1
|
Taguchi T, Kitazono J, Sasai S, Oizumi M. Association of Bidirectional Network Cores in the Brain with Perceptual Awareness and Cognition. J Neurosci 2025; 45:e0802242025. [PMID: 40015987 PMCID: PMC12019110 DOI: 10.1523/jneurosci.0802-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/07/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the "cores" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores tend to include regions previously reported to be affected by electrical stimulation that altered conscious perception, although the results are not statistically robust due to the small sample size. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Jun Kitazono
- Graduate School of Data Science, Yokohama City University, Kanagawa 236-0027, Japan
| | | | - Masafumi Oizumi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Shin DA, Chang MC. Consciousness Research Through Pain. Healthcare (Basel) 2025; 13:332. [PMID: 39942521 PMCID: PMC11816597 DOI: 10.3390/healthcare13030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Consciousness is a complex and elusive phenomenon encompassing self-awareness, sensory perception, emotions, and cognition. Despite significant advances in neuroscience, understanding the neural mechanisms underlying consciousness remains challenging. Pain, as a subjective and multifaceted experience, offers a unique lens for exploring consciousness by integrating sensory inputs with emotional and cognitive dimensions. This study examines the relationship between consciousness and pain, highlighting the potential of pain as a model for understanding the interplay between subjective experience and neural activity. Methods: Literature review. Results: Key theories of consciousness, such as the Global Workspace Theory and the Integrated Information Theory, provide diverse frameworks for interpreting the emergence of consciousness. Similarly, pain research emphasizes the role of subjective interpretation and emotional context in shaping sensory experiences, reflecting broader challenges in consciousness studies. The limitations of current methodologies, particularly the difficulty of objectively measuring subjective phenomena, like pain and consciousness, are also addressed. This highlights the importance of neural correlates, with a particular focus on brain regions, such as the anterior cingulate cortex and the insula, which bridge sensory and emotional experiences. By analyzing the shared attributes of pain and consciousness, this study underscores the potential for pain to serve as a measurable proxy in consciousness research. Conclusions: Ultimately, it contributes to unraveling the neural and philosophical underpinnings of consciousness, offering implications for mental health treatment and advancements in artificial intelligence. This study fills a critical gap by leveraging pain as a measurable and reproducible model for exploring the neural and subjective mechanisms of consciousness. By combining theoretical frameworks with empirical evidence, it offers novel insights into how consciousness emerges from neural processes.
Collapse
Affiliation(s)
- Dong Ah Shin
- Department of Neurosurgery, Spine and Spinal Cord Institute, Severance Hospital, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Min Cheol Chang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea
| |
Collapse
|
3
|
Taguchi T, Kitazono J, Sasai S, Oizumi M. Association of bidirectional network cores in the brain with perceptual awareness and cognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.30.591001. [PMID: 38746271 PMCID: PMC11092575 DOI: 10.1101/2024.04.30.591001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The brain comprises a complex network of interacting regions. To understand the roles and mechanisms of this intricate network, it is crucial to elucidate its structural features related to cognitive functions. Recent empirical evidence suggests that both feedforward and feedback signals are necessary for conscious perception, emphasizing the importance of subnetworks with bidirectional interactions. However, the link between such subnetworks and conscious perception remains unclear due to the complexity of brain networks. In this study, we propose a framework for extracting subnetworks with strong bidirectional interactions-termed the "cores" of a network-from brain activity. We applied this framework to resting-state and task-based human fMRI data from participants of both sexes to identify regions forming strongly bidirectional cores. We then explored the association of these cores with conscious perception and cognitive functions. We found that the extracted central cores predominantly included cerebral cortical regions rather than subcortical regions. Additionally, regarding their relation to conscious perception, we demonstrated that the cores tend to include regions previously reported to be affected by electrical stimulation that altered conscious perception, although the results are not statistically robust due to the small sample size. Furthermore, in relation to cognitive functions, based on a meta-analysis and comparison of the core structure with a cortical functional connectivity gradient, we found that the central cores were related to unimodal sensorimotor functions. The proposed framework provides novel insights into the roles of network cores with strong bidirectional interactions in conscious perception and unimodal sensorimotor functions.
