1
|
Casillas-Espinosa PM, Wong JC, Grabon W, Gonzalez-Ramos A, Mantegazza M, Yilmaz NC, Patel M, Staley K, Sankar R, O’Brien TJ, Akman Ö, Balagura G, Numis AL, Noebels JL, Baulac S, Auvin S, Henshall DC, Galanopoulou AS. WONOEP appraisal: Targeted therapy development for early onset epilepsies. Epilepsia 2025; 66:328-340. [PMID: 39560633 PMCID: PMC11922076 DOI: 10.1111/epi.18187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
The early onset epilepsies encompass a heterogeneous group of disorders, some of which result in drug-resistant seizures, developmental delay, psychiatric comorbidities, and sudden death. Advancement in the widespread use of targeted gene panels as well as genome and exome sequencing has facilitated the identification of different causative genes in a subset of these patients. The ability to recognize the genetic basis of early onset epilepsies continues to improve, with de novo coding variants accounting for most of the genetic etiologies identified. Although current disease-specific and disease-modifying therapies remain limited, novel precision medicine approaches, such as small molecules, cell therapy, and other forms of genetic therapies for early onset epilepsies, have created excitement among researchers, clinicians, and caregivers. Here, we summarize the main findings of presentations and discussions on novel therapeutic strategies for targeted treatment of early onset epilepsies that occurred during the Workshop on Neurobiology of Epilepsy (WONOEP XVI, Talloires, France, July 2022). The presentations discussed the use of chloride transporter inhibitors for neonatal seizures, targeting orexinergic signaling for childhood absence epilepsy, targeting energy metabolism in Dravet syndrome, and the role of cannabinoid receptor type 2, reversible acetylcholinesterase inhibitors, cell therapies, and RNA-based therapies in early life epilepsies.
Collapse
Affiliation(s)
- Pablo M. Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004 Victoria, Australia
- Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004 Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia
| | - Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Wanda Grabon
- Université Claude Bernard Lyon 1, CNRS, Inserm, Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team, F-69500 Bron, France
- Epilepsy Institute IDEE, 59 Boulevard Pinel, F-69500 Bron, France
| | - Ana Gonzalez-Ramos
- Experimental Epilepsy Group, Epilepsy Centre, Department of Clinical Sciences, Lund University Hospital, Sweden
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Massimo Mantegazza
- University Cote d’Azur, Valbonne-Sophia Antipolis, 06560, France
- CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology (IPMC), LabEx ICST, Valbonne-Sophia Antipolis, 06560, France
- Inserm, Valbonne-Sophia Antipolis, 06560, France
| | - Nihan Carcak Yilmaz
- Istanbul University Faculty of Pharmacy Department of Pharmacology, Istanbul, Turkey
- Acibadem Mehmet Ali Aydinlar University, Institute of Health Sciences, Department of Neuroscience, Istanbul, Turkey
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.USA
| | - Kevin Staley
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raman Sankar
- Departments of Neurology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90024
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004 Victoria, Australia
- Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004 Victoria, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia
| | - Özlem Akman
- Demiroglu Bilim University, Faculty of Medicine Department of Physiology, Istanbul, Turkey
| | - Ganna Balagura
- Department of Neuroscience, Ophthalmology, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Adam L. Numis
- Department of Neurology, and the Department of Pediatrics, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Jeffrey L. Noebels
- Departments of Neurology, Neuroscience, Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, Inserm, CNRS, Paris, France
| | - Stéphane Auvin
- Université Paris Cité, INSERM NeuroDiderot, Paris, France
- Pediatric Neurology Department, APHP, Robert Debré University Hospital, CRMR epilepsies rares, EpiCare member, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| | - David C. Henshall
- FutureNeuro Research Ireland Centre, RCSI University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, D02 YN7
| | - Aristea S. Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
2
|
Casillas-Espinosa PM, Lin R, Li R, Nandakumar NM, Dawson G, Braine EL, Martin B, Powell KL, O'Brien TJ. Effects of the T-type calcium channel Ca V3.2 R1584P mutation on absence seizure susceptibility in GAERS and NEC congenic rats models. Neurobiol Dis 2023:106217. [PMID: 37391087 DOI: 10.1016/j.nbd.2023.106217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023] Open
Abstract
RATIONALE Low-voltage-activated or T-type Ca2+ channels play a key role in the generation of seizures in absence epilepsy. We have described a homozygous, gain of function substitution mutation (R1584P) in the CaV3.2 T-type Ca2+ channel gene (Cacna1h) in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The non-epileptic control (NEC) rats, derived from the same original Wistar strains as GAERS but selectively in-breed not to express seizures, are null for the R1584P mutation. To study the effects of this mutation in rats who otherwise have a GAERS or NEC genetic background, we bred congenic GAERS-Cacna1hNEC (GAERS null for R1584P mutation) and congenic NEC-Cacna1hGAERS (NEC homozygous for R1584P mutation) and evaluated the seizure and behavioral phenotype of these strains in comparison to the original GAERS and NEC strains. METHODS To evaluate seizure expression in the congenic strains, EEG electrodes were implanted in NEC, GAERS, GAERS-Cacna1hNEC without the R1584P mutation, and NEC-Cacna1hGAERS with the R1584P mutation rats. In the first study, continuous EEG recordings were acquired from week 4 (when seizures begin to develop in GAERS) to week 14 of age (when GAERS display hundreds of seizures per day). In the second study, the seizure and behavioral phenotype of GAERS and NEC-Cacna1hGAERS strains were evaluated during young age (6 weeks of age) and adulthood (16 weeks of age) of GAERS, NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The Open field test (OFT) and sucrose preference test (SPT) were performed to evaluate anxiety-like and depressive-like behavior, respectively. This was followed by EEG recordings at 18 weeks of age to quantify the seizures, and spike-wave discharge (SWD) cycle frequency. At the end of the study, the whole thalamus was collected for T-type calcium channel mRNA expression analysis. RESULTS GAERS had a significantly shorter latency to first seizures and an increased number of seizures per day compared to GAERS-Cacna1hNEC. On the other hand, the presence of the R1584P mutation in the NEC-Cacna1hGAERS was not enough to generate spontaneous seizures in their seizure-resistant background. 6 and 16-week-old GAERS and GAERS-Cacna1hNEC rats showed anxiety-like behavior in the OFT, in contrast to NEC and NEC-Cacna1hGAERS. Results from the SPT showed that the GAERS developed depressive-like in the SPT compared to GAERS-Cacna1hNEC, NEC, and NEC-Cacna1hGAERS. Analysis of the EEG at 18 weeks of age showed that the GAERS had an increased number of seizures per day, increased total seizure duration and a higher cycle frequency of SWD relative to GAERS-Cacna1hNEC. However, the average seizure duration was not significantly different between strains. Quantitative real-time PCR showed that the T-type Ca2+ channel isoform CaV3.2 channel expression was significantly increased in GAERS compared to NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The presence of the R1584P mutation increased the total ratio of CaV3.2 + 25/-25 splice variants in GAERS and NEC-Cacna1hGAERS compared to NEC and GAERS-Cacna1hNEC. DISCUSSION The data from this study demonstrate that the R1584P mutation in isolation on a seizure-resistant NEC genetic background was insufficient to generate absence seizures, and that a GAERS genetic background can cause seizures even without the mutation. However, the study provides evidence that the R1584P mutation acts as a modulator of seizures development and expression, and depressive-like behavior in the SPT, but not the anxiety phenotype of the GAERS model of absence epilepsy.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004, Victoria, Australia.
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Rui Li
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Nanditha M Nandakumar
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Georgia Dawson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Emma L Braine
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia
| | - Benoît Martin
- Univ Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Kim L Powell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, 3004, Victoria, Australia; Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Royal Parade, Parkville, Victoria 3050, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, Victoria, 3004, Victoria, Australia.
| |
Collapse
|
3
|
Lindquist BE, Timbie C, Voskobiynyk Y, Paz JT. Thalamocortical circuits in generalized epilepsy: Pathophysiologic mechanisms and therapeutic targets. Neurobiol Dis 2023; 181:106094. [PMID: 36990364 PMCID: PMC10192143 DOI: 10.1016/j.nbd.2023.106094] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Generalized epilepsy affects 24 million people globally; at least 25% of cases remain medically refractory. The thalamus, with widespread connections throughout the brain, plays a critical role in generalized epilepsy. The intrinsic properties of thalamic neurons and the synaptic connections between populations of neurons in the nucleus reticularis thalami and thalamocortical relay nuclei help generate different firing patterns that influence brain states. In particular, transitions from tonic firing to highly synchronized burst firing mode in thalamic neurons can cause seizures that rapidly generalize and cause altered awareness and unconsciousness. Here, we review the most recent advances in our understanding of how thalamic activity is regulated and discuss the gaps in our understanding of the mechanisms of generalized epilepsy syndromes. Elucidating the role of the thalamus in generalized epilepsy syndromes may lead to new opportunities to better treat pharmaco-resistant generalized epilepsy by thalamic modulation and dietary therapy.
Collapse
Affiliation(s)
- Britta E Lindquist
- UCSF Department of Neurology, Division of Neurocritical Care, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Clare Timbie
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, Division of Pediatric Epilepsy, United States of America; UCSF Department of Neurology, United States of America
| | - Yuliya Voskobiynyk
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America
| | - Jeanne T Paz
- Gladstone Institute of Neurological Disease, United States of America; UCSF Department of Neurology, United States of America; Kavli Institute for Fundamental Neuroscience, UCSF, United States of America.
| |
Collapse
|
4
|
Blasi V, Bolognesi E, Ricci C, Baglio G, Zanzottera M, Canevini MP, Walder M, Cabinio M, Zanette M, Baglio F, Clerici M, Guerini FR. SNAP-25 Single Nucleotide Polymorphisms, Brain Morphology and Intelligence in Children With Borderline Intellectual Functioning: A Mediation Analysis. Front Neurosci 2021; 15:715048. [PMID: 34512248 PMCID: PMC8427043 DOI: 10.3389/fnins.2021.715048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Borderline intellectual functioning (BIF) is a multifactorial condition in which both genetic and environmental factors are likely to contribute to the clinical outcome. Abnormal cortical development and lower IQ scores were shown to be correlated in BIF children, but the genetic components of this condition and their possible connection with intelligence and brain morphology have never been investigated in BIF. The synaptosomal-associated protein of 25 kD (SNAP-25) is involved in synaptic plasticity, neural maturation, and neurotransmission, affecting intellectual functioning. We investigated SNAP-25 polymorphisms in BIF and correlated such polymorphisms with intelligence and cortical thickness, using socioeconomic status and environmental stress as covariates as a good proxy of the variables that determine intellectual abilities. Thirty-three children with a diagnosis of BIF were enrolled in the study. SNAP-25 polymorphisms rs363050, rs363039, rs363043, rs3746544, and rs1051312 were analyzed by genotyping; cortical thickness was studied by MRI; intelligence was measured using the WISC-III/IV subscales; environmental stressors playing a role in neuropsychiatric development were considered as covariate factors. Results showed that BIF children carrying the rs363043(T) minor allele represented by (CT + TT) genotypes were characterized by lower performance Perceptual Reasoning Index and lower full-scale IQ scores (p = 0.04) compared to those carrying the (CC) genotype. This association was correlated with a reduced thickness of the left inferior parietal cortex (direct effect = 0.44) and of the left supramarginal gyrus (direct effect = 0.56). These results suggest a link between SNAP-25 polymorphism and intelligence with the mediation role of brain morphological features in children with BIF.
