1
|
Nogueira M, Ferreira Golbert DC, Menezes R, Nóbrega de Almeida R, Galvão-Coelho NL, Siroky AN, Lima TZ, Maia H, Leão KE, Leão RN. Serotonergic psychedelic 5-MeO-DMT alters plasticity-related gene expression and generates anxiolytic effects in stressed mice. Mol Psychiatry 2025; 30:50-60. [PMID: 38969716 DOI: 10.1038/s41380-024-02655-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Serotonergic psychedelics have potential therapeutic effects in treating anxiety and mood disorders, often after a single dose, and are suggested to have plasticity-inducing action. However, a comprehensive mechanism of action is still lacking. Here, we investigated how a single dose of the short-acting 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) acts on gene expression from microdissected brain regions (anterior cingulate cortex - ACC; basolateral amygdala - BLA; ventral hippocampus CA1 region - vCA1 and dentate gyrus-DG) of naive and stressed mice. Specifically, we compared gene expression of Arc, Zif268, BDNF, CREB, mTORC1, NR2A, TRIP8b, and NFkB in mice injected with 5-MeO-DMT or saline at different time points (1 h, 5 h, or 5 days prior). 5-MeO-DMT altered mRNA expression of immediate early genes Arc and ZiF268 in the ACC, BLA, and vCA1, while NR2A expression was decreased after 5 h in the vCA1. We also found a long-term increase in TRIP8b, a gene related to the modulation of neuronal activity, in the vCA1 after 5 days. Behaviorally, 5-MeO-DMT treated mice showed mixed anxiolytic and anxiogenic effects in the elevated plus maze and open field test 24 h or 5 days after treatment. However, pre-treated mice subjected to acute stress showed both lower corticosterone levels and robust anxiolytic effects of 5-MeO-DMT administration. Together, our findings provide insights into the molecular actions of 5-MeO-DMT in the brain related to anxiolytic effects of behavior.
Collapse
Affiliation(s)
- Margareth Nogueira
- Neurodynamics Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Hearing and Neuronal Activity Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Daiane C Ferreira Golbert
- Neurodynamics Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Sleep, Dreams and Memory Laboratory, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Richardson Menezes
- Automation and Robotics Laboratory, School of Science and Technology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raíssa Nóbrega de Almeida
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Nicole L Galvão-Coelho
- Laboratory of Hormone Measurement, Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Andressa N Siroky
- Department of Statistics, Exact and Earth Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Thiago Z Lima
- Hearing and Neuronal Activity Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
- Department of Statistics, Exact and Earth Sciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Helton Maia
- Automation and Robotics Laboratory, School of Science and Technology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Katarina E Leão
- Hearing and Neuronal Activity Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| | - Richardson N Leão
- Neurodynamics Lab, Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
2
|
Russo ML, Ayala G, Neal D, Rogalsky AE, Ahmad S, Musial TF, Pearlman M, Bean LA, Farooqi AK, Ahmed A, Castaneda A, Patel A, Parduhn Z, Haddad LG, Gabriel A, Disterhoft JF, Nicholson DA. Alzheimer's-linked axonal changes accompany elevated antidromic action potential failure rate in aged mice. Brain Res 2024; 1841:149083. [PMID: 38866308 PMCID: PMC11323114 DOI: 10.1016/j.brainres.2024.149083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/22/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Alzheimer's disease (AD) affects both grey and white matter (WM), but considerably more is known about the former. Interestingly, WM disruption has been consistently observed and thoroughly described using imaging modalities, particularly MRI which has shown WM functional disconnections between the hippocampus and other brain regions during AD pathogenesis when early neurodegeneration and synapse loss are also evident. Nonetheless, high-resolution structural and functional analyses of WM during AD pathogenesis remain scarce. Given the importance of the myelinated axons in the WM for conveying information across brain regions, such studies will provide valuable information on the cellular drivers and consequences of WM disruption that contribute to the characteristic cognitive decline of AD. Here, we employed a multi-scale approach to investigate hippocampal WM disruption during AD pathogenesis and determine whether hippocampal WM changes accompany the well-documented grey matter losses. Our data indicate that ultrastructural myelin disruption is elevated in the alveus in human AD cases and increases with age in 5xFAD mice. Unreliable action potential propagation and changes to sodium channel expression at the node of Ranvier co-emerged with this deterioration. These findings provide important insight to the neurobiological substrates and functional consequences of decreased WM integrity and are consistent with the notion that hippocampal disconnection contributes to cognitive changes in AD.
Collapse
Affiliation(s)
- Matthew L Russo
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Gelique Ayala
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Demetria Neal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Annalise E Rogalsky
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Suzan Ahmad
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Morgan Pearlman
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Linda A Bean
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Anise K Farooqi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Aysha Ahmed
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Adrian Castaneda
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Aneri Patel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Zachary Parduhn
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Loreece G Haddad
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ashley Gabriel
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| | - John F Disterhoft
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Jean Jacques A, D’Avanzo N. Inhibition of HCN1 currents by norquetiapine, an active metabolite of the atypical anti-psychotic drug quetiapine. Front Pharmacol 2024; 15:1445509. [PMID: 39434909 PMCID: PMC11491390 DOI: 10.3389/fphar.2024.1445509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Quetiapine is a second-generation atypical antipsychotic drug that has been commonly prescribed for the treatment of schizophrenia, major depressive disorder (depression), and other psychological disorders. Targeted inhibition of hyperpolarization-activated cyclic-nucleotide gated (HCN) channels, which generate Ih, may provide effective resistance against schizophrenia and depression. We investigated if HCN channels could contribute to the therapeutic effect of quetiapine, and its major active metabolite norquetiapine. Two-electrode voltage clamp recordings were used to assess the effects of quetiapine and its active metabolites 7-hydroxyquetiapine and norquetiapine on currents from HCN1 channels expressed in Xenopus laevis oocytes. Norquetiapine, but not quetiapine nor 7-hydroxyquetiapine, has an inhibitory effect on HCN1 channels. Norquetiapine selectively inhibited HCN1 currents by shifting the voltage-dependence of activation to more hyperpolarized potentials in a concentration-dependent manner with an IC50 of 13.9 ± 0.8 μM for HCN1 and slowing channel opening, without changing the kinetics of closing. Inhibition by norquetiapine primarily occurs from in the closed state. Norquetiapine inhibition is not sensitive to the external potassium concentration, and therefore, likely does not block the pore. Norquetiapine inhibition also does not dependent on the cyclic-nucleotide binding domain. Norquetiapine also inhibited HCN4 channels with reduced efficacy than HCN1 and had no effect on HCN2 channels. Therefore, HCN channels are key targets of norquetiapine, the primary active metabolite of quetiapine. These data help to explain the therapeutic mechanisms by which quetiapine aids in the treatment of anxiety, major depressive disorder, bipolar disorder, and schizophrenia, and may represent a novel structure for future drug design of HCN inhibitors.
Collapse
Affiliation(s)
| | - Nazzareno D’Avanzo
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Wei F, Chen T, Huang Y, Yang Y, Cheng X, Yang L. Multiple Exposures to Sevoflurane General Anesthesia During Pregnancy Inhibit CaMKII/CREB Axis by Downregulating HCN2 to Induce an Autism-Like Phenotype in Offspring Mice. J Mol Neurosci 2024; 74:69. [PMID: 39017898 DOI: 10.1007/s12031-024-02243-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
The objective of this investigation was to examine the impact of multiple exposures to general anesthesia (GA) with sevoflurane on the offspring of pregnant mice, as well as to elucidate the underlying mechanism. Neurodevelopmental assessments, including various reflexes and behavioral tests, were conducted on the offspring in the GA group to evaluate neuronal cell development. Furthermore, neonatal mouse neuronal cells were isolated and transfected with a high-expression CREB vector (pcDNA3.1-CREB), followed by treatment with sevoflurane (0.72 mol/L), ZD7288 (50 μmol/L), and KN-62 (10 μmol/L), or a combination of these compounds. The expression of relevant genes was then analyzed using qRT-PCR and western blot techniques. In comparison to the sham group, neonatal mice in the GA group exhibited significantly prolonged latencies in surface righting reflex, geotaxis test, and air righting reflex. Furthermore, there was a notable deceleration in the development of body weight and tail in the GA group. These mice also displayed impairments in social ability, reduced reciprocal social interaction behaviors, diminished learning capacity, and heightened levels of anxious behaviors. Additionally, synaptic trigger malfunction was observed, along with decreased production of c-Fos and neurotrophic factors. Sevoflurane was found to notably decrease cellular c-Fos and neurotrophic factor production, as well as the expression of HCN2 and CaMKII/CREB-related proteins. The inhibitory effects of sevoflurane on HCN2 or CaMKII channels were similar to those observed with ZD7288 or KN-62 inhibition. However, overexpression of CREB mitigated the impact of sevoflurane on neuronal cells. Repetitive exposure to sevoflurane general anesthesia while pregnant suppresses the CaMKII/CREB pathway, leading to the development of autism-like characteristics in offspring mice through the reduction of HCN2 expression.
Collapse
Affiliation(s)
- Fusheng Wei
- Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330052, China
| | - Ting Chen
- Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330052, China
| | - Yuanlu Huang
- Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330052, China
| | - Yuxuan Yang
- Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330052, China
| | - Xiaoe Cheng
- Department of Anesthesiology and Operation, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330052, China
| | - Lei Yang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
5
|
Harde E, Hierl M, Weber M, Waiz D, Wyler R, Wach JY, Haab R, Gundlfinger A, He W, Schnider P, Paina M, Rolland JF, Greiter-Wilke A, Gasser R, Reutlinger M, Dupont A, Roberts S, O'Connor EC, Bartels B, Hall BJ. Selective and brain-penetrant HCN1 inhibitors reveal links between synaptic integration, cortical function, and working memory. Cell Chem Biol 2024; 31:577-592.e23. [PMID: 38042151 DOI: 10.1016/j.chembiol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/07/2023] [Indexed: 12/04/2023]
Abstract
Hyperpolarization-activated and cyclic-nucleotide-gated 1 (HCN1) ion channels are proposed to be critical for cognitive function through regulation of synaptic integration. However, resolving the precise role of HCN1 in neurophysiology and exploiting its therapeutic potential has been hampered by minimally selective antagonists with poor potency and limited in vivo efficiency. Using automated electrophysiology in a small-molecule library screen and chemical optimization, we identified a primary carboxamide series of potent and selective HCN1 inhibitors with a distinct mode of action. In cognition-relevant brain circuits, selective inhibition of native HCN1 produced on-target effects, including enhanced excitatory postsynaptic potential summation, while administration of a selective HCN1 inhibitor to rats recovered decrement working memory. Unlike prior non-selective HCN antagonists, selective HCN1 inhibition did not alter cardiac physiology in human atrial cardiomyocytes or in rats. Collectively, selective HCN1 inhibitors described herein unmask HCN1 as a potential target for the treatment of cognitive dysfunction in brain disorders.
