1
|
Sun X, Ye G, Li J, Yuan L, Bai G, Xu YJ, Zhang J. The tumor suppressor Parkin exerts anticancer effects through regulating mitochondrial GAPDH activity. Oncogene 2024; 43:3215-3226. [PMID: 39285229 DOI: 10.1038/s41388-024-03157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Cancer cells preferentially utilize glycolysis for energy production, and GAPDH is a critical enzyme in glycolysis. Parkin is a tumor suppressor and a key protein involved in mitophagy regulation. However, the tumor suppression mechanism of Parkin has still not been elucidated. In this study, we identified mitochondrial GAPDH as a new substrate of the E3 ubiquitin ligase Parkin, which mediated GAPDH ubiquitination in human cervical cancer. The translocation of GAPDH into mitochondria was driven by the PINK1 kinase, and either PINK1 or GAPDH mutation prevented the accumulation of GAPDH in mitochondria. Parkin caused the ubiquitination of GAPDH at multiple sites (K186, K215, and K219) located within the enzyme-catalyzed binding domain of the GAPDH protein. GAPDH ubiquitination was required for mitophagy, and stimulation of mitophagy suppressed cervical cancer cell growth, indicating that mitophagy serves as a type of cell death. Mechanistically, PHB2 served as a key mediator in GAPDH ubiquitination-induced mitophagy through stabilizing PINK1 protein and GAPDH mutation resulted in the reduced distribution of PHB2 in mitophagic vacuole. In addition, ubiquitination of GAPDH decreased its phosphorylation level and enzyme activity and inhibited the glycolytic pathway in cervical cancer cells. The results of in vivo experiments also showed that the GAPDH mutation increased glycolysis in cervical cancer cells and accelerated tumorigenesis. Thus, we concluded that Parkin may exert its anticancer function by ubiquitinating GAPDH in mitochondria. Taken together, our study further clarified the molecular mechanism of tumor suppression by Parkin through the regulation of energy metabolism, which provides an experimental basis for the development of new drugs for the treatment of human cervical cancer.
Collapse
Affiliation(s)
- Xin Sun
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Guiqin Ye
- Department of Clinical Laboratory, Yuhuan People's Hospital, Taizhou, China
| | - Jiuzhou Li
- Department of Neurosurgery, Binzhou People's Hospital, Binzhou, China
| | - Liyang Yuan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Gongxun Bai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, China.
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
| | - Jianbin Zhang
- Cancer Center, Department of Medical Oncology, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Key Laboratory for Diagnosis and Treatment of Upper Limb Edema and Stasis of Breast Cancer, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
2
|
Faria-Pereira A, Morais VA. Synapses: The Brain's Energy-Demanding Sites. Int J Mol Sci 2022; 23:3627. [PMID: 35408993 PMCID: PMC8998888 DOI: 10.3390/ijms23073627] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
The brain is one of the most energy-consuming organs in the mammalian body, and synaptic transmission is one of the major contributors. To meet these energetic requirements, the brain primarily uses glucose, which can be metabolized through glycolysis and/or mitochondrial oxidative phosphorylation. The relevance of these two energy production pathways in fulfilling energy at presynaptic terminals has been the subject of recent studies. In this review, we dissect the balance of glycolysis and oxidative phosphorylation to meet synaptic energy demands in both resting and stimulation conditions. Besides ATP output needs, mitochondria at synapse are also important for calcium buffering and regulation of reactive oxygen species. These two mitochondrial-associated pathways, once hampered, impact negatively on neuronal homeostasis and synaptic activity. Therefore, as mitochondria assume a critical role in synaptic homeostasis, it is becoming evident that the synaptic mitochondria population possesses a distinct functional fingerprint compared to other brain mitochondria. Ultimately, dysregulation of synaptic bioenergetics through glycolytic and mitochondrial dysfunctions is increasingly implicated in neurodegenerative disorders, as one of the first hallmarks in several of these diseases are synaptic energy deficits, followed by synapse degeneration.
Collapse
Affiliation(s)
| | - Vanessa A. Morais
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| |
Collapse
|
3
|
Daněk J, Danačíková Š, Kala D, Svoboda J, Kapoor S, Pošusta A, Folbergrová J, Tauchmannová K, Mráček T, Otáhal J. Sulforaphane Ameliorates Metabolic Changes Associated With Status Epilepticus in Immature Rats. Front Cell Neurosci 2022; 16:855161. [PMID: 35370554 PMCID: PMC8965559 DOI: 10.3389/fncel.2022.855161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Status epilepticus (SE) is a common paediatric emergency with the highest incidence in the neonatal period and is a well-known epileptogenic insult. As previously established in various experimental and human studies, SE induces long-term alterations to brain metabolism, alterations that directly contribute to the development of epilepsy. To influence these changes, organic isothiocyanate compound sulforaphane (SFN) has been used in the present study for its known effect of enhancing antioxidative, cytoprotective, and metabolic cellular properties via the Nrf2 pathway. We have explored the effect of SFN in a model of acquired epilepsy induced by Li-Cl pilocarpine in immature rats (12 days old). Energy metabolites PCr, ATP, glucose, glycogen, and lactate were determined by enzymatic fluorimetric methods during the acute phase of SE. Protein expression was evaluated by Western blot (WB) analysis. Neuronal death was scored on the FluoroJadeB stained brain sections harvested 24 h after SE. To assess the effect of SFN on glucose metabolism we have performed a series of 18F-DG μCT/PET recordings 1 h, 1 day, and 3 weeks after the induction of SE. Responses of cerebral blood flow (CBF) to electrical stimulation and their influence by SFN were evaluated by laser Doppler flowmetry (LDF). We have demonstrated that the Nrf2 pathway is upregulated in the CNS of immature rats after SFN treatment. In the animals that had undergone SE, SFN was responsible for lowering glucose uptake in most regions 1 h after the induction of SE. Moreover, SFN partially reversed hypometabolism observed after 24 h and achieved full reversal at approximately 3 weeks after SE. Since no difference in cell death was observed in SFN treated group, these changes cannot be attributed to differences in neurodegeneration. SFN per se did not affect the glucose uptake at any given time point suggesting that SFN improves endogenous CNS ability to adapt to the epileptogenic insult. Furthermore, we had discovered that SFN improves blood flow and accelerates CBF response to electrical stimulation. Our findings suggest that SFN improves metabolic changes induced by SE which have been identified during epileptogenesis in various animal models of acquired epilepsy.
Collapse
Affiliation(s)
- Jan Daněk
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Šárka Danačíková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - David Kala
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan Svoboda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Sonam Kapoor
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Antonín Pošusta
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | | | | | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Jakub Otáhal,
| |
Collapse
|
4
|
Lactate transporters in the rat barrel cortex sustain whisker-dependent BOLD fMRI signal and behavioral performance. Proc Natl Acad Sci U S A 2021; 118:2112466118. [PMID: 34782470 DOI: 10.1073/pnas.2112466118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 01/04/2023] Open
Abstract
Lactate is an efficient neuronal energy source, even in presence of glucose. However, the importance of lactate shuttling between astrocytes and neurons for brain activation and function remains to be established. For this purpose, metabolic and hemodynamic responses to sensory stimulation have been measured by functional magnetic resonance spectroscopy and blood oxygen level-dependent (BOLD) fMRI after down-regulation of either neuronal MCT2 or astroglial MCT4 in the rat barrel cortex. Results show that the lactate rise in the barrel cortex upon whisker stimulation is abolished when either transporter is down-regulated. Under the same paradigm, the BOLD response is prevented in all MCT2 down-regulated rats, while about half of the MCT4 down-regulated rats exhibited a loss of the BOLD response. Interestingly, MCT4 down-regulated animals showing no BOLD response were rescued by peripheral lactate infusion, while this treatment had no effect on MCT2 down-regulated rats. When animals were tested in a novel object recognition task, MCT2 down-regulated animals were impaired in the textured but not in the visual version of the task. For MCT4 down-regulated animals, while all animal succeeded in the visual task, half of them exhibited a deficit in the textured task, a similar segregation into two groups as observed for BOLD experiments. Our data demonstrate that lactate shuttling between astrocytes and neurons is essential to give rise to both neurometabolic and neurovascular couplings, which form the basis for the detection of brain activation by functional brain imaging techniques. Moreover, our results establish that this metabolic cooperation is required to sustain behavioral performance based on cortical activation.
Collapse
|
5
|
Venkatasubramanian A, Thiyagaraj A, Subbiah V, Solairaja S, Arumugam S, Ramalingam S, Venkatabalasubramanian S. Ameliorative role of ellagic acid against acute liver steatosis in adult zebrafish experimental model. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109061. [PMID: 33901636 DOI: 10.1016/j.cbpc.2021.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/24/2021] [Accepted: 04/17/2021] [Indexed: 11/22/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD), also known as hepatic steatosis, is highly prevalent in developed countries despite advancements in clinical modalities. Therefore, there is a need for identifying the bioactive molecular entity (BME) that can therapeutically intervene with liver steatosis progression. In this study, we investigated the efficacy of one such BME - ellagic acid (EA) to ascertain its molecular therapeutic potential against iodoacetamide (IAA) mediated liver steatosis in an adult zebrafish model. Dysregulation of lipid homeostasis by IAA and its amelioration by EA was examined by histological staining and biochemical analysis in the adult zebrafish model. Furthermore, the gene expression analysis of 3-hydroxy methyl glutaryl (HMG) CoA reductase, fatty acid synthase and sterol receptor binding protein-1c in IAA mediated liver steatosis and its regulation by EA was also studied by reverse transcription-polymerase chain reaction (RT-PCR). Concurrently, the drug likeliness and pharmacokinetic properties of EA in comparison to Simvastatin (SIM) were analysed computationally by absorption, distribution, metabolism, and excretion (ADME) analysis. Also, the atomic level interactions of HMG-CoA reductase binding pocket with EA in comparison to SIM were examined by the molecular docking approach to ascertain their comparative binding energy (ΔG) and binding pose. Molecular docking revealed prominent hotspot residues (Gly 765, Gln 766, Asp 767, Gly 808) key to both EA and SIM interaction. All the above results revealed that the experimental observations wherein good agreement with the computational analysis substantiating the promising therapeutic potential of EA against IAA mediated liver steatosis.
