this regard, it has been shown that several important peripheral signals, such as leptin, thyroid hormones, oestrogens and bone morphogenetic protein 8B, converge on common energy sensors, such as AMP-activated protein kinase to modulate sympathetic tone on brown adipose tissue. This knowledge may open new ways to counteract the chronic imbalance underlying obesity. Here, we review the current state of the art on the role of hypothalamus in the regulation of energy balance with particular focus on thermogenesis.
Collapse
|
33
|
Chen N, Sugihara H, Kim J, Fu Z, Barak B, Sur M, Feng G, Han W. Direct modulation of GFAP-expressing glia in the arcuate nucleus bi-directionally regulates feeding. eLife 2016; 5. [PMID: 27751234 PMCID: PMC5068968 DOI: 10.7554/elife.18716] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 09/17/2016] [Indexed: 12/18/2022] Open
Abstract
Multiple hypothalamic neuronal populations that regulate energy balance have been identified. Although hypothalamic glia exist in abundance and form intimate structural connections with neurons, their roles in energy homeostasis are less known. Here we show that selective Ca2+ activation of glia in the mouse arcuate nucleus (ARC) reversibly induces increased food intake while disruption of Ca2+ signaling pathway in ARC glia reduces food intake. The specific activation of ARC glia enhances the activity of agouti-related protein/neuropeptide Y (AgRP/NPY)-expressing neurons but induces no net response in pro-opiomelanocortin (POMC)-expressing neurons. ARC glial activation non-specifically depolarizes both AgRP/NPY and POMC neurons but a strong inhibitory input to POMC neurons balances the excitation. When AgRP/NPY neurons are inactivated, ARC glial activation fails to evoke any significant changes in food intake. Collectively, these results reveal an important role of ARC glia in the regulation of energy homeostasis through its interaction with distinct neuronal subtype-specific pathways.
Collapse
Affiliation(s)
- Naiyan Chen
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore.,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Hiroki Sugihara
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Jinah Kim
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Zhanyan Fu
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Boaz Barak
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Guoping Feng
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, United States
| | - Weiping Han
- Laboratory of Metabolic Medicine, Singapore Bioimaging Consortium, A*STAR, Singapore, Singapore
| |
Collapse
|
34
|
Chaar LJ, Coelho A, Silva NM, Festuccia WL, Antunes VR. High-fat diet-induced hypertension and autonomic imbalance are associated with an upregulation of CART in the dorsomedial hypothalamus of mice. Physiol Rep 2016; 4:4/11/e12811. [PMID: 27273815 PMCID: PMC4908489 DOI: 10.14814/phy2.12811] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023] Open
Abstract
We evaluated herein whether diet‐induced obesity alters sympathovagal balance, blood pressure, and neuropeptides levels at the hypothalamus and brainstem of mice. Male C57BL6J mice fed with a high‐fat (HFD) or a high‐fat high‐sucrose (HFHSu), or a regular chow diet (C) for 8 weeks were evaluated for metabolic parameters and blood pressure, the latter being performed in conscious freely moving mice. Spectral analysis from the records of systolic blood pressure (SBP) and cardiac pulse intervals (PI) was performed to analyse the autonomic balance in the cardiovascular system. HFD‐fed mice developed two distinct hemodynamic phenotypes: hypertensive mice (HFD‐H) with high systolic and diastolic BP levels and hypertension‐resistant mice (HFD‐R) whose BP levels were similar to C group. Spectral analysis of SBP and PI variabilities indicate that the low‐frequency (LF)/high‐frequency (HF) ratio, which is an index of sympathovagal balance, is higher in HFD‐H compared to HFD‐R. Along with hypertension and higher LF/HF ratio, HFD‐H mice presented increased hypothalamic mRNA levels of cocaine‐ and amphetamine‐regulated transcript (CART), and increased CART‐positive neurones in the dorsomedial hypothalamus (DMH) by high‐fat diet when compared to C group. Despite developing obesity to similar levels than HFD feeding, intake of a HFHSu was not associated with hypertension in mice neither CART levels increase. Collectively, our main findings indicate that high‐fat diet induced‐hypertension and autonomic imbalance are associated to an upregulation of CART levels in the DMH of mice.