Collapse
Affiliation(s)
- Eva Harde
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Markus Hierl
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michael Weber
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - David Waiz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roger Wyler
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jean-Yves Wach
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rachel Haab
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Anja Gundlfinger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Weiping He
- WuXi AppTec (Wuhan) Co., Ltd, 666 Gaoxin Road, Wuhan East Lake High-Tech Development Zone, Wuhan, Huibei, China
| | - Patrick Schnider
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | - Andrea Greiter-Wilke
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Rodolfo Gasser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Michael Reutlinger
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Amanda Dupont
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sonia Roberts
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Eoin C O'Connor
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Björn Bartels
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| | - Benjamin J Hall
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
6
|
Lyman KA, Han Y, Robinson AP, Weinberg SE, Fisher DW, Heuermann RJ, Lyman RE, Kim DK, Ludwig A, Chandel NS, Does MD, Miller SD, Chetkovich DM. Characterization of hyperpolarization-activated cyclic nucleotide-gated channels in oligodendrocytes. Front Cell Neurosci 2024; 18:1321682. [PMID: 38469353 PMCID: PMC10925711 DOI: 10.3389/fncel.2024.1321682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Mature oligodendrocytes (OLG) are the myelin-forming cells of the central nervous system. Recent work has shown a dynamic role for these cells in the plasticity of neural circuits, leading to a renewed interest in voltage-sensitive currents in OLG. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and their respective current (Ih) were recently identified in mature OLG and shown to play a role in regulating myelin length. Here we provide a biochemical and electrophysiological characterization of HCN channels in cells of the oligodendrocyte lineage. We observed that mice with a nonsense mutation in the Hcn2 gene (Hcn2ap/ap) have less white matter than their wild type counterparts with fewer OLG and fewer oligodendrocyte progenitor cells (OPCs). Hcn2ap/ap mice have severe motor impairments, although these deficits were not observed in mice with HCN2 conditionally eliminated only in oligodendrocytes (Cnpcre/+; Hcn2F/F). However, Cnpcre/+; Hcn2F/F mice develop motor impairments more rapidly in response to experimental autoimmune encephalomyelitis (EAE). We conclude that HCN2 channels in OLG may play a role in regulating metabolism.
Collapse
Affiliation(s)
- Kyle A. Lyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrew P. Robinson
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University, Chicago, IL, United States
| | - Samuel E. Weinberg
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Daniel W. Fisher
- Department of Psychiatry, University of Washington, Seattle, WA, United States
| | - Robert J. Heuermann
- Department of Neurology, Washington University, St. Louis, MO, United States
| | - Reagan E. Lyman
- Heritage College of Osteopathic Medicine, Ohio University, Dublin, OH, United States
| | - Dong Kyu Kim
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Andreas Ludwig
- Institut fur Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universitat Erlangen-Nurnberg, Erlangen, Germany
| | - Navdeep S. Chandel
- Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Mark D. Does
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Department of Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States
- Department of Electrical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Stephen D. Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University, Chicago, IL, United States
| | - Dane M. Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
7
|
Mu L, Liu X, Yu H, Vickstrom CR, Friedman V, Kelly TJ, Hu Y, Su W, Liu S, Mantsch JR, Liu QS. cAMP-mediated upregulation of HCN channels in VTA dopamine neurons promotes cocaine reinforcement. Mol Psychiatry 2023; 28:3930-3942. [PMID: 37845497 PMCID: PMC10730389 DOI: 10.1038/s41380-023-02290-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Chronic cocaine exposure induces enduring neuroadaptations that facilitate motivated drug taking. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are known to modulate neuronal firing and pacemaker activity in ventral tegmental area (VTA) dopamine neurons. However, it remained unknown whether cocaine self-administration affects HCN channel function and whether HCN channel activity modulates motivated drug taking. We report that rat VTA dopamine neurons predominantly express Hcn3-4 mRNA, while VTA GABA neurons express Hcn1-4 mRNA. Both neuronal types display similar hyperpolarization-activated currents (Ih), which are facilitated by acute increases in cAMP. Acute cocaine application decreases voltage-dependent activation of Ih in VTA dopamine neurons, but not in GABA neurons. Unexpectedly, chronic cocaine self-administration results in enhanced Ih selectively in VTA dopamine neurons. This differential modulation of Ih currents is likely mediated by a D2 autoreceptor-induced decrease in cAMP as D2 (Drd2) mRNA is predominantly expressed in dopamine neurons, whereas D1 (Drd1) mRNA is barely detectable in the VTA. Moreover, chronically decreased cAMP via Gi-DREADD stimulation leads to an increase in Ih in VTA dopamine neurons and enhanced binding of HCN3/HCN4 with tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), an auxiliary subunit that is known to facilitate HCN channel surface trafficking. Finally, we show that systemic injection and intra-VTA infusion of the HCN blocker ivabradine reduces cocaine self-administration under a progressive ratio schedule and produces a downward shift of the cocaine dose-response curve. Our results suggest that cocaine self-administration induces an upregulation of Ih in VTA dopamine neurons, while HCN inhibition reduces the motivation for cocaine intake.
Collapse
Affiliation(s)
- Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Vladislav Friedman
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Thomas J Kelly
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Wantang Su
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Department of Exercise Physiology, Beijing Sport University, Beijing, 100084, China
| | - Shuai Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - John R Mantsch
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
8
|
Pinares-Garcia P, Spyrou J, McKenzie CE, Forster IC, Soh MS, Mohamed Syazwan E, Atif M, Reid CA. Antidepressant-like activity of a brain penetrant HCN channel inhibitor in mice. Front Pharmacol 2023; 14:1159527. [PMID: 37234718 PMCID: PMC10206048 DOI: 10.3389/fphar.2023.1159527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Changes in Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) channel function have been linked to depressive-like traits, making them potential drug targets. However, there is currently no peer-reviewed data supporting the use of a small molecule modulator of HCN channels in depression treatment. Org 34167, a benzisoxazole derivative, has been patented for the treatment of depression and progressed to Phase I trials. In the current study, we analysed the biophysical effects of Org 34167 on HCN channels in stably transfected human embryonic kidney 293 (HEK293) cells and mouse layer V neurons using patch-clamp electrophysiology, and we utilised three high-throughput screens for depressive-like behaviour to assess the activity of Org 34167 in mice. The impact of Org 34167 on locomotion and coordination were measured by performing rotarod and ledged beam tests. Org 34167 is a broad-spectrum inhibitor of HCN channels, slowing activation and causing a hyperpolarising shift in voltage-dependence of activation. It also reduced I h-mediated sag in mouse neurons. Org 34167 (0.5 mg/kg) reduced marble burying and increased the time spent mobile in the Porsolt swim and tail suspension tests in both male and female BALB/c mice, suggesting reduced depressive-like behaviour. Although no adverse effects were seen at 0.5 mg/kg, an increase in dose to 1 mg/kg resulted in visible tremors and impaired locomotion and coordination. These data support the premise that HCN channels are valid targets for anti-depressive drugs albeit with a narrow therapeutic index. Drugs with higher HCN subtype selectivity are needed to establish if a wider therapeutic window can be obtained.
Collapse
Affiliation(s)
- Paulo Pinares-Garcia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - James Spyrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Chaseley E. McKenzie
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ian C. Forster
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Ming S. Soh
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Erlina Mohamed Syazwan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Mohammed Atif
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Christopher A. Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
9
|
Labbaf A, Dellin M, Komadowski M, Chetkovich DM, Decher N, Pape HC, Seebohm G, Budde T, Zobeiri M. Characterization of Kv1.2-mediated outward current in TRIP8b-deficient mice. Biol Chem 2023; 404:291-302. [PMID: 36852869 DOI: 10.1515/hsz-2023-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023]
Abstract
Tonic current through hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels is influencing neuronal firing properties and channel function is strongly influenced by the brain-specific auxiliary subunit tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). Since Kv1.2 channels and TRIP8b were also suggested to interact, we assessed brain Kv1.2 mRNA and protein expression as well as the reduction of K+ outward currents by Kv1.2-blocking compounds (Psora-4; tityustoxin-Kα, TsTX-Kα) in different brain areas of TRIP8b-deficient (TRIP8b -/- ) compared to wildtype (WT) mice. We found that transcription levels of Kv1.2 channels were not different between genotypes. Furthermore, Kv1.2 current amplitude was not affected upon co-expression with TRIP8b in oocytes. However, Kv1.2 immunofluorescence was stronger in dendritic areas of cortical and hippocampal neurons. Furthermore, the peak net outward current was increased and the inactivation of the Psora-4-sensitive current component was less pronounced in cortical neurons in TRIP8b -/- mice. In current clamp recordings, application of TsTX increased the excitability of thalamocortical (TC) neurons with increased number of elicited action potentials upon step depolarization. We conclude that TRIP8b may not preferentially influence the amplitude of current through Kv1.2 channels but seems to affect current inactivation and channel localization. In TRIP8b -/- a compensatory upregulation of other Kv channels was observed.
Collapse
Affiliation(s)
- Afsaneh Labbaf
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Maurice Dellin
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Marlene Komadowski
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Dane M Chetkovich
- Medical Center, Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Niels Decher
- Institute of Physiology and Pathophysiology, Vegetative Physiology, Philipps-University of Marburg, Deutschhausstr. 1-2, 35037, Marburg, Germany
| | - Hans-Chrisitian Pape
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Guiscard Seebohm
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases (IfGH), University Hospital Münster, Robert-Koch-Str. 45, D-48149 Münster, Germany
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| | - Mehrnoush Zobeiri
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149 Münster, Germany
| |
Collapse
|
10
|
Zhao K, Li Y, Yang X, Zhou L. The Impact of Altered HCN1 Expression on Brain Function and Its Relationship with Epileptogenesis. Curr Neuropharmacol 2023; 21:2070-2078. [PMID: 37366350 PMCID: PMC10556362 DOI: 10.2174/1570159x21666230214110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/13/2022] [Accepted: 12/06/2022] [Indexed: 03/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated cation channel 1 (HCN1) is predominantly expressed in neurons from the neocortex and hippocampus, two important regions related to epilepsy. Both animal models for epilepsy and epileptic patients show decreased HCN1 expression and HCN1-mediated Ih current. It has been shown in neuroelectrophysiological experiments that a decreased Ih current can increase neuronal excitability. However, some studies have shown that blocking the Ih current in vivo can exert antiepileptic effects. This paradox raises an important question regarding the causal relationship between HCN1 alteration and epileptogenesis, which to date has not been elucidated. In this review, we summarize the literature related to HCN1 and epilepsy, aiming to find a possible explanation for this paradox, and explore the correlation between HCN1 and the mechanism of epileptogenesis. We analyze the alterations in the expression and distribution of HCN1 and the corresponding impact on brain function in epilepsy. In addition, we also discuss the effect of blocking Ih on epilepsy symptoms. Addressing these issues will help to inspire new strategies to explore the relationship between HCN1 and epileptogenesis, and ultimately promote the development of new targets for epilepsy therapy.