Collapse
Affiliation(s)
- Tomoya Taguchi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Jun Kitazono
- Graduate School of Data Science, Yokohama City University, Kanagawa, Japan
| | | | - Masafumi Oizumi
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Colombari E, Railo H. Multiple independent components contribute to event-related potential correlates of conscious vision. Conscious Cogn 2024; 126:103785. [PMID: 39536421 DOI: 10.1016/j.concog.2024.103785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/17/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Research has revealed two major event-related potential (ERP) markers of visual awareness: the earlier Visual Awareness Negativity (VAN, around 150-250 ms after stimulus onset), and the following Late Positivity (LP, around 300-500 ms after stimulus onset). Understanding the neural sources that give rise to VAN and LP is important in order to understand what kind of neural processes underlie conscious visual perception. Although the ERPs afford high temporal resolution, their spatial resolution is limited because multiple separate neural sources sum up at the scalp level. In the present study, we sought to characterize the locations and time-courses of independent neural sources underlying the ERP correlates of visual awareness by means of Independent Component Analysis (ICA). ICA allows identifying and localizing the temporal dynamics of different neural sources that contribute to the ERP correlates of conscious perception. The present results show that the cortical sources of VAN are localized to posterior areas including occipital and temporal cortex, while LP reflects a combination of multiple sources distributed among frontal, parietal and occipito-temporal cortex. Our findings suggest that conscious vision correlates with dynamically changing neural sources, developing in part in "accumulative fashion": consciousness-related activity initially arises in few early sources and, subsequently, additional sources are engaged as a function of time. The results further suggest that even early latency neural sources that correlate with conscious perception may also associate with action-related processes.
Collapse
Affiliation(s)
- Elisabetta Colombari
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy.
| | - Henry Railo
- Department of Psychology and Speech Language Pathology, University of Turku, Finland
| |
Collapse
|
5
|
Kozuch B. Better bridges: Integrating the neuroscience and philosophy of consciousness. Conscious Cogn 2024; 126:103774. [PMID: 39488884 DOI: 10.1016/j.concog.2024.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Contemporary consciousness research has given rise to numerous theories in both the philosophical and neuroscientific domains (such as higher-order theory and global neuronal workspace), raising the question as to how well each is supported. This article develops a relatively novel method for determining this, which is to use evidence, not just from a theory's own domain, but also from its complementary domain (e.g., neuroscientific evidence is used to judge a philosophical theory, and vice versa). This approach works when a neuroscientific and a philosophical theory are conceptually linked, allowing evidence confirming or disconfirming one theory to do the same for the other. After developing this method, the article uses it to draw conclusions concerning some of our leading neuroscientific and philosophical theories of consciousness, including first- and second-order representationalism and theories emphasizing the prefrontal cortex's role in consciousness.
Collapse
Affiliation(s)
- Benjamin Kozuch
- University of Alabama, Philosophy Department, 336 ten Hoor Hall, 350 Marrs Spring Road, Tuscaloosa, AL 35401, USA.
| |
Collapse
|
6
|
Block N. What does decoding from the PFC reveal about consciousness? Trends Cogn Sci 2024; 28:804-813. [PMID: 38862352 DOI: 10.1016/j.tics.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/12/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Disputes between rival theories of consciousness have often centered on whether perceptual contents can be decoded from the prefrontal cortex (PFC). Failures to decode from the PFC are taken to challenge 'cognitive' theories of consciousness such as the global workspace theory and higher-order monitoring theories, and decoding successes have been taken to confirm these theories. However, PFC decoding shows both too much and too little. Too much because cognitive theories of consciousness do not need PFC rerepresentation of perceptual contents since pointers to perceptual representations suffice. Too little because there is evidence that PFC decoding of perceptual content reflects postperceptual cognitive representation, such as thoughts that have those perceptual contents rather than conscious percepts.
Collapse
Affiliation(s)
- Ned Block
- New York University, 5 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
7
|
Cushing CA, Lau H, Hofmann SG, LeDoux JE, Taschereau‐Dumouchel V. Metacognition as a window into subjective affective experience. Psychiatry Clin Neurosci 2024; 78:430-437. [PMID: 38884177 PMCID: PMC11488623 DOI: 10.1111/pcn.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/10/2024] [Accepted: 05/02/2024] [Indexed: 06/18/2024]
Abstract
When patients seek professional help for mental disorders, they often do so because of troubling subjective affective experiences. While these subjective states are at the center of the patient's symptomatology, scientific tools for studying them and their cognitive antecedents are limited. Here, we explore the use of concepts and analytic tools from the science of consciousness, a field of research that has faced similar challenges in having to develop robust empirical methods for addressing a phenomenon that has been considered difficult to pin down experimentally. One important strand is the operationalization of some relevant processes in terms of metacognition and confidence ratings, which can be rigorously studied in both humans and animals. By assessing subjective experience with similar approaches, we hope to develop new scientific approaches for studying affective processes and promoting psychological resilience in the face of debilitating emotional experiences.