Collapse
Affiliation(s)
- Laiali J Chaar
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Aline Coelho
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Natalia M Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - William L Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vagner R Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
35
|
Levels of Cocaine- and Amphetamine-Regulated Transcript in Vagal Afferents in the Mouse Are Unaltered in Response to Metabolic Challenges. eNeuro 2016; 3:eN-FTR-0174-16. [PMID: 27822503 PMCID: PMC5088776 DOI: 10.1523/eneuro.0174-16.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is one of the most abundant neuropeptides in vagal afferents, including those involved in regulating feeding. Recent observations indicate that metabolic challenges dramatically alter the neuropeptidergic profile of CART-producing vagal afferents. Here, using confocal microscopy, we reassessed the distribution and regulation of CART(55–102) immunoreactivity in vagal afferents of the male mouse in response to metabolic challenges, including fasting and high-fat-diet feeding. Importantly, the perikarya and axons of vagal C-fibers were labeled using mice expressing channelrodhopsin-2 (ChR2-YFP) in Nav1.8-Cre–expressing neurons. In these mice, approximately 82% of the nodose ganglion neurons were labeled with ChR2-YFP. Furthermore, ChR2-YFP–labeled axons could easily be identified in the dorsovagal complex. CART(55–102) immunoreactivity was observed in 55% of the ChR2-YFP–labeled neurons in the nodose ganglion and 22% of the ChR2-YFP–labeled varicosities within the area postrema of fed, fasted, and obese mice. The distribution of positive profiles was also identical across the full range of CART staining in fed, fasted, and obese mice. In contrast to previous studies, fasting did not induce melanin-concentrating hormone (MCH) immunoreactivity in vagal afferents. Moreover, prepro-MCH mRNA was undetectable in the nodose ganglion of fasted mice. In summary, this study showed that the perikarya and central terminals of vagal afferents are invariably enriched in CART and devoid of MCH.
Collapse
|
36
|
Association between obesity and asthma - epidemiology, pathophysiology and clinical profile. Nutr Res Rev 2016; 29:194-201. [PMID: 27514726 DOI: 10.1017/s0954422416000111] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Obesity is a risk factor for asthma, and obese asthmatics have lower disease control and increased symptom severity. Several putative links have been proposed, including genetics, mechanical restriction of the chest and the intake of corticosteroids. The most consistent evidence, however, comes from studies of cytokines produced by the adipose tissue called adipokines. Adipokine imbalance is associated with both proinflammatory status and asthma. Although reverse causation has been proposed, it is now acknowledged that obesity precedes asthma symptoms. Nevertheless, prenatal origins of both conditions complicate the search for causality. There is a confirmed role of neuro-immune cross-talk mediating obesity-induced asthma, with leptin playing a key role in these processes. Obesity-induced asthma is now considered a distinct asthma phenotype. In fact, it is one of the most important determinants of asthma phenotypes. Two main subphenotypes have been distinguished. The first phenotype, which affects adult women, is characterised by later onset and is more likely to be non-atopic. The childhood obesity-induced asthma phenotype is characterised by primary and predominantly atopic asthma. In obesity-induced asthma, the immune responses are shifted towards T helper (Th) 1 polarisation rather than the typical atopic Th2 immunological profile. Moreover, obese asthmatics might respond differently to environmental triggers. The high cost of treatment of obesity-related asthma, and the burden it causes for the patients and their families call for urgent intervention. Phenotype-specific approaches seem to be crucial for the success of prevention and treatment.