Collapse
Affiliation(s)
- Ke Zhao
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| | - Xiaofeng Yang
- Guangzhou Laboratory, Guangzhou, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Liemin Zhou
- Department of Neurology, The Seventh Affliated Hospital of Sun Yet-sen University, No. 628, Zhenyuan Road, Xinhu Street, Guangming District, Shenzhen, China
| |
Collapse
|
11
|
Wu Y, Luo XD, Xiang T, Li SJ, Ma MG, Chen ML. Activation of metabotropic glutamate receptor 1 regulates hippocampal CA1 region excitability in rats with status epilepticus by suppressing the HCN1 channel. Neural Regen Res 2023; 18:594-602. [DOI: 10.4103/1673-5374.350206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Bonaventura J, Gomez JL, Carlton ML, Lam S, Sanchez-Soto M, Morris PJ, Moaddel R, Kang HJ, Zanos P, Gould TD, Thomas CJ, Sibley DR, Zarate CA, Michaelides M. Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Mol Psychiatry 2022; 27:4144-4156. [PMID: 35768639 PMCID: PMC10013843 DOI: 10.1038/s41380-022-01673-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The off-label use of racemic ketamine and the FDA approval of (S)-ketamine are promising developments for the treatment of depression. Nevertheless, racemic ketamine and (S)-ketamine are controlled substances with known abuse potential and their use is associated with undesirable side effects. For these reasons, research efforts have focused on identifying alternatives. One candidate is (2R,6R)-hydroxynorketamine ((2R,6R)-HNK), a ketamine metabolite that in preclinical models lacks the dissociative and abuse properties of ketamine while retaining its antidepressant-like behavioral efficacy. (2R,6R)-HNK's mechanism of action however is unclear. The main goals of this study were to perform an in-depth pharmacological characterization of (2R,6R)-HNK at known ketamine targets, to use target deconvolution approaches to discover novel proteins that bind to (2R,6R)-HNK, and to characterize the biodistribution and behavioral effects of (2R,6R)-HNK across several procedures related to substance use disorder liability. We found that unlike (S)- or (R)-ketamine, (2R,6R)-HNK did not directly bind to any known or proposed ketamine targets. Extensive screening and target deconvolution experiments at thousands of human proteins did not identify any other direct (2R,6R)-HNK-protein interactions. Biodistribution studies using radiolabeled (2R,6R)-HNK revealed non-selective brain regional enrichment, and no specific binding in any organ other than the liver. (2R,6R)-HNK was inactive in conditioned place preference, open-field locomotor activity, and intravenous self-administration procedures. Despite these negative findings, (2R,6R)-HNK produced a reduction in immobility time in the forced swim test and a small but significant increase in metabolic activity across a network of brain regions, and this metabolic signature differed from the brain metabolic profile induced by ketamine enantiomers. In sum, our results indicate that (2R,6R)-HNK does not share pharmacological or behavioral profile similarities with ketamine or its enantiomers. However, it could still be possible that both ketamine and (2R,6R)-HNK exert antidepressant-like efficacy through a common and previously unidentified mechanism. Given its pharmacological profile, we predict that (2R,6R)-HNK will exhibit a favorable safety profile in clinical trials, and we must wait for clinical studies to determine its antidepressant efficacy.
Collapse
Affiliation(s)
- Jordi Bonaventura
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907, Catalonia, Spain
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Meghan L Carlton
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Sherry Lam
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
| | - Marta Sanchez-Soto
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Patrick J Morris
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Hye Jin Kang
- National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, 27599, NC, USA
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, 2109, Cyprus
| | - Todd D Gould
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
- Departments of Psychiatry, Pharmacology, and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, 21201, MD, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, Rockville, 20850, MD, USA
| | - David R Sibley
- Molecular Neuropharmacology Section, National Institute of Neurological Disorders and Stroke Intramural Research Program, Bethesda, 20892, MD, USA
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, Intramural Research Program, Bethesda, 20892, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA.
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, 21205, MD, USA.
| |
Collapse
|
13
|
Han Y, Iyamu ID, Clutter MR, Mishra RK, Lyman KA, Zhou C, Michailidis I, Xia MY, Sharma H, Luan CH, Schiltz GE, Chetkovich DM. Discovery of a small-molecule inhibitor of the TRIP8b-HCN interaction with efficacy in neurons. J Biol Chem 2022; 298:102069. [PMID: 35623388 PMCID: PMC9243175 DOI: 10.1016/j.jbc.2022.102069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 10/27/2022] Open
Abstract
Major depressive disorder is a critical public health problem with a lifetime prevalence of nearly 17% in the United States. One potential therapeutic target is the interaction between hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and an auxiliary subunit of the channel named tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b). HCN channels regulate neuronal excitability in the mammalian hippocampus, and recent work has established that antagonizing HCN function rescues cognitive impairment caused by chronic stress. Here, we utilize a high-throughput virtual screen to find small molecules capable of disrupting the TRIP8b-HCN interaction. We found that the hit compound NUCC-0200590 disrupts the TRIP8b-HCN interaction in vitro and in vivo. These results provide a compelling strategy for developing new small molecules capable of disrupting the TRIP8b-HCN interaction.
Collapse
Affiliation(s)
- Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Iredia D Iyamu
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Matthew R Clutter
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA
| | - Rama K Mishra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois, USA
| | - Kyle A Lyman
- Department of Neurology, Stanford University, Palo Alto, California, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ioannis Michailidis
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maya Y Xia
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Horrick Sharma
- Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gary E Schiltz
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Department of Pharmacology, Northwestern University, Chicago, Illinois, USA; Department of Chemistry, Northwestern University, Evanston, Illinois, USA.
| | - Dane M Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
14
|
Peters CH, Singh RK, Bankston JR, Proenza C. Regulation of HCN Channels by Protein Interactions. Front Physiol 2022; 13:928507. [PMID: 35795651 PMCID: PMC9251338 DOI: 10.3389/fphys.2022.928507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels are key regulators of subthreshold membrane potentials in excitable cells. The four mammalian HCN channel isoforms, HCN1-HCN4, are expressed throughout the body, where they contribute to diverse physiological processes including cardiac pacemaking, sleep-wakefulness cycles, memory, and somatic sensation. While all HCN channel isoforms produce currents when expressed by themselves, an emerging list of interacting proteins shape HCN channel excitability to influence the physiologically relevant output. The best studied of these regulatory proteins is the auxiliary subunit, TRIP8b, which binds to multiple sites in the C-terminus of the HCN channels to regulate expression and disrupt cAMP binding to fine-tune neuronal HCN channel excitability. Less is known about the mechanisms of action of other HCN channel interaction partners like filamin A, Src tyrosine kinase, and MinK-related peptides, which have a range of effects on HCN channel gating and expression. More recently, the inositol trisphosphate receptor-associated cGMP-kinase substrates IRAG1 and LRMP (also known as IRAG2), were discovered as specific regulators of the HCN4 isoform. This review summarizes the known protein interaction partners of HCN channels and their mechanisms of action and identifies gaps in our knowledge.
Collapse
Affiliation(s)
- Colin H. Peters
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rohit K. Singh
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - John R. Bankston
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Catherine Proenza
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Catherine Proenza,
| |
Collapse
|
15
|
Lankford C, Houtman J, Baker SA. Identification of HCN1 as a 14-3-3 client. PLoS One 2022; 17:e0268335. [PMID: 35679272 PMCID: PMC9182292 DOI: 10.1371/journal.pone.0268335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 04/28/2022] [Indexed: 11/19/2022] Open
Abstract
Hyperpolarization activated cyclic nucleotide-gated channel 1 (HCN1) is expressed throughout the nervous system and is critical for regulating neuronal excitability, with mutations being associated with multiple forms of epilepsy. Adaptive modulation of HCN1 has been observed, as has pathogenic dysregulation. While the mechanisms underlying this modulation remain incompletely understood, regulation of HCN1 has been shown to include phosphorylation. A candidate phosphorylation-dependent regulator of HCN1 channels is 14-3-3. We used bioinformatics to identify three potential 14-3-3 binding sites in HCN1. We confirmed that 14-3-3 could pull down HCN1 from multiple tissue sources and used HEK293 cells to detail the interaction. Two sites in the intrinsically disordered C-terminus of HCN1 were necessary and sufficient for a phosphorylation-dependent interaction with 14-3-3. The same region of HCN1 containing the 14-3-3 binding peptides is required for phosphorylation-independent protein degradation. We propose a model in which phosphorylation of mouse S810 and S867 (human S789 and S846) recruits 14-3-3 to inhibit a yet unidentified factor signaling for protein degradation, thus increasing the half-life of HCN1.
Collapse
Affiliation(s)
- Colten Lankford
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jon Houtman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Sheila A. Baker
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
16
|
Glucocorticoid-glucocorticoid receptor-HCN1 channels reduce neuronal excitability in dorsal hippocampal CA1 neurons. Mol Psychiatry 2022; 27:4035-4049. [PMID: 35840797 PMCID: PMC9718682 DOI: 10.1038/s41380-022-01682-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
While chronic stress increases hyperpolarization-activated current (Ih) in dorsal hippocampal CA1 neurons, the underlying molecular mechanisms are entirely unknown. Following chronic social defeat stress (CSDS), susceptible mice displayed social avoidance and impaired spatial working memory, which were linked to decreased neuronal excitability, increased perisomatic hyperpolarization-activated cyclic nucleotide-gated (HCN) 1 protein expression, and elevated Ih in dorsal but not ventral CA1 neurons. In control mice, bath application of corticosterone reduced neuronal excitability, increased tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) and HCN1 protein expression, and elevated Ih in dorsal but not ventral CA1 region/neurons. Corticosterone-induced upregulation of functional Ih was mediated by the glucocorticoid receptor (GR), HCN channels, and the protein kinase A (PKA) but not the calcium/calmodulin-dependent protein kinase II (CaMKII) pathway. Three months after the end of CSDS, susceptible mice displayed persistent social avoidance when exposed to a novel aggressor. The sustained behavioral deficit was associated with lower neuronal excitability and higher functional Ih in dorsal CA1 neurons, both of which were unaffected by corticosterone treatment. Our findings show that corticosterone treatment mimics the pathophysiological effects of dorsal CA1 neurons/region found in susceptible mice. The aberrant expression of HCN1 protein along the somatodendritic axis of the dorsal hippocampal CA1 region might be the molecular mechanism driving susceptibility to social avoidance.
Collapse
|
17
|
Eren-Koçak E, Dalkara T. Ion Channel Dysfunction and Neuroinflammation in Migraine and Depression. Front Pharmacol 2021; 12:777607. [PMID: 34858192 PMCID: PMC8631474 DOI: 10.3389/fphar.2021.777607] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/22/2021] [Indexed: 01/15/2023] Open
Abstract
Migraine and major depression are debilitating disorders with high lifetime prevalence rates. Interestingly these disorders are highly comorbid and show significant heritability, suggesting shared pathophysiological mechanisms. Non-homeostatic function of ion channels and neuroinflammation may be common mechanisms underlying both disorders: The excitation-inhibition balance of microcircuits and their modulation by monoaminergic systems, which depend on the expression and function of membrane located K+, Na+, and Ca+2 channels, have been reported to be disturbed in both depression and migraine. Ion channels and energy supply to synapses not only change excitability of neurons but can also mediate the induction and maintenance of inflammatory signaling implicated in the pathophysiology of both disorders. In this respect, Pannexin-1 and P2X7 large-pore ion channel receptors can induce inflammasome formation that triggers release of pro-inflammatory mediators from the cell. Here, the role of ion channels involved in the regulation of excitation-inhibition balance, synaptic energy homeostasis as well as inflammatory signaling in migraine and depression will be reviewed.