Collapse
Affiliation(s)
| | | | | | - Joseph E. LeDoux
- Center for Neural Science and Department of PsychologyNew York UniversityNew YorkNew YorkUSA
- Emotional Brain InstituteNathan Kline InstituteOrangeburgNew YorkUSA
- Department of Psychiatry, and Department of Child and Adolescent PsychiatryNew York University Langone Medical SchoolNew YorkNew YorkUSA
- Max‐Planck‐NYU Center for Language, Music, and Emotion (CLaME)New York UniversityNew YorkNew YorkUSA
| | - Vincent Taschereau‐Dumouchel
- Department of Psychiatry and AddictologyUniversité de MontréalMontrealQuebecCanada
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de MontréalMontrealQuebecCanada
| |
Collapse
|
8
|
Kozuch B. An embarrassment of richnesses: the PFC isn't the content NCC. Neurosci Conscious 2024; 2024:niae017. [PMID: 38938921 PMCID: PMC11210398 DOI: 10.1093/nc/niae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/04/2024] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
Recent years have seen the rise of several theories saying that the prefrontal cortex (PFC) is a neural correlate of visual consciousness (NCC). Especially popular here are theories saying that the PFC is the 'content NCC' for vision, i.e. it contains those brain areas that are not only necessary for consciousness, but also determine 'what' it is that we visually experience (e.g. whether we experience green or red). This article points out how this "upper-deck" form of PFC theory is at odds with the character of visual experience: on the one hand, visual consciousness appears to contain copious amounts of content, with many properties (such as object, shape, or color) being simultaneously represented in many parts of the visual field. On the other hand, the functions that the PFC carries out (e.g. attention and working memory) are each dedicated to processing only a relatively small subset of available visual stimuli. In short, the PFC probably does not produce enough or the right kind of visual representations for it to supply all of the content found in visual experience, in which case the idea that the PFC is the content NCC for vision is probably false. This article also discusses data thought to undercut the idea that visual experience is informationally rich (inattentional blindness, etc.), along with theories of vision according to which "ensemble statistics" are used to represent features in the periphery of the visual field. I'll argue that these lines of evidence fail to close the apparently vast gap between the amount of visual content represented in the visual experience and the amount represented in the PFC.
Collapse
Affiliation(s)
- Benjamin Kozuch
- Philosophy Department, University of Alabama, Tuscaloosa, AL 35401, United States
| |
Collapse
|
9
|
Panagiotaropoulos TI. An integrative view of the role of prefrontal cortex in consciousness. Neuron 2024; 112:1626-1641. [PMID: 38754374 DOI: 10.1016/j.neuron.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
The involvement of the prefrontal cortex (PFC) in consciousness is an ongoing focus of intense investigation. An important question is whether representations of conscious contents and experiences in the PFC are confounded by post-perceptual processes related to cognitive functions. Here, I review recent findings suggesting that neuronal representations of consciously perceived contents-in the absence of post-perceptual processes-can indeed be observed in the PFC. Slower ongoing fluctuations in the electrophysiological state of the PFC seem to control the stability and updates of these prefrontal representations of conscious awareness. In addition to conscious perception, the PFC has been shown to play a critical role in controlling the levels of consciousness as observed during anesthesia, while prefrontal lesions can result in severe loss of perceptual awareness. Together, the convergence of these processes in the PFC suggests its integrative role in consciousness and highlights the complex nature of consciousness itself.
Collapse
|
10
|
Mashour GA. Anesthesia and the neurobiology of consciousness. Neuron 2024; 112:1553-1567. [PMID: 38579714 PMCID: PMC11098701 DOI: 10.1016/j.neuron.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
In the 19th century, the discovery of general anesthesia revolutionized medical care. In the 21st century, anesthetics have become indispensable tools to study consciousness. Here, I review key aspects of the relationship between anesthesia and the neurobiology of consciousness, including interfaces of sleep and anesthetic mechanisms, anesthesia and primary sensory processing, the effects of anesthetics on large-scale functional brain networks, and mechanisms of arousal from anesthesia. I discuss the implications of the data derived from the anesthetized state for the science of consciousness and then conclude with outstanding questions, reflections, and future directions.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, Department of Pharmacology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Tononi G, Boly M, Cirelli C. Consciousness and sleep. Neuron 2024; 112:1568-1594. [PMID: 38697113 PMCID: PMC11105109 DOI: 10.1016/j.neuron.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024]
Abstract
Sleep is a universal, essential biological process. It is also an invaluable window on consciousness. It tells us that consciousness can be lost but also that it can be regained, in all its richness, when we are disconnected from the environment and unable to reflect. By considering the neurophysiological differences between dreaming and dreamless sleep, we can learn about the substrate of consciousness and understand why it vanishes. We also learn that the ongoing state of the substrate of consciousness determines the way each experience feels regardless of how it is triggered-endogenously or exogenously. Dreaming consciousness is also a window on sleep and its functions. Dreams tell us that the sleeping brain is remarkably lively, recombining intrinsic activation patterns from a vast repertoire, freed from the requirements of ongoing behavior and cognitive control.