Collapse
Affiliation(s)
- Aishwarya Venkatasubramanian
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai 603 203, Tamil Nadu, India
| | - Anand Thiyagaraj
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai 603 203, Tamil Nadu, India
| | - Vairamuthu Subbiah
- Central Clinical Laboratory, Madras Veterinary College, Tamilnadu Veterinary and Animal Sciences University, Chennai 600007, India
| | - Solaipriya Solairaja
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai 603 203, Tamil Nadu, India
| | - Sangaran Arumugam
- Department of Veterinary Parasitology, Madras Veterinary College, Tamilnadu Veterinary and Animal Sciences University, Chennai 600007, India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai 603 203, Tamil Nadu, India
| | | |
Collapse
|
6
|
Sakaguchi M, Nishiuchi R, Bando M, Yamada Y, Kondo R, Mitsumori M, Shiokawa A, Kanazawa M, Ikeguchi S, Kikyo F, Tanaka S. Prolyl oligopeptidase participates in the cytosine arabinoside-induced nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase in a human neuroblastoma cell line. Biochem Biophys Res Commun 2021; 572:65-71. [PMID: 34358965 DOI: 10.1016/j.bbrc.2021.07.094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022]
Abstract
Previously, we reported that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a binding partner of prolyl oligopeptidase (POP) in neuroblastoma NB-1 cells and that the POP inhibitor, SUAM-14746, inhibits cytosine arabinoside (Ara-C)-induced nuclear translocation of GAPDH and protects against Ara-C cytotoxicity. To carry out a more in-depth analysis of the interaction between POP and GAPDH, we generated POP-KO NB-1 cells and compared the nuclear translocation of GAPDH after Ara-C with or without SUAM-14746 treatment to wild-type NB-1 cells by western blotting and fluorescence immunostaining. Ara-C did not induce the nuclear translocation of GAPDH and SUAM-14746 did not protect against Ara-C cytotoxicity in POP-KO cells. These results indicate that the anticancer effects of Ara-C not only include the commonly known antimetabolic effects, but also the induction of cell death by nuclear transfer of GAPDH through interaction with POP.
Collapse
Affiliation(s)
- Minoru Sakaguchi
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Ryota Nishiuchi
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Mika Bando
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yui Yamada
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Rie Kondo
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Mika Mitsumori
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Ai Shiokawa
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Miyuki Kanazawa
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shiori Ikeguchi
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Fumi Kikyo
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Satoshi Tanaka
- Laboratory of Cell Biology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
7
|
Differential Proteomics Analysis of the Subcutaneous Connective Tissues in Alcian Blue Tracks along Conception Vessel and Adjacent Nonmeridian in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5550694. [PMID: 34035822 PMCID: PMC8116161 DOI: 10.1155/2021/5550694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022]
Abstract
In more than half a century, exploring the biological connotation of the meridians was one of the core components of scientific research studies in traditional Chinese medicine (TCM). Based on the previous works of low hydraulic resistance channel (LHRC) along meridians (LHRCM), the differential proteomics between the Alcian blue track (ABT) on LHRC along the conception vessel (CV) and nonmeridians tissue next to the CV were investigated in this study to explore the material basis and biological function of LHRCM. Proteomics based on LC-MS was introduced into the subcutaneous connective tissues (SCT) of ABT along the CV and the adjacent nonmeridian (1 cm from the CV). A total of 2328 proteins were identified from ABT along the CV and adjacent nonmeridian based on data-dependent acquisition (DDA) mode. In total, 1970 proteins were quantified based on the SWATH (sequential window acquisition of all theoretical fragment ions) label-free model, and the nonstandard and quantitative methods of MSALL were applied to analyze the data. There were 468 proteins differentially expressed. GO analytic results showed that the differential proteins were of varieties in molecular function and biological process. Most of differential proteins were involved in metabolic process, cellular process, response to hormone, and response to wounding. Further analysis showed that the upregulated differential proteins involved in ATP metabolism (ATP5E, GAPDH), redox reactions (Gpx-3), and Ca2+ transmembrane transport (CACNA2D1) were closely related to meridian phenomenon and acupuncture effect. These differential proteins would be potential characteristic proteins of the LHRC along the CV in rats which may be useful to deepen the knowledge on LHRCM.
Collapse
|
8
|
Sirover MA. The role of posttranslational modification in moonlighting glyceraldehyde-3-phosphate dehydrogenase structure and function. Amino Acids 2021; 53:507-515. [PMID: 33651246 DOI: 10.1007/s00726-021-02959-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/06/2021] [Indexed: 11/26/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a moonlighting protein exhibiting distinct activities apart from its classical role in glycolysis. Regulation of its moonlighting functions and its subcellular localization may be dependent on its posttranslational modification (PTM). The latter include its phosphorylation, which is required for its role in intermembrane trafficking, synaptic transmission and cancer survival; nitrosylation, which is required for its function in apoptosis, heme metabolism and the immune response; acetylation which is necessary for its modulation of apoptotic gene regulation; and N-acetylglucosamine modification which may induce changes in GAPDH oligomeric structure. These findings suggest a structure function relationship between GAPDH posttranslational modification and its diverse moonlighting activities.
Collapse
Affiliation(s)
- Michael A Sirover
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
9
|
Tossounian MA, Zhang B, Gout I. The Writers, Readers, and Erasers in Redox Regulation of GAPDH. Antioxidants (Basel) 2020; 9:antiox9121288. [PMID: 33339386 PMCID: PMC7765867 DOI: 10.3390/antiox9121288] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/28/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Glyceraldehyde 3–phosphate dehydrogenase (GAPDH) is a key glycolytic enzyme, which is crucial for the breakdown of glucose to provide cellular energy. Over the past decade, GAPDH has been reported to be one of the most prominent cellular targets of post-translational modifications (PTMs), which divert GAPDH toward different non-glycolytic functions. Hence, it is termed a moonlighting protein. During metabolic and oxidative stress, GAPDH is a target of different oxidative PTMs (oxPTM), e.g., sulfenylation, S-thiolation, nitrosylation, and sulfhydration. These modifications alter the enzyme’s conformation, subcellular localization, and regulatory interactions with downstream partners, which impact its glycolytic and non-glycolytic functions. In this review, we discuss the redox regulation of GAPDH by different redox writers, which introduce the oxPTM code on GAPDH to instruct a redox response; the GAPDH readers, which decipher the oxPTM code through regulatory interactions and coordinate cellular response via the formation of multi-enzyme signaling complexes; and the redox erasers, which are the reducing systems that regenerate the GAPDH catalytic activity. Human pathologies associated with the oxidation-induced dysregulation of GAPDH are also discussed, featuring the importance of the redox regulation of GAPDH in neurodegeneration and metabolic disorders.
Collapse
|
10
|
Ji J, Shi S, Chen W, Xie T, Du C, Sun J, Shi Z, Gao R, Jiang Z, Xiao W. Effects of exogenous γ-Aminobutyric acid on the regulation of respiration and protein expression in germinating seeds of mungbean (Vigna radiata) under salt conditions. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Grove RA, Madhavan D, Boone CHT, Braga CP, Papackova Z, Kyllo H, Samson K, Simeone K, Simeone T, Helikar T, Hanson CK, Adamec J. Aberrant energy metabolism and redox balance in seizure onset zones of epileptic patients. J Proteomics 2020; 223:103812. [PMID: 32418907 PMCID: PMC10588813 DOI: 10.1016/j.jprot.2020.103812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/16/2022]
Abstract
Epilepsy is a disorder that affects around 1% of the population. Approximately one third of patients do not respond to anti-convulsant drugs treatment. To understand the underlying biological processes involved in drug resistant epilepsy (DRE), a combination of proteomics strategies was used to compare molecular differences and enzymatic activities in tissue implicated in seizure onset to tissue with no abnormal activity within patients. Label free quantitation identified 17 proteins with altered abundance in the seizure onset zone as compared to tissue with normal activity. Assessment of oxidative protein damage by protein carbonylation identified additional 11 proteins with potentially altered function in the seizure onset zone. Pathway analysis revealed that most of the affected proteins are involved in energy metabolism and redox balance. Further, enzymatic assays showed significantly decreased activity of transketolase indicating a disruption of the Pentose Phosphate Pathway and diversion of intermediates into purine metabolic pathway, resulting in the generation of the potentially pro-convulsant metabolites. Altogether, these findings suggest that imbalance in energy metabolism and redox balance, pathways critical to proper neuronal function, play important roles in neuronal network hyperexcitability and can be used as a primary target for potential therapeutic strategies to combat DRE. SIGNIFICANCE: Epileptic seizures are some of the most difficult to treat neurological disorders. Up to 40% of patients with epilepsy are resistant to first- and second-line anticonvulsant therapy, a condition that has been classified as refractory epilepsy. One potential therapy for this patient population is the ketogenic diet (KD), which has been proven effective against multiple refractory seizure types However, compliance with the KD is extremely difficult, and carries severe risks, including ketoacidosis, renal failure, and dangerous electrolyte imbalances. Therefore, identification of pathways disruptions or shortages can potentially uncover cellular targets for anticonvulsants, leading to a personalized treatment approach depending on a patient's individual metabolic signature.