Collapse
Affiliation(s)
- Emine Eren-Koçak
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey.,Department of Psychiatry, Medical Faculty, Hacettepe University, Ankara, Turkey
| | - Turgay Dalkara
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Lyman KA, Han Y, Zhou C, Renteria I, Besing GL, Kurz JE, Chetkovich DM. Hippocampal cAMP regulates HCN channel function on two time scales with differential effects on animal behavior. Sci Transl Med 2021; 13:eabl4580. [PMID: 34818058 DOI: 10.1126/scitranslmed.abl4580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kyle A Lyman
- Department of Neurology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA.,Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA.,Department of Neurology, Stanford University, 453 Quarry Road, Palo Alto, CA 94304, USA
| | - Ye Han
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Chengwen Zhou
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Isabelle Renteria
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Gai-Linn Besing
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| | - Jonathan E Kurz
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, 225 E. Chicago Ave., Chicago, IL 60611, USA
| | - Dane M Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, 1161 21st Avenue South, Nashville, TN 37232, USA
| |
Collapse
|
19
|
Joffe ME, Santiago CI, Vermudez SAD, Fisher NM, Dogra S, Niswender CM, Jeffrey Conn P. Frontal cortex genetic ablation of metabotropic glutamate receptor subtype 3 (mGlu 3) impairs postsynaptic plasticity and modulates affective behaviors. Neuropsychopharmacology 2021; 46:2148-2157. [PMID: 34035469 PMCID: PMC8505649 DOI: 10.1038/s41386-021-01041-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/22/2021] [Accepted: 05/04/2021] [Indexed: 12/20/2022]
Abstract
Clinical and translational studies suggest that prefrontal cortex (PFC) dysregulation is a hallmark feature of several affective disorders. Thus, investigating the mechanisms involved in the regulation of PFC function and synaptic plasticity could aid in developing new medications. In recent years, the mGlu2 and mGlu3 subtypes of metabotropic glutamate (mGlu) receptors have emerged as exciting potential targets for the treatment of affective disorders, as mGlu2/3 antagonists exert antidepressant-like effects across many rodent models. Several recent studies suggest that presynaptic mGlu2 receptors may contribute to these effects by regulating excitatory transmission at synapses from the thalamus to the PFC. Interestingly, we found that mGlu3 receptors also inhibit excitatory drive to the PFC but act by inducing long-term depression (LTD) at amygdala-PFC synapses. It remains unclear, however, whether blockade of presynaptic, postsynaptic, or glial mGlu3 receptors contribute to long-term effects on PFC circuit function and antidepressant-like effects of mGlu2/3 antagonists. To address these outstanding questions, we leveraged transgenic Grm3fl/fl mice and viral-mediated gene transfer to genetically ablate mGlu3 receptors from pyramidal cells in the frontal cortex of adult mice of all sexes. Consistent with a role for mGlu3 in PFC pyramidal cells, mGlu3-dependent amygdala-cortical LTD was eliminated following mGlu3 receptor knockdown. Furthermore, knockdown mice displayed a modest, task-specific anxiolytic phenotype and decreased passive coping behaviors. These studies reveal that postsynaptic mGlu3 receptors are critical for mGlu3-dependent LTD and provide convergent genetic evidence suggesting that modulating cortical mGlu3 receptors may provide a promising new approach for the treatment of mood disorders.
Collapse
Affiliation(s)
- Max E Joffe
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Nashville, TN, USA.
| | - Chiaki I Santiago
- Vanderbilt University, Nashville, TN, USA
- Division of Biological Sciences, Section of Neurobiology, Center for Neural Circuits and Behavior, University of California San Diego, San Diego, USA
| | - Sheryl Anne D Vermudez
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Nicole M Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Shalini Dogra
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA
- Vanderbilt Kennedy Center, Nashville, TN, USA
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Warren Center for Neuroscience Drug Discovery, Nashville, TN, USA.
- Vanderbilt Center for Addiction Research, Nashville, TN, USA.
- Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
20
|
Russo ML, Molina-Campos E, Ybarra N, Rogalsky AE, Musial TF, Jimenez V, Haddad LG, Voskobiynyk Y, D'Souza GX, Carballo G, Neuman KM, Chetkovich DM, Oh MM, Disterhoft JF, Nicholson DA. Variability in sub-threshold signaling linked to Alzheimer's disease emerges with age and amyloid plaque deposition in mouse ventral CA1 pyramidal neurons. Neurobiol Aging 2021; 106:207-222. [PMID: 34303222 DOI: 10.1016/j.neurobiolaging.2021.06.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 02/06/2023]
Abstract
The hippocampus is vulnerable to deterioration in Alzheimer's disease (AD). It is, however, a heterogeneous structure, which may contribute to the differential volumetric changes along its septotemporal axis during AD progression. Here, we investigated amyloid plaque deposition along the dorsoventral axis in two strains of transgenic AD (ADTg) mouse models. We also used patch-clamp physiology in these mice to probe for functional consequences of AD pathogenesis in ventral hippocampus, which we found bears significantly higher plaque burden in the aged ADTg group compared to corresponding dorsal regions. Despite dorsoventral differences in amyloid load, ventral CA1 pyramidal neurons of aged ADTg mice exhibited subthreshold physiological changes similar to those previously reported in dorsal neurons, indicative of an HCN channelopathy, but lacked exacerbated suprathreshold accommodation. Additionally, HCN channel function could be rescued by pharmacological manipulation of the endoplasmic reticulum. These observations suggest that an AD-linked HCN channelopathy emerges in both dorsal and ventral CA1 pyramidal neurons, but that the former encounter an additional integrative obstacle in the form of reduced intrinsic excitability.
Collapse
Affiliation(s)
- Matthew L Russo
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | | | - Natividad Ybarra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Annalise E Rogalsky
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Viviana Jimenez
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Loreece G Haddad
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yuliya Voskobiynyk
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Gary X D'Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Gabriel Carballo
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Krystina M Neuman
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | | | - M Matthew Oh
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John F Disterhoft
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
21
|
Loss of HCN2 in Dorsal Hippocampus of Young Adult Mice Induces Specific Apoptosis of the CA1 Pyramidal Neuron Layer. Int J Mol Sci 2021; 22:ijms22136699. [PMID: 34206649 PMCID: PMC8269412 DOI: 10.3390/ijms22136699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/20/2022] Open
Abstract
Neurons inevitably rely on a proper repertoire and distribution of membrane-bound ion-conducting channels. Among these proteins, the family of hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels possesses unique properties giving rise to the corresponding Ih-current that contributes to various aspects of neural signaling. In mammals, four genes (hcn1-4) encode subunits of HCN channels. These subunits can assemble as hetero- or homotetrameric ion-conducting channels. In order to elaborate on the specific role of the HCN2 subunit in shaping electrical properties of neurons, we applied an Adeno-associated virus (AAV)-mediated, RNAi-based knock-down strategy of hcn2 gene expression both in vitro and in vivo. Electrophysiological measurements showed that HCN2 subunit knock-down resulted in specific yet anticipated changes in Ih-current properties in primary hippocampal neurons and, in addition, corroborated that the HCN2 subunit participates in postsynaptic signal integration. To further address the role of the HCN2 subunit in vivo, we injected recombinant (r)AAVs into the dorsal hippocampus of young adult male mice. Behavioral and biochemical analyses were conducted to assess the contribution of HCN2-containing channels in shaping hippocampal network properties. Surprisingly, knock-down of hcn2 expression resulted in a severe degeneration of the CA1 pyramidal cell layer, which did not occur in mice injected with control rAAV constructs. This finding might pinpoint to a vital and yet unknown contribution of HCN2 channels in establishing or maintaining the proper function of CA1 pyramidal neurons of the dorsal hippocampus.
Collapse
|
22
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
23
|
Xing G, Jing H, Yu Z, Chen P, Wang H, Xiong WC, Mei L. Membraneless condensates by Rapsn phase separation as a platform for neuromuscular junction formation. Neuron 2021; 109:1963-1978.e5. [PMID: 34033754 DOI: 10.1016/j.neuron.2021.04.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/27/2021] [Accepted: 04/22/2021] [Indexed: 12/29/2022]
Abstract
Our daily life depends on muscle contraction, a process that is controlled by the neuromuscular junction (NMJ). However, the mechanisms of NMJ assembly remain unclear. Here we show that Rapsn, a protein critical for NMJ formation, undergoes liquid-liquid phase separation (LLPS) and condensates into liquid-like assemblies. Such assemblies can recruit acetylcholine receptors (AChRs), cytoskeletal proteins, and signaling proteins for postsynaptic differentiation. Rapsn LLPS requires multivalent binding of tetratricopeptide repeats (TPRs) and is increased by Musk signaling. The capacity of Rapsn to condensate and co-condensate with interaction proteins is compromised by mutations of congenital myasthenic syndromes (CMSs). NMJ formation is impaired in mutant mice carrying a CMS-associated, LLPS-deficient mutation. These results reveal a critical role of Rapsn LLPS in forming a synaptic semi-membraneless compartment for NMJ formation.
Collapse
Affiliation(s)
- Guanglin Xing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongyang Jing
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Zheng Yu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Hongsheng Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Cheng P, Qiu Z, Du Y. Potassium channels and autism spectrum disorder: An overview. Int J Dev Neurosci 2021; 81:479-491. [PMID: 34008235 DOI: 10.1002/jdn.10123] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/07/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by impaired social interaction and communication, and restricted, repetitive patterns of behaviors, interests, or activities. It had been demonstrated that potassium channels played a key role in regulating neuronal excitability, which was closely associated with neurological diseases including epilepsy, ataxia, myoclonus, and psychiatric disorders. In recent years, a growing body of evidence from whole-genome sequencing and whole-exome sequencing had identified several ASD susceptibility genes of potassium channels in ASD subjects. Genetically dysfunction of potassium channels may be involved in altered neuronal excitability and abnormal brain function in the pathogenesis of ASD. This review summarizes current findings on the features of ASD-risk genes (KCND2, KCNQ2, KCNQ3, KCNH5, KCNJ2, KCNJ10, and KCNMA1) and further expatiate their potential role in the pathogenicity of ASD.
Collapse
Affiliation(s)
- Peipei Cheng
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Yasong Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Characterization of the HCN Interaction Partner TRIP8b/PEX5R in the Intracardiac Nervous System of TRIP8b-Deficient and Wild-Type Mice. Int J Mol Sci 2021; 22:ijms22094772. [PMID: 33946275 PMCID: PMC8125662 DOI: 10.3390/ijms22094772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/25/2022] Open
Abstract
The tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b/PEX5R) is an interaction partner and auxiliary subunit of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which are key for rhythm generation in the brain and in the heart. Since TRIP8b is expressed in central neurons but not in cardiomyocytes, the TRIP8b-HCN interaction has been studied intensely in the brain, but is deemed irrelevant in the cardiac conduction system. Still, to date, TRIP8b has not been studied in the intrinsic cardiac nervous system (ICNS), a neuronal network located within epicardial fat pads. In vitro electrophysiological studies revealed that TRIP8b-deficient mouse hearts exhibit increased atrial refractory and atrioventricular nodal refractory periods, compared to hearts of wild-type littermates. Meanwhile, heart rate, sino-nodal recovery time, and ventricular refractory period did not differ between genotypes. Trip8b mRNA was detected in the ICNS by quantitative polymerase chain reaction. RNAscope in situ hybridization confirmed Trip8b localization in neuronal somata and nerve fibers. Additionally, we found a very low amount of mRNAs in the sinus node and atrioventricular node, most likely attributable to the delicate fibers innervating the conduction system. In contrast, TRIP8b protein was not detectable. Our data suggest that TRIP8b in the ICNS may play a role in the modulation of atrial electrophysiology beyond HCN-mediated sino-nodal control of the heart.
Collapse
|
26
|
Lv QY, Chen MM, Li Y, Yu Y, Liao H. Brain circuit dysfunction in specific symptoms of depression. Eur J Neurosci 2021; 55:2393-2403. [PMID: 33818849 DOI: 10.1111/ejn.15221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
Since the depressive disorder manifests complex and diverse symptoms clinically, its pathological mechanism and therapeutic options are difficult to determine. In recent years, the advent of optogenetics, chemogenetics and viral tracing techniques, along with the well-established rodent model of depression, has led to a shift in the focus of depression research from single molecules to neural circuits. In virtue of the powerful tools above, psychiatric disorder such as depression could be well related to the disfunction of brain's connection. Moreover, compelling studies also support that the diversity of depressive behaviour could be involved with the discrete changes in a distinct circuit of the brain. Therefore, summarising the differential changes of the neural circuits in mice with depression-like behaviour may provide a better understanding of the causal relationships between neural circuit and depressive behaviour. Here, we focus on the changes in the neural circuitry underlying various depression-like phenotypes, including motivation, despair, social avoidance and comorbid sequelae, which may provide an explanation to circuit-specific discrepancy in depression-like behaviour.