Collapse
Affiliation(s)
- Giulio Tononi
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA.
| | - Melanie Boly
- Department of Neurology, University of Wisconsin, Madison, WI 53719, USA
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin, Madison, WI 53719, USA
| |
Collapse
|
12
|
Nitrini R. Why did humans surpass all other primates? Are our brains so different? Part 2. Dement Neuropsychol 2024; 18:e20240087P2. [PMID: 38628562 PMCID: PMC11019716 DOI: 10.1590/1980-5764-dn-2024-0087p2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 04/19/2024] Open
Abstract
The second part of this review is an attempt to explain why only Homo sapiens developed language. It should be remarked that this review is based on the opinion of a clinical neurologist and does not intend to go beyond an overview of this complex topic. The progressive development of language was probably due to the expansion of the prefrontal cortex (PFC) and its networks. PFC is the largest area of the human cerebral cortex and is much more expanded in humans than in other primates. To achieve language, several other functions should have been attained, including abstraction, reasoning, expanded working memory, and executive functions. All these functions are strongly related to PFC and language had a profound retroactive impact on them all. Language and culture produce anatomic and physiological modifications in the brain. Learning to read is presented as an example of how culture modifies the brain.
Collapse
Affiliation(s)
- Ricardo Nitrini
- Universidade de São Paulo, Faculdade de Medicina, São Paulo SP, Brazil
| |
Collapse
|
13
|
Mckilliam A. A mechanistic alternative to minimal sufficiency as the guiding principle for NCC research. Neurosci Conscious 2024; 2024:niae014. [PMID: 38618486 PMCID: PMC11013376 DOI: 10.1093/nc/niae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/16/2024] Open
Abstract
A central project for the neuroscience of consciousness is to reveal the neural basis of consciousness. For the past 20-odd years, this project has been conceptualized in terms of minimal sufficiency. Recently, a number of authors have suggested that the project is better conceived in mechanistic terms as the search for difference-makers. In this paper, I (i) motivate this mechanistic alternative to minimal sufficiency, (ii) develop it further by clarifying debates about the prospects of leveraging mutual manipulability to distinguish constitutive difference-makers from those that are merely causal, and (iii) explore the implications this has for recent debates concerning the status of the prefrontal cortex. I argue that adopting a mechanistic approach to the neuroscience of consciousness suggests that the prefrontal cortex is part of the neural mechanisms underlying consciousness even if it is not strictly speaking a necessary part.
Collapse
Affiliation(s)
- Andy Mckilliam
- Cognition and Philosophy Lab, Monash Centre for Consciousness and Contemplative Studies, Department of Philosophy, Monash University, Room 429, 29 Ancora Imparo Way, Melbourne, VIC 3800, Australia
| |
Collapse
|
14
|
Fazekas P, Cleeremans A, Overgaard M. A construct-first approach to consciousness science. Neurosci Biobehav Rev 2024; 156:105480. [PMID: 38008237 DOI: 10.1016/j.neubiorev.2023.105480] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
We propose a new approach to consciousness science that instead of comparing complex theoretical positions deconstructs existing theories, takes their central assumptions while disregarding their auxiliary hypotheses, and focuses its investigations on the main constructs that these central assumptions rely on (like global workspace, recurrent processing, metarepresentation). Studying how these main constructs are anchored in lower-level constructs characterizing underlying neural processing will not just offer an alternative to theory comparisons but will also take us one step closer to empirical resolutions. Moreover, exploring the compatibility and possible combinations of the lower-level constructs will allow for new theoretical syntheses. This construct-first approach will improve our ability to understand the commitments of existing theories and pave the way for moving beyond them.