Collapse
Affiliation(s)
- Valeria Blasi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | - Cristian Ricci
- Pediatric Epidemiology, Department of Pediatrics, Medical Faculty, Leipzig University, Leipzig, Germany
| | | | | | - Maria Paola Canevini
- Epilepsy Center, ASST S. Paolo and S. Carlo Hospital, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Mauro Walder
- Child Neuropsychiatry Unit - ASST S. Paolo and S. Carlo Hospital, Milan, Italy
| | - Monia Cabinio
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | | |
Collapse
|
5
|
Yu D, Febbo IG, Maroteaux MJ, Wang H, Song Y, Han X, Sun C, Meyer EE, Rowe S, Chen Y, Canavier CC, Schrader LA. The Transcription Factor Shox2 Shapes Neuron Firing Properties and Suppresses Seizures by Regulation of Key Ion Channels in Thalamocortical Neurons. Cereb Cortex 2021; 31:3194-3212. [PMID: 33675359 PMCID: PMC8196244 DOI: 10.1093/cercor/bhaa414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023] Open
Abstract
Thalamocortical neurons (TCNs) play a critical role in the maintenance of thalamocortical oscillations, dysregulation of which can result in certain types of seizures. Precise control over firing rates of TCNs is foundational to these oscillations, yet the transcriptional mechanisms that constrain these firing rates remain elusive. We hypothesized that Shox2 is a transcriptional regulator of ion channels important for TCN function and that loss of Shox2 alters firing frequency and activity, ultimately perturbing thalamocortical oscillations into an epilepsy-prone state. In this study, we used RNA sequencing and quantitative PCR of control and Shox2 knockout mice to determine Shox2-affected genes and revealed a network of ion channel genes important for neuronal firing properties. Protein regulation was confirmed by Western blotting, and electrophysiological recordings showed that Shox2 KO impacted the firing properties of a subpopulation of TCNs. Computational modeling showed that disruption of these conductances in a manner similar to Shox2's effects modulated frequency of oscillations and could convert sleep spindles to near spike and wave activity, which are a hallmark for absence epilepsy. Finally, Shox2 KO mice were more susceptible to pilocarpine-induced seizures. Overall, these results reveal Shox2 as a transcription factor important for TCN function in adult mouse thalamus.
Collapse
Affiliation(s)
- Diankun Yu
- Neuroscience Program, Brain Institute, Tulane University, USA
| | | | | | - Hanyun Wang
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Yingnan Song
- Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Xiao Han
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Cheng Sun
- Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Emily E Meyer
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Stuart Rowe
- Neuroscience Program, Brain Institute, Tulane University, USA
| | - Yiping Chen
- Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Carmen C Canavier
- Cell Biology and Anatomy, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Laura A Schrader
- Neuroscience Program, Brain Institute, Tulane University, USA
- Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
6
|
Weiss N, Zamponi GW. Genetic T-type calcium channelopathies. J Med Genet 2020; 57:1-10. [PMID: 31217264 PMCID: PMC6929700 DOI: 10.1136/jmedgenet-2019-106163] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/02/2019] [Accepted: 05/18/2019] [Indexed: 12/13/2022]
Abstract
T-type channels are low-voltage-activated calcium channels that contribute to a variety of cellular and physiological functions, including neuronal excitability, hormone and neurotransmitter release as well as developmental aspects. Several human conditions including epilepsy, autism spectrum disorders, schizophrenia, motor neuron disorders and aldosteronism have been traced to variations in genes encoding T-type channels. In this short review, we present the genetics of T-type channels with an emphasis on structure-function relationships and associated channelopathies.
Collapse
Affiliation(s)
- Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Praha, Czech Republic
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
Miao QL, Herlitze S, Mark MD, Noebels JL. Adult loss of Cacna1a in mice recapitulates childhood absence epilepsy by distinct thalamic bursting mechanisms. Brain 2020; 143:161-174. [PMID: 31800012 PMCID: PMC6935748 DOI: 10.1093/brain/awz365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 12/15/2022] Open
Abstract
Inborn errors of CACNA1A-encoded P/Q-type calcium channels impair synaptic transmission, producing early and lifelong neurological deficits, including childhood absence epilepsy, ataxia and dystonia. Whether these impairments owe their pathologies to defective channel function during the critical period for thalamic network stabilization in immature brain remains unclear. Here we show that mice with tamoxifen-induced adult-onset ablation of P/Q channel alpha subunit (iKOp/q) display identical patterns of dysfunction, replicating the inborn loss-of-function phenotypes and, therefore demonstrate that these neurological defects do not rely upon developmental abnormality. Unexpectedly, unlike the inborn model, the adult-onset pattern of excitability changes believed to be pathogenic within the thalamic network is non-canonical. Specifically, adult ablation of P/Q channels does not promote Cacna1g-mediated burst firing or T-type calcium current (IT) in the thalamocortical relay neurons; however, burst firing in thalamocortical relay neurons remains essential as iKOp/q mice generated on a Cacna1g deleted background show substantially diminished seizure generation. Moreover, in thalamic reticular nucleus neurons, burst firing is impaired accompanied by attenuated IT. Interestingly, inborn deletion of thalamic reticular nucleus-enriched, human childhood absence epilepsy-linked gene Cacna1h in iKOp/q mice reduces thalamic reticular nucleus burst firing and promotes rather than reduces seizure, indicating an epileptogenic role for loss-of-function Cacna1h gene variants reported in human childhood absence epilepsy cases. Together, our results demonstrate that P/Q channels remain critical for maintaining normal thalamocortical oscillations and motor control in the adult brain, and suggest that the developmental plasticity of membrane currents regulating pathological rhythmicity is both degenerate and age-dependent.
Collapse
Affiliation(s)
- Qing-Long Miao
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston TX, USA
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, Ruhr University of Bochum, Bochum, Germany
| | - Melanie D Mark
- Department of Zoology and Neurobiology, Ruhr University of Bochum, Bochum, Germany
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX, USA
| |
Collapse
|
8
|
Inhibition of T-Type calcium channels in mEC layer II stellate neurons reduces neuronal hyperexcitability associated with epilepsy. Epilepsy Res 2019; 154:132-138. [PMID: 31132598 DOI: 10.1016/j.eplepsyres.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 01/20/2023]
Abstract
Temporal lobe epilepsy (TLE) is a form of adult epilepsy involving the entorhinal cortex (EC). Layer II neurons of the medial EC (mEC) are spared and become hyperexcitable in TLE. Studies have suggested a role for T-type calcium channels (T-type Ca2+ channels) in facilitating increases in neuronal activity associated with TLE within the hippocampus. We sought to determine if T-type Ca2+ channels play a role in facilitating neuronal hyperexcitability of layer II mEC stellate neurons in TLE. TLE was induced in rats by electrical stimulation of the hippocampus to induce status epilepticus (SE). Brain slices were prepared from rats exhibiting spontaneous seizures and compared with age-matched control rats. Action potentials (APs) were evoked either by current injection steps or via presynaptic stimulation of mEC deep layers. The selective T-type Ca2+ channel antagonist, TTA-P2 (1 μM), was applied to determine the role of T-type Ca2+ channels in maintaining neuronal excitability. Quantitative PCR techniques were used to assess T-type Ca2+ channel isoform mRNA levels within the mEC layer II. TLE mEC layer II stellate neurons were hyperexcitable compared to control neurons, evoking a higher frequency of APs and generating bursts of APs when synaptically stimulated. TTA-P2 (1 μM) reduced firing frequencies in TLE and control neurons and reduced AP burst firing in TLE stellate neurons. TTA-P2 had little effect on synaptically evoked AP's in control neurons. TTA-P2 also inhibited rebound APs evoked in TLE neurons to a greater degree than in control neurons. TLE tissue had almost a 3-fold increase in Cav3.1 mRNA compared to controls. Cav3.2 or Cav3.3 levels were unchanged. These findings support a role for T-type Ca2+ channel in establishing neuronal hyperexcitability of mEC layer II stellate neurons in TLE. Increased expression of Cav3.1 may be important for establishing neuronal hyperexcitability of mEC layer II neurons in TLE.
Collapse
|
9
|
Pozzi D, Corradini I, Matteoli M. The Control of Neuronal Calcium Homeostasis by SNAP-25 and its Impact on Neurotransmitter Release. Neuroscience 2018; 420:72-78. [PMID: 30476527 DOI: 10.1016/j.neuroscience.2018.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/05/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023]
Abstract
The process of neurotransmitter release is central to the control of cell-to-cell communication in brain. SNAP-25 is a component of the SNARE complex, which, together with syntaxin-1 and synaptobrevin, mediates synaptic vesicle fusion with the plasma membrane. The genetic ablation of the protein or its proteolytic cleavage by botulinum neurotoxins results in a complete block of synaptic transmission. In the last years, several evidences have indicated that SNAP-25 also plays additional modulatory roles in neurotransmission through the control of voltage-gated calcium channels and presynaptic calcium ion concentration. Consistently, reduced levels of the protein affect presynaptic calcium homeostasis and result in pathologically enhanced glutamate exocytosis. The SNAP-25-dependent alterations of synaptic calcium dynamics may have direct impact on the development of neuropsychiatric disorders where the Snap-25 gene has been found to be involved.