Collapse
Affiliation(s)
- Qun Y Lv
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Ming M Chen
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Yu Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Yang Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Hong Liao
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
27
|
Homeostatic plasticity and burst activity are mediated by hyperpolarization-activated cation currents and T-type calcium channels in neuronal cultures. Sci Rep 2021; 11:3236. [PMID: 33547341 PMCID: PMC7864958 DOI: 10.1038/s41598-021-82775-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/20/2021] [Indexed: 01/27/2023] Open
Abstract
Homeostatic plasticity stabilizes neuronal networks by adjusting the responsiveness of neurons according to their global activity and the intensity of the synaptic inputs. We investigated the homeostatic regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) and T-type calcium (CaV3) channels in dissociated and organotypic slice cultures. After 48 h blocking of neuronal activity by tetrodotoxin (TTX), our patch-clamp experiments revealed an increase in the depolarizing voltage sag and post-inhibitory rebound mediated by HCN and CaV3 channels, respectively. All HCN subunits (HCN1 to 4) and T-type Ca-channel subunits (CaV3.1, 3.2 and 3.3) were expressed in both control and activity-deprived hippocampal cultures. Elevated expression levels of CaV3.1 mRNA and a selective increase in the expression of TRIP8b exon 4 isoforms, known to regulate HCN channel localization, were also detected in TTX-treated cultured hippocampal neurons. Immunohistochemical staining in TTX-treated organotypic slices verified a more proximal translocation of HCN1 channels in CA1 pyramidal neurons. Computational modeling also implied that HCN and T-type calcium channels have important role in the regulation of synchronized bursting evoked by previous activity-deprivation. Thus, our findings indicate that HCN and T-type Ca-channels contribute to the homeostatic regulation of excitability and integrative properties of hippocampal neurons.
Collapse
|
28
|
Deutsch M, Günther A, Lerchundi R, Rose CR, Balfanz S, Baumann A. AAV-Mediated CRISPRi and RNAi Based Gene Silencing in Mouse Hippocampal Neurons. Cells 2021; 10:324. [PMID: 33557342 PMCID: PMC7915209 DOI: 10.3390/cells10020324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/12/2022] Open
Abstract
Uncovering the physiological role of individual proteins that are part of the intricate process of cellular signaling is often a complex and challenging task. A straightforward strategy of studying a protein's function is by manipulating the expression rate of its gene. In recent years, the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9-based technology was established as a powerful gene-editing tool for generating sequence specific changes in proliferating cells. However, obtaining homogeneous populations of transgenic post-mitotic neurons by CRISPR/Cas9 turned out to be challenging. These constraints can be partially overcome by CRISPR interference (CRISPRi), which mediates the inhibition of gene expression by competing with the transcription machinery for promoter binding and, thus, transcription initiation. Notably, CRISPR/Cas is only one of several described approaches for the manipulation of gene expression. Here, we targeted neurons with recombinant Adeno-associated viruses to induce either CRISPRi or RNA interference (RNAi), a well-established method for impairing de novo protein biosynthesis by using cellular regulatory mechanisms that induce the degradation of pre-existing mRNA. We specifically targeted hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels, which are widely expressed in neuronal tissues and play essential physiological roles in maintaining biophysical characteristics in neurons. Both of the strategies reduced the expression levels of three HCN isoforms (HCN1, 2, and 4) with high specificity. Furthermore, detailed analysis revealed that the knock-down of just a single HCN isoform (HCN4) in hippocampal neurons did not affect basic electrical parameters of transduced neurons, whereas substantial changes emerged in HCN-current specific properties.
Collapse
Affiliation(s)
- Matthias Deutsch
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-1, Leo-Brandt-Straße, 52428 Jülich, Germany; (M.D.); (S.B.)
- Department of Biology, University of California, San Diego, La Jolla, CA 92083, USA
| | - Anne Günther
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany;
| | - Rodrigo Lerchundi
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (R.L.); (C.R.R.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany; (R.L.); (C.R.R.)
| | - Sabine Balfanz
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-1, Leo-Brandt-Straße, 52428 Jülich, Germany; (M.D.); (S.B.)
| | - Arnd Baumann
- Forschungszentrum Jülich, Institute of Biological Information Processing, IBI-1, Leo-Brandt-Straße, 52428 Jülich, Germany; (M.D.); (S.B.)
| |
Collapse
|
29
|
Muscat SA, Hartelius G, Crouch CR, Morin KW. An Integrative Approach to Ketamine Therapy May Enhance Multiple Dimensions of Efficacy: Improving Therapeutic Outcomes With Treatment Resistant Depression. Front Psychiatry 2021; 12:710338. [PMID: 34899408 PMCID: PMC8653702 DOI: 10.3389/fpsyt.2021.710338] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Research over the last two decades has established ketamine as a safe, effective, fast-acting, and sustained antidepressant that significantly reduces adverse symptoms associated with depression, even in patients who are treatment resistant. Much of this research has evolved within the framework of several independent branches of scientific inquiry: in addition to the study of ketamine is a non-selective NMDAR antagonist with rapid antidepressant effects, it has also been found effective as a psychoplastogen that stimulates synaptogenesis and increases neuroplasticity, as a powerful anti-inflammatory that may improve inflammation-related depressive symptoms, as a substance that induces beneficial high entropy brain states, and as a subjectively impactful psychedelic agent. Each branch of inquiry has generated independent evidence of ketamine's efficacy but has advanced without substantive coordination or communication with other lines of inquiry. Integrative research that considers these branches of research together may lead toward a better understanding of ketamine's effects and improved treatment protocols and clinical outcomes. Such an overview can inform more comprehensive patient care through: (a) informed patient psychoeducation that encompasses all of ketamine's mechanisms of action; (b) calibration of optimal dosage to ensure induction and maintenance of high entropy brain states during each ketamine session utilizing EEG measurement; (c) Improved management of emergence side effects through proper care for set and setting; (d) inclusion of pre-selected appropriate music to enhance the emotional experience; (e) increased monitoring of ketamine effects on cortical activity, inter-hemispheric imbalance, and inflammation-related levels of cytokines to further improvements in ketamine protocols; and (f) appropriate timing of any adjunctive psychotherapy sessions to coincide with peak neurogenesis at 24-48 h post ketamine treatment.
Collapse
Affiliation(s)
- Sherry-Anne Muscat
- Youth Forensic Psychiatry, Alberta Hospital, Alberta Health Services, Edmonton, AB, Canada.,Integral and Transpersonal Psychology, California Institute of Integral Studies, San Francisco, CA, United States
| | - Glenn Hartelius
- Integral and Transpersonal Psychology, California Institute of Integral Studies, San Francisco, CA, United States
| | - Courtenay Richards Crouch
- Integral and Transpersonal Psychology, California Institute of Integral Studies, San Francisco, CA, United States
| | - Kevin W Morin
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.,Acute Adult Psychiatry, Alberta Hospital, Alberta Health Services, Edmonton, AB, Canada
| |
Collapse
|
30
|
Arencibia‐Albite F, Jiménez‐Rivera CA. Computational and theoretical insights into the homeostatic response to the decreased cell size of midbrain dopamine neurons. Physiol Rep 2021; 9:e14709. [PMID: 33484235 PMCID: PMC7824968 DOI: 10.14814/phy2.14709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
Midbrain dopamine neurons communicate signals of reward anticipation and attribution of salience. This capacity is distorted in heroin or cocaine abuse or in conditions such as human mania. A shared characteristic among rodent models of these behavioral disorders is that dopamine neurons in these animals acquired a small size and manifest an augmented spontaneous and burst activity. The biophysical mechanism underlying this increased excitation is currently unknown, but is believed to primarily follow from a substantial drop in K+ conductance secondary to morphology reduction. This work uses a dopamine neuron mathematical model to show, surprisingly, that under size diminution a reduction in K+ conductance is an adaptation that attempts to decrease cell excitability. The homeostatic response that preserves the intrinsic activity is the conservation of the ion channel density for each conductance; a result that is analytically demonstrated and challenges the experimentalist tendency to reduce intrinsic excitation to K+ conductance expression level. Another unexpected mechanism that buffers the raise in intrinsic activity is the presence of the ether-a-go-go-related gen K+ channel since its activation is illustrated to increase with size reduction. Computational experiments finally demonstrate that size attenuation results in the paradoxical enhancement of afferent-driven bursting as a reduced temporal summation indexed correlates with improved depolarization. This work illustrates, on the whole, that experimentation in the absence of mathematical models may lead to the erroneous interpretation of the counterintuitive aspects of empirical data.
Collapse
Affiliation(s)
- Francisco Arencibia‐Albite
- Department of PhysiologyUniversity of Puerto RicoSan JuanPuerto Rico
- Department of Natural SciencesUniversity of Sacred HeartSan JuanPuerto Rico
| | | |
Collapse
|
31
|
Han Y, Lyman KA, Foote KM, Chetkovich DM. The structure and function of TRIP8b, an auxiliary subunit of hyperpolarization-activated cyclic-nucleotide gated channels. Channels (Austin) 2020; 14:110-122. [PMID: 32189562 PMCID: PMC7153792 DOI: 10.1080/19336950.2020.1740501] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/08/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed throughout the mammalian central nervous system (CNS). These channels have been implicated in a wide range of diseases, including Major Depressive Disorder and multiple subtypes of epilepsy. The diversity of functions that HCN channels perform is in part attributable to differences in their subcellular localization. To facilitate a broad range of subcellular distributions, HCN channels are bound by auxiliary subunits that regulate surface trafficking and channel function. One of the best studied auxiliary subunits is tetratricopeptide-repeat containing, Rab8b-interacting protein (TRIP8b). TRIP8b is an extensively alternatively spliced protein whose only known function is to regulate HCN channels. TRIP8b binds to HCN pore-forming subunits at multiple interaction sites that differentially regulate HCN channel function and subcellular distribution. In this review, we summarize what is currently known about the structure and function of TRIP8b isoforms with an emphasis on the role of this auxiliary subunit in health and disease.
Collapse
Affiliation(s)
- Ye Han
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle A. Lyman
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Kendall M. Foote
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dane M. Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
32
|
Santoro B, Shah MM. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels as Drug Targets for Neurological Disorders. Annu Rev Pharmacol Toxicol 2020; 60:109-131. [PMID: 31914897 DOI: 10.1146/annurev-pharmtox-010919-023356] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated ion channels that critically modulate neuronal activity. Four HCN subunits (HCN1-4) have been cloned, each having a unique expression profile and distinctive effects on neuronal excitability within the brain. Consistent with this, the expression and function of these subunits are altered in diverse ways in neurological disorders. Here, we review current knowledge on the structure and distribution of the individual HCN channel isoforms, their effects on neuronal activity under physiological conditions, and how their expression and function are altered in neurological disorders, particularly epilepsy, neuropathic pain, and affective disorders. We discuss the suitability of HCN channels as therapeutic targets and how drugs might be strategically designed to specifically act on particular isoforms. We conclude that medicines that target individual HCN isoforms and/or their auxiliary subunit, TRIP8b, may provide valuable means of treating distinct neurological conditions.