Collapse
Affiliation(s)
- Peter Fazekas
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus, Denmark; Center of Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, 8000 Aarhus, Denmark.
| | - Axel Cleeremans
- Center for Research in Cognition & Neurosciences, Université Libre De Bruxelles, 50 avenue F.D. Roosevelt CP191, 1050 Bruxelles, Belgium
| | - Morten Overgaard
- Center of Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, 8000 Aarhus, Denmark
| |
Collapse
|
15
|
Delli Pizzi S, Chiacchiaretta P, Sestieri C, Ferretti A, Tullo MG, Della Penna S, Martinotti G, Onofrj M, Roseman L, Timmermann C, Nutt DJ, Carhart-Harris RL, Sensi SL. LSD-induced changes in the functional connectivity of distinct thalamic nuclei. Neuroimage 2023; 283:120414. [PMID: 37858906 DOI: 10.1016/j.neuroimage.2023.120414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
The role of the thalamus in mediating the effects of lysergic acid diethylamide (LSD) was recently proposed in a model of communication and corroborated by imaging studies. However, a detailed analysis of LSD effects on nuclei-resolved thalamocortical connectivity is still missing. Here, in a group of healthy volunteers, we evaluated whether LSD intake alters the thalamocortical coupling in a nucleus-specific manner. Structural and resting-state functional Magnetic Resonance Imaging (MRI) data were acquired in a placebo-controlled study on subjects exposed to acute LSD administration. Structural MRI was used to parcel the thalamus into its constituent nuclei based on individual anatomy. Nucleus-specific changes of resting-state functional MRI (rs-fMRI) connectivity were mapped using a seed-based approach. LSD intake selectively increased the thalamocortical functional connectivity (FC) of the ventral complex, pulvinar, and non-specific nuclei. Functional coupling was increased between these nuclei and sensory cortices that include the somatosensory and auditory networks. The ventral and pulvinar nuclei also exhibited increased FC with parts of the associative cortex that are dense in serotonin type 2A receptors. These areas are hyperactive and hyper-connected upon LSD intake. At subcortical levels, LSD increased the functional coupling among the thalamus's ventral, pulvinar, and non-specific nuclei, but decreased the striatal-thalamic connectivity. These findings unravel some LSD effects on the modulation of subcortical-cortical circuits and associated behavioral outputs.
Collapse
Affiliation(s)
- Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine and Dentistry, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy; UdA-TechLab, Research Center, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Giulia Tullo
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy
| | - Leor Roseman
- Centre for Psychedelic Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Christopher Timmermann
- Centre for Psychedelic Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David J Nutt
- Centre for Psychedelic Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Faculty of Medicine, Imperial College London, London, United Kingdom; Psychedelics Division, Neuroscape, Neurology, University of California San Francisco
| | - Stefano L Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Italy; Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Italy; Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University, Chieti-Pescara, Italy.
| |
Collapse
|
16
|
Dary Z, Lopez C. Understanding the neural bases of bodily self-consciousness: recent achievements and main challenges. Front Integr Neurosci 2023; 17:1145924. [PMID: 37404707 PMCID: PMC10316713 DOI: 10.3389/fnint.2023.1145924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
The last two decades have seen a surge of interest in the mechanisms underpinning bodily self-consciousness (BSC). Studies showed that BSC relies on several bodily experiences (i.e., self-location, body ownership, agency, first-person perspective) and multisensory integration. The aim of this literature review is to summarize new insights and novel developments into the understanding of the neural bases of BSC, such as the contribution of the interoceptive signals to the neural mechanisms of BSC, and the overlap with the neural bases of conscious experience in general and of higher-level forms of self (i.e., the cognitive self). We also identify the main challenges and propose future perspectives that need to be conducted to progress into the understanding of the neural mechanisms of BSC. In particular, we point the lack of crosstalk and cross-fertilization between subdisciplines of integrative neuroscience to better understand BSC, especially the lack of research in animal models to decipher the neural networks and systems of neurotransmitters underpinning BSC. We highlight the need for more causal evidence that specific brain areas are instrumental in generating BSC and the need for studies tapping into interindividual differences in the phenomenal experience of BSC and their underlying mechanisms.