Collapse
Affiliation(s)
- Davide Pozzi
- Humanitas University, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milano, Italy; IRCCS Humanitas, via Manzoni 56, 20089 Rozzano, Italy.
| | - Irene Corradini
- CNR Institute of Neuroscience, via Vanvitelli 32, 20129 Milano, Italy
| | - Michela Matteoli
- Humanitas University, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milano, Italy; IRCCS Humanitas, via Manzoni 56, 20089 Rozzano, Italy.
| |
Collapse
|
10
|
Luo J, Norris RH, Gordon SL, Nithianantharajah J. Neurodevelopmental synaptopathies: Insights from behaviour in rodent models of synapse gene mutations. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:424-439. [PMID: 29217145 DOI: 10.1016/j.pnpbp.2017.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 11/15/2022]
Abstract
The genomic revolution has begun to unveil the enormous complexity and heterogeneity of the genetic basis of neurodevelopmental disorders such as such epilepsy, intellectual disability, autism spectrum disorder and schizophrenia. Increasingly, human mutations in synapse genes are being identified across these disorders. These neurodevelopmental synaptopathies highlight synaptic homeostasis pathways as a convergence point underlying disease mechanisms. Here, we review some of the key pre- and postsynaptic genes in which penetrant human mutations have been identified in neurodevelopmental disorders for which genetic rodent models have been generated. Specifically, we focus on the main behavioural phenotypes that have been documented in these animal models, to consolidate our current understanding of how synapse genes regulate key behavioural and cognitive domains. These studies provide insights into better understanding the basis of the overlapping genetic and cognitive heterogeneity observed in neurodevelopmental disorders.
Collapse
Affiliation(s)
- J Luo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - R H Norris
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - S L Gordon
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - J Nithianantharajah
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
11
|
Daraio T, Valladolid-Acebes I, Brismar K, Bark C. SNAP-25a and SNAP-25b differently mediate interactions with Munc18-1 and Gβγ subunits. Neurosci Lett 2018; 674:75-80. [PMID: 29548989 DOI: 10.1016/j.neulet.2018.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023]
Abstract
SNAP-25 is a protein involved in regulated membrane fusion and part of the SNARE complex. It exists as two splicing variants, SNAP-25a and SNAP-25b, which differ in 9 out of 206 amino acids. SNAP-25 together with Syntaxin 1 and VAMP-2 forms the ternary SNARE complex essential for mediating activity-dependent release of hormones and neurotransmitters. The functional difference between SNAP-25a and SNAP-25b is poorly understood as both can participate in SNARE complexes and mediate membrane fusion. However, we recently demonstrated that SNAP-25b-deficiency results in metabolic disease and increased insulin secretion. Here we investigated if SNAP-25a and SNAP-25b differently affect interactions with other SNAREs and SNARE-interacting proteins in mouse hippocampus. Adult mice almost exclusively express the SNAP-25b protein in hippocampus whereas SNAP-25b-deficient mice only express SNAP-25a. Immunoprecipitation studies showed no significant differences in amount of Syntaxin 1 and VAMP-2 co-precipitated with the different SNAP-25 isoforms. In contrast, Munc18-1, that preferentially interacts with SNAP-25 via Syntaxin 1 and/or the trimeric SNARE complex, demonstrated an increased ability to bind protein-complexes containing SNAP-25b. Moreover, we found that both SNAP-25 isoforms co-precipitated the Gβγ subunits of the heterotrimeric G proteins, an interaction known to play a role in presynaptic inhibition. We have identified Gβ1 and Gβ2 as the interacting partners of both SNAP-25 isoforms in mouse hippocampus, but Gβ2 was less efficiently captured by SNAP-25a. These results implicate that the two SNAP-25 isoforms could differently mediate protein interactions outside the ternary SNARE core complex and thereby contribute to modulate neurotransmission.
Collapse
Affiliation(s)
- Teresa Daraio
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Ismael Valladolid-Acebes
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Christina Bark
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
12
|
Yu H, Yang X, Tang X, Tang R. Effects of spontaneous recurrent seizures on cognitive function via modulation of SNAREs expression. Int J Neurosci 2017; 128:376-383. [PMID: 29057696 DOI: 10.1080/00207454.2017.1387115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hua Yu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuelian Yang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xu Tang
- Department of Public Surveillance, Chenghua District Center for Control and Prevention, Sichuan, People's Republic of China
| | - Renkuan Tang
- Department of Forensic Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
13
|
Gibson EM, Geraghty AC, Monje M. Bad wrap: Myelin and myelin plasticity in health and disease. Dev Neurobiol 2017; 78:123-135. [PMID: 28986960 DOI: 10.1002/dneu.22541] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
Human central nervous system myelin development extends well into the fourth decade of life, and this protracted period underscores the potential for experience to modulate myelination. The concept of myelin plasticity implies adaptability in myelin structure and function in response to experiences during development and beyond. Mounting evidence supports this concept of neuronal activity-regulated changes in myelin-forming cells, including oligodendrocyte precursor cell proliferation, oligodendrogenesis and modulation of myelin microstructure. In healthy individuals, myelin plasticity in associative white matter structures of the brain is implicated in learning and motor function in both rodents and humans. Activity-dependent changes in myelin-forming cells may influence the function of neural networks that depend on the convergence of numerous neural signals on both a temporal and spatial scale. However, dysregulation of myelin plasticity can disadvantageously alter myelin microstructure and result in aberrant circuit function or contribute to pathological cell proliferation. Emerging roles for myelin plasticity in normal neurological function and in disease are discussed. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 123-135, 2018.
Collapse
Affiliation(s)
- Erin M Gibson
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| | - Anna C Geraghty
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| |
Collapse
|
14
|
Proft J, Rzhepetskyy Y, Lazniewska J, Zhang FX, Cain SM, Snutch TP, Zamponi GW, Weiss N. The Cacna1h mutation in the GAERS model of absence epilepsy enhances T-type Ca 2+ currents by altering calnexin-dependent trafficking of Ca v3.2 channels. Sci Rep 2017; 7:11513. [PMID: 28912545 PMCID: PMC5599688 DOI: 10.1038/s41598-017-11591-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
Low-voltage-activated T-type calcium channels are essential contributors to the functioning of thalamocortical neurons by supporting burst-firing mode of action potentials. Enhanced T-type calcium conductance has been reported in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS) and proposed to be causally related to the overall development of absence seizure activity. Here, we show that calnexin, an endoplasmic reticulum integral membrane protein, interacts with the III-IV linker region of the Cav3.2 channel to modulate the sorting of the channel to the cell surface. We demonstrate that the GAERS missense mutation located in the Cav3.2 III-IV linker alters the Cav3.2/calnexin interaction, resulting in an increased surface expression of the channel and a concomitant elevation in calcium influx. Our study reveals a novel mechanism that controls the expression of T-type channels, and provides a molecular explanation for the enhancement of T-type calcium conductance in GAERS.
Collapse
Affiliation(s)
- Juliane Proft
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Yuriy Rzhepetskyy
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Joanna Lazniewska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, Canada
| | - Stuart M Cain
- Michael Smith Laboratories and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4N1, Canada.
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Prague, Czech Republic.
| |
Collapse
|
15
|
PRRT2: from Paroxysmal Disorders to Regulation of Synaptic Function. Trends Neurosci 2016; 39:668-679. [DOI: 10.1016/j.tins.2016.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/19/2022]
|
16
|
Dulla CG, Coulter DA, Ziburkus J. From Molecular Circuit Dysfunction to Disease: Case Studies in Epilepsy, Traumatic Brain Injury, and Alzheimer's Disease. Neuroscientist 2016; 22:295-312. [PMID: 25948650 PMCID: PMC4641826 DOI: 10.1177/1073858415585108] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Complex circuitry with feed-forward and feed-back systems regulate neuronal activity throughout the brain. Cell biological, electrical, and neurotransmitter systems enable neural networks to process and drive the entire spectrum of cognitive, behavioral, and motor functions. Simultaneous orchestration of distinct cells and interconnected neural circuits relies on hundreds, if not thousands, of unique molecular interactions. Even single molecule dysfunctions can be disrupting to neural circuit activity, leading to neurological pathology. Here, we sample our current understanding of how molecular aberrations lead to disruptions in networks using three neurological pathologies as exemplars: epilepsy, traumatic brain injury (TBI), and Alzheimer's disease (AD). Epilepsy provides a window into how total destabilization of network balance can occur. TBI is an abrupt physical disruption that manifests in both acute and chronic neurological deficits. Last, in AD progressive cell loss leads to devastating cognitive consequences. Interestingly, all three of these neurological diseases are interrelated. The goal of this review, therefore, is to identify molecular changes that may lead to network dysfunction, elaborate on how altered network activity and circuit structure can contribute to neurological disease, and suggest common threads that may lie at the heart of molecular circuit dysfunction.
Collapse
Affiliation(s)
- Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Douglas A Coulter
- Department of Pediatrics and Neuroscience, University of Pennsylvania Perleman School of Medicine, Philadelphia, PA, USA Division of Neurology and the Research Institute of Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jokubas Ziburkus
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
17
|
Isolated P/Q Calcium Channel Deletion in Layer VI Corticothalamic Neurons Generates Absence Epilepsy. J Neurosci 2016; 36:405-18. [PMID: 26758833 DOI: 10.1523/jneurosci.2555-15.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Generalized spike-wave seizures involving abnormal synchronization of cortical and underlying thalamic circuitry represent a major category of childhood epilepsy. Inborn errors of Cacna1a, the P/Q-type voltage-gated calcium channel α subunit gene, expressed throughout the brain destabilize corticothalamic rhythmicity and produce this phenotype. To determine the minimal cellular lesion required for this network disturbance, we used neurotensin receptor 1 (Ntsr1) cre-driver mice to ablate floxed Cacna1a in layer VI pyramidal neurons, which supply the sole descending cortical synaptic input to thalamocortical relay cells and reticular interneurons and activate intrathalamic circuits. Targeted Cacna1a ablation in layer VI cells resulted in mice that display a robust spontaneous spike-wave absence seizure phenotype accompanied by behavioral arrest and inhibited by ethosuximide. To verify the selectivity of the molecular lesion, we determined that P/Q subunit proteins were reduced in corticothalamic relay neuron terminal zones, and confirmed that P/Q-mediated glutamate release was reduced at these synapses. Spike-triggered exocytosis was preserved by N-type calcium channel rescue, demonstrating that evoked release at layer VI terminals relies on both P/Q and N-type channels. Whereas intrinsic excitability of the P/Q channel depleted layer VI neurons was unaltered, T-type calcium currents in the postsynaptic thalamic relay and reticular cells were dramatically elevated, favoring rebound bursting and seizure generation. We find that an early P/Q-type release defect, limited to synapses of a single cell-type within the thalamocortical circuit, is sufficient to remodel synchronized firing behavior and produce a stable generalized epilepsy phenotype. SIGNIFICANCE STATEMENT This study dissects a critical component of the corticothalamic circuit in spike-wave epilepsy and identifies the developmental importance of P/Q-type calcium channel-mediated presynaptic glutamate release at layer VI pyramidal neuron terminals. Genetic ablation of Cacna1a in layer VI neurons produced synchronous spike-wave discharges in the cortex and thalamus that were inhibited by ethosuximide. These mice also displayed N-type calcium channel compensation at descending thalamic synapses, and consistent with other spike-wave models increased low-threshold T-type calcium currents within postsynaptic thalamic relay and reticular neurons. These results demonstrate, for the first time, that preventing the developmental homeostatic switch from loose to tightly coupled synaptic release at a single class of deep layer cortical excitatory output neurons results in generalized spike-wave epilepsy.