Collapse
Affiliation(s)
- Ryan A Grove
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Deepak Madhavan
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Cory H T Boone
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Camila Pereira Braga
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Zuzana Papackova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, CZ, Czech Republic; Czech University of Life Science Prague, Faculty of Agrobiology-Food and Natural Recourses, Department of Veterinary Science, Prague, CZ, Czech Republic
| | - Hannah Kyllo
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States of America
| | - Kaeli Samson
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Kristina Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Timothy Simeone
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Tomas Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Corrine K Hanson
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE, 68198, United States of America
| | - Jiri Adamec
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America.
| |
Collapse
|
12
|
Sirover MA. Moonlighting glyceraldehyde-3-phosphate dehydrogenase: posttranslational modification, protein and nucleic acid interactions in normal cells and in human pathology. Crit Rev Biochem Mol Biol 2020; 55:354-371. [PMID: 32646244 DOI: 10.1080/10409238.2020.1787325] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Moonlighting glyceraldehyde-3-phosphate dehydrogenase (GAPDH) exhibits multiple functions separate and distinct from its historic role in energy production. Further, it exhibits dynamic changes in its subcellular localization which is an a priori requirement for its multiple activities. Separately, moonlighting GAPDH may function in the pathology of human disease, involved in tumorigenesis, diabetes, and age-related neurodegenerative disorders. It is suggested that moonlighting GAPDH function may be related to specific modifications of its protein structure as well as the formation of GAPDH protein: protein or GAPDH protein: nucleic acid complexes.
Collapse
Affiliation(s)
- Michael A Sirover
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
13
|
Boillat Y, Xin L, van der Zwaag W, Gruetter R. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. J Cereb Blood Flow Metab 2020; 40:488-500. [PMID: 30755134 PMCID: PMC7026843 DOI: 10.1177/0271678x19831022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Negative blood oxygenation-level dependent (BOLD) signal observed during task execution in functional magnetic resonance imaging (fMRI) can be caused by different mechanisms, such as a blood-stealing effect or neuronal deactivation. Electrophysiological recordings showed that neuronal deactivation underlies the negative BOLD observed in the occipital lobe during visual stimulation. In this study, the metabolic demand of such a response was studied by measuring local metabolite concentration changes during a visual checkerboard stimulation using functional magnetic resonance spectroscopy (fMRS) at 7 Tesla. The results showed increases of glutamate and lactate concentrations during the positive BOLD response, consistent with previous fMRS studies. In contrast, during the negative BOLD response, decreasing concentrations of glutamate, lactate and gamma-aminobutyric acid (GABA) were found, suggesting a reduction of glycolytic and oxidative metabolic demand below the baseline. Additionally, the respective changes of the BOLD signal, glutamate and lactate concentrations of both groups suggest that a local increase of inhibitory activity might occur during the negative BOLD response.
Collapse
Affiliation(s)
- Yohan Boillat
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Extracellular transglycosylase and glyceraldehyde-3-phosphate dehydrogenase attributed to the anti-staphylococcal activity of Lactobacillus plantarum USM8613. J Biotechnol 2019; 300:20-31. [DOI: 10.1016/j.jbiotec.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 05/12/2019] [Accepted: 05/12/2019] [Indexed: 11/20/2022]
|
15
|
Kadri S, El Ayed M, Cosette P, Jouenne T, Elkhaoui S, Zekri S, Limam F, Aouani E, Mokni M. Neuroprotective effect of grape seed extract on brain ischemia: a proteomic approach. Metab Brain Dis 2019; 34:889-907. [PMID: 30796716 DOI: 10.1007/s11011-019-00396-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/04/2019] [Indexed: 01/01/2023]
Abstract
Stroke is one of the leading causes of long-lasting disability in human and oxidative stress an important underlying cause. Molecular insights into pathophysiology of ischemic stroke are still obscure, and the present study investigated the protective effect of high dosage Grape Seed Extract (GSE 2.5 g/kg) on brain ischemia-reperfusion (I/R) injury using a proteomic approach. Ischemia was realized by occlusion of the common carotid arteries for 30 min followed by 1 h reperfusion on control or GSE pre-treated rats, and a label-free quantification followed by mass spectrometry analysis used to evaluate I/R induced alterations in protein abundance and metabolic pathways as well as the protection afforded by GSE. I/R-induced whole brain ionogram dyshomeostasis, ultrastructural alterations, as well as inflammation into hippocampal dentate gyrus area, which were evaluated using ICP-OES, transmission electron microscopy and immuno-histochemistry respectively. I/R altered the whole brain proteome abundance among which 108 proteins were significantly modified (35 up and 73 down-regulated proteins). Eighty-four proteins were protected upon GSE treatment among which 27 were up and 57 down-regulated proteins, suggesting a potent protective effect of GSE close to 78%of the disturbed proteome. Furthermore, GSE efficiently prevented the brain from I/R-induced ion dyshomeostasis, ultrastructural alterations, inflammatory biomarkers as CD56 or CD68 and calcium burst within the hippocampus. To conclude, a potent protective effect of GSE on brain ischemia is evidenced and clinical trials using high dosage GSE should be envisaged on people at high risk for stroke.
Collapse
Affiliation(s)
- Safwen Kadri
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia.
| | - Mohamed El Ayed
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Pascal Cosette
- Plateforme Protéomique PISSARO, Institut de Recherche et d'Innovation Biomédicale, Normandie Université, Mont Saint Aignan, France
| | - Thierry Jouenne
- Plateforme Protéomique PISSARO, Institut de Recherche et d'Innovation Biomédicale, Normandie Université, Mont Saint Aignan, France
| | - Salem Elkhaoui
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Sami Zekri
- Common Services Unit on Transmission Electron Microscopy, Faculty of Medicineof Tunis, University of Tunis El Manar, Bab Saâdoun, Tunis, Tunisia
| | - Ferid Limam
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Ezzedine Aouani
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| | - Meherzia Mokni
- Bioactive Substances Laboratory, Biotechnology Centre, TechnopolisBorj-Cedria, BP-901, 2050, Hammam-Lif, Tunis, Tunisia
| |
Collapse
|
16
|
Abstract
Evidence from both preclinical and clinical studies suggest the importance of zinc homeostasis in seizures/epilepsy. Undoubtedly, zinc, via modulation of a variety of targets, is necessary for maintaining the balance between neuronal excitation and inhibition, while an imbalance between excitation and inhibition underlies seizures. However, the relationship between zinc signaling and seizures/epilepsy is complex as both extracellular and intracellular zinc may produce either protective or detrimental effects. This review provides an overview of preclinical/behavioral, functional and molecular studies, as well as clinical data on the involvement of zinc in the pathophysiology and treatment of seizures/epilepsy. Furthermore, the potential of targeting elements associated with zinc signaling or homeostasis and zinc levels as a therapeutic strategy for epilepsy is discussed.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Katarzyna Młyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
17
|
Hertz L, Chen Y. Additional mechanisms for brain activation failure due to reduced glucose metabolism-a commentary on Zilberter and Zilberter: The vicious circle of hypometabolism in neurodegenerative diseases. J Neurosci Res 2017; 96:757-761. [PMID: 29095528 DOI: 10.1002/jnr.24192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Leif Hertz
- Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug Development, China Medical University, Shenyang, People's Republic of China
| | - Ye Chen
- Henry M. Jackson Foundation, Bethesda, Maryland
| |
Collapse
|
18
|
Bazzigaluppi P, Ebrahim Amini A, Weisspapir I, Stefanovic B, Carlen PL. Hungry Neurons: Metabolic Insights on Seizure Dynamics. Int J Mol Sci 2017; 18:ijms18112269. [PMID: 29143800 PMCID: PMC5713239 DOI: 10.3390/ijms18112269] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Epilepsy afflicts up to 1.6% of the population and the mechanisms underlying the appearance of seizures are still not understood. In past years, many efforts have been spent trying to understand the mechanisms underlying the excessive and synchronous firing of neurons. Traditionally, attention was pointed towards synaptic (dys)function and extracellular ionic species (dys)regulation. Recently, novel clinical and preclinical studies explored the role of brain metabolism (i.e., glucose utilization) of seizures pathophysiology revealing (in most cases) reduced metabolism in the inter-ictal period and increased metabolism in the seconds preceding and during the appearance of seizures. In the present review, we summarize the clinical and preclinical observations showing metabolic dysregulation during epileptogenesis, seizure initiation, and termination, and in the inter-ictal period. Recent preclinical studies have shown that 2-Deoxyglucose (2-DG, a glycolysis blocker) is a novel therapeutic approach to reduce seizures. Furthermore, we present initial evidence for the effectiveness of 2-DG in arresting 4-Aminopyridine induced neocortical seizures in vivo in the mouse.
Collapse
Affiliation(s)
- Paolo Bazzigaluppi
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Sunnybrook Research Institute, Medical Biophysics, Toronto, ON M4N 3M5, Canada.
| | - Azin Ebrahim Amini
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON M5S 3G9, Canada.
| | - Iliya Weisspapir
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
| | - Bojana Stefanovic
- Sunnybrook Research Institute, Medical Biophysics, Toronto, ON M4N 3M5, Canada.
| | - Peter L Carlen
- Krembil Research Institute, Fundamental Neurobiology, Toronto, ON M5T 2S8, Canada.