Collapse
|
37
|
Lim K, Barzel B, Burke SL, Armitage JA, Head GA. Origin of Aberrant Blood Pressure and Sympathetic Regulation in Diet-Induced Obesity. Hypertension 2016; 68:491-500. [DOI: 10.1161/hypertensionaha.116.07461] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/06/2016] [Indexed: 11/16/2022]
Abstract
High fat diet (HFD)–induced hypertension in rabbits is neurogenic and caused by the central action of leptin, which is thought to be dependent on activation of α-melanocortin–stimulating hormone (α-MSH) and neuropeptide Y–positive neurons projecting to the dorsomedial hypothalamus (DMH) and ventromedial hypothalamus (VMH). However, leptin may act directly in these nuclei. Here, we assessed the contribution of leptin, α-MSH, and neuropeptide Y signaling in the DMH and VMH to diet-induced hypertension. Male New Zealand white rabbits were instrumented with a cannula for drug injections into the DMH or VMH and a renal sympathetic nerve activity (RSNA) electrode. After 3 weeks of an HFD (13.3% fat; n=19), rabbits exhibited higher RSNA, mean arterial pressure (MAP), and heart rate compared with control diet–fed animals (4.2% fat; n=15). Intra-VMH injections of a leptin receptor antagonist or SHU9119, a melanocortin 3/4 receptor antagonist, decreased MAP, heart rate, and RSNA compared with vehicle in HFD rabbits (
P
<0.05) but not in control diet–fed animals. By contrast, α-MSH or neuropeptide Y injected into the VMH had no effect on MAP but produced sympathoexcitation in HFD rabbits (
P
<0.05) but not in control diet–fed rabbits. The effects of the leptin antagonist, α-MSH, or neuropeptide Y injections into the DMH on MAP or RSNA of HFD rabbits were not different from those after vehicle injection. α-MSH into the DMH of control diet–fed animals did increase MAP, heart rate, and RSNA. We conclude that the VMH is the likely origin of leptin-mediated sympathoexcitation and α-MSH hypersensitivity that contribute to obesity-related hypertension.
Collapse
Affiliation(s)
- Kyungjoon Lim
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - Benjamin Barzel
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - Sandra L. Burke
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - James A. Armitage
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| | - Geoffrey A. Head
- From the Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (K.L., B.B., S.L.B., J.A.A., G.A.H.); Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia (B.B., J.A.A.); School of Medicine (Optometry), Deakin University, Waurn Ponds, Victoria, Australia (J.A.A.); and Department of Pharmacology, Monash University, Clayton, Victoria, Australia (G.A.H.)
| |
Collapse
|
38
|
Bi S, Moran TH. Obesity in the Otsuka Long Evans Tokushima Fatty Rat: Mechanisms and Discoveries. Front Nutr 2016; 3:21. [PMID: 27512691 PMCID: PMC4961687 DOI: 10.3389/fnut.2016.00021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/01/2016] [Indexed: 12/27/2022] Open
Abstract
Understanding the neural systems underlying the controls of energy balance has been greatly advanced by identifying the deficits and underlying mechanisms in rodent obesity models. The current review focuses on the Otsuka Long Evans Tokushima Fatty (OLETF) rat obesity model. Since its recognition in the 1990s, significant progress has been made in identifying the causes and consequences of obesity in this model. Fundamental is a deficit in the cholecystokinin (CCK)-1 receptor gene resulting in the absence of CCK-1 receptors in both the gastrointestinal track and the brain. OLETF rats have a deficit in their ability to limit the size of meals and in contrast to CCK-1 receptor knockout mice, do not compensate for this increase in the size of their spontaneous meals, resulting in hyperphagia. Prior to becoming obese and in response to pair feeding, OLETF rats have increased expression of neuropeptide Y (NPY) in the compact region of the dorsomedial hypothalamus (DMH), and this overexpression contributes to their overall hyperphagia. Study of the OLETF rats has revealed important differences in the organization of the DMH in rats and mice and elucidated previously unappreciated roles for DMH NPY in energy balance and glucose homeostasis.