Collapse
|
18
|
Rzhepetskyy Y, Lazniewska J, Proft J, Campiglio M, Flucher BE, Weiss N. A Ca v3.2/Stac1 molecular complex controls T-type channel expression at the plasma membrane. Channels (Austin) 2016; 10:346-354. [PMID: 27149520 DOI: 10.1080/19336950.2016.1186318] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Low-voltage-activated T-type calcium channels are essential contributors to neuronal physiology where they play complex yet fundamentally important roles in shaping intrinsic excitability of nerve cells and neurotransmission. Aberrant neuronal excitability caused by alteration of T-type channel expression has been linked to a number of neuronal disorders including epilepsy, sleep disturbance, autism, and painful chronic neuropathy. Hence, there is increased interest in identifying the cellular mechanisms and actors that underlie the trafficking of T-type channels in normal and pathological conditions. In the present study, we assessed the ability of Stac adaptor proteins to associate with and modulate surface expression of T-type channels. We report the existence of a Cav3.2/Stac1 molecular complex that relies on the binding of Stac1 to the amino-terminal region of the channel. This interaction potently modulates expression of the channel protein at the cell surface resulting in an increased T-type conductance. Altogether, our data establish Stac1 as an important modulator of T-type channel expression and provide new insights into the molecular mechanisms underlying the trafficking of T-type channels to the plasma membrane.
Collapse
Affiliation(s)
- Yuriy Rzhepetskyy
- a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Joanna Lazniewska
- a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Juliane Proft
- a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| | - Marta Campiglio
- b Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck , Innsbruck , Austria
| | - Bernhard E Flucher
- b Division of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck , Innsbruck , Austria
| | - Norbert Weiss
- a Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , Prague , Czech Republic
| |
Collapse
|
19
|
Antonucci F, Corradini I, Fossati G, Tomasoni R, Menna E, Matteoli M. SNAP-25, a Known Presynaptic Protein with Emerging Postsynaptic Functions. Front Synaptic Neurosci 2016; 8:7. [PMID: 27047369 PMCID: PMC4805587 DOI: 10.3389/fnsyn.2016.00007] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 03/07/2016] [Indexed: 12/27/2022] Open
Abstract
A hallmark of synaptic specializations is their dependence on highly organized complexes of proteins that interact with each other. The loss or modification of key synaptic proteins directly affects the properties of such networks, ultimately impacting synaptic function. SNAP-25 is a component of the SNARE complex, which is central to synaptic vesicle exocytosis, and, by directly interacting with different calcium channels subunits, it negatively modulates neuronal voltage-gated calcium channels, thus regulating intracellular calcium dynamics. The SNAP-25 gene has been associated with distinct brain diseases, including Attention Deficit Hyperactivity Disorder (ADHD), schizophrenia and bipolar disorder, indicating that the protein may act as a shared biological substrate among different "synaptopathies". The mechanisms by which alterations in SNAP-25 may concur to these psychiatric diseases are still undefined, although alterations in neurotransmitter release have been indicated as potential causative processes. This review summarizes recent work showing that SNAP-25 not only controls exo/endocytic processes at the presynaptic terminal, but also regulates postsynaptic receptor trafficking, spine morphogenesis, and plasticity, thus opening the possibility that SNAP-25 defects may contribute to psychiatric diseases by impacting not only presynaptic but also postsynaptic functions.
Collapse
Affiliation(s)
- Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano Milan, Italy
| | - Irene Corradini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di MilanoMilan, Italy; Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy
| | - Giuliana Fossati
- Humanitas Clinical and Research Center, IRCCS Rozzano Rozzano, Italy
| | - Romana Tomasoni
- Humanitas Clinical and Research Center, IRCCS Rozzano Rozzano, Italy
| | - Elisabetta Menna
- Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy; Humanitas Clinical and Research Center, IRCCS RozzanoRozzano, Italy
| | - Michela Matteoli
- Istituto di Neuroscienze, Centro Nazionale RicercheMilan, Italy; Humanitas Clinical and Research Center, IRCCS RozzanoRozzano, Italy
| |
Collapse
|
20
|
Ondacova K, Karmazinova M, Lazniewska J, Weiss N, Lacinova L. Modulation of Cav3.2 T-type calcium channel permeability by asparagine-linked glycosylation. Channels (Austin) 2016; 10:175-84. [PMID: 26745591 DOI: 10.1080/19336950.2016.1138189] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Low-voltage-gated T-type calcium channels are expressed throughout the nervous system where they play an essential role in shaping neuronal excitability. Defects in T-type channel expression have been linked to various neuronal disorders including neuropathic pain and epilepsy. Currently, little is known about the cellular mechanisms controlling the expression and function of T-type channels. Asparagine-linked glycosylation has recently emerged as an essential signaling pathway by which the cellular environment can control expression of T-type channels. However, the role of N-glycans in the conducting function of T-type channels remains elusive. In the present study, we used human Cav3.2 glycosylation-deficient channels to assess the role of N-glycosylation on the gating of the channel. Patch-clamp recordings of gating currents revealed that N-glycans attached to hCav3.2 channels have a minimal effect on the functioning of the channel voltage-sensor. In contrast, N-glycosylation on specific asparagine residues may have an essential role in the conducting function of the channel by enhancing the channel permeability and / or the pore opening of the channel. Our data suggest that modulation of N-linked glycosylation of hCav3.2 channels may play an important physiological role, and could also support the alteration of T-type currents observed in disease states.
Collapse
Affiliation(s)
- Katarina Ondacova
- a Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Maria Karmazinova
- a Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences , Bratislava , Slovakia
| | - Joanna Lazniewska
- b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. , Prague , Czech Republic
| | - Norbert Weiss
- b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i. , Prague , Czech Republic
| | - Lubica Lacinova
- a Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences , Bratislava , Slovakia
| |
Collapse
|
21
|
Watanabe S, Yamamori S, Otsuka S, Saito M, Suzuki E, Kataoka M, Miyaoka H, Takahashi M. Epileptogenesis and epileptic maturation in phosphorylation site-specific SNAP-25 mutant mice. Epilepsy Res 2015. [DOI: 10.1016/j.eplepsyres.2015.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Hill-Yardin EL, Argyropoulos A, Hosie S, Rind G, Anderson P, Hannan AJ, O'Brien TJ. Reduced susceptibility to induced seizures in the Neuroligin-3(R451C) mouse model of autism. Neurosci Lett 2015; 589:57-61. [PMID: 25592157 DOI: 10.1016/j.neulet.2015.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/09/2015] [Indexed: 01/01/2023]
Abstract
Epilepsy is a common comorbidity in patients with autism spectrum disorder (ASD) and several gene mutations are associated with both of these disorders. In order to determine whether a point mutation in the gene for the synaptic protein, Neuroligin-3 (Nlgn3, R451C), identified in patients with ASD alters seizure susceptibility, we administered the proconvulsant pentylenetetrazole (PTZ) to adult male Neuroligin-3(R451C) (NL3(R451C)) and wild type (WT) mice. It has previously been reported that NL3(R451C) mice show altered inhibitory GABAergic activity in brain regions relevant to epilepsy, including the hippocampus and somatosensory cortex. PTZ administration induces absence-seizures at low dose, and generalised convulsive seizures at higher dose. Susceptibility to absence seizures was examined by analysing the frequency and duration of spike-and-wave discharge (SWD) events and accompanying motor seizure activity induced by subcutaneous administration of low dosage (20 or 30mg/kg) PTZ. Susceptibility to generalised convulsive seizures was tested by measuring the response to high dosage (60mg/kg) PTZ using a modified Racine scale. There was no change in the number of SWD events exhibited by NL3(R451C) compared to WT mice following administration of both 20mg/kg PTZ (1.17±0.31 compared to 16.0±11.16 events/30min, NL3(R451C) versus WT, respectively) and 30mg/kg PTZ (7.5±6.54 compared with 27.8±19.9 events/30min, NL3(R451C) versus WT, respectively). NL3(R451C) mice were seizure resistant to generalised convulsive seizures induced by high dose PTZ compared to WT littermates (median latency to first >3s duration clonic seizure; 14.5min versus 7.25min, 95% CI: 1.625-2.375, p=0.0009, NL3(R451C) versus WT, respectively). These results indicate that the R451C mutation in the Nlgn3 gene, associated with ASD in humans, confers resistance to induced seizures, suggesting dysfunction of PTZ-sensitive GABAergic signalling in this mouse model of ASD.
Collapse
Affiliation(s)
- Elisa L Hill-Yardin
- Department of Physiology, University of Melbourne, Parkville 3010, Australia.
| | - Andrew Argyropoulos
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3010, Australia
| | - Suzanne Hosie
- Department of Physiology, University of Melbourne, Parkville 3010, Australia
| | - Gil Rind
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3010, Australia
| | - Paul Anderson
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3010, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Parkville 3010, Australia; Department of Anatomy and Neuroscience, University of Melbourne, Parkville 3010, Australia
| | - Terence J O'Brien
- Department of Medicine, The Royal Melbourne Hospital, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
23
|
Wen M, Yan Y, Yan N, Chen XS, Liu SY, Feng ZH. Upregulation of RBFOX1 in the malformed cortex of patients with intractable epilepsy and in cultured rat neurons. Int J Mol Med 2015; 35:597-606. [PMID: 25571999 PMCID: PMC4314424 DOI: 10.3892/ijmm.2015.2061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 12/22/2014] [Indexed: 02/07/2023] Open
Abstract
Mutations in RNA-binding Fox 1 (RBFOX1) are known to be associated with neurodevelopmental disorders including epilepsy, mental retardation and autism spectrum disorder. The deletion of the Rbfox1 gene in mice has been shown to result in heightened susceptibility to seizures. However, other studies have revealed mutations or the downregulation of RBFOX1 in specimens obtained from patients with epilepsy or malformations of cortical development (MCD). Generally, the expression of RBFOX1 varies according to tissue type. In this study, we demonstrated the upregulation of RBFOX1 protein in the cortex of patients with MCD and intractable epilepsy. Electrophysiological recordings of cultured rat cortical neurons with increased Rbfox1 expression also revealed a significantly increased amplitude of action potential (AP) and Na+ current density. Some of these neurons (26.32%) even displayed spontaneous, recurrent, epileptiform discharges (SREDs). Additionally, certain Rbfox1 target transcripts associated with epilepsy, including glutamate receptor, ionotropic, N-methyl D-aspartate 1 [Grin1, also known as N-methyl-D-aspartate receptor subunit NR1 (NMDAR1)], synaptosomal-associated protein, 25 kDa (SNAP-25 or Snap25) and sodium channel, voltage gated, type VIII, alpha subunit (Scn8a, also known as Nav1.6) were identified to be upregulated in these cultured cortical neurons with an upregulated Rbfox1 expression. These data suggest that the upregulation of RBFOX1 contributes to neuronal hyperexcitation and seizures. The upregulation of NMDAR1 (Grin1), SNAP-25 (Snap25) and Scn8a may thus be involved in Rbfox1-related neuronal hyperexcitation.