- Department of Medicine & Physiology, and Institute of Biomaterials & Biomedical Engineering (IBBME), University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
19
|
Zilberter Y, Zilberter M. The vicious circle of hypometabolism in neurodegenerative diseases: Ways and mechanisms of metabolic correction. J Neurosci Res 2017; 95:2217-2235. [PMID: 28463438 DOI: 10.1002/jnr.24064] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/13/2022]
Abstract
Hypometabolism, characterized by decreased brain glucose consumption, is a common feature of many neurodegenerative diseases. Initial hypometabolic brain state, created by characteristic risk factors, may predispose the brain to acquired epilepsy and sporadic Alzheimer's and Parkinson's diseases, which are the focus of this review. Analysis of available data suggests that deficient glucose metabolism is likely a primary initiating factor for these diseases, and that resulting neuronal dysfunction further promotes the metabolic imbalance, establishing an effective positive feedback loop and a downward spiral of disease progression. Therefore, metabolic correction leading to the normalization of abnormalities in glucose metabolism may be an efficient tool to treat the neurological disorders by counteracting their primary pathological mechanisms. Published and preliminary experimental results on this approach for treating Alzheimer's disease and epilepsy models support the efficacy of metabolic correction, confirming the highly promising nature of the strategy. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuri Zilberter
- Aix-Marseille Université, INSERM UMR1106, Institut de Neurosciences des Systèmes, Marseille, France
| | - Misha Zilberter
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, California, 94158, USA
| |
Collapse
|
20
|
Brain proteomic modifications associated to protective effect of grape extract in a murine model of obesity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:578-588. [DOI: 10.1016/j.bbapap.2017.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/24/2017] [Accepted: 03/03/2017] [Indexed: 01/01/2023]
|
21
|
Abstract
Aside from its well-established role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been shown to possess many key functions in cells. These functions are regulated by protein oligomerization , biomolecular interactions, post-translational modifications , and variations in subcellular localization . Several GAPDH functions and regulatory mechanisms overlap with one another and converge around its role in intermediary metabolism. Several structural determinants of the protein dictate its function and regulation. GAPDH is ubiquitously expressed and is found in all domains of life. GAPDH has been implicated in many diseases, including those of pathogenic, cardiovascular, degenerative, diabetic, and tumorigenic origins. Understanding the mechanisms by which GAPDH can switch between its functions and how these functions are regulated can provide insights into ways the protein can be modulated for therapeutic outcomes.
Collapse
|
22
|
Lin GW, Lu P, Zeng T, Tang HL, Chen YH, Liu SJ, Gao MM, Zhao QH, Yi YH, Long YS. GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions. Neuropharmacology 2016; 113:480-489. [PMID: 27816501 DOI: 10.1016/j.neuropharm.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/12/2023]
Abstract
Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3' UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3' UTR and SCN3A 3' UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3' UTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD.
Collapse
Affiliation(s)
- Guo-Wang Lin
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Ping Lu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Tao Zeng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Hui-Ling Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Yong-Hong Chen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Shu-Jing Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Mei-Mei Gao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Qi-Hua Zhao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Yue-Sheng Long
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China.
| |
Collapse
|
23
|
Kaneko Y, Pappas C, Tajiri N, Borlongan CV. Oxytocin modulates GABA AR subunits to confer neuroprotection in stroke in vitro. Sci Rep 2016; 6:35659. [PMID: 27767042 PMCID: PMC5073361 DOI: 10.1038/srep35659] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
Oxytocin protects against ischemia-induced inflammation and oxidative stress, and is associated with GABA (γ-aminobutyric acid, an inhibitory neurotransmitter) signaling transduction in neurons. However, the molecular mechanism by which oxytocin affords neuroprotection, especially the interaction between oxytocin receptor and GABAA receptor (GABAAR), remains to be elucidated. Primary rat neural cells were exposed to oxytocin before induction of experimental acute stroke model via oxygen-glucose deprivation-reperfusion (OGD/R) injury. Pretreatment with oxytocin increased cell viability, decreased the cell damage against oxidative stress, and prevented the release of high mobility group box1 during OGD/R. However, introduction of oxytocin during OGD/R did not induce neuroprotection. Although oxytocin did not affect the glutathione-related cellular metabolism before OGD, oxytocin modulated the expression levels of GABAAR subunits, which function to remove excessive neuronal excitability via chloride ion influx. Oxytocin-pretreated cells significantly increased the chloride ion influx in response to GABA and THIP (δ-GABAAR specific agonist). This study provides evidence that oxytocin regulated GABAAR subunits in affording neuroprotection against OGD/R injury.
Collapse
Affiliation(s)
- Yuji Kaneko
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa FL 33612, USA
| | - Colleen Pappas
- School of Aging Studies, University of South Florida, 13301 Bruce B Downs Blvd, Tampa FL 33612, USA
| | - Naoki Tajiri
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, 12901 Bruce B Downs Blvd, Tampa FL 33612, USA
| |
Collapse
|
24
|
Jang S, Nelson JC, Bend EG, Rodríguez-Laureano L, Tueros FG, Cartagenova L, Underwood K, Jorgensen EM, Colón-Ramos DA. Glycolytic Enzymes Localize to Synapses under Energy Stress to Support Synaptic Function. Neuron 2016; 90:278-91. [PMID: 27068791 DOI: 10.1016/j.neuron.2016.03.011] [Citation(s) in RCA: 197] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 01/12/2016] [Accepted: 03/08/2016] [Indexed: 01/07/2023]
Abstract
Changes in neuronal activity create local and transient changes in energy demands at synapses. Here we discover a metabolic compartment that forms in vivo near synapses to meet local energy demands and support synaptic function in Caenorhabditis elegans neurons. Under conditions of energy stress, glycolytic enzymes redistribute from a diffuse localization in the cytoplasm to a punctate localization adjacent to synapses. Glycolytic enzymes colocalize, suggesting the ad hoc formation of a glycolysis compartment, or a "glycolytic metabolon," that can maintain local levels of ATP. Local formation of the glycolytic metabolon is dependent on presynaptic scaffolding proteins, and disruption of the glycolytic metabolon blocks the synaptic vesicle cycle, impairs synaptic recovery, and affects locomotion. Our studies indicate that under energy stress conditions, energy demands in C. elegans synapses are met locally through the assembly of a glycolytic metabolon to sustain synaptic function and behavior. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- SoRi Jang
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | - Jessica C Nelson
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | - Eric G Bend
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Lucelenie Rodríguez-Laureano
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | - Felipe G Tueros
- Laboratorio de Microbiología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma, P.O. Box 1801, Lima 33, Perú
| | - Luis Cartagenova
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | - Katherine Underwood
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA
| | - Erik M Jorgensen
- Department of Biology, Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Daniel A Colón-Ramos
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, Department of Cell Biology and Department of Neuroscience, Yale University School of Medicine, P.O. Box 9812, New Haven, CT 06536-0812, USA; Instituto de Neurobiología, Recinto de Ciencias Médicas, Universidad de Puerto Rico, 201 Boulevard del Valle, San Juan 00901, Puerto Rico.
| |
Collapse
|
25
|
Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells. BMC Cancer 2016; 16:152. [PMID: 26911935 PMCID: PMC4766697 DOI: 10.1186/s12885-016-2172-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 02/14/2016] [Indexed: 12/19/2022] Open
Abstract
Background For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. Methods GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Result Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. Conclusion PKM2 may regulate the enzymatic activity of GAPDH. Increased enzymatic activity of GAPDH in tumor cells may be attributed to its association with PKM2 and GPI. Association of GAPDH with PKM2 and GPI could be a signature for cancer cells. Glycation at R399 of PKM2 and changes in the secondary structure of GAPDH complex could be one of the mechanisms by which GAPDH activity is inhibited in tumor cells by MG. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2172-x) contains supplementary material, which is available to authorized users.
Collapse
|
26
|
Linking Mitochondria to Synapses: New Insights for Stress-Related Neuropsychiatric Disorders. Neural Plast 2016; 2016:3985063. [PMID: 26885402 PMCID: PMC4738951 DOI: 10.1155/2016/3985063] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
The brain evolved cellular mechanisms for adapting synaptic function to energy supply. This is particularly evident when homeostasis is challenged by stress. Signaling loops between the mitochondria and synapses scale neuronal connectivity with bioenergetics capacity. A biphasic “inverted U shape” response to the stress hormone glucocorticoids is demonstrated in mitochondria and at synapses, modulating neural plasticity and physiological responses. Low dose enhances neurotransmission, synaptic growth, mitochondrial functions, learning, and memory whereas chronic, higher doses produce inhibition of these functions. The range of physiological effects by stress and glucocorticoid depends on the dose, duration, and context at exposure. These criteria are met by neuronal activity and the circadian, stress-sensitive and ultradian, stress-insensitive modes of glucocorticoid secretion. A major hallmark of stress-related neuropsychiatric disorders is the disrupted glucocorticoid rhythms and tissue resistance to signaling with the glucocorticoid receptor (GR). GR resistance could result from the loss of context-dependent glucocorticoid signaling mediated by the downregulation of the activity-dependent neurotrophin BDNF. The coincidence of BDNF and GR signaling changes glucocorticoid signaling output with consequences on mitochondrial respiration efficiency, synaptic plasticity, and adaptive trajectories.
Collapse
|
27
|
Structural analysis of glyceraldehyde-3-phosphate dehydrogenase functional diversity. Int J Biochem Cell Biol 2014; 57:20-6. [PMID: 25286305 DOI: 10.1016/j.biocel.2014.09.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/26/2014] [Accepted: 09/27/2014] [Indexed: 11/23/2022]
Abstract
Multifunctional proteins provide a new mechanism to expand exponentially cell information and capability beyond that indicated by conventional gene analyses. As such, examination of their structure-function relationships provides a means to define the mechanisms through which cells accomplish critical yet disparate activities required for cell viability and survival. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) may be considered the quintessential multidimensional protein which exhibits a variety of functions unrelated to its classical role in energy production. This review discusses new insights into the structure-function mechanisms through which defined GAPDH amino acid domains are utilized for its diverse activities, the importance of its post-translational modification, and, intriguingly, the logic inherent in the presence or the absence of specific signaling domains.