Collapse
Affiliation(s)
- Bina Santoro
- Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Mala M Shah
- Department of Pharmacology, School of Pharmacy, University College London, London WC1N 1AX, United Kingdom;
| |
Collapse
|
33
|
Porro A, Binda A, Pisoni M, Donadoni C, Rivolta I, Saponaro A. Rational design of a mutation to investigate the role of the brain protein TRIP8b in limiting the cAMP response of HCN channels in neurons. J Gen Physiol 2020; 152:e202012596. [PMID: 32633755 PMCID: PMC7478871 DOI: 10.1085/jgp.202012596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/02/2020] [Accepted: 06/08/2020] [Indexed: 01/22/2023] Open
Abstract
TRIP8b (tetratricopeptide repeat-containing Rab8b-interacting protein) is the neuronal regulatory subunit of HCN channels, a family of voltage-dependent cation channels also modulated by direct cAMP binding. TRIP8b interacts with the C-terminal region of HCN channels and controls both channel trafficking and gating. The association of HCN channels with TRIP8b is required for the correct expression and subcellular targeting of the channel protein in vivo. TRIP8b controls HCN gating by interacting with the cyclic nucleotide-binding domain (CNBD) and competing for cAMP binding. Detailed structural knowledge of the complex between TRIP8b and CNBD was used as a starting point to engineer a mutant channel, whose gating is controlled by cAMP, but not by TRIP8b, while leaving TRIP8b-dependent regulation of channel trafficking unaltered. We found two-point mutations (N/A and C/D) in the loop connecting the CNBD to the C-linker (N-bundle loop) that, when combined, strongly reduce the binding of TRIP8b to CNBD, leaving cAMP affinity unaltered both in isolated CNBD and in the full-length protein. Proof-of-principle experiments performed in cultured cortical neurons confirm that the mutant channel provides a genetic tool for dissecting the two effects of TRIP8b (gating versus trafficking). This will allow the study of the functional role of the TRIP8b antagonism of cAMP binding, a thus far poorly investigated aspect of HCN physiology in neurons.
Collapse
Affiliation(s)
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | | | - Chiara Donadoni
- Department of Biosciences, University of Milano, Milano, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Andrea Saponaro
- Department of Biosciences, University of Milano, Milano, Italy
| |
Collapse
|
34
|
Choi SJ, Ma TC, Ding Y, Cheung T, Joshi N, Sulzer D, Mosharov EV, Kang UJ. Alterations in the intrinsic properties of striatal cholinergic interneurons after dopamine lesion and chronic L-DOPA. eLife 2020; 9:56920. [PMID: 32687053 PMCID: PMC7380940 DOI: 10.7554/elife.56920] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022] Open
Abstract
Changes in striatal cholinergic interneuron (ChI) activity are thought to contribute to Parkinson's disease pathophysiology and dyskinesia from chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, but the physiological basis of these changes is unknown. We find that dopamine lesion decreases the spontaneous firing rate of ChIs, whereas chronic treatment with L-DOPA of lesioned mice increases baseline ChI firing rates to levels beyond normal activity. The effect of dopamine loss on ChIs was due to decreased currents of both hyperpolarization-activated cyclic nucleotide-gated (HCN) and small conductance calcium-activated potassium (SK) channels. L-DOPA reinstatement of dopamine normalized HCN activity, but SK current remained depressed. Pharmacological blockade of HCN and SK activities mimicked changes in firing, confirming that these channels are responsible for the molecular adaptation of ChIs to dopamine loss and chronic L-DOPA treatment. These findings suggest that targeting ChIs with channel-specific modulators may provide therapeutic approaches for alleviating L-DOPA-induced dyskinesia in PD patients.
Collapse
Affiliation(s)
- Se Joon Choi
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Thong C Ma
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - Yunmin Ding
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - Timothy Cheung
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - Neal Joshi
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| | - David Sulzer
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Medical Center, New York, United States
| | - Un Jung Kang
- Department of Neurology, Grossman School of Medicine, New York University, New York, United States
| |
Collapse
|
35
|
Munn RGK, Mallory CS, Hardcastle K, Chetkovich DM, Giocomo LM. Entorhinal velocity signals reflect environmental geometry. Nat Neurosci 2020; 23:239-251. [PMID: 31932764 PMCID: PMC7007349 DOI: 10.1038/s41593-019-0562-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 11/21/2019] [Indexed: 01/05/2023]
Abstract
The entorhinal cortex contains neurons that represent self-location, including grid cells that fire in periodic locations and velocity signals that encode running speed and head direction. Although the size and shape of the environment influence grid patterns, whether entorhinal velocity signals are equally influenced or provide a universal metric for self-motion across environments remains unknown. Here we report that speed cells rescale after changes to the size and shape of the environment. Moreover, head direction cells reorganize in an experience-dependent manner to align with the axis of environmental change. A knockout mouse model allows dissociation of the coordination between cell types, with grid and speed cells, but not head direction cells, responding in concert to environmental change. These results point to malleability in the coding features of multiple entorhinal cell types and have implications for which cell types contribute to the velocity signal used by computational models of grid cells.
Collapse
Affiliation(s)
- Robert G K Munn
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Caitlin S Mallory
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kiah Hardcastle
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Dane M Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
36
|
Greenwood TA, Lazzeroni LC, Maihofer AX, Swerdlow NR, Calkins ME, Freedman R, Green MF, Light GA, Nievergelt CM, Nuechterlein KH, Radant AD, Siever LJ, Silverman JM, Stone WS, Sugar CA, Tsuang DW, Tsuang MT, Turetsky BI, Gur RC, Gur RE, Braff DL. Genome-wide Association of Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia (COGS) Study. JAMA Psychiatry 2019; 76:1274-1284. [PMID: 31596458 PMCID: PMC6802253 DOI: 10.1001/jamapsychiatry.2019.2850] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE The Consortium on the Genetics of Schizophrenia (COGS) uses quantitative neurophysiological and neurocognitive endophenotypes with demonstrated deficits in schizophrenia as a platform from which to explore the underlying neural circuitry and genetic architecture. Many of these endophenotypes are associated with poor functional outcome in schizophrenia. Some are also endorsed as potential treatment targets by the US Food and Drug Administration. OBJECTIVE To build on prior assessments of heritability, association, and linkage in the COGS phase 1 (COGS-1) families by reporting a genome-wide association study (GWAS) of 11 schizophrenia-related endophenotypes in the independent phase 2 (COGS-2) cohort of patients with schizophrenia and healthy comparison participants (HCPs). DESIGN, SETTING, AND PARTICIPANTS A total of 1789 patients with schizophrenia and HCPs of self-reported European or Latino ancestry were recruited through a collaborative effort across the COGS sites and genotyped using the PsychChip. Standard quality control filters were applied, and more than 6.2 million variants with a genotyping call rate of greater than 0.99 were available after imputation. Association was performed for data sets stratified by diagnosis and ancestry using linear regression and adjusting for age, sex, and 5 principal components, with results combined through weighted meta-analysis. Data for COGS-1 were collected from January 6, 2003, to August 6, 2008; data for COGS-2, from June 30, 2010, to February 14, 2014. Data were analyzed from October 28, 2016, to May 4, 2018. MAIN OUTCOMES AND MEASURES A genome-wide association study was performed to evaluate association for 11 neurophysiological and neurocognitive endophenotypes targeting key domains of schizophrenia related to inhibition, attention, vigilance, learning, working memory, executive function, episodic memory, and social cognition. RESULTS The final sample of 1533 participants included 861 male participants (56.2%), and the mean (SD) age was 41.8 (13.6) years. In total, 7 genome-wide significant regions (P < 5 × 10-8) and 2 nearly significant regions (P < 9 × 10-8) containing several genes of interest, including NRG3 and HCN1, were identified for 7 endophenotypes. For each of the 11 endophenotypes, enrichment analyses performed at the level of P < 10-4 compared favorably with previous association results in the COGS-1 families and showed extensive overlap with regions identified for schizophrenia diagnosis. CONCLUSIONS AND RELEVANCE These analyses identified several genomic regions of interest that require further exploration and validation. These data seem to demonstrate the utility of endophenotypes for resolving the genetic architecture of schizophrenia and characterizing the underlying biological dysfunctions. Understanding the molecular basis of these endophenotypes may help to identify novel treatment targets and pave the way for precision-based medicine in schizophrenia and related psychotic disorders.
Collapse
Affiliation(s)
| | - Laura C. Lazzeroni
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California,Sierra Pacific Mental Illness Research Education and Clinical Center, Department of Veterans Affairs (VA) Health Care System, Palo Alto, California
| | - Adam X. Maihofer
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Neal R. Swerdlow
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Robert Freedman
- Department of Psychiatry, University of Colorado Health Sciences Center, Denver
| | - Michael F. Green
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Desert Pacific Mental Illness Research Education and Clinical Center, VA Greater Los Angeles Healthcare System, Los Angeles, California
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla,Desert Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, California
| | | | | | - Allen D. Radant
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Larry J. Siever
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - Jeremy M. Silverman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York,Research & Development, James J. Peters VA Medical Center, New York, New York
| | - William S. Stone
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts,Massachusetts Mental Health Center Public Psychiatry Division of the Beth Israel Deaconess Medical Center, Boston
| | - Catherine A. Sugar
- Department of Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, California,Department of Biostatistics, UCLA School of Public Health
| | - Debby W. Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle,Northwest Geriatric Research Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | | | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia
| | - David L. Braff
- Department of Psychiatry, University of California, San Diego, La Jolla
| |
Collapse
|
37
|
Rathour RK, Narayanan R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019; 29:980-1022. [PMID: 31301166 PMCID: PMC6771840 DOI: 10.1002/hipo.23139] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Degeneracy, defined as the ability of structurally disparate elements to perform analogous function, has largely been assessed from the perspective of maintaining robustness of physiology or plasticity. How does the framework of degeneracy assimilate into an encoding system where the ability to change is an essential ingredient for storing new incoming information? Could degeneracy maintain the balance between the apparently contradictory goals of the need to change for encoding and the need to resist change towards maintaining homeostasis? In this review, we explore these fundamental questions with the mammalian hippocampus as an example encoding system. We systematically catalog lines of evidence, spanning multiple scales of analysis that point to the expression of degeneracy in hippocampal physiology and plasticity. We assess the potential of degeneracy as a framework to achieve the conjoint goals of encoding and homeostasis without cross-interferences. We postulate that biological complexity, involving interactions among the numerous parameters spanning different scales of analysis, could establish disparate routes towards accomplishing these conjoint goals. These disparate routes then provide several degrees of freedom to the encoding-homeostasis system in accomplishing its tasks in an input- and state-dependent manner. Finally, the expression of degeneracy spanning multiple scales offers an ideal reconciliation to several outstanding controversies, through the recognition that the seemingly contradictory disparate observations are merely alternate routes that the system might recruit towards accomplishment of its goals.