Collapse
Affiliation(s)
- Ming Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| | - Yong Yan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| | - Ning Yan
- Department of Neurology, University‑Town Hospital of Chongqing Medical University, Chongqing 401331, P.R. China
| | - Xiao Shan Chen
- Department of Neurology, Xi'an Central Hospital, Xi'an 710003, P.R. China
| | - Shi Yong Liu
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Zhan Hui Feng
- Department of Neurology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
24
|
Letts VA, Beyer BJ, Frankel WN. Hidden in plain sight: spike-wave discharges in mouse inbred strains. GENES BRAIN AND BEHAVIOR 2014; 13:519-26. [PMID: 24861780 DOI: 10.1111/gbb.12142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/07/2014] [Accepted: 05/17/2014] [Indexed: 11/28/2022]
Abstract
Twenty-seven inbred strains of mice were tested for spike-wave discharge (SWD) activity by video-electroencephalographic recordings over a 24-h recording period. Eight strains had reproducible, frequent SWDs, including five strains (C57BLKS/J, CBA/J, DBA/1J, NOR/LtJ, SM/J) previously undiagnosed for this distinctive phenotype. Eighteen other strains exhibited no such activity. Spike-wave discharges usually occurred while the subject was motionless, and in a significant number of annotated instances coincided with an arrest of the subject's relatively unrestrained locomotor activity, which resumed immediately after the discharge ended. In all five new strains, SWDs were suppressed by ethosuximide administration. From the genealogy of inbred strains, we suggest that two ancestors, A and DBA, transmitted genotypes required for SWD in all positive strains. Together these strains with SWDs provide new opportunities to understand the genetic core susceptibility of this distinctive electroencephalographic activity and to explore its relationship to absence epilepsy, a human disorder for which few genes are known.
Collapse
Affiliation(s)
- V A Letts
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | |
Collapse
|
25
|
Paolicchi JM. The timing of pediatric epilepsy syndromes: what are the developmental triggers? Ann N Y Acad Sci 2014; 1304:45-51. [PMID: 24279892 DOI: 10.1111/nyas.12307] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pediatric epilepsy is characterized by multiple epilepsy syndromes with specific developmental triggers. They initiate spontaneously at critical periods of development and can just as spontaneously remit. Accompanying neurocognitive disabilities are often specific to the epileptic syndrome. Infantile or epileptic spasms have a very specific developmental window in the first year of life. Preceding the epilepsy, developmental arrest is common. The neurologic pathways underlying the development of spasms have been identified through PET scans as developmental abnormalities of serotonergic and GABAergic neurotransmitter systems in the brain stem and basal ganglia. Childhood absence epilepsy (CAE) and benign centrotemporal epilepsy syndrome (BECTS) are both known genetic epilepsy syndromes; they have a discrete onset in childhood with remission by puberty. In CAE, disturbances of specific calcium channels at key developmental stages lead to aberrant disruption of thalamocortical synchrony. Similarly, a complex interplay between brain development, maturation, and susceptibility genes underlies the seizures and the neurocognitive deficits of BECTS.
Collapse
|
26
|
T-type Ca2+ channels in absence epilepsy. Pflugers Arch 2014; 466:719-34. [DOI: 10.1007/s00424-014-1461-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/22/2014] [Indexed: 11/25/2022]
|
27
|
Maheshwari A, Noebels JL. Monogenic models of absence epilepsy: windows into the complex balance between inhibition and excitation in thalamocortical microcircuits. PROGRESS IN BRAIN RESEARCH 2014; 213:223-52. [PMID: 25194492 DOI: 10.1016/b978-0-444-63326-2.00012-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Absence epilepsy is a common disorder that arises in childhood and can be refractory to medical treatment. Single genetic mutations in mice, at times found in patients with absence epilepsy, provide the unique opportunity to bridge the gap between dysfunction at the genetic level and pathological oscillations within the thalamocortical circuit. Interestingly, unlike other forms of epilepsy, only genes related to ion channels have so far been linked to absence phenotypes. Here, we delineate a paradigm which attempts to unify the various monogenic models based on decades of research. While reviewing the particular impact of these individual mutations, we posit a framework involving fast feedforward disinhibition as one common mechanism that can lead to increased tonic inhibition in the cortex and/or thalamus. Enhanced tonic inhibition hyperpolarizes principal cells, deinactivates T-type calcium channels, and leads to reciprocal burst firing within the thalamocortical loop. We also review data from pharmacologic and polygenic models in light of this paradigm. Ultimately, many questions remain unanswered regarding the pathogenesis of absence epilepsy.
Collapse
Affiliation(s)
- Atul Maheshwari
- Department of Neurology, Developmental Neurogenetics Laboratory, Baylor College of Medicine Houston, TX, USA.
| | - Jeffrey L Noebels
- Department of Neurology, Developmental Neurogenetics Laboratory, Baylor College of Medicine Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
28
|
Razanau A, Xie J. Emerging mechanisms and consequences of calcium regulation of alternative splicing in neurons and endocrine cells. Cell Mol Life Sci 2013; 70:4527-36. [PMID: 23800988 PMCID: PMC11113957 DOI: 10.1007/s00018-013-1390-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/21/2013] [Accepted: 05/27/2013] [Indexed: 12/12/2022]
Abstract
Alternative splicing contributes greatly to proteomic complexity. How it is regulated by external stimuli to sculpt cellular properties, particularly the highly diverse and malleable neuronal properties, is an underdeveloped area of emerging interest. A number of recent studies in neurons and endocrine cells have begun to shed light on its regulation by calcium signals. Some mechanisms include changes in the trans-acting splicing factors by phosphorylation, protein level, alternative pre-mRNA splicing, and nucleocytoplasmic redistribution of proteins to alter protein-RNA or protein-protein interactions, as well as modulation of chromatin states. Importantly, functional analyses of the control of specific exons/splicing factors in the brain point to a crucial role of this regulation in synaptic maturation, maintenance, and transmission. Furthermore, its deregulation has been implicated in the pathogenesis of neurological disorders, particularly epilepsy/seizure. Together, these studies have not only provided mechanistic insights into the regulation of alternative splicing by calcium signaling but also demonstrated its impact on neuron differentiation, function, and disease. This may also help our understanding of similar regulations in other types of cells.
Collapse
Affiliation(s)
- Aleh Razanau
- Department of Physiology, University of Manitoba, 439 BMSB, 745 Bannatyne Ave, Winnipeg, R3E 0J9 Canada
| | - Jiuyong Xie
- Department of Physiology, University of Manitoba, 439 BMSB, 745 Bannatyne Ave, Winnipeg, R3E 0J9 Canada
- Department of Biochemistry and Medical Genetics, Faculty of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9 Canada
| |
Collapse
|
29
|
Yilmaz M, Edgunlu TG, Yilmaz N, Cetin ES, Celik SK, Emir GK, Sözen A. Genetic variants of synaptic vesicle and presynaptic plasma membrane proteins in idiopathic generalized epilepsy. J Recept Signal Transduct Res 2013; 34:38-43. [PMID: 24164654 DOI: 10.3109/10799893.2013.848893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The aim of this study was to analyze the role of the genetic variants of two synaptic vesicle proteins (VAMP2 and Synaptotagmin XI) and two presynaptic plasma membrane proteins (Syntaxin 1A and SNAP-25) in patients with idiopathic generalized epilepsy (IGE). METHOD Eighty-five patients with IGE and 93 healthy subjects were included in the study. We analyzed the functional polymorphisms of VAMP2, Synaptotagmin XI, Syntaxin 1A and SNAP-25 genes with polymerase chain reaction and restriction fragment length polymorphism methods. RESULTS In the patients with IGE, significant differences alleles and genotypes of 26 bp Ins/Del polymorphism of the VAMP2 gene and the 33-bp promoter region of Synaptotagmin XI were observed, however no associaton was found regarding Intron 7 rs1569061 of Syntaxin 1A gene, MnlI rs3746544 and DdeI rs1051312 polymorphisms of SNAP-25 gene compared with healthy subjects. Carriers of the C allele of Synaptotagmin XI had worse measures compared with the T allele of Synaptotagmin XI. In the haplotype analysis, the frequency of the T alleles of rs1569061 and of the C alleles of the 33-bp promoter region of Synaptotagmin XI was found to be significantly higher in patients with IGE as compared with the healthy subjects. CONCLUSION The genetic variations of VAMP2, Synaptotagmin XI might be indication of the relationship between these genes and IGE.
Collapse
|
30
|
Abstract
Low-voltage-activated T-type Ca(2+) channels are widely expressed in various types of neurons. Once deinactivated by hyperpolarization, T-type channels are ready to be activated by a small depolarization near the resting membrane potential and, therefore, are optimal for regulating the excitability and electroresponsiveness of neurons under physiological conditions near resting states. Ca(2+) influx through T-type channels engenders low-threshold Ca(2+) spikes, which in turn trigger a burst of action potentials. Low-threshold burst firing has been implicated in the synchronization of the thalamocortical circuit during sleep and in absence seizures. It also has been suggested that T-type channels play an important role in pain signal transmission, based on their abundant expression in pain-processing pathways in peripheral and central neurons. In this review, we will describe studies on the role of T-type Ca(2+) channels in the physiological as well as pathological generation of brain rhythms in sleep, absence epilepsy, and pain signal transmission. Recent advances in studies of T-type channels in the control of cognition will also be briefly discussed.