Collapse
Affiliation(s)
- Sheng Bi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine , Baltimore, MD , USA
| | - Timothy H Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Global Obesity Prevention Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
39
|
Otgon-Uul Z, Suyama S, Onodera H, Yada T. Optogenetic activation of leptin- and glucose-regulated GABAergic neurons in dorsomedial hypothalamus promotes food intake via inhibitory synaptic transmission to paraventricular nucleus of hypothalamus. Mol Metab 2016; 5:709-715. [PMID: 27656408 PMCID: PMC5021668 DOI: 10.1016/j.molmet.2016.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE The dorsomedial hypothalamus (DMH) has been considered an orexigenic nucleus, since the DMH lesion reduced food intake and body weight and induced resistance to diet-induced obesity. The DMH expresses feeding regulatory neuropeptides and receptors including neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART), cholecystokinin (CCK), leptin receptor, and melanocortin 3/4 receptors. However, the principal neurons generating the orexigenic function in the DMH remain to be defined. This study aimed to clarify the role of the DMH GABAergic neurons in feeding regulation by using optogenetics and electrophysiological techniques. METHODS We generated the mice expressing ChRFR-C167A, a bistable chimeric channelrhodopsin, selectively in GABAergic neurons of DMH via locally injected adeno-associated virus 2. Food intake after optogenetic activation of DMH GABAergic neurons was measured. Electrophysiological properties of DMH GABAergic neurons were measured using slice patch clamp. RESULTS Optogenetic activation of DMH GABAergic neurons promoted food intake. Leptin hyperpolarized and lowering glucose depolarized half of DMH GABAergic neurons, suggesting their orexigenic property. Optical activation of axonal terminals of DMH GABAergic neurons at the paraventricular nucleus of hypothalamus (PVN), where anorexigenic neurons are localized, increased inhibitory postsynaptic currents on PVN neurons and promoted food intake. CONCLUSION DMH GABAergic neurons are regulated by metabolic signals leptin and glucose and, once activated, promote food intake via inhibitory synaptic transmission to PVN.
Collapse
Affiliation(s)
- Zesemdorj Otgon-Uul
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan
| | - Shigetomo Suyama
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan
| | - Hiroshi Onodera
- Photon Science Center of the University of Tokyo, Department of Electrical Engineering of the University of Tokyo, Tokyo, Japan
| | - Toshihiko Yada
- Division of Integrative Physiology, Department of Physiology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 320-0498, Japan.
| |
Collapse
|
40
|
Fernandes L, Calegare BFA, Cavalcante-Silva V, D'Almeida V. Detraining in pregnancy and/or lactation modulates neuropeptidergic hypothalamic systems in offspring mice. Endocrine 2015; 50:715-24. [PMID: 25948073 DOI: 10.1007/s12020-015-0612-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Manipulations in metabolic parameters during pregnancy/lactation can impact the development of short- and long-term energy control mechanisms, which are mainly modulated by neural and hormonal inputs to the hypothalamus. Thus, we tested how mice training and detraining during pregnancy and lactation affect hypothalamus gene expression and change biometric and metabolic profiles of the offspring. Three-month-old female Swiss mice were submitted to an 8-week exercise program (swimming 5 times/week, 1 h/day). Following this physical exercise protocol, these conditioned animals and the control group were submitted to matting. After pregnancy verification, the animals were distributed into four groups: training during pregnancy and lactation (T); detraining after pregnancy confirmation (DP); detraining during lactation (DL); and control (CT), without interventions. After weaning, the offspring of the four groups were derived into these as follows: TO, DPO, DLO, and CTO, respectively. The body weight was lower in conditioned females compared to control at weeks 4-8 of the exercise regimen. No statistical difference in dam's body weight was observed during pregnancy. Related to offspring, at post-natal day 90, the animals were euthanized and DPO and DLO showed decrease in Npy and Cart expression in hypothalamus, and DLO also had increased Lep gene expression in white adipose tissue. Additionally, DPO showed increase in plasma triglycerides levels, total liver weight, and decrease in brown adipose tissue compared to CTO. Together, these results support that detraining during critical periods of development leads to altered gene expression in hypothalamic neuropeptidergic systems.