Collapse
Affiliation(s)
- Rahul K. Rathour
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
38
|
Shao LX, Jiang Q, Liu XX, Gong DM, Yin YX, Wu G, Sun NH, Wang CK, Chen QZ, Yu C, Shi WX, Fan HY, Fukunaga K, Chen Z, Lu YM, Han F. Functional coupling of Tmem74 and HCN1 channels regulates anxiety-like behavior in BLA neurons. Mol Psychiatry 2019; 24:1461-1477. [PMID: 30886335 DOI: 10.1038/s41380-019-0402-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/08/2023]
Abstract
Anxiety disorders are the most prevalent psychiatric disorders, but their pathogenic mechanism remains poorly understood. Here, we report that transmembrane protein 74 (TMEM74), which contains two putative transmembrane domains and exhibits high levels of mRNA in the brain, is closely associated with the pathogenesis of anxiety disorders. TMEM74 was decreased in the serum of patients with anxiety and the basolateral amygdaloid nucleus (BLA) in chronic stress mice. Furthermore, genetic deletion of Tmem74 or selective knockdown of Tmem74 in BLA pyramidal neurons resulted in anxiety-like behaviors in mice. Whole-cell recordings in BLA pyramidal neurons revealed lower hyperpolarization-activated cation current (Ih) and greater input resistance and excitability in Tmem74-/- neurons than in wild-type neurons. Accordingly, surface expression of hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels was also lower in the BLA of Tmem74-/- mice. The Ih current blocker ZD7288 mimicked these effects in BLA pyramidal neurons in wild-type mice but not in Tmem74-/- mice. Consistent with the improvement in anxiety-like behaviors, Tmem74 overexpression restored HCN1 channel trafficking and pyramidal neuron excitability in the BLA of Tmem74-/- and chronic stress mice. Mechanistically, we demonstrate that interactions between Tmem74 and HCN1 are physiologically relevant and that transmembrane domain 1 (TM1) is essential for the cellular membrane localization of Tmem74 to enhance Ih. Together, our findings suggest that Tmem74 coupling with HCN1 acts as a critical component in the pathophysiology of anxiety and is a potential target for new treatments of anxiety disorders.
Collapse
Affiliation(s)
- Ling-Xiao Shao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiu-Xiu Liu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Mei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yi-Xuan Yin
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Gang Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ning-He Sun
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng-Kun Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiao-Zhen Chen
- Department of Psychiatry, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Yu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Wei-Xing Shi
- Departments of Pharmaceutical, Administrative, and Basic Sciences, Schools of Pharmacy and Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Zhong Chen
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Ying-Mei Lu
- School of Medicine, Zhejiang University City College, Hangzhou, China. .,Department of Neurobiology, Nanjing Medical University, Nanjing, China.
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
Foote KM, Lyman KA, Han Y, Michailidis IE, Heuermann RJ, Mandikian D, Trimmer JS, Swanson GT, Chetkovich DM. Phosphorylation of the HCN channel auxiliary subunit TRIP8b is altered in an animal model of temporal lobe epilepsy and modulates channel function. J Biol Chem 2019; 294:15743-15758. [PMID: 31492750 DOI: 10.1074/jbc.ra119.010027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a prevalent neurological disorder with many patients experiencing poor seizure control with existing anti-epileptic drugs. Thus, novel insights into the mechanisms of epileptogenesis and identification of new drug targets can be transformative. Changes in ion channel function have been shown to play a role in generating the aberrant neuronal activity observed in TLE. Previous work demonstrates that hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate neuronal excitability and are mislocalized within CA1 pyramidal cells in a rodent model of TLE. The subcellular distribution of HCN channels is regulated by an auxiliary subunit, tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b), and disruption of this interaction correlates with channel mislocalization. However, the molecular mechanisms responsible for HCN channel dysregulation in TLE are unclear. Here we investigated whether changes in TRIP8b phosphorylation are sufficient to alter HCN channel function. We identified a phosphorylation site at residue Ser237 of TRIP8b that enhances binding to HCN channels and influences channel gating by altering the affinity of TRIP8b for the HCN cytoplasmic domain. Using a phosphospecific antibody, we demonstrate that TRIP8b phosphorylated at Ser237 is enriched in CA1 distal dendrites and that phosphorylation is reduced in the kainic acid model of TLE. Overall, our findings indicate that the TRIP8b-HCN interaction can be modulated by changes in phosphorylation and suggest that loss of TRIP8b phosphorylation may affect HCN channel properties during epileptogenesis. These results highlight the potential of drugs targeting posttranslational modifications to restore TRIP8b phosphorylation to reduce excitability in TLE.
Collapse
Affiliation(s)
- Kendall M Foote
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Department of Pharmacology, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Kyle A Lyman
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232.,Department of Medicine, Stanford University, Palo Alto, California 94305
| | - Ye Han
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University, Chicago, Illinois 60611.,Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Ioannis E Michailidis
- Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| | - Robert J Heuermann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Danielle Mandikian
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616
| | - James S Trimmer
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, California 95616.,Department of Physiology and Membrane Biology, University of California, Davis, California 95616
| | - Geoffrey T Swanson
- Department of Pharmacology, Northwestern University, Chicago, Illinois 60611.,Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Dane M Chetkovich
- Vanderbilt University Medical Center Department of Neurology, Nashville, Tennessee 37232
| |
Collapse
|
40
|
Corriger A, Pickering G. Ketamine and depression: a narrative review. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3051-3067. [PMID: 31695324 PMCID: PMC6717708 DOI: 10.2147/dddt.s221437] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022]
Abstract
Depression is the third leading cause of disability in the world. Depressive symptoms may be reduced within several weeks after the start of conventional antidepressants, but treatment resistance concerns one-third of patients who fail to achieve recovery. Over the last 20 years, ketamine, an antagonist of the N-methyl-D-aspartate receptor, has been described to have antidepressant properties. A literature review was conducted through an exhaustive electronic search. It was restricted to Cochrane reviews, meta-analyses, and randomized controlled trials (RCTs) of ketamine for major depressive disorder and/or bipolar disorder. This review included two Cochrane reviews, 14 meta-analyses and 15 trials. Ketamine was studied versus placebo, versus other comparators and as an anesthetic adjuvant before electroconvulsive therapy. In 14 publications, ketamine provided a rapid antidepressant effect with a maximum efficacy reached at 24 hrs. Its effect lasted for 1–2 weeks after infusion, but a longer-term effect is little reported. Ketamine does not seem to improve depressive symptoms at the end of electroconvulsive sessions. Safety and tolerability profiles with ketamine at low single dose are generally good in depressed patients. However, there is a lack of data concerning ketamine with repeated administration at higher doses. The clinical use of ketamine is increasing. Intranasal (S)-ketamine has recently been approved for depression by the Food and Drug Administration. It could be a promising treatment in depressed patients with suicidal ideation. Collectively, the level of proof of efficacy remains low and more RCTs are needed to explore efficacy and safety issues of ketamine in depression.
Collapse
Affiliation(s)
- Alexandrine Corriger
- Neuro-Dol Laboratory Inserm 1107, Clermont Auvergne University, Clermont-Ferrand, France.,Clinical Pharmacology Department CPC/CIC Inserm 1405, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Gisèle Pickering
- Neuro-Dol Laboratory Inserm 1107, Clermont Auvergne University, Clermont-Ferrand, France.,Clinical Pharmacology Department CPC/CIC Inserm 1405, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| |
Collapse
|
41
|
Chang X, Wang J, Jiang H, Shi L, Xie J. Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: An Emerging Role in Neurodegenerative Diseases. Front Mol Neurosci 2019; 12:141. [PMID: 31231190 PMCID: PMC6560157 DOI: 10.3389/fnmol.2019.00141] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and spinal muscular atrophy (SMA) are chronic, progressive, and age-associated neurological disorders characterized by neuronal deterioration in specific brain regions. Although the specific pathological mechanisms underlying these disorders have remained elusive, ion channel dysfunction has become increasingly accepted as a potential mechanism for neurodegenerative diseases. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by the HCN1-4 gene family and conduct the hyperpolarization-activated current (I h). These channels play important roles in modulating cellular excitability, rhythmic activity, dendritic integration, and synaptic transmission. In the present review, we first provide a comprehensive picture of the role of HCN channels in PD by summarizing their role in the regulation of neuronal activity in PD-related brain regions. Dysfunction of I h may participate in 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity and represent a pathogenic mechanism in PD. Given current reports of the critical role of HCN channels in neuroinflammation and depression, we also discussed the putative contribution of HCN channels in inflammatory processes and non-motor symptoms in PD. In the second section, we summarize how HCN channels regulate the formation of β-amyloid peptide in AD and the role of these channels in learning and memory. Finally, we briefly discuss the effects of HCN channels in ALS and SMA based on existing discoveries.
Collapse
Affiliation(s)
- Xiaoli Chang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Jun Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Limin Shi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| | - Junxia Xie
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China
| |
Collapse
|
42
|
Hajisoltani R, Karimi SA, Rahdar M, Davoudi S, Borjkhani M, Hosseinmardi N, Behzadi G, Janahmadi M. Hyperexcitability of hippocampal CA1 pyramidal neurons in male offspring of a rat model of autism spectrum disorder (ASD) induced by prenatal exposure to valproic acid: A possible involvement of Ih channel current. Brain Res 2019; 1708:188-199. [DOI: 10.1016/j.brainres.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
|
43
|
Zobeiri M, van Luijtelaar G, Budde T, Sysoev IV. The Brain Network in a Model of Thalamocortical Dysrhythmia. Brain Connect 2019; 9:273-284. [PMID: 30520661 PMCID: PMC6479257 DOI: 10.1089/brain.2018.0621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sensory information processing and higher cognitive functions rely on the interactions between thalamus and cortex. Many types of neurological and psychiatric disorders are accompanied or driven by alterations in the brain connectivity. In this study, putative changes in functional and effective corticocortical (CC), thalamocortical (TC), and corticothalamic (CT) connectivity during wakefulness and slow-wave sleep (SWS) in a model of thalamocortical dysrhythmia, TRIP8b-/- mice, and in control (wild-type or WT) mice are described. Coherence and nonlinear Granger causality (GC) were calculated for twenty 10 s length epochs of SWS and active wakefulness (AW) of each animal. Coherence was reduced between 4 and ca 20 Hz in the cortex and between cortex and thalamus during SWS compared with AW in WT but not in TRIP8b-/- mice. Moreover, TRIP8b-/- mice showed lower CT coherence during AW compared with WT mice; these differences were no longer present during SWS. Unconditional GC analysis also showed sleep-related reductions in TC and CT couplings in WT mice, while TRIP8b-/- mice showed diminished wake and enhanced sleep CC coupling and rather strong CT-directed coupling during wake and sleep, although smaller during sleep. Conditional GC coupling analysis confirmed the diminished CC and enhanced CT coupling in TRIP8b-/- mice. Our findings indicate that altered properties of hyperpolarization-activated cyclic nucleotide-gated cation channels, characterizing TRIP8b-/- mice, have clear effects on CC, TC, and CT networks. A more complete understanding of the function of the altered communication within these networks awaits detailed phenotyping of TRIP8b-/- mice aimed at specifics of sensory and attentional processes.
Collapse
Affiliation(s)
- Mehrnoush Zobeiri
- 1 Institute of Physiology I (Neurophysiology), Wesfälische Wilhelms University, Münster, Germany
| | | | - Thomas Budde
- 1 Institute of Physiology I (Neurophysiology), Wesfälische Wilhelms University, Münster, Germany
| | - Ilya V Sysoev
- 3 Saratov State University, Saratov, Russia.,4 Saratov Branch of Kotel'nikov Institute of Radio Engineering and Electronics of RAS, Saratov, Russia
| |
Collapse
|
44
|
Luo P, He G, Liu D. HCN channels: New targets for the design of an antidepressant with rapid effects. J Affect Disord 2019; 245:764-770. [PMID: 30448761 DOI: 10.1016/j.jad.2018.11.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 10/22/2018] [Accepted: 11/11/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a prevalent neuropsychiatric disease that carries a staggering global burden. Although numerous antidepressants are available on the market, unfortunately, many patients die by committing suicide as a result of the therapeutic lag between treatment initiation and the improvement of depressive symptoms. This therapeutic lag highlights the need for new antidepressants that provide rapid relief of depressive symptoms. METHOD In this review, we discuss the seminal researches on hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in animal models of depression and highlight the substantial evidence supporting the development of rapid-acting antidepressants targeting HCN channels. RESULTS HCN channels are associated with the risk of depression and targeting HCN channels or its auxiliary subunit tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) function may exert a rapid antidepressant-like effect. CONCLUSIONS Compounds acting on HCN subunits or the TRIP8b-HCN interaction site may be excellent candidates for development into effective drugs with rapid antidepressant action.