Collapse
Affiliation(s)
- Eunji Cheong
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | | |
Collapse
|
31
|
Hagihara H, Takao K, Walton NM, Matsumoto M, Miyakawa T. Immature dentate gyrus: an endophenotype of neuropsychiatric disorders. Neural Plast 2013; 2013:318596. [PMID: 23840971 PMCID: PMC3694492 DOI: 10.1155/2013/318596] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 12/13/2022] Open
Abstract
Adequate maturation of neurons and their integration into the hippocampal circuit is crucial for normal cognitive function and emotional behavior, and disruption of this process could cause disturbances in mental health. Previous reports have shown that mice heterozygous for a null mutation in α -CaMKII, which encodes a key synaptic plasticity molecule, display abnormal behaviors related to schizophrenia and other psychiatric disorders. In these mutants, almost all neurons in the dentate gyrus are arrested at a pseudoimmature state at the molecular and electrophysiological levels, a phenomenon defined as "immature dentate gyrus (iDG)." To date, the iDG phenotype and shared behavioral abnormalities (including working memory deficit and hyperlocomotor activity) have been discovered in Schnurri-2 knockout, mutant SNAP-25 knock-in, and forebrain-specific calcineurin knockout mice. In addition, both chronic fluoxetine treatment and pilocarpine-induced seizures reverse the neuronal maturation, resulting in the iDG phenotype in wild-type mice. Importantly, an iDG-like phenomenon was observed in post-mortem analysis of brains from patients with schizophrenia/bipolar disorder. Based on these observations, we proposed that the iDG is a potential endophenotype shared by certain types of neuropsychiatric disorders. This review summarizes recent data describing this phenotype and discusses the data's potential implication in elucidating the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Keizo Takao
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 5-1 Aza-Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Noah M. Walton
- CNS, Astellas Research Institute of America LLC, 8045 Lamon Avenue, Skokie, IL 60077, USA
| | - Mitsuyuki Matsumoto
- CNS, Astellas Research Institute of America LLC, 8045 Lamon Avenue, Skokie, IL 60077, USA
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 5-1 Aza-Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
32
|
Choi KH. The design and discovery of T-type calcium channel inhibitors for the treatment of central nervous system disorders. Expert Opin Drug Discov 2013; 8:919-31. [DOI: 10.1517/17460441.2013.796926] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Stable respiratory activity requires both P/Q-type and N-type voltage-gated calcium channels. J Neurosci 2013; 33:3633-45. [PMID: 23426690 DOI: 10.1523/jneurosci.6390-11.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
P/Q-type voltage-gated calcium channels (Ca(v)2.1) play critical presynaptic and postsynaptic roles throughout the nervous system and have been implicated in a variety of neurological disorders. Here we report that mice with a genetic ablation of the Ca(v)2.1 pore-forming α(1A) subunit (α(1A)⁻/⁻) encoded by CACNA1a (Jun et al., 1999) suffer during postnatal development from increasing breathing disturbances that lead ultimately to death. Breathing abnormalities include decreased minute ventilation and a specific loss of sighs, which was associated with lung atelectasis. Similar respiratory alterations were preserved in the isolated in vitro brainstem slice preparation containing the pre-Bötzinger complex. The loss of Ca(v)2.1 was associated with an alteration in the functional dependency on N-type calcium channels (Ca(v)2.2). Blocking N-type calcium channels with conotoxin GVIA had only minor effects on respiratory activity in slices from control (CT) littermates, but abolished respiratory activity in all slices from α(1A)⁻/⁻ mice. The amplitude of evoked EPSPs was smaller in inspiratory neurons from α(1A)⁻/⁻ mice compared with CTs. Conotoxin GVIA abolished all EPSPs in inspiratory neurons from α(1A)⁻/⁻ mice, while the EPSP amplitude was reduced by only 30% in CT mice. Moreover, neuromodulation was significantly altered as muscarine abolished respiratory network activity in α(1A)⁻/⁻ mice but not in CT mice. We conclude that excitatory synaptic transmission dependent on N-type and P/Q-type calcium channels is required for stable breathing and sighing. In the absence of P/Q-type calcium channels, breathing, sighing, and neuromodulation are severely compromised, leading to early mortality.
Collapse
|
34
|
Ohira K, Kobayashi K, Toyama K, Nakamura HK, Shoji H, Takao K, Takeuchi R, Yamaguchi S, Kataoka M, Otsuka S, Takahashi M, Miyakawa T. Synaptosomal-associated protein 25 mutation induces immaturity of the dentate granule cells of adult mice. Mol Brain 2013; 6:12. [PMID: 23497716 PMCID: PMC3605216 DOI: 10.1186/1756-6606-6-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/21/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Synaptosomal-associated protein, 25 kDa (SNAP-25) regulates the exocytosis of neurotransmitters. Growing evidence suggests that SNAP-25 is involved in neuropsychiatric disorders, such as schizophrenia, attention-deficit/hyperactivity disorder, and epilepsy. Recently, increases in anxiety-related behaviors and epilepsy have been observed in SNAP-25 knock-in (KI) mice, which have a single amino acid substitution of Ala for Ser187. However, the molecular and cellular mechanisms underlying the abnormalities in this mutant remain unknown. RESULTS In this study, we found that a significant number of dentate gyrus (DG) granule cells was histologically and electrophysiologically similar to immature DG neurons in the dentate gyrus of the adult mutants, a phenomenon termed the "immature DG" (iDG). SNAP-25 KI mice and other mice possessing the iDG phenotype, i.e., alpha-calcium/calmodulin-dependent protein kinase II heterozygous mice, Schnurri-2 knockout mice, and mice treated with the antidepressant fluoxetine, showed similar molecular expression patterns, with over 100 genes similarly altered. A working memory deficit was also identified in mutant mice during a spontaneous forced alternation task using a modified T-maze, a behavioral task known to be dependent on hippocampal function. Chronic treatments with the antiepileptic drug valproate abolished the iDG phenotype and the working memory deficit in mutants. CONCLUSIONS These findings suggest that the substitution of Ala for Ser187 in SNAP-25 induces the iDG phenotype, which can also be caused by epilepsy, and led to a severe working memory deficit. In addition, the iDG phenotype in adulthood is likely an endophenotype for at least a part of some common psychiatric disorders.
Collapse
Affiliation(s)
- Koji Ohira
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Katsunori Kobayashi
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Department of Pharmacology, Graduate School of Medicine, Nippon Medical School, Tokyo, 113-8602, Japan
| | - Keiko Toyama
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Hironori K Nakamura
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Keizo Takao
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Rika Takeuchi
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
| | - Shun Yamaguchi
- Division of Morphological Neuroscience, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
- JST, PRESTO, Kawaguchi, 332-0012, Japan
| | - Masakazu Kataoka
- Department of Environmental Science and Technology, Faculty of Engineering, Shinshu University, Nagano, 380-8553, Japan
| | - Shintaro Otsuka
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, 228-8555, Japan
| | - Masami Takahashi
- Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, 228-8555, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192, Japan
- Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, 332-0012, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| |
Collapse
|
35
|
Cheong E, Shin HS. T-type Ca²⁺ channels in absence epilepsy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1560-71. [PMID: 23416255 DOI: 10.1016/j.bbamem.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/15/2013] [Accepted: 02/01/2013] [Indexed: 11/28/2022]
Abstract
Low-voltage-activated T-type Ca²⁺ channels are highly expressed in the thalamocortical circuit, suggesting that they play a role in this brain circuit. Indeed, low-threshold burst firing mediated by T-type Ca²⁺ channels has long been implicated in the synchronization of the thalamocortical circuit. Over the past few decades, the conventional view has been that rhythmic burst firing mediated by T-type channels in both thalamic reticular nuclie (TRN) and thalamocortical (TC) neurons are equally critical in the generation of thalamocortical oscillations during sleep rhythms and spike-wave-discharges (SWDs). This review broadly investigates recent studies indicating that even though both TRN and TC nuclei are required for thalamocortical oscillations, the contributions of T-type channels to TRN and TC neurons are not equal in the genesis of sleep spindles and SWDs. T-type channels in TC neurons are an essential component of SWD generation, whereas the requirement for TRN T-type channels in SWD generation remains controversial at least in the GBL model of absence seizures. Therefore, a deeper understanding of the functional consequences of modulating each T-type channel subtype could guide the development of therapeutic tools for absence seizures while minimizing side effects on physiological thalamocortical oscillations. This article is part of a Special Issue entitled: Calcium channels.
Collapse
Affiliation(s)
- Eunji Cheong
- Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| | | |
Collapse
|
36
|
Brothers HM, Bardou I, Hopp SC, Marchalant Y, Kaercher RM, Turner SM, Mitchem MR, Kigerl K, Wenk GL. Time-Dependent Compensatory Responses to Chronic Neuroinflammation in Hippocampus and Brainstem: The Potential Role of Glutamate Neurotransmission. ACTA ACUST UNITED AC 2013; 3:110. [PMID: 24600537 PMCID: PMC3939715 DOI: 10.4172/2161-0460.1000110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chronic neuroinflammation is characteristic of neurodegenerative diseases and is present during very early stages, yet significant pathology and behavioral deficits do not manifest until advanced age. We investigated the consequences of experimentally-induced chronic neuroinflammation within the hippocampus and brainstem of young (4 mo) F-344 rats. Lipopolysaccharide (LPS) was infused continuously into the IVth ventricle for 2, 4 or 8 weeks. The number of MHC II immunoreactive microglia in the brain continued to increase throughout the infusion period. In contrast, performance in the Morris water maze was impaired after 4 weeks but recovered by 8 weeks. Likewise, a transient loss of tyrosine hydroxylase immunoreactivity in the substantia nigra and locus coeruleus was observed after 2 weeks, but returned to control levels by 4 weeks of continuous LPS infusion. These data suggest that direct activation of microglia is sufficient to drive, but not sustain, spatial memory impairment and a decrease in tyrosine hydroxylase production in young rats. Our previous studies suggest that chronic neuroinflammation elevates extracellular glutamate and that this elevation underlies the spatial memory impairment. In the current study, increased levels of GLT1 and SNAP25 in the hippocampus corresponded with the resolution of performance deficit. Increased expression of SNAP25 is consistent with reduced glutamate release from axonal terminals while increased GLT1 is consistent with enhanced clearance of extracellular glutamate. These data demonstrate the capacity of the brain to compensate for the presence of chronic neuroinflammation, despite continued activation of microglia, through changes in the regulation of the glutamatergic system.