Collapse
|
28
|
Martins E, Figueras A, Novoa B, Santos RS, Moreira R, Bettencourt R. Comparative study of immune responses in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus and the shallow-water mussel Mytilus galloprovincialis challenged with Vibrio bacteria. FISH & SHELLFISH IMMUNOLOGY 2014; 40:485-499. [PMID: 25089010 DOI: 10.1016/j.fsi.2014.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
The deep-sea hydrothermal vent mussel Bathymodiolus azoricus and the continental European coast Mytilus galloprovincialis are two bivalves species living in highly distinct marine habitats. Mussels are filter-feeding animals that may accumulate rapidly bacteria from the environment. Contact with microorganism is thus inevitable during feeding processes where gill tissues assume a strategic importance at the interface between the external milieu and the internal body cavities promoting interactions with potential pathogens during normal filtration and a constant challenge to their immune system. In the present study B. azoricus and M. galloprovincialis were exposed to Vibrio alginolyticus, Vibrio anguillarum and Vibrio splendidus suspensions and to a mixture of these Vibrio suspensions, in order to ascertain the expression level of immune genes in gill samples, from both mussel species. The immune gene expressions were analyzed by means of quantitative-Polymerase Chain Reaction (qPCR). The gene expression results revealed that these bivalve species exhibit significant expression differences between 12 h and 24 h post-challenge times, and between the Vibrio strains used. V. splendidus induced the strongest gene expression level in the two bivalve species whereas the NF-κB and Aggrecan were the most significantly differentially expressed between the two mussel species. When comparing exposure times, both B. azoricus and M. galloprovincialis showed similar percentage of up-regulated genes at 12 h while a marked increased of gene expression was observed at 24 h for the majority of the immune genes in M. galloprovincialis. This contrasts with B. azoricus where the majority of the immune genes were down-regulated at 24 h. The 24 h post-challenge gene expression results clearly bring new evidence supporting time-dependent transcriptional activities resembling acute phase-like responses and different immune responses build-up in these two mussel species when challenged with Vibrio bacteria. High Pressure Liquid Chromatography (HPLC)-Electrospray ionization mass spectrometry (ESI-MS/MS) analyses resulted in different peptide sequences from B. azoricus and M. galloprovincialis gill tissues suggesting that naïve animals present differences, at the protein synthesis level, in their natural environment. B. azoricus proteins sequences, mostly of endosymbiont origin, were related to metabolic, energy production, protein synthesis processes and nutritional demands whereas in M. galloprovincialis putative protein functions were assumed to be related to structural and cellular integrity and signaling functions.
Collapse
Affiliation(s)
- Eva Martins
- Department of Oceanography and Fisheries, University of the Azores (DOP/UAç), Rua Prof. Doutor Frederico Machado, 9901-862 Horta, Portugal; IMAR Institute of Marine Research and LARSyS Laboratory of Robotics and Systems in Engineering and Science, 9901-862 Horta, Azores, Portugal
| | - António Figueras
- Instituto de Investigaciones Marinas, IIM - CSIC. Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, IIM - CSIC. Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Ricardo Serrão Santos
- Department of Oceanography and Fisheries, University of the Azores (DOP/UAç), Rua Prof. Doutor Frederico Machado, 9901-862 Horta, Portugal; IMAR Institute of Marine Research and LARSyS Laboratory of Robotics and Systems in Engineering and Science, 9901-862 Horta, Azores, Portugal
| | - Rebeca Moreira
- Instituto de Investigaciones Marinas, IIM - CSIC. Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Raul Bettencourt
- IMAR Institute of Marine Research and LARSyS Laboratory of Robotics and Systems in Engineering and Science, 9901-862 Horta, Azores, Portugal; MARE-Marine and Environmental Science Center, University of the Azores, 9901-862 Horta, Azores, Portugal.
| |
Collapse
|
29
|
Subaran RL, Greenberg DA. The Genetics of Common Epilepsy Disorders: Lessons Learned from the Channelopathy Era. CURRENT GENETIC MEDICINE REPORTS 2014. [DOI: 10.1007/s40142-014-0040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
SidAhmed-Mezi M, Kurcewicz I, Rose C, Louvel J, Sokoloff P, Pumain R, Laschet JJ. Mass spectrometric detection and characterization of atypical membrane-bound zinc-sensitive phosphatases modulating GABAA receptors. PLoS One 2014; 9:e100612. [PMID: 24967814 PMCID: PMC4072668 DOI: 10.1371/journal.pone.0100612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 05/29/2014] [Indexed: 12/17/2022] Open
Abstract
Background GABAA receptor (GABAAR) function is maintained by an endogenous phosphorylation mechanism for which the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the kinase. This phosphorylation is specific to the long intracellular loop I2 of the α1 subunit at two identified serine and threonine residues. The phosphorylation state is opposed by an unknown membrane-bound phosphatase, which inhibition favors the phosphorylated state of the receptor and contributes to the maintenance of its function. In cortical nervous tissue from epileptogenic areas in patients with drug-resistant epilepsies, both the endogenous phosphorylation and the functional state of the GABAAR are deficient. Methodology/Principal Findings The aim of this study is to characterize the membrane-bound phosphatases counteracting the endogenous phosphorylation of GABAAR. We have developed a new analytical tool for in vitro detection of the phosphatase activities in cortical washed membranes by liquid chromatography coupled to mass spectrometry. The substrates are two synthetic phosphopeptides, each including one of the identified endogenous phosphorylation sites of the I2 loop of GABAAR α1 subunit. We have shown the presence of multiple and atypical phosphatases sensitive to zinc ions. Patch-clamp studies of the rundown of the GABAAR currents on acutely isolated rat pyramidal cells using the phosphatase inhibitor okadaic acid revealed a clear heterogeneity of the phosphatases counteracting the function of the GABAAR. Conclusion/Significance Our results provide new insights on the regulation of GABAAR endogenous phosphorylation and function by several and atypical membrane-bound phosphatases specific to the α1 subunit of the receptor. By identifying specific inhibitors of these enzymes, novel development of antiepileptic drugs in patients with drug-resistant epilepsies may be proposed.
Collapse
Affiliation(s)
- Mounia SidAhmed-Mezi
- Inserm, Infantile Epilepsies and Brain Plasticity U1129, Paris, France
- University Paris Descartes, Paris, France
- CEA, Gif sur Yvette, France
- * E-mail: (MS); (JJL)
| | - Irène Kurcewicz
- University Paris Descartes, Paris, France
- Inserm, Centre de Psychiatrie et de Neurosciences U894, Paris, France
| | - Christiane Rose
- University Paris Descartes, Paris, France
- Inserm, Centre de Psychiatrie et de Neurosciences U894, Paris, France
| | - Jacques Louvel
- University Paris Descartes, Paris, France
- Inserm, Centre de Psychiatrie et de Neurosciences U894, Paris, France
| | - Pierre Sokoloff
- Institut de Recherche Pierre Fabre, Neurologie & Psychiatrie, Castres, France
| | - René Pumain
- Inserm, Infantile Epilepsies and Brain Plasticity U1129, Paris, France
- University Paris Descartes, Paris, France
- CEA, Gif sur Yvette, France
| | - Jacques J. Laschet
- Inserm, Infantile Epilepsies and Brain Plasticity U1129, Paris, France
- University Paris Descartes, Paris, France
- CEA, Gif sur Yvette, France
- * E-mail: (MS); (JJL)
| |
Collapse
|
31
|
On-site energy supply at synapses through monocarboxylate transporters maintains excitatory synaptic transmission. J Neurosci 2014; 34:2605-17. [PMID: 24523550 DOI: 10.1523/jneurosci.4687-12.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ATP production through oxidative phosphorylation in the mitochondria is the most efficient way to provide energy to various energy-consuming activities of the neurons. These processes require a large amount of ATP molecules to be maintained. Of these, synaptic transmission is most energy consuming. Here we report that lactate transported through monocarboxylate transporters (MCTs) at excitatory synapses constitutively supports synaptic transmission, even under conditions in which a sufficient supply of glucose and intracellular ATP are present. We analyzed the effects of MCT inhibition on neuronal activities using whole-cell recordings in brain slices of rats in the nucleus of the solitary tract. MCT inhibitors (α-cyano-4-hydroxycinnamic acid (4-CIN), phloretin, and d-lactate) significantly decreased the amplitude of EPSCs without reducing release probability. Although 4-CIN significantly reduced currents mediated by heterologously expressed AMPA-Rs in oocytes (a novel finding in this study), the IC50 of the inhibitory effect on EPSC in brain slices was ∼3.8 times smaller than that on AMPA-R currents in oocytes. Removal of intracellular ATP significantly potentiated the inhibition of EPSC with 4-CIN in a manner that was counteracted by intracellular lactate addition. In addition, extracellular lactate rescued aglycemic suppression of EPSC, in a manner that was prevented by 4-CIN. Inhibition of MCTs also reduced NMDA-R-mediated EPSCs and, to a lesser extent, the IPSC. The reduction in EPSC amplitude by γ-d-glutamylglycine was enhanced by 4-CIN, suggesting also a decreased quantal content. We conclude that "on-site" astrocyte-neuron lactate transport to presynaptic and postsynaptic elements is necessary for the integrity of excitatory synaptic transmission.
Collapse
|
32
|
Zeng T, Dong ZF, Liu SJ, Wan RP, Tang LJ, Liu T, Zhao QH, Shi YW, Yi YH, Liao WP, Long YS. A novel variant in the 3' UTR of human SCN1A gene from a patient with Dravet syndrome decreases mRNA stability mediated by GAPDH's binding. Hum Genet 2014; 133:801-11. [PMID: 24464349 DOI: 10.1007/s00439-014-1422-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 01/16/2014] [Indexed: 01/15/2023]
Abstract
Mutations in the SCN1A gene-encoding voltage-gated sodium channel α-I subunit (Nav1.1) cause various spectrum of epilepsies including Dravet syndrome (DS), a severe and intractable form. A large number of SCN1A mutations identified from the DS patients lead to the loss of function or truncation of Nav1.1 that result in a haploinsufficiency effects, indicating that the exact expression level of SCN1A should be essential to maintain normal brain function. In this study, we have identified five variants c.*1025T>C, c.*1031A>T, c.*1739C>T, c.*1794C>T and c.*1961C>T in the SCN1A 3' UTR in the patients with DS. The c.*1025T>C, c.*1031A>T and c.*1794C>T are conserved among different species. Of all the five variants, only c.*1794C>T is a novel variant and alters the predicted secondary structure of the 3' UTR. We also show that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) only binds to the 3' UTR sequence containing the mutation allele 1794U but not the wild-type allele 1794C, indicating that the mutation allele forms a new GAPDH-binding site. Functional analyses show that the variant negatively regulates the reporter gene expression by affecting the mRNA stability that is mediated by GAPDH's binding, and this phenomenon could be reversed by shRNA-induced GAPDH knockdown. These findings suggest that GAPDH and the 3'-UTR variant are involved in regulating SCN1A expression at post-transcriptional level, which may provide an important clue for further investigating on the relationship between 3'-UTR variants and SCN1A-related diseases.