Collapse
Affiliation(s)
- Leandro Fernandes
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 3rd floor, São Paulo, SP, 04024-002, Brazil
| | - Bruno F A Calegare
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 3rd floor, São Paulo, SP, 04024-002, Brazil
| | - Vanessa Cavalcante-Silva
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 3rd floor, São Paulo, SP, 04024-002, Brazil
| | - Vânia D'Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, Rua Napoleão de Barros, 925, 3rd floor, São Paulo, SP, 04024-002, Brazil.
| |
Collapse
|
41
|
Seoane-Collazo P, Fernø J, Gonzalez F, Diéguez C, Leis R, Nogueiras R, López M. Hypothalamic-autonomic control of energy homeostasis. Endocrine 2015; 50:276-91. [PMID: 26089260 DOI: 10.1007/s12020-015-0658-y] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/06/2015] [Indexed: 10/23/2022]
Abstract
Regulation of energy homeostasis is tightly controlled by the central nervous system (CNS). Several key areas such as the hypothalamus and brainstem receive and integrate signals conveying energy status from the periphery, such as leptin, thyroid hormones, and insulin, ultimately leading to modulation of food intake, energy expenditure (EE), and peripheral metabolism. The autonomic nervous system (ANS) plays a key role in the response to such signals, innervating peripheral metabolic tissues, including brown and white adipose tissue (BAT and WAT), liver, pancreas, and skeletal muscle. The ANS consists of two parts, the sympathetic and parasympathetic nervous systems (SNS and PSNS). The SNS regulates BAT thermogenesis and EE, controlled by central areas such as the preoptic area (POA) and the ventromedial, dorsomedial, and arcuate hypothalamic nuclei (VMH, DMH, and ARC). The SNS also regulates lipid metabolism in WAT, controlled by the lateral hypothalamic area (LHA), VMH, and ARC. Control of hepatic glucose production and pancreatic insulin secretion also involves the LHA, VMH, and ARC as well as the dorsal vagal complex (DVC), via splanchnic sympathetic and the vagal parasympathetic nerves. Muscle glucose uptake is also controlled by the SNS via hypothalamic nuclei such as the VMH. There is recent evidence of novel pathways connecting the CNS and ANS. These include the hypothalamic AMP-activated protein kinase-SNS-BAT axis which has been demonstrated to be a key modulator of thermogenesis. In this review, we summarize current knowledge of the role of the ANS in the modulation of energy balance.
Collapse
Affiliation(s)
- Patricia Seoane-Collazo
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain.
| | - Johan Fernø
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- Department of Clinical Science, K. G. Jebsen Center for Diabetes Research, University of Bergen, 5021, Bergen, Norway
| | - Francisco Gonzalez
- Department of Surgery, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- Service of Ophthalmology, Complejo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | - Carlos Diéguez
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Rosaura Leis
- Unit of Investigation in Nutrition, Growth and Human Development of Galicia, Pediatric Department (USC), Complexo Hospitalario Universitario de Santiago (IDIS/SERGAS), Santiago de Compostela, Spain
| | - Rubén Nogueiras
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782, Santiago de Compostela, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Santiago de Compostela, Spain.
| |
Collapse
|
42
|
Balland E, Cowley MA. New insights in leptin resistance mechanisms in mice. Front Neuroendocrinol 2015; 39:59-65. [PMID: 26410445 DOI: 10.1016/j.yfrne.2015.09.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 11/18/2022]
Abstract
Leptin resistance is one of the main challenges of obesity. To date, two levels of resistance have been identified, first a decreased rate of leptin uptake into the brain and secondly a diminished central response to leptin. New findings have identified the mechanisms of leptin transport and demonstrated that it can be rescued in obesity, but it did not overcome the problem of central resistance. Alteration in the actions of leptin following diet-induced obesity (DIO) appears to be a multifactorial condition. Several phosphatases are inhibiting leptin signaling pathways in a pathological way. Besides, hypothalamic inflammation alters the neuronal circuits that control metabolism. Recent studies describing both mechanisms (inhibition of leptin signaling and inflammation), have provided key insights to potential new targets for treatment. However, recent data showing that DIO mice may conserve a cellular and physiological response to endogenous leptin, highlights the need to redefine the concept of "leptin resistance".