Collapse
Affiliation(s)
- Holly M Brothers
- Department of Psychology, Ohio State University, Columbus, OH, USA
| | - Isabelle Bardou
- Department of Psychology, Ohio State University, Columbus, OH, USA
| | - Sarah C Hopp
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | | | | | - Sarah M Turner
- Department of Psychology, Ohio State University, Columbus, OH, USA
| | - Mollie R Mitchem
- Department of Psychology, Ohio State University, Columbus, OH, USA
| | - Kristina Kigerl
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Gary L Wenk
- Department of Psychology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
37
|
Corradini I, Donzelli A, Antonucci F, Welzl H, Loos M, Martucci R, De Astis S, Pattini L, Inverardi F, Wolfer D, Caleo M, Bozzi Y, Verderio C, Frassoni C, Braida D, Clerici M, Lipp HP, Sala M, Matteoli M. Epileptiform Activity and Cognitive Deficits in SNAP-25+/− Mice are Normalized by Antiepileptic Drugs. Cereb Cortex 2012; 24:364-76. [DOI: 10.1093/cercor/bhs316] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
38
|
Bessaïh T, de Yebenes EG, Kirkland K, Higley MJ, Buono RJ, Ferraro TN, Contreras D. Quantitative trait locus on distal chromosome 1 regulates the occurrence of spontaneous spike-wave discharges in DBA/2 mice. Epilepsia 2012; 53:1429-35. [PMID: 22612065 DOI: 10.1111/j.1528-1167.2012.03512.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE Most common forms of human epilepsy result from a complex combination of polygenetic and environmental factors. Quantitative trait locus (QTL) mapping is a first step toward the nonbiased discovery of epilepsy-related candidate genes. QTL studies of susceptibility to induced seizures in mouse strains have consistently converged on a distal region of chromosome 1 as a major phenotypic determinant; however, its influence on spontaneous epilepsy remains unclear. In the present study we characterized the influence of allelic variations within this QTL, termed Szs1, on the occurrence of spontaneous spike-wave discharges (SWDs) characteristic of absence seizures in DBA/2 (D2) mice. METHODS We analyzed SWD occurrence and patterns in freely behaving D2, C57BL/6 (B6) and the congenic strains D2.B6-Szs1 and B6.D2-Szs1. KEY FINDINGS We showed that congenic manipulation of the Szs1 locus drastically reduced the number and the duration of SWDs in D2.B6-Szs1 mice, which are homozygous for Szs1 from B6 strain on a D2 strain background. However, it failed to induce the full expression of SWDs in the reverse congenic animals B6.D2-Szs1. SIGNIFICANCE Our results demonstrate that the occurrence of SWDs in D2 animals is under polygenic control and, therefore, the D2 and B6 strains might be a useful model to dissect the genetic determinants of polygenic SWDs characteristic of typical absence seizures. Furthermore, we point to the existence of epistatic interactions between at least one modifier gene within Szs1 and genes within unlinked QTLs in regulating the occurrence of spontaneous nonconvulsive forms of epilepsies.
Collapse
Affiliation(s)
- Thomas Bessaïh
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19106-6074, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Epilepsy is characterized by spontaneous recurrent seizures and comprises a diverse group of syndromes with different etiologies. Epileptogenesis refers to the process whereby the brain becomes epileptic and can be related to several factors, such as acquired structural brain lesions, inborn brain malformations, alterations in neuronal signaling, and defects in maturation and plasticity of neuronal networks. In this review, we will focus on alterations of brain development that lead to an hyperexcitability phenotype in adulthood, providing examples from both animal and human studies. Malformations of cortical development (including focal cortical dysplasia, lissencephaly, heterotopia, and polymicrogyria) are frequently epileptogenic and result from defects in cell proliferation in the germinal zone and/or impaired neuronal migration and differentiation. Delayed or reduced arrival of inhibitory interneurons into the cortical plate is another possible cause of epileptogenesis. GABAergic neurons are generated during early development in the ganglionic eminences, and failure to pursue migration toward the cortex alters the excitatory/inhibitory balance resulting in aberrant network hyperexcitability. More subtle defects in the developmental assembly of excitatory and inhibitory synapses are also involved in epilepsy. For example, mutations in the presynaptic proteins synapsins and SNAP-25 cause derangements of synaptic transmission and plasticity which underlie appearance of an epileptic phenotype. Finally, there is evidence that defects in synapse elimination and remodeling during early "critical periods" can trigger hyperexcitability later in life. Further clarification of the developmental pathways to epilepsy has important implications for disease prevention and therapy.
Collapse
Affiliation(s)
- Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy
| | | | | |
Collapse
|
40
|
Todorovic SM, Jevtovic-Todorovic V. T-type voltage-gated calcium channels as targets for the development of novel pain therapies. Br J Pharmacol 2011; 163:484-95. [PMID: 21306582 DOI: 10.1111/j.1476-5381.2011.01256.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
It is well recognized that voltage-gated calcium (Ca(2+)) channels modulate the function of peripheral and central pain pathways by influencing fast synaptic transmission and neuronal excitability. In the past, attention focused on the modulation of different subtypes of high-voltage-activated-type Ca(2+) channels; more recently, the function of low-voltage-activated or transient (T)-type Ca(2+) channels (T-channels) in nociception has been well documented. Currently, available pain therapies remain insufficient for certain forms of pain associated with chronic disorders (e.g. neuropathic pain) and often have serious side effects. Hence, the identification of selective and potent inhibitors and modulators of neuronal T-channels may help greatly in the development of safer, more effective pain therapies. Here, we summarize the available information implicating peripheral and central T-channels in nociception. We also discuss possible future developments aimed at selective modulation of function of these channels, which are highly expressed in nociceptors.
Collapse
Affiliation(s)
- Slobodan M Todorovic
- Department of Anesthesiology and Neuroscience, University of Virginia School of Medicine, Charlottesville, 22908-0710, USA.
| | | |
Collapse
|
41
|
Guerini FR, Bolognesi E, Chiappedi M, Manca S, Ghezzo A, Agliardi C, Sotgiu S, Usai S, Matteoli M, Clerici M. SNAP-25 single nucleotide polymorphisms are associated with hyperactivity in autism spectrum disorders. Pharmacol Res 2011; 64:283-8. [PMID: 21497654 DOI: 10.1016/j.phrs.2011.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/29/2011] [Accepted: 03/29/2011] [Indexed: 12/26/2022]
Abstract
Synaptosomal-associated protein of 25kD (SNAP-25), a protein participating in the regulation of synaptic vesicle exocytosis and in calcium homeostasis, was recently involved in neuropsychiatric conditions. Because alterations affecting the homeostasis of calcium are described in patients affected by autism spectrum disorders (ASD) we investigated a possible involvement of SNAP-25 in ASD by evaluating five SNAP-25 gene polymorphisms in a cohort of 67 ASD children. Data analyzed in relationship with clinical outcomes and compared to those of 205 healthy sex-matched children did not reveal significant differences. Further analyses nevertheless showed the presence of highly significant associations of the rs363043 (CT) genotype, localized in the intron 1 region that affects the transcription factor binding sites of the SNAP-25 gene, with both increasing CARS (p=0.001) and hyperactivity scores (p=0.006). The finding that polymorphisms of the SNAP-25 gene, a gene involved in neurotransmission and regulation of calcium homeostasis, are associated with the degree of hyperactivity in children with ASD, reinforces the hypothesis that alterations of these mechanisms play a pivotal role in the events leading to ASD-associated behavioral impairment. Modulation of these processes could result in novel therapeutic strategies.
Collapse
Affiliation(s)
- Franca R Guerini
- Don C. Gnocchi Foundation ONLUS, P. le Morandi 6, 20121 Milano, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Mark MD, Maejima T, Kuckelsberg D, Yoo JW, Hyde RA, Shah V, Gutierrez D, Moreno RL, Kruse W, Noebels JL, Herlitze S. Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1a mutations. J Neurosci 2011; 31:4311-26. [PMID: 21411672 PMCID: PMC3065835 DOI: 10.1523/jneurosci.5342-10.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 01/12/2011] [Accepted: 01/20/2011] [Indexed: 12/27/2022] Open
Abstract
Inherited loss of P/Q-type calcium channel function causes human absence epilepsy, episodic dyskinesia, and ataxia, but the molecular "birthdate" of the neurological syndrome and its dependence on prenatal pathophysiology is unknown. Since these channels mediate transmitter release at synapses throughout the brain and are expressed early in embryonic development, delineating the critical circuitry and onset underlying each of the emergent phenotypes requires targeted control of gene expression. To visualize P/Q-type Ca(2+) channels and dissect their role in neuronal networks at distinct developmental stages, we created a novel conditional Cacna1a knock-in mouse by inserting the floxed green fluorescent protein derivative Citrine into the first exon of Cacna1a and then crossed it with a postnatally expressing PCP2-Cre line for delayed Purkinje cell (PC) gene deletion within the cerebellum and sparsely in forebrain (purky). PCs in purky mice lacked P/Q-type calcium channel protein and currents within the first month after birth, displayed altered spontaneous firing, and showed impaired neurotransmission. Unexpectedly, adult purky mice exhibited the full spectrum of neurological deficits seen in mice with genomic Cacna1a ablation. Our results show that the ataxia, dyskinesia, and absence epilepsy caused by inherited disorders of the P/Q-type channel arise from signaling defects beginning in late infancy, revealing an early window of opportunity for therapeutic intervention.
Collapse
Affiliation(s)
- Melanie D. Mark
- Department of Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Takashi Maejima
- Department of Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Denise Kuckelsberg
- Department of Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Jong W. Yoo
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Robert A. Hyde
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-4975
| | - Viral Shah
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-4975
| | - Davina Gutierrez
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-4975
| | - Rosa L. Moreno
- Department of Physiology and Biophysics, University of Colorado (Anschutz Medical Campus), Aurora, Colorado 80045
| | - Wolfgang Kruse
- Department of Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Jeffrey L. Noebels
- Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, and
| | - Stefan Herlitze
- Department of Zoology and Neurobiology, ND7/31, Ruhr-University Bochum, D-44780 Bochum, Germany
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio 44106-4975
| |
Collapse
|
43
|
Condliffe SB, Corradini I, Pozzi D, Verderio C, Matteoli M. Endogenous SNAP-25 regulates native voltage-gated calcium channels in glutamatergic neurons. J Biol Chem 2010; 285:24968-76. [PMID: 20522554 DOI: 10.1074/jbc.m110.145813] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to its primary role as a fundamental component of the SNARE complex, SNAP-25 also modulates voltage-gated calcium channels (VGCCs) in various overexpression systems. Although these studies suggest a potential negative regulatory role of SNAP-25 on VGCC activity, the effects of endogenous SNAP-25 on native VGCC function in neurons are unclear. In the present study, we investigated the VGCC properties of cultured glutamatergic and GABAergic rat hippocampal neurons. Glutamatergic currents were dominated by P/Q-type channels, whereas GABAergic cells had a dominant L-type component. Also, glutamatergic VGCC current densities were significantly lower with enhanced inactivation rates and shifts in the voltage dependence of activation and inactivation curves compared with GABAergic cells. Silencing endogenous SNAP-25 in glutamatergic neurons did not alter P/Q-type channel expression or localization but led to increased VGCC current density without changes in the VGCC subtype proportions. Isolation of the P/Q-type component indicated that increased current in the absence of SNAP-25 was correlated with a large depolarizing shift in the voltage dependence of inactivation. Overexpressing SNAP-25 in GABAergic neurons reduced current density without affecting the VGCC subtype proportion. Accordingly, VGCC current densities in glutamatergic neurons from Snap-25(+/-) mice were significantly elevated compared with wild type glutamatergic neurons. Overall, this study demonstrates that endogenous SNAP-25 negatively regulates native VGCCs in glutamatergic neurons which could have important implications for neurological diseases associated with altered SNAP-25 expression.