Collapse
Affiliation(s)
- Tao Zeng
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sirover MA. GAPDH: β-Amyloid Mediated Iron Accumulation in Alzheimer’s Disease: A New Paradigm for Oxidative Stress Induction in Neurodegenerative Disorders. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-1-62703-598-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
|
34
|
Korczyn AD, Schachter SC, Brodie MJ, Dalal SS, Engel J, Guekht A, Hecimovic H, Jerbi K, Kanner AM, Landmark CJ, Mares P, Marusic P, Meletti S, Mula M, Patsalos PN, Reuber M, Ryvlin P, Štillová K, Tuchman R, Rektor I. Epilepsy, cognition, and neuropsychiatry (Epilepsy, Brain, and Mind, part 2). Epilepsy Behav 2013; 28:283-302. [PMID: 23764496 PMCID: PMC5016028 DOI: 10.1016/j.yebeh.2013.03.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 12/13/2022]
Abstract
Epilepsy is, of course, not one disease but rather a huge number of disorders that can present with seizures. In common, they all reflect brain dysfunction. Moreover, they can affect the mind and, of course, behavior. While animals too may suffer from epilepsy, as far as we know, the electrical discharges are less likely to affect the mind and behavior, which is not surprising. While the epileptic seizures themselves are episodic, the mental and behavioral changes continue, in many cases, interictally. The episodic mental and behavioral manifestations are more dramatic, while the interictal ones are easier to study with anatomical and functional studies. The following extended summaries complement those presented in Part 1.
Collapse
Affiliation(s)
- Amos D. Korczyn
- Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Steven C. Schachter
- Center for Integration of Medicine and Innovative Technology, Harvard Medical School, Boston, MA, USA
| | | | - Sarang S. Dalal
- Zukunftskolleg & Department of Psychology, University of Konstanz, Germany
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon I, Brain Dynamics and Cognition Team, Lyon, France
| | | | - Alla Guekht
- Russian National Research Medical University, Moscow City Hospital No. 8 for Neuropsychiatry, Moscow, Russia
| | - Hrvoje Hecimovic
- Zagreb Epilepsy Center, Department of Neurology, University Hospital, Zagreb, Croatia
| | - Karim Jerbi
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, University Lyon I, Brain Dynamics and Cognition Team, Lyon, France
| | - Andres M. Kanner
- Department of Neurology, University of Miami, Miller School of Medicine, Miami FL, USA
| | - Cecilie Johannessen Landmark
- Department of Pharmacy and Biomedical Science, Oslo, Norway
- Akershus University College of Applied Sciences, Oslo, Norway
| | - Pavel Mares
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Marusic
- Department of Neurology, Charles University in Prague, 2nd Faculty of Medicine, Motol University Hospital, Prague, Czech Republic
| | - Stefano Meletti
- Department of Biomedical Sciences, Metabolism, and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Mula
- Amedeo Avogadro University, Novara, Italy
| | - Philip N. Patsalos
- Department of Clinical and Experimental Epilepsy, UCL-Institute of Neurology, London and Epilepsy Society, Chalfont St Peter, UK
| | - Markus Reuber
- Academic Neurology Unit, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK
| | - Philippe Ryvlin
- Service de neurologie fonctionnelle et d’épileptologie, Hôpital Neurologique, HCL TIGER, CRNL, INSERM U1028, UMR-CNRS 5292, Université Lyon-1, Lyon, France
| | - Klára Štillová
- Masaryk University, Brno Epilepsy Center, St. Anne’s Hospital and School of Medicine, and Central European Institute of Technology (CEITEC), Brno, Czech Republic
| | - Roberto Tuchman
- Autism and Neurodevelopment Program, Miami Children’s Hospital Dan Marino Center, Departments of Neurology and Psychiatry, Herbert Wertheim College of Medicine, Florida International University, FL, USA
| | - Ivan Rektor
- Masaryk University, Brno Epilepsy Center, St. Anne’s Hospital and School of Medicine, and Central European Institute of Technology (CEITEC), Brno, Czech Republic
| |
Collapse
|
35
|
Moreno A, Jego P, de la Cruz F, Canals S. Neurophysiological, metabolic and cellular compartments that drive neurovascular coupling and neuroimaging signals. FRONTIERS IN NEUROENERGETICS 2013; 5:3. [PMID: 23543907 PMCID: PMC3610078 DOI: 10.3389/fnene.2013.00003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/13/2013] [Indexed: 11/22/2022]
Abstract
Complete understanding of the mechanisms that coordinate work and energy supply of the brain, the so called neurovascular coupling, is fundamental to interpreting brain energetics and their influence on neuronal coding strategies, but also to interpreting signals obtained from brain imaging techniques such as functional magnetic resonance imaging. Interactions between neuronal activity and cerebral blood flow regulation are largely compartmentalized. First, there exists a functional compartmentalization in which glutamatergic peri-synaptic activity and its electrophysiological events occur in close proximity to vascular responses. Second, the metabolic processes that fuel peri-synaptic activity are partially segregated between glycolytic and oxidative compartments. Finally, there is cellular segregation between astrocytic and neuronal compartments, which has potentially important implications on neurovascular coupling. Experimental data is progressively showing a tight interaction between the products of energy consumption and neurotransmission-driven signaling molecules that regulate blood flow. Here, we review some of these issues in light of recent findings with special attention to the neuron-glia interplay on the generation of neuroimaging signals.
Collapse
Affiliation(s)
- Andrea Moreno
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Pierrick Jego
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Feliberto de la Cruz
- Centro de Estudios Avanzados de Cuba, Ministerio de Ciencia Tecnología y Medio AmbienteHabana, Cuba
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel HernándezSan Juan de Alicante, Spain
| |
Collapse
|
36
|
Seidler NW. Dynamic oligomeric properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 985:207-47. [PMID: 22851451 DOI: 10.1007/978-94-007-4716-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This chapter provides a foundation for further research into the relationship between dynamic oligomeric properties and functional diversity. The structural basis that underlies the conformational sub-states of the GAPDH oligomer is discussed. The issue of protein stability is given a thorough analysis, since it is well-established that the primary strategy for protein oligomerization is to stabilize conformation. Several factors that affect oligomerization are described, including chemical modification by synthetic reagents. The effects of native substrates and coenzymes are also discussed. The curious feature of chloride ions having a de-stabilizing effect on native GAPDH structure is described. Additionally, the role of adenine dinucleotides in tetramer-dimer equilibrium dynamics is suggested to be a major part of the physiological regulation of GAPDH structure and function. This chapter also contends that a vast amount of useful information can come from comparative analyses of diverse species, particularly regarding protein stability and subunit-subunit interaction. Lastly, the concept of domain exchange is introduced as a means of understanding the stabilization of dynamic oligomers, suggesting that inter-subunit contacts may also be a way of masking docking sites to other proteins.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
37
|
Abstract
The concept of the cytosol as a space that contains discrete zones of metabolites is discussed relative to the contribution of GAPDH. GAPDH is directed to very specific cell compartments. This chapter describes the utilization of GAPDH's enzymatic function for focal demands (i.e. ATP/ADP and NAD(+)/NADH), and offers a speculative role for GAPDH as perhaps moderating local concentrations of inorganic phosphate and hydrogen ions (i.e. co-substrate and co-product of the glycolytic reaction, respectively). Where known, the structural features of the binding between GAPDH and the compartment components are discussed. The nuances, which are associated with the intracellular distribution of GAPDH, appear to be specific to the cell-type, particularly with regards to the various plasma membrane proteins to which GAPDH binds. The chapter includes discussion on the curious observation of GAPDH being localized to the external surface of the plasma membrane in a human cell type. The default perspective has been that GAPDH localization is synonymous with compartmentation of glycolytic energy. The chapter discusses GAPDH translocation to the nucleus and to non-nuclear cellular structures, emphasizing its glycolytic function. Nevertheless, it is becoming clear that alternate functions of GAPDH play a role in compartmentation, particularly in the translocation to the nucleus.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
38
|
Abstract
GAPDH interacts with a plethora of diverse cellular proteins. The network of interacting partners, or interactome, is presented for GAPDH with the interacting molecules grouped into specific functional and structural categories. By organizing the binding partners in this way, certain common structural features are beginning to surface, such as acidic dipeptide sequences that are found in several of these binding proteins. Additionally, the consensus sequences for target polynucleotides are being brought to light. The categories, which are presented according to function, offer an opportunity for research into the corresponding structural correlates to these interactions. Recent discoveries of interacting proteins have revealed novel relationships that are generating emerging mechanisms. Proteins that are associated with age-related neurodegenerative diseases appear to be particularly prone to binding GAPDH, suggesting that GAPDH may be playing a role in these diseases. Neurodegenerative diseases that are discussed are the conformational diseases of aging, suggesting that GAPDH may be a global sensor for cellular conformational stress. In addition to GAPDH's oxidoreductase activity, several other enzymatic functions have been discovered, including peroxidase, nitrosylase, mono-ADP-ribosylase and kinase activities.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
39
|
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has long been recognized as an important enzyme for energy metabolism and the production of ATP and pyruvate through anaerobic glycolysis in the cytoplasm. Recent studies have shown that GAPDH has multiple functions independent of its role in energy metabolism. Although increased GAPDH gene expression and enzymatic function is associated with cell proliferation and tumourigenesis, conditions such as oxidative stress impair GAPDH catalytic activity and lead to cellular aging and apoptosis. The mechanism(s) underlying the effects of GAPDH on cellular proliferation remains unclear, yet much evidence has been accrued that demonstrates a variety of interacting partners for GAPDH, including proteins, various RNA species and telomeric DNA. The present mini review summarizes recent findings relating to the extraglycolytic functions of GAPDH and highlights the significant role this enzyme plays in regulating both cell survival and apoptotic death.