Collapse
Affiliation(s)
- Pan Luo
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - GuoFang He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
45
|
Günther A, Luczak V, Gruteser N, Abel T, Baumann A. HCN4 knockdown in dorsal hippocampus promotes anxiety-like behavior in mice. GENES BRAIN AND BEHAVIOR 2019; 18:e12550. [PMID: 30585408 PMCID: PMC6850037 DOI: 10.1111/gbb.12550] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/03/2018] [Accepted: 12/22/2018] [Indexed: 12/29/2022]
Abstract
Hyperpolarization‐activated and cyclic nucleotide‐gated (HCN) channels mediate the Ih current in the murine hippocampus. Disruption of the Ih current by knockout of HCN1, HCN2 or tetratricopeptide repeat‐containing Rab8b‐interacting protein has been shown to affect physiological processes such as synaptic integration and maintenance of resting membrane potentials as well as several behaviors in mice, including depressive‐like and anxiety‐like behaviors. However, the potential involvement of the HCN4 isoform in these processes is unknown. Here, we assessed the contribution of the HCN4 isoform to neuronal processing and hippocampus‐based behaviors in mice. We show that HCN4 is expressed in various regions of the hippocampus, with distinct expression patterns that partially overlapped with other HCN isoforms. For behavioral analysis, we specifically modulated HCN4 expression by injecting recombinant adeno‐associated viral (rAAV) vectors mediating expression of short hairpin RNA against hcn4 (shHcn4) into the dorsal hippocampus of mice. HCN4 knockdown produced no effect on contextual fear conditioning or spatial memory. However, a pronounced anxiogenic effect was evident in mice treated with shHcn4 compared to control littermates. Our findings suggest that HCN4 specifically contributes to anxiety‐like behaviors in mice.
Collapse
Affiliation(s)
- Anne Günther
- Laboratory for Synaptic Molecules of Memory Persistence, Center for Brain Science, RIKEN, Saitama, Japan.,Institute of Complex Systems, Cellular Biophysics (ICS-4),Research Center Jülich, Jülich, Germany
| | - Vincent Luczak
- Division of Biological Sciences and Center for Neural Circuits and Behavior, Neurobiology Section, Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, California, USA
| | - Nadine Gruteser
- Institute of Complex Systems, Cellular Biophysics (ICS-4),Research Center Jülich, Jülich, Germany
| | - Ted Abel
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Arnd Baumann
- Institute of Complex Systems, Cellular Biophysics (ICS-4),Research Center Jülich, Jülich, Germany
| |
Collapse
|
46
|
HCN2 Channels in Cholinergic Interneurons of Nucleus Accumbens Shell Regulate Depressive Behaviors. Neuron 2019; 101:662-672.e5. [PMID: 30638901 DOI: 10.1016/j.neuron.2018.12.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 09/17/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Cholinergic interneurons (ChIs) in the nucleus accumbens (NAc) have been implicated in drug addiction, reward, and mood disorders. However, the physiological role of ChIs in depression has not been characterized. Here, we show that the tonic firing rate of ChIs in NAc shell is reduced in chronic stress mouse models and in a genetic mouse model of depression. Chemogenetic inhibition of NAc ChIs renders naive mice susceptible to stress, whereas enhancement of ChI activity reverses depressive phenotypes. As a component of the molecular mechanism, we found that the expression and function of the hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) are decreased in ChIs of NAc shell in depressed mice. Overexpression of HCN2 channels in ChIs enhances cell activity and is sufficient to rescue depressive phenotypes. These data suggest that enhancement of HCN2 channel activity in NAc ChIs is a feasible approach for the development of a new class of antidepressants.
Collapse
|
47
|
Kalmbach BE, Buchin A, Long B, Close J, Nandi A, Miller JA, Bakken TE, Hodge RD, Chong P, de Frates R, Dai K, Maltzer Z, Nicovich PR, Keene CD, Silbergeld DL, Gwinn RP, Cobbs C, Ko AL, Ojemann JG, Koch C, Anastassiou CA, Lein ES, Ting JT. h-Channels Contribute to Divergent Intrinsic Membrane Properties of Supragranular Pyramidal Neurons in Human versus Mouse Cerebral Cortex. Neuron 2018; 100:1194-1208.e5. [PMID: 30392798 DOI: 10.1016/j.neuron.2018.10.012] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/05/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
Gene expression studies suggest that differential ion channel expression contributes to differences in rodent versus human neuronal physiology. We tested whether h-channels more prominently contribute to the physiological properties of human compared to mouse supragranular pyramidal neurons. Single-cell/nucleus RNA sequencing revealed ubiquitous HCN1-subunit expression in excitatory neurons in human, but not mouse, supragranular layers. Using patch-clamp recordings, we found stronger h-channel-related membrane properties in supragranular pyramidal neurons in human temporal cortex, compared to mouse supragranular pyramidal neurons in temporal association area. The magnitude of these differences depended upon cortical depth and was largest in pyramidal neurons in deep L3. Additionally, pharmacologically blocking h-channels produced a larger change in membrane properties in human compared to mouse neurons. Finally, using biophysical modeling, we provide evidence that h-channels promote the transfer of theta frequencies from dendrite-to-soma in human L3 pyramidal neurons. Thus, h-channels contribute to between-species differences in a fundamental neuronal property.
Collapse
Affiliation(s)
- Brian E Kalmbach
- Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | - Anatoly Buchin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Brian Long
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jennie Close
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Anirban Nandi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Peter Chong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Kael Dai
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - C Dirk Keene
- Department of Pathology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Daniel L Silbergeld
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Charles Cobbs
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Andrew L Ko
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA; Regional Epilepsy Center at Harborview Medical Center, Seattle, WA 98104, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA; Regional Epilepsy Center at Harborview Medical Center, Seattle, WA 98104, USA
| | - Christof Koch
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Costas A Anastassiou
- Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Neurology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA; Department of Neurological Surgery, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | |
Collapse
|
48
|
Lyman KA, Han Y, Chetkovich DM. Animal models suggest the TRIP8b-HCN interaction is a therapeutic target for major depressive disorder. Expert Opin Ther Targets 2018; 21:235-237. [PMID: 28127990 DOI: 10.1080/14728222.2017.1287899] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kyle A Lyman
- a Davee Department of Neurology and Clinical Neurosciences , Northwestern University , Chicago , IL , USA
| | - Ye Han
- a Davee Department of Neurology and Clinical Neurosciences , Northwestern University , Chicago , IL , USA
| | - Dane M Chetkovich
- a Davee Department of Neurology and Clinical Neurosciences , Northwestern University , Chicago , IL , USA
| |
Collapse
|
49
|
Meseke M, Neumüller F, Brunne B, Li X, Anstötz M, Pohlkamp T, Rogalla MM, Herz J, Rune GM, Bender RA. Distal Dendritic Enrichment of HCN1 Channels in Hippocampal CA1 Is Promoted by Estrogen, but Does Not Require Reelin. eNeuro 2018; 5:ENEURO.0258-18.2018. [PMID: 30406178 PMCID: PMC6220572 DOI: 10.1523/eneuro.0258-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 12/28/2022] Open
Abstract
HCN1 compartmentalization in CA1 pyramidal cells, essential for hippocampal information processing, is believed to be controlled by the extracellular matrix protein Reelin. Expression of Reelin, in turn, is stimulated by 17β-estradiol (E2). In this study, we therefore tested whether E2 regulates the compartmentalization of HCN1 in CA1 via Reelin. In organotypic entorhino-hippocampal cultures, we found that E2 promotes HCN1 distal dendritic enrichment via the G protein-coupled estrogen receptor GPER1, but apparently independent of Reelin, because GST-RAP, known to reduce Reelin signaling, did not prevent E2-induced HCN1 enrichment in distal CA1. We therefore re-examined the role of Reelin for the regulation of HCN1 compartmentalization and could not detect effects of reduced Reelin signaling on HCN1 distribution in CA1, either in the (developmental) slice culture model or in tamoxifen-inducible conditional reelin knockout mice during adulthood. We conclude that for HCN1 channel compartmentalization in CA1 pyramidal cells, Reelin is not as essential as previously proposed, and E2 effects on HCN1 distribution in CA1 are mediated by mechanisms that do not involve Reelin. Because HCN1 localization was not altered at different phases of the estrous cycle, gonadally derived estradiol is unlikely to regulate HCN1 channel compartmentalization, while the pattern of immunoreactivity of aromatase, the final enzyme of estradiol synthesis, argues for a role of local hippocampal E2 synthesis.
Collapse
Affiliation(s)
- Maurice Meseke
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Florian Neumüller
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Bianka Brunne
- Institute of Structural Neurobiology, Center of Molecular Neurobiology, Hamburg 20246, Germany
| | - Xiaoyu Li
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meike M. Rogalla
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gabriele M. Rune
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Roland A. Bender
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| |
Collapse
|
50
|
Fisher DW, Han Y, Lyman KA, Heuermann RJ, Bean LA, Ybarra N, Foote KM, Dong H, Nicholson DA, Chetkovich DM. HCN channels in the hippocampus regulate active coping behavior. J Neurochem 2018; 146:753-766. [PMID: 29953635 PMCID: PMC6158061 DOI: 10.1111/jnc.14539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 06/05/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022]
Abstract
Active coping is an adaptive stress response that improves outcomes in medical and neuropsychiatric diseases. To date, most research into coping style has focused on neurotransmitter activity and little is known about the intrinsic excitability of neurons in the associated brain regions that facilitate coping. Previous studies have shown that HCN channels regulate neuronal excitability in pyramidal cells and that HCN channel current (Ih ) in the CA1 area increases with chronic mild stress. Reduction of Ih in the CA1 area leads to antidepressant-like behavior, and this region has been implicated in the regulation of coping style. We hypothesized that the antidepressant-like behavior achieved with CA1 knockdown of Ih is accompanied by increases in active coping. In this report, we found that global loss of TRIP8b, a necessary subunit for proper HCN channel localization in pyramidal cells, led to active coping behavior in numerous assays specific to coping style. We next employed a viral strategy using a dominant negative TRIP8b isoform to alter coping behavior by reducing HCN channel expression. This approach led to a robust reduction in Ih in CA1 pyramidal neurons and an increase in active coping. Together, these results establish that changes in HCN channel function in CA1 influences coping style.
Collapse
Affiliation(s)
- Daniel W Fisher
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ye Han
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kyle A Lyman
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Robert J Heuermann
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Linda A Bean
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Natividad Ybarra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Kendall M Foote
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hongxin Dong
- Department of Psychiatry & Behavioral Sciences, Northwestern University, Feinberg School of medicine, Chicago, Illinois, USA
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Dane M Chetkovich
- Davee Department of Neurology and Clinical Neurosciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|