Collapse
|
17
|
Hobot J, Skóra Z, Wierzchoń M, Sandberg K. Continuous Theta Burst Stimulation to the left anterior medial prefrontal cortex influences metacognitive efficiency. Neuroimage 2023; 272:119991. [PMID: 36858333 DOI: 10.1016/j.neuroimage.2023.119991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
The contribution of the prefrontal areas to visual awareness is critical for the Global Neuronal Workspace Theory and higher-order theories of consciousness. The goal of the present study was to test the potential engagement of the anterior medial prefrontal cortex (aMPFC) in visual awareness judgements. We aimed to temporarily influence the neuronal dynamics of the left aMPFC via neuroplasticity-like mechanisms. We used different Theta Burst Stimulation (TBS) protocols in combination with a visual identification task and visual awareness ratings. Either continuous TBS (cTBS), intermittent TBS (iTBS), or sham TBS was applied prior to the experimental paradigm in a within-participant design. Compared with sham TBS, we observed an increase in participants' ability to judge their perception adequately (metacognitive efficiency) following cTBS but not iTBS. The effect was accompanied by lower visual awareness ratings in incorrect responses. No significant differences in the identification task performance were observed. We interpret these results as evidence of the involvement of PFC in the brain network that underlies metacognition. Further, we discuss whether the results of TMS studies on perceptual metacognition can be taken as evidence for PFC involvement in awareness itself.
Collapse
Affiliation(s)
- Justyna Hobot
- Consciousness Lab, Psychology Institute, Jagiellonian University, Krakow, Poland; Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
| | - Zuzanna Skóra
- Colourlab, Department of Computer Science, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Michał Wierzchoń
- Consciousness Lab, Psychology Institute, Jagiellonian University, Krakow, Poland
| | - Kristian Sandberg
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Spagna A, Bayle DJ, Romeo Z, Seidel-Malkinson T, Liu J, Yahia-Cherif L, Chica AB, Bartolomeo P. The cost of attentional reorienting on conscious visual perception: an MEG study. Cereb Cortex 2023; 33:2048-2060. [PMID: 35609335 DOI: 10.1093/cercor/bhac192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
How do attentional networks influence conscious perception? To answer this question, we used magnetoencephalography in human participants and assessed the effects of spatially nonpredictive or predictive supra-threshold peripheral cues on the conscious perception of near-threshold Gabors. Three main results emerged. (i) As compared with invalid cues, both nonpredictive and predictive valid cues increased conscious detection. Yet, only predictive cues shifted the response criterion toward a more liberal decision (i.e. willingness to report the presence of a target under conditions of greater perceptual uncertainty) and affected target contrast leading to 50% detections. (ii) Conscious perception following valid predictive cues was associated to enhanced activity in frontoparietal networks. These responses were lateralized to the left hemisphere during attentional orienting and to the right hemisphere during target processing. The involvement of frontoparietal networks occurred earlier in valid than in invalid trials, a possible neural marker of the cost of re-orienting attention. (iii) When detected targets were preceded by invalid predictive cues, and thus reorienting to the target was required, neural responses occurred in left hemisphere temporo-occipital regions during attentional orienting, and in right hemisphere anterior insular and temporo-occipital regions during target processing. These results confirm and specify the role of frontoparietal networks in modulating conscious processing and detail how invalid orienting of spatial attention disrupts conscious processing.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Columbia University in the City of New York, New York, NY 10027, USA.,Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Dimitri J Bayle
- Licae Lab, Université Paris Nanterre, 92001 Nanterre, France
| | - Zaira Romeo
- Department of General Psychology, University of Padova, 35131 Padova, Italy
| | - Tal Seidel-Malkinson
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Jianghao Liu
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Lydia Yahia-Cherif
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| | - Ana B Chica
- Department of Experimental Psychology; Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, 18071 Granada, Spain
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
19
|
Abstract
In visual cortex, anatomically distinct patches respond to distinct categories, such as faces or text. New research confirms this parcellation using unsupervised analysis of functional magnetic resonance imaging data obtained from humans viewing tens of thousands of images, discovering one more preference: for food.
Collapse
Affiliation(s)
- Michael M Bannert
- Vision and Cognition Lab, Centre for Integrative Neuroscience, Department of Psychology, University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Bernstein Center for Computational Neuroscience, Tübingen, Germany
| | - Andreas Bartels
- Vision and Cognition Lab, Centre for Integrative Neuroscience, Department of Psychology, University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany; Bernstein Center for Computational Neuroscience, Tübingen, Germany.
| |
Collapse
|
20
|
Mashour GA, Pal D, Brown EN. Prefrontal cortex as a key node in arousal circuitry. Trends Neurosci 2022; 45:722-732. [PMID: 35995629 PMCID: PMC9492635 DOI: 10.1016/j.tins.2022.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/02/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
The role of the prefrontal cortex (PFC) in the mechanism of consciousness is a matter of active debate. Most theoretical and empirical investigations have focused on whether the PFC is critical for the content of consciousness (i.e., the qualitative aspects of conscious experience). However, there is emerging evidence that, in addition to its well-established roles in cognition, the PFC is a key regulator of the level of consciousness (i.e., the global state of arousal). In this opinion article we review recent data supporting the hypothesis that the medial PFC is a critical node in arousal-promoting networks.