Collapse
Affiliation(s)
- Craig Nicholls
- Molecular Signalling Laboratory, Murdoch Childrens Research Institute, Monash University, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
40
|
Terrasse R, Tacnet-Delorme P, Moriscot C, Pérard J, Schoehn G, Vernet T, Thielens NM, Di Guilmi AM, Frachet P. Human and pneumococcal cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) proteins are both ligands of human C1q protein. J Biol Chem 2012; 287:42620-33. [PMID: 23086952 DOI: 10.1074/jbc.m112.423731] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
C1q, a key component of the classical complement pathway, is a major player in the response to microbial infection and has been shown to detect noxious altered-self substances such as apoptotic cells. In this work, using complementary experimental approaches, we identified the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a C1q partner when exposed at the surface of human pathogenic bacteria Streptococcus pneumoniae and human apoptotic cells. The membrane-associated GAPDH on HeLa cells bound the globular regions of C1q as demonstrated by pulldown and cell surface co-localization experiments. Pneumococcal strains deficient in surface-exposed GAPDH harbored a decreased level of C1q recognition when compared with the wild-type strains. Both recombinant human and pneumococcal GAPDHs interacted avidly with C1q as measured by surface plasmon resonance experiments (K(D) = 0.34-2.17 nm). In addition, GAPDH-C1q complexes were observed by transmission electron microscopy after cross-linking. The purified pneumococcal GAPDH protein activated C1 in an in vitro assay unlike the human form. Deposition of C1q, C3b, and C4b from human serum at the surface of pneumococcal cells was dependent on the presence of surface-exposed GAPDH. This ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response.
Collapse
Affiliation(s)
- Rémi Terrasse
- Pneumococcus (PG), Université Joseph Fourier Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zhou HY, Chen SR, Byun HS, Chen H, Li L, Han HD, Lopez-Berestein G, Sood AK, Pan HL. N-methyl-D-aspartate receptor- and calpain-mediated proteolytic cleavage of K+-Cl- cotransporter-2 impairs spinal chloride homeostasis in neuropathic pain. J Biol Chem 2012; 287:33853-64. [PMID: 22854961 PMCID: PMC3460480 DOI: 10.1074/jbc.m112.395830] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/31/2012] [Indexed: 12/31/2022] Open
Abstract
Loss of synaptic inhibition by γ-aminobutyric acid and glycine due to potassium chloride cotransporter-2 (KCC2) down-regulation in the spinal cord is a critical mechanism of synaptic plasticity in neuropathic pain. Here we present novel evidence that peripheral nerve injury diminishes glycine-mediated inhibition and induces a depolarizing shift in the reversal potential of glycine-mediated currents (E(glycine)) in spinal dorsal horn neurons. Blocking glutamate N-methyl-D-aspartate (NMDA) receptors normalizes synaptic inhibition, E(glycine), and KCC2 by nerve injury. Strikingly, nerve injury increases calcium-dependent calpain activity in the spinal cord that in turn causes KCC2 cleavage at the C terminus. Inhibiting calpain blocks KCC2 cleavage induced by nerve injury and NMDA, thereby normalizing E(glycine). Furthermore, calpain inhibition or silencing of μ-calpain at the spinal level reduces neuropathic pain. Thus, nerve injury promotes proteolytic cleavage of KCC2 through NMDA receptor-calpain activation, resulting in disruption of chloride homeostasis and diminished synaptic inhibition in the spinal cord. Targeting calpain may represent a new strategy for restoring KCC2 levels and tonic synaptic inhibition and for treating chronic neuropathic pain.
Collapse
Affiliation(s)
- Hong-Yi Zhou
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
| | - Shao-Rui Chen
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
| | - Hee-Sun Byun
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
| | - Hong Chen
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
| | - Li Li
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
| | - Hee-Dong Han
- Department of Experimental Therapeutics
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Anil K. Sood
- Department of Gynecologic Oncology, and
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan
- From the Center for Neuroscience and Pain Research
- Department of Anesthesiology and Perioperative Medicine
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
42
|
GAPDH in anesthesia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 985:269-91. [PMID: 22851453 DOI: 10.1007/978-94-007-4716-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Thus far, two independent laboratories have shown that inhaled anesthetics directly affect GAPDH structure and function. Additionally, it has been demonstrated that GAPDH normally regulates the function of GABA (type A) receptor. In light of these literature observations and some less direct findings, there is a discussion on the putative role of GAPDH in anesthesia. The binding site of inhaled anesthetics is described from literature reports on model proteins, such as human serum albumin and apoferritin. In addition to the expected hydrophobic residues that occupy the binding cavity, there are hydrophilic residues at or in very close proximity to the site of anesthetic binding. A putative binding site in the bacterial analog of the human GABA (type A) receptor is also described. Additionally, GAPDH may also play a role in anesthetic preconditioning, a phenomenon that confers protection of cells and tissues to future challenges by noxious stimuli. The central thesis regarding this paradigm is that inhaled anesthetics evoke an intra-molecular protein dehydration that is recognized by the cell, eliciting a very specific burst of chaperone gene expression. The chaperones that are implicated are associated with conferring protection against dehydration-induced protein aggregation.
Collapse
|
43
|
Valdiglesias V, Fernández-Tajes J, Costa C, Méndez J, Pásaro E, Laffon B. Alterations in metabolism-related genes induced in SHSY5Y cells by okadaic acid exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:844-856. [PMID: 22788371 DOI: 10.1080/15287394.2012.690703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Okadaic acid (OA) is a widely distributed marine toxin produced by several phytoplanktonic species and responsible for diarrheic shellfish poisoning in humans. At the molecular level OA is a specific inhibitor of several types of serine/threonine protein phosphatases. Due to this enzymic inhibition, OA was reported to induce numerous alterations in relevant cellular physiological processes, including several metabolic pathways such as glucose uptake, lipolysis and glycolysis, heme metabolism, and glycogen and protein synthesis. In order to further understand the underlying mechanisms involved in OA-induced effects on cellular metabolism, the expression levels of six genes related to different catabolic and anabolic metabolism-related processes were analyzed by real-time polymerase chain reaction. Specifically, the expression patterns of GAPDH, TOMM5, SLC25A4, COII, QARS, and RGS5 genes were determined in SHSY5Y human neuroblastoma cells exposed to OA for 3, 24, or 48 h. All these genes showed alterations in their expression levels after at least one of the OA treatments tested. These alterations provide a basis to understand the mechanisms underlying the previously described OA-induced effects on different metabolic processes, mainly regarding glucose and mitochondrial metabolism. However, other OA-induced affected genes can not be ruled out, and further studies are required to more comprehensively characterize in the mechanisms of OA-induced interaction on cell metabolism.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Toxicology Unit, Department of Psychobiology, University of A Coruña, A Coruña, Spain.
| | | | | | | | | | | |
Collapse
|
44
|
Miura T, Kakehashi H, Shinkai Y, Egara Y, Hirose R, Cho AK, Kumagai Y. GSH-mediated S-transarylation of a quinone glyceraldehyde-3-phosphate dehydrogenase conjugate. Chem Res Toxicol 2011; 24:1836-44. [PMID: 21827172 DOI: 10.1021/tx200025y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many cellular proteins with reactive thiols form covalent bonds with electrophiles, thereby modifying their structures and activities. Here, we describe the recovery of a glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), from such an electrophilic attack by 1,2-napthoquinone (1,2-NQ). GAPDH readily formed a covalent bond with 1,2-NQ through Cys152 at a low concentration (0.2 μM) in a cell-free system, but when human epithelial A549 cells were exposed to this quinone at 20 μM, only minimal binding was observed although extensive binding to numerous other cellular proteins occurred. Depletion of cellular glutathione (GSH) with buthionine sulfoximine (BSO) resulted in some covalent modification of cellular GAPDH by 1,2-NQ and a significant reduction of GAPDH activity in the cells. Incubation of native, but not boiled, human GAPDH that had been modified by 1,2-NQ with GSH resulted in a concentration-dependent removal of 1,2-NQ from the GAPDH conjugate, accompanied by partial recovery of lost catalytic activity and formation of a 1,2-NQ-GSH adduct (1,2-NQ-SG). While GAPDH is recognized as a multifunctional protein, our results show that GAPDH also has a unique ability to recover from electrophilic modification by 1,2-NQ through a GSH-dependent S-transarylation reaction.