Collapse
Affiliation(s)
- Eglantine Balland
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Michael A Cowley
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
43
|
Abstract
Neurons coexpressing neuropeptide Y, agouti-related peptide, and GABA (NAG) play an important role in ingestive behavior and are located in the arcuate nucleus of the hypothalamus. NAG neurons receive both GABAergic and glutamatergic synaptic inputs, however, the developmental time course of synaptic input organization of NAG neurons in mice is unknown. In this study, we show that these neurons have low numbers of GABAergic synapses and that GABA is inhibitory to NAG neurons during early postnatal period. In contrast, glutamatergic inputs onto NAG neurons are relatively abundant by P13 and are comparatively similar to the levels observed in the adult. As mice reach adulthood (9-10 weeks), GABAergic tone onto NAG neurons increases. At this age, NAG neurons received similar numbers of inhibitory and EPSCs. To further differentiate age-associated changes in synaptic distribution, 17- to 18-week-old lean and diet-induced obesity (DIO) mice were studied. Surprisingly, NAG neurons from lean adult mice exhibit a reduction in the GABAergic synapses compared with younger adults. Conversely, DIO mice display reductions in the number of GABAergic and glutamatergic inputs onto NAG neurons. Based on these experiments, we propose that synaptic distribution in NAG neurons is continuously restructuring throughout development to accommodate the animals' energy requirements.
Collapse
|
44
|
Transient expression of neuropeptide W in postnatal mouse hypothalamus--a putative regulator of energy homeostasis. Neuroscience 2015; 301:323-37. [PMID: 26073698 DOI: 10.1016/j.neuroscience.2015.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/29/2015] [Accepted: 06/06/2015] [Indexed: 11/24/2022]
Abstract
Neuropeptide B and W (NPB and NPW) are cognate peptide ligands for NPBWR1 (GPR7), a G protein-coupled receptor. In rodents, they have been implicated in the regulation of energy homeostasis, neuroendocrine/autonomic responses, and social interactions. Although localization of these peptides and their receptors in adult rodent brain has been well documented, their expression in mouse brain during development is unknown. Here we demonstrate the transient expression of NPW mRNA in the dorsomedial hypothalamus (DMH) of postnatal mouse brain and its co-localization with neuropeptide Y (NPY) mRNA. Neurons expressing both NPW and NPY mRNAs begin to emerge in the DMH at about postnatal day 0 (P-0) through P-3. Their expression is highest around P-14, declines after P-21, and by P-28 only a faint expression of NPW and NPY mRNA remains. In P-18 brains, we detected NPW neurons in the region spanning the subincertal nucleus (SubI), the lateral hypothalamic (LH) perifornical (PF) areas, and the DMH, where the highest expression of NPW mRNA was observed. The majority of these postnatal hypothalamic NPW neurons co-express NPY mRNA. A cross of NPW-iCre knock-in mice with a Cre-dependent tdTomato reporter line revealed that more than half of the reporter-positive neurons in the adult DMH, which mature from the transiently NPW-expressing neurons, are sensitive to peripherally administrated leptin. These data suggest that the DMH neurons that transiently co-express NPW and NPY in the peri-weaning period might play a role in regulating energy homeostasis during postnatal development.
Collapse
|
45
|
Leptin resistance in obesity: An epigenetic landscape. Life Sci 2015; 140:57-63. [PMID: 25998029 DOI: 10.1016/j.lfs.2015.05.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/02/2015] [Accepted: 05/12/2015] [Indexed: 01/14/2023]
Abstract
Leptin is an adipocyte-secreted hormone that inhibits food intake and stimulates energy expenditure through interactions with neuronal pathways in the brain, particularly pathways involving the hypothalamus. Intact functioning of the leptin route is required for body weight and energy homeostasis. Given its function, the discovery of leptin increased expectations for the treatment of obesity. However, most obese individuals and subjects with a predisposition to regain weight after losing it have leptin concentrations than lean individuals, but despite the anorexigenic function of this hormone, appetite is not effectively suppressed in these individuals. This phenomenon has been deemed leptin resistance and could be the result of impairments at a number of levels in the leptin signalling pathway, including reduced access of the hormone to its receptor due to changes in receptor expression or changes in post-receptor signal transduction. Epigenetic regulation of the leptin signalling circuit could be a potential mechanism of leptin function disturbance. This review discusses the molecular mechanisms, particularly the epigenetic regulation mechanisms, involved in leptin resistance associated with obesity and the therapeutic potential of these molecular mechanisms in the battle against the obesity pandemic.