Collapse
Affiliation(s)
- George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA; Center for Consciousness Science, University of Michigan, Ann Arbor, MI, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Verma K, Kumar S. How Do We Connect Brain Areas with Cognitive Functions? The Past, the Present and the Future. NEUROSCI 2022; 3:521-532. [PMID: 39483437 PMCID: PMC11523709 DOI: 10.3390/neurosci3030037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2024] Open
Abstract
One of the central goals of cognitive neuroscience is to understand how structure relates to function. Over the past century, clinical studies on patients with lesions have provided key insights into the relationship between brain areas and behavior. Since the early efforts for characterization of cognitive functions focused on localization, we provide an account of cognitive function in terms of localization. Next, using body perception as an example, we summarize the contemporary techniques. Finally, we outline the trajectory of current progress into the future and discuss the implications for clinical and basic neuroscience.
Collapse
Affiliation(s)
- Khushboo Verma
- Department of Neurology, Dell Medical School, The University of Texas, Austin, TX 78712, USA
| | - Satwant Kumar
- Center for Perceptual Systems, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
22
|
Safavi S, Dayan P. Multistability, perceptual value, and internal foraging. Neuron 2022; 110:3076-3090. [PMID: 36041434 DOI: 10.1016/j.neuron.2022.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Substantial experimental, theoretical, and computational insights into sensory processing have been derived from the phenomena of perceptual multistability-when two or more percepts alternate or switch in response to a single sensory input. Here, we review a range of findings suggesting that alternations can be seen as internal choices by the brain responding to values. We discuss how elements of external, experimenter-controlled values and internal, uncertainty- and aesthetics-dependent values influence multistability. We then consider the implications for the involvement in switching of regions, such as the anterior cingulate cortex, which are more conventionally tied to value-dependent operations such as cognitive control and foraging.
Collapse
Affiliation(s)
- Shervin Safavi
- University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Peter Dayan
- University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
23
|
Skipper JI. A voice without a mouth no more: The neurobiology of language and consciousness. Neurosci Biobehav Rev 2022; 140:104772. [PMID: 35835286 DOI: 10.1016/j.neubiorev.2022.104772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Most research on the neurobiology of language ignores consciousness and vice versa. Here, language, with an emphasis on inner speech, is hypothesised to generate and sustain self-awareness, i.e., higher-order consciousness. Converging evidence supporting this hypothesis is reviewed. To account for these findings, a 'HOLISTIC' model of neurobiology of language, inner speech, and consciousness is proposed. It involves a 'core' set of inner speech production regions that initiate the experience of feeling and hearing words. These take on affective qualities, deriving from activation of associated sensory, motor, and emotional representations, involving a largely unconscious dynamic 'periphery', distributed throughout the whole brain. Responding to those words forms the basis for sustained network activity, involving 'default mode' activation and prefrontal and thalamic/brainstem selection of contextually relevant responses. Evidence for the model is reviewed, supporting neuroimaging meta-analyses conducted, and comparisons with other theories of consciousness made. The HOLISTIC model constitutes a more parsimonious and complete account of the 'neural correlates of consciousness' that has implications for a mechanistic account of mental health and wellbeing.