Collapse
Affiliation(s)
- Steven B Condliffe
- Department of Medical Pharmacology and Consiglio Nazionale delle Ricerche Institute of Neuroscience, University of Milano, Via Vanvitelli 32, 20129 Milano, Italy.
| | | | | | | | | |
Collapse
|
44
|
Voltage-gated calcium channels in the etiopathogenesis and treatment of absence epilepsy. ACTA ACUST UNITED AC 2010; 62:245-71. [DOI: 10.1016/j.brainresrev.2009.12.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 12/21/2022]
|
45
|
Zamponi GW, Lory P, Perez-Reyes E. Role of voltage-gated calcium channels in epilepsy. Pflugers Arch 2009; 460:395-403. [PMID: 20091047 DOI: 10.1007/s00424-009-0772-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/30/2022]
Abstract
It is well established that idiopathic generalized epilepsies (IGEs) show a polygenic origin and may arise from dysfunction of various types of voltage- and ligand-gated ion channels. There is an increasing body of literature implicating both high- and low-voltage-activated (HVA and LVA) calcium channels and their ancillary subunits in IGEs. Cav2.1 (P/Q-type) calcium channels control synaptic transmission at presynaptic nerve terminals, and mutations in the gene encoding the Cav2.1 alpha1 subunit (CACNA1A) have been linked to absence seizures in both humans and rodents. Similarly, mutations and loss of function mutations in ancillary HVA calcium channel subunits known to co-assemble with Cav2.1 result in IGE phenotypes in mice. It is important to note that in all these mouse models with mutations in HVA subunits, there is a compensatory increase in thalamic LVA currents which likely leads to the seizure phenotype. In fact, gain-of-function mutations have been identified in Cav3.2 (an LVA or T-type calcium channel encoded by the CACNA1H gene) in patients with congenital forms of IGEs, consistent with increased excitability of neurons as a result of enhanced T-type channel function. In this paper, we provide a broad overview of the roles of voltage-gated calcium channels, their mutations, and how they might contribute to the river that terminates in epilepsy.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, T2N 4N1, Canada
| | | | | |
Collapse
|
46
|
Deletion of phospholipase C beta4 in thalamocortical relay nucleus leads to absence seizures. Proc Natl Acad Sci U S A 2009; 106:21912-7. [PMID: 19955421 DOI: 10.1073/pnas.0912204106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Absence seizures are characterized by cortical spike-wave discharges (SWDs) on electroencephalography, often accompanied by a shift in the firing pattern of thalamocortical (TC) neurons from tonic to burst firing driven by T-type Ca(2+) currents. We recently demonstrated that the phospholipase C beta4 (PLCbeta4) pathway tunes the firing mode of TC neurons via the simultaneous regulation of T- and L-type Ca(2+) currents, which prompted us to investigate the contribution of TC firing modes to absence seizures. PLCbeta4-deficient TC neurons were readily shifted to the oscillatory burst firing mode after a slight hyperpolarization of membrane potential. TC-limited knockdown as well as whole-animal knockout of PLCbeta4 induced spontaneous SWDs with simultaneous behavioral arrests and increased the susceptibility to drug-induced SWDs, indicating that the deletion of thalamic PLCbeta4 leads to the genesis of absence seizures. The SWDs were effectively suppressed by thalamic infusion of a T-type, but not an L-type, Ca(2+) channel blocker. These results reveal a primary role of TC neurons in the genesis of absence seizures and provide strong evidence that an alteration of the firing property of TC neurons is sufficient to generate absence seizures. Our study presents PLCbeta4-deficient mice as a potential animal model for absence seizures.
Collapse
|
47
|
Ghezzo A, Guerini FR, Bolognesi E, Matteoli M, Manca S, Sotgiu S, Bejor M, Clerici M, Chiappedi M. Neuropsycological gender differences in healthy individuals and in pediatric neurodevelopmental disorders. A role for SNAP-25. Med Hypotheses 2009; 73:978-80. [PMID: 19713048 DOI: 10.1016/j.mehy.2009.05.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 05/25/2009] [Accepted: 05/27/2009] [Indexed: 02/04/2023]
Abstract
Synaptosomal-associated protein of 25 KD (SNAP-25) is a protein that participates in synaptic vesicle exocytosis through the formation of a SNARE complex; SNAP-25 also plays a pivotal role in modulating calcium homeostasis through negative regulation of voltage-gated calcium channels. SNAP-25 has been involved in different neuropsychiatric disorders, including attention deficit hyperactivity disorder. There are well known physiological gender differences in many neuropsychological skills, and there are even more striking gender differences in patients with attention deficit hyperactivity disorder and autism spectrum disorders. We hypothesize that these differences are the result of a mechanism involving SNAP-25 polymorphisms and its differential expression in specific brain areas.
Collapse
Affiliation(s)
- Alessandro Ghezzo
- Don Carlo Gnocchi ONLUS Foundation, Centro Bignamini, Falconara, AN, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Huc S, Monteil A, Bidaud I, Barbara G, Chemin J, Lory P. Regulation of T-type calcium channels: Signalling pathways and functional implications. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:947-52. [DOI: 10.1016/j.bbamcr.2008.11.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 11/04/2008] [Accepted: 11/06/2008] [Indexed: 11/15/2022]
|
49
|
Ernst WL, Noebels JL. Expanded alternative splice isoform profiling of the mouse Cav3.1/alpha1G T-type calcium channel. BMC Mol Biol 2009; 10:53. [PMID: 19480703 PMCID: PMC2696442 DOI: 10.1186/1471-2199-10-53] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 05/29/2009] [Indexed: 11/30/2022] Open
Abstract
Background Alternative splicing of low-voltage-activated T-type calcium channels contributes to the molecular and functional diversity mediating complex network oscillations in the normal brain. Transcript scanning of the human CACNA1G gene has revealed the presence of 11 regions within the coding sequence subjected to alternative splicing, some of which enhance T-type current. In mouse models of absence epilepsy, elevated T-type calcium currents without clear increases in channel expression are found in thalamic neurons that promote abnormal neuronal synchronization. To test whether enhanced T-type currents in these models reflect pathogenic alterations in channel splice isoforms, we determined the extent of alternative splicing of mouse Cacna1g transcripts and whether evidence of altered transcript splicing could be detected in mouse absence epilepsy models. Results Transcript scanning of the murine Cacna1g gene detected 12 regions encoding alternative splice isoforms of Cav3.1/α1G T-type calcium channels. Of the 12 splice sites, six displayed homology to the human CACNA1G splice sites, while six novel mouse-specific splicing events were identified, including one intron retention, three alternative acceptor sites, one alternative donor site, and one exon exclusion. In addition, two brain region-specific alternative splice patterns were observed in the cerebellum. Comparative analyses of brain regions from four monogenic absence epilepsy mouse models with altered thalamic T-type currents and wildtype controls failed to reveal differences in Cacna1g splicing patterns. Conclusion The determination of six novel alternative splice sites within the coding region of the mouse Cacna1g gene greatly expands the potential biophysical diversity of voltage-gated T-type channels in the mouse central nervous system. Although alternative splicing of Cav3.1/α1G channels does not explain the enhancement of T-type current identified in four mouse models of absence epilepsy, post-transcriptional modification of T-type channels through this mechanism may influence other developmental neurological phenotypes.
Collapse
|
50
|
Graef JD, Nordskog BK, Wiggins WF, Godwin DW. An acquired channelopathy involving thalamic T-type Ca2+ channels after status epilepticus. J Neurosci 2009; 29:4430-41. [PMID: 19357270 PMCID: PMC2754076 DOI: 10.1523/jneurosci.0198-09.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/14/2009] [Accepted: 02/17/2009] [Indexed: 11/21/2022] Open
Abstract
Some epilepsies are linked to inherited traits, but many appear to arise through acquired alterations in neuronal excitability. Status epilepticus (SE) is associated with numerous changes that promote spontaneous recurrent seizures (SRS), and studies have suggested that hippocampal T-type Ca(2+) channels underlie increased bursts of activity integral to the generation of these seizures. The thalamus also contributes to epileptogenesis, but no studies have directly assessed channel alterations in the thalamus during SE or subsequent periods of SRS. We therefore investigated longitudinal changes in thalamic T-type channels in a mouse pilocarpine model of epilepsy. T-type channel gene expression was not affected during SE; however Ca(V)3.2 mRNA was significantly upregulated at both 10 d post-SE (seizure-free period) and 31 d post-SE (SRS-period). Overall T-type current density increased during the SRS period, and the steady-state inactivation shifted from a more hyperpolarized membrane potential during the latent stage, to a more depolarized membrane potential during the SRS period. Ca(V)3.2 functional involvement was verified with Ca(V)3.2 inhibitors that reduced the native T-type current in mice 31 d post-SE, but not in controls. Burst discharges of thalamic neurons reflected the changes in whole-cell currents, and we used a computational model to relate changes observed during epileptogenesis to a decreased tendency to burst in the seizure-free period, or an increased tendency to burst during the period of SRS. We conclude that SE produces an acquired channelopathy by inducing long-term alterations in thalamic T-type channels that contribute to characteristic changes in excitability observed during epileptogenesis and SRS.
Collapse
Affiliation(s)
- John D. Graef
- Department of Neurobiology and Anatomy, and
- The Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| | | | | | - Dwayne W. Godwin
- Department of Neurobiology and Anatomy, and
- The Neuroscience Program, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157
| |
Collapse
|