Collapse
|
46
|
Contreras C, Gonzalez F, Fernø J, Diéguez C, Rahmouni K, Nogueiras R, López M. The brain and brown fat. Ann Med 2015; 47:150-68. [PMID: 24915455 PMCID: PMC4438385 DOI: 10.3109/07853890.2014.919727] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 04/25/2014] [Indexed: 02/06/2023] Open
Abstract
Brown adipose tissue (BAT) is a specialized organ responsible for thermogenesis, a process required for maintaining body temperature. BAT is regulated by the sympathetic nervous system (SNS), which activates lipolysis and mitochondrial uncoupling in brown adipocytes. For many years, BAT was considered to be important only in small mammals and newborn humans, but recent data have shown that BAT is also functional in adult humans. On the basis of this evidence, extensive research has been focused on BAT function, where new molecules, such as irisin and bone morphogenetic proteins, particularly BMP7 and BMP8B, as well as novel central factors and new regulatory mechanisms, such as orexins and the canonical ventomedial nucleus of the hypothalamus (VMH) AMP- activated protein kinase (AMPK)-SNS-BAT axis, have been discovered and emerged as potential drug targets to combat obesity. In this review we provide an overview of the complex central regulation of BAT and how different neuronal cell populations co-ordinately work to maintain energy homeostasis.
Collapse
Affiliation(s)
- Cristina Contreras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria , Santiago de Compostela, 15782 , Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Zhang W, Bi S. Hypothalamic Regulation of Brown Adipose Tissue Thermogenesis and Energy Homeostasis. Front Endocrinol (Lausanne) 2015; 6:136. [PMID: 26379628 PMCID: PMC4553396 DOI: 10.3389/fendo.2015.00136] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/17/2015] [Indexed: 11/18/2022] Open
Abstract
Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT) is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT) or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory of Psychiatry and Behavioral Sciences, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- *Correspondence: Wei Zhang, Laboratory of Psychiatry and Behavioral Sciences, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA,
| | - Sheng Bi
- Laboratory of Psychiatry and Behavioral Sciences, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
48
|
Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism 2015; 64:35-46. [PMID: 25497342 DOI: 10.1016/j.metabol.2014.10.015] [Citation(s) in RCA: 313] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
Obesity is a chronic disease that represents one of the most serious global health burdens associated to an excess of body fat resulting from an imbalance between energy intake and expenditure, which is regulated by environmental and genetic interactions. The adipose-derived hormone leptin acts via a specific receptor in the brain to regulate energy balance and body weight, although this protein can also elicit a myriad of actions in peripheral tissues. Obese individuals, rather than be leptin deficient, have in most cases, high levels of circulating leptin. The failure of these high levels to control body weight suggests the presence of a resistance process to the hormone that could be partly responsible of disturbances on body weight regulation. Furthermore, leptin resistance can impair physiological peripheral functions of leptin such as lipid and carbohydrate metabolism and nutrient intestinal utilization. The present document summarizes those findings regarding leptin resistance development and the role of this hormone in the development and maintenance of an obese state. Thus, we focused on the effect of the impaired leptin action on adipose tissue, liver, skeletal muscle and intestinal function and the accompanying relationships with diet-induced obesity. The involvement of some inflammatory mediators implicated in the development of obesity and their roles in leptin resistance development are also discussed.