Collapse
Affiliation(s)
- Takashi Miura
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Di Domenico F, Sultana R, Barone E, Perluigi M, Cini C, Mancuso C, Cai J, Pierce WM, Butterfield DA. Quantitative proteomics analysis of phosphorylated proteins in the hippocampus of Alzheimer's disease subjects. J Proteomics 2011; 74:1091-103. [PMID: 21515431 PMCID: PMC3119855 DOI: 10.1016/j.jprot.2011.03.033] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/07/2011] [Accepted: 03/31/2011] [Indexed: 01/20/2023]
Abstract
Phosphorylation on tyrosine, threonine and serine residues represents one of the most important post-translational modifications and is a key regulator of cellular signaling of multiple biological processes that require a strict control by protein kinases and protein phosphatases. Abnormal protein phosphorylation has been associated with several human diseases including Alzheimer's disease (AD). One of the characteristic hallmarks of AD is the presence of neurofibrillary tangles, composed of microtubule-associated, abnormally hyperphosphorylated tau protein. However, several others proteins showed altered phosphorylation levels in AD suggesting that deregulated phosphorylation may contribute to AD pathogenesis. Phosphoproteomics has recently gained attention as a valuable approach to analyze protein phosphorylation, both in a quantitative and a qualitative way. We used the fluorescent phosphospecific Pro-Q Diamond dye to identify proteins that showed alterations in their overall phosphorylation in the hippocampus of AD vs. control (CTR) subjects. Significant changes were found for 17 proteins involved in crucial neuronal process such as energy metabolism or signal transduction. These phosphoproteome data may provide new clues to better understand molecular pathways that are deregulated in the pathogenesis and progression of AD.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Rukhsana Sultana
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| | - Eugenio Barone
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
- Institute of Pharmacology, Catholic University School of Medicine, 00168 Roma, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Cini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
- CNR Institute of Molecular Biology and Pathology - 00185 Rome, Italy
| | - Cesare Mancuso
- Institute of Pharmacology, Catholic University School of Medicine, 00168 Roma, Italy
| | - Jian Cai
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - William M. Pierce
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA
| | - D. Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA
| |
Collapse
|
46
|
Kang SU, Heo S, Lubec G. Mass spectrometric analysis of GABAA receptor subtypes and phosphorylations from mouse hippocampus. Proteomics 2011; 11:2171-81. [PMID: 21538884 DOI: 10.1002/pmic.201000374] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 02/02/2011] [Accepted: 02/21/2011] [Indexed: 11/05/2022]
Abstract
The brain GABA(A) receptor (GABA(A) R) is a key element of signaling and neural transmission in health and disease. Recently, complete sequence analysis of the recombinant GABA(A) R has been reported, separation and mass spectrometrical (MS) characterisation from tissue, however, has not been published so far. Hippocampi were homogenised, put on a sucrose gradient 10-69% and the layer from 10 to 20% was used for extraction of membrane proteins by a solution of Triton X-100, 1.5 M aminocaproic acid in the presence of 0.3 M Bis-Tris. This mixture was subsequently loaded onto blue native PAGE (BN-PAGE) with subsequent analysis on denaturing gel systems. Spots from the 3-DE electrophoretic run were stained with Colloidal Coomassie Brilliant Blue, and spots with an apparent molecular weight between 40 and 60 kDa were picked and in-gel digested with trypsin, chymotrypsin and subtilisin. The resulting peptides were analysed by nano-LC-ESI-MS/MS (ion trap) and protein identification was carried out using MASCOT searches. In addition, known GABA(A) R-specific MS information taken from own previous studies was used for searches of GABA(A) R subunits. β-1, β-2 and β-3, θ and ρ-1 subunits were detected and six novel phosphorylation sites were observed and verified by phosphatase treatment. The method used herein enables identification of several GABA(A) R subunits from mouse hippocampus along with phosphorylations of β-1 (T227, Y230), β-2 (Y215, T439) and β-3 (T282, S406) subunits. The procedure forms the basis for GABA(A) R studies at the protein chemical rather than at the immunochemical level in health and disease.
Collapse
Affiliation(s)
- Sung Ung Kang
- Division of Neuroproteomics, Department of Pediatrics, Medical University of Vienna, Waehringer Guertel, Vienna, Austria
| | | | | |
Collapse
|
47
|
Garcia-Reyero N, Habib T, Pirooznia M, Gust KA, Gong P, Warner C, Wilbanks M, Perkins E. Conserved toxic responses across divergent phylogenetic lineages: a meta-analysis of the neurotoxic effects of RDX among multiple species using toxicogenomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:580-594. [PMID: 21516383 DOI: 10.1007/s10646-011-0623-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2011] [Indexed: 05/28/2023]
Abstract
At military training sites, a variety of pollutants such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), may contaminate the area originating from used munitions. Studies investigating the mechanism of toxicity of RDX have shown that it affects the central nervous system causing seizures in humans and animals. Environmental pollutants such as RDX have the potential to affect many different species, therefore it is important to establish how phylogenetically distant species may respond to these types of emerging pollutants. In this paper, we have used a transcriptional network approach to compare and contrast the neurotoxic effects of RDX among five phylogenetically disparate species: rat (Sprague-Dawley), Northern bobwhite quail (Colinus virginianus), fathead minnow (Pimephales promelas), earthworm (Eisenia fetida), and coral (Acropora formosa). Pathway enrichment analysis indicated a conservation of RDX impacts on pathways related to neuronal function in rat, Northern bobwhite quail, fathead minnows and earthworm, but not in coral. As evolutionary distance increased common responses decreased with impacts on energy and metabolism dominating effects in coral. A neurotransmission related transcriptional network based on whole rat brain responses to RDX exposure was used to identify functionally related modules of genes, components of which were conserved across species depending upon evolutionary distance. Overall, the meta-analysis using genomic data of the effects of RDX on several species suggested a common and conserved mode of action of the chemical throughout phylogenetically remote organisms.
Collapse
|
48
|
Menon KN, Steer DL, Short M, Petratos S, Smith I, Bernard CCA. A novel unbiased proteomic approach to detect the reactivity of cerebrospinal fluid in neurological diseases. Mol Cell Proteomics 2011; 10:M110.000042. [PMID: 21421798 DOI: 10.1074/mcp.m110.000042] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases, such as multiple sclerosis represent global health issues. Accordingly, there is an urgent need to understand the pathogenesis of this and other central nervous system disorders, so that more effective therapeutics can be developed. Cerebrospinal fluid is a potential source of important reporter molecules released from various cell types as a result of central nervous system pathology. Here, we report the development of an unbiased approach for the detection of reactive cerebrospinal fluid molecules and target brain proteins from patients with multiple sclerosis. To help identify molecules that may serve as clinical biomarkers for multiple sclerosis, we have biotinylated proteins present in the cerebrospinal fluid and tested their reactivity against brain homogenate as well as myelin and myelin-axolemmal complexes. Proteins were separated by two-dimensional gel electrophoresis, blotted onto membranes and probed separately with biotinylated unprocessed cerebrospinal fluid samples. Protein spots that reacted to two or more multiple sclerosis-cerebrospinal fluids were further analyzed by matrix assisted laser desorption ionization-time-of-flight time-of-flight mass spectrometry. In addition to previously reported proteins found in multiple sclerosis cerebrospinal fluid, such as αβ crystallin, enolase, and 14-3-3-protein, we have identified several additional molecules involved in mitochondrial and energy metabolism, myelin gene expression and/or cytoskeletal organization. These include aspartate aminotransferase, cyclophilin-A, quaking protein, collapsin response mediator protein-2, ubiquitin carboxy-terminal hydrolase L1, and cofilin. To further validate these findings, the cellular expression pattern of collapsin response mediator protein-2 and ubiquitin carboxy-terminal hydrolase L1 were investigated in human chronic-active MS lesions by immunohistochemistry. The observation that in multiple sclerosis lesions phosphorylated collapsin response mediator protein-2 was increased, whereas Ubiquitin carboxy-terminal hydrolase L1 was down-regulated, not only highlights the importance of these molecules in the pathology of this disease, but also illustrates the use of our approach in attempting to decipher the complex pathological processes leading to multiple sclerosis and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Krishnakumar N Menon
- Monash Immunology and Stem Cell Laboratories, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
49
|
Krishnan K, Ker JEA, Mohammed SM, Nadarajah VD. Identification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a binding protein for a 68-kDa Bacillus thuringiensis parasporal protein cytotoxic against leukaemic cells. J Biomed Sci 2010; 17:86. [PMID: 21073742 PMCID: PMC2996362 DOI: 10.1186/1423-0127-17-86] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 11/13/2010] [Indexed: 12/30/2022] Open
Abstract
Background Bacillus thuringiensis (Bt), an ubiquitous gram-positive spore-forming bacterium forms parasporal proteins during the stationary phase of its growth. Recent findings of selective human cancer cell-killing activity in non-insecticidal Bt isolates resulted in a new category of Bt parasporal protein called parasporin. However, little is known about the receptor molecules that bind parasporins and the mechanism of anti-cancer activity. A Malaysian Bt isolate, designated Bt18 produces parasporal protein that exhibit preferential cytotoxic activity for human leukaemic T cells (CEM-SS) but is non-cytotoxic to normal T cells or other cancer cell lines such as human cervical cancer (HeLa), human breast cancer (MCF-7) and colon cancer (HT-29) suggesting properties similar to parasporin. In this study we aim to identify the binding protein for Bt18 in human leukaemic T cells. Methods Bt18 parasporal protein was separated using Mono Q anion exchange column attached to a HPLC system and antibody was raised against the purified 68-kDa parasporal protein. Receptor binding assay was used to detect the binding protein for Bt18 parasporal protein in CEM-SS cells and the identified protein was sent for N-terminal sequencing. NCBI protein BLAST was used to analyse the protein sequence. Double immunofluorescence staining techniques was applied to localise Bt18 and binding protein on CEM-SS cell. Results Anion exchange separation of Bt18 parasporal protein yielded a 68-kDa parasporal protein with specific cytotoxic activity. Polyclonal IgG (anti-Bt18) for the 68-kDa parasporal protein was successfully raised and purified. Receptor binding assay showed that Bt18 parasporal protein bound to a 36-kDa protein from the CEM-SS cells lysate. N-terminal amino acid sequence of the 36-kDa protein was GKVKVGVNGFGRIGG. NCBI protein BLAST revealed that the binding protein was Glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Double immunofluorescence staining showed co-localisation of Bt18 and GAPDH on the plasma membrane of the CEM-SS cells. Conclusions GAPDH has been well known as a glycolytic enzyme, but recently GAPDH was discovered to have roles in apoptosis and carcinogenesis. Pre-incubation of anti-GAPDH antibody with CEM-SS cells decreases binding of Bt18 to the susceptible cells. Based on a qualitative analysis of the immunoblot and immunofluorescence results, GAPDH was identified as a binding protein on the plasma membrane of CEM-SS cells for Bt18 parasporal protein.
Collapse
Affiliation(s)
- Kanakeswary Krishnan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, International Medical University, No 126 Jalan 19/155B Bukit Jalil, Kuala Lumpur, 57000 Malaysia
| | | | | | | |
Collapse
|
50
|
SidAhmed-Mezi M, Pumain R, Louvel J, Sokoloff P, Laschet J. New therapeutic targets to develop molecules active in drug-resistant epilepsies. Epilepsia 2010; 51 Suppl 3:43-7. [DOI: 10.1111/j.1528-1167.2010.02608.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|