Collapse
Affiliation(s)
- Neira Sáinz
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - Jaione Barrenetxe
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
49
|
Müller-Stich BP, Billeter AT, Fleming T, Fischer L, Büchler MW, Nawroth PP. Nitrosative stress but not glycemic parameters correlate with improved neuropathy in nonseverely obese diabetic patients after Roux-Y gastric bypass. Surg Obes Relat Dis 2014; 11:847-54. [PMID: 25862183 DOI: 10.1016/j.soard.2014.12.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Diabetic neuropathy is common in type 2 diabetic patients (T2DM) but tight glycemic control does not improve the symptoms. In contrast, Roux-Y gastric bypass (RYGB) has a positive effect on active neuropathic symptoms, independent from glycemic control. The purpose of the present study was to identify potential mechanisms of improved diabetic neuropathic symptoms after RYGB. METHODS A prospective cohort of 20 patients with insulin-dependent T2DM and BMI < 35 kg/m(2) were treated with RYGB. Nineteen patients had complete follow-up. Fasting glucose, HbA1c (glycated hemoglobin), markers for nitrosative, carbonyl, and oxidative stress (nitrotyrosine, carboxylated-lysine (CML), methylglyoxal, oxidized low-density-lipoprotein (oxLDL)) as well as Neuropeptid Y and Neurokinin A were investigated over 12 months. Neuropathy was assessed using the Neuropathy Deficit Score (NDS). RESULTS The preoperative NDS improved within twelve months (5.1 ± 0.6 to 2.6 ± 0.4, P = .010). Fasting glucose and HbA1c also improved compared to preoperative values (201.1 ± 16.6 mg/dL to 128 ± 8.7 mg/dL, P = .004 and 8.5 ± 0.3% (53 ± 3.3 mmol/mol) to 7 ± 0.3% (67 ± 3.3 mmol/mol), P = .001, respectively). Nitrotyrosine, CML, and methylglyoxal all 3 decreased postoperatively (1067.3 ± 266.9 nM to 355.8 ± 36.4 nM, P = .003; 257.1 ± 10.2 ng/ml to 215.3 ± 18.3 ng/ml, P = .039; 402.3 ± 3.9 nM to 163.4 ± 10.3 nM, P = .002). OxLDL remained unchanged. Fasting glucose and HbA1c did not correlate with improved neuropathy. The decrease in nitrotyrosine correlated with improvement in the NDS after 6 and twelve months (r = .9, P < .001 and r = .68, P = .03). The decrease in methylglyoxal after 6 months correlated with decrease in NDS after twelve months (r = 0.897, P = .003). CONCLUSION RYGB seems to improve oxidative, nitrosative and carbonyl stress, known to have a causal role in diabetic neuropathy.
Collapse
Affiliation(s)
- Beat P Müller-Stich
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| | - Adrian T Billeter
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Lars Fischer
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Markus W Büchler
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Peter P Nawroth
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
50
|
Simonds S, Pryor J, Ravussin E, Greenway F, Dileone R, Allen A, Bassi J, Elmquist J, Keogh J, Henning E, Myers M, Licinio J, Brown R, Enriori P, O’Rahilly S, Sternson S, Grove K, Spanswick D, Farooqi I, Cowley M. Leptin mediates the increase in blood pressure associated with obesity. Cell 2014; 159:1404-16. [PMID: 25480301 PMCID: PMC4259491 DOI: 10.1016/j.cell.2014.10.058] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/31/2014] [Accepted: 10/30/2014] [Indexed: 02/02/2023]
Abstract
Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species.
Collapse
Affiliation(s)
- Stephanie E. Simonds
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jack T. Pryor
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK,Neurosolutions Ltd., Coventry CV4 7ZS, UK
| | - Eric Ravussin
- The Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Frank L. Greenway
- The Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Ralph Dileone
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Andrew M. Allen
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Jaspreet Bassi
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Joel K. Elmquist
- Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Martin G. Myers
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Julio Licinio
- Mind and Brain Theme, South Australian Health and Medical Research Institute and Department of Psychiatry, School of Medicine, Flinders University, Adelaide, SA 5001, Australia
| | - Russell D. Brown
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia
| | - Pablo J. Enriori
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia
| | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Scott M. Sternson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kevin L. Grove
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Portland, OR 97239, USA
| | - David C. Spanswick
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia,Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK,Corresponding author
| | - Michael A. Cowley
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia,Corresponding author
| |
Collapse
|