Collapse
|
24
|
Hales CG, Ericson M. Electromagnetism's Bridge Across the Explanatory Gap: How a Neuroscience/Physics Collaboration Delivers Explanation Into All Theories of Consciousness. Front Hum Neurosci 2022; 16:836046. [PMID: 35782039 PMCID: PMC9245352 DOI: 10.3389/fnhum.2022.836046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
A productive, informative three decades of correlates of phenomenal consciousness (P-Consciousness) have delivered valuable knowledge while simultaneously locating us in a unique and unprecedented explanatory cul-de-sac. Observational correlates are demonstrated to be intrinsically very unlikely to explain or lead to a fundamental principle underlying the strongly emergent 1st-person-perspective (1PP) invisibly stowed away inside them. That lack is now solidly evidenced in practice. To escape our explanatory impasse, this article focuses on fundamental physics (the standard model of particle physics), which brings to light a foundational argument for how the brain is an essentially electromagnetic (EM) field object from the atomic level up. That is, our multitude of correlates of P-Consciousness are actually descriptions of specific EM field behaviors that are posed (hypothesized) as "the right" correlate by a particular theory of consciousness. Because of this, our 30 years of empirical progress can be reinterpreted as, in effect, the delivery of a large body of evidence that the standard model's EM quadrant can deliver a 1PP. That is, all theories of consciousness are, in the end, merely recipes that select a particular subset of the totality of EM field expression that is brain tissue. With a universal convergence on EM, the science of P-Consciousness becomes a collaborative effort between neuroscience and physics. The collaboration acts in pursuit of a unified explanation applicable to all theories of consciousness while remaining mindful that the process still contains no real explanation as to why or how EM fields deliver a 1PP. The apparent continued lack of explanation is, however, different: this time, the way forward is opened through its direct connection to fundamental physics. This is the first result (Part I). Part II posits, in general terms, a structural (epistemic) add-on/upgrade to the standard model that has the potential to deliver the missing route to an explanation of how subjectivity is delivered through EM fields. The revised standard model, under the neuroscience/physics collaboration, intimately integrates with the existing "correlates of-" paradigm, which acts as its source of empirical evidence. No existing theory of consciousness is lost or invalidated.
Collapse
Affiliation(s)
- Colin G. Hales
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Marissa Ericson
- Department of Psychology and Clinical Neuroscience, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
25
|
Abstract
Recent years have seen a blossoming of theories about the biological and physical basis of consciousness. Good theories guide empirical research, allowing us to interpret data, develop new experimental techniques and expand our capacity to manipulate the phenomenon of interest. Indeed, it is only when couched in terms of a theory that empirical discoveries can ultimately deliver a satisfying understanding of a phenomenon. However, in the case of consciousness, it is unclear how current theories relate to each other, or whether they can be empirically distinguished. To clarify this complicated landscape, we review four prominent theoretical approaches to consciousness: higher-order theories, global workspace theories, re-entry and predictive processing theories and integrated information theory. We describe the key characteristics of each approach by identifying which aspects of consciousness they propose to explain, what their neurobiological commitments are and what empirical data are adduced in their support. We consider how some prominent empirical debates might distinguish among these theories, and we outline three ways in which theories need to be developed to deliver a mature regimen of theory-testing in the neuroscience of consciousness. There are good reasons to think that the iterative development, testing and comparison of theories of consciousness will lead to a deeper understanding of this most profound of mysteries.
Collapse
|
26
|
Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040787. [PMID: 35453473 PMCID: PMC9026345 DOI: 10.3390/antiox11040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.
Collapse
|
27
|
Mazor M, Dijkstra N, Fleming SM. Dissociating the Neural Correlates of Subjective Visibility from Those of Decision Confidence. J Neurosci 2022; 42:2562-2569. [PMID: 35121637 PMCID: PMC8944226 DOI: 10.1523/jneurosci.1220-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 11/21/2022] Open
Abstract
A key goal of consciousness science is identifying neural signatures of being aware versus unaware of simple stimuli. This is often investigated in the context of near-threshold detection, with reports of stimulus awareness being linked to heightened activation in a frontoparietal network. However, because of reports of stimulus presence typically being associated with higher confidence than reports of stimulus absence, these results could be explained by frontoparietal regions encoding stimulus visibility, decision confidence, or both. In an exploratory analysis, we leverage fMRI data from 35 human participants (20 females) to disentangle these possibilities. We first show that, whereas stimulus identity was best decoded from the visual cortex, stimulus visibility (presence vs absence) was best decoded from prefrontal regions. To control for effects of confidence, we then selectively sampled trials before decoding to equalize confidence distributions between absence and presence responses. This analysis revealed striking differences in the neural correlates of subjective visibility in PFC ROIs, depending on whether or not differences in confidence were controlled for. We interpret our findings as highlighting the importance of controlling for metacognitive aspects of the decision process in the search for neural correlates of visual awareness.SIGNIFICANCE STATEMENT While much has been learned over the past two decades about the neural basis of visual awareness, the role of the PFC remains a topic of debate. By applying decoding analyses to functional brain imaging data, we show that prefrontal representations of subjective visibility are contaminated by neural correlates of decision confidence. We propose a new analysis method to control for these metacognitive aspects of awareness reports, and use it to reveal confidence-independent correlates of perceptual judgments in a subset of prefrontal areas.
Collapse
Affiliation(s)
- Matan Mazor
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Nadine Dijkstra
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Stephen M Fleming
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
- Department of Experimental Psychology, University College London, London, United Kingdom
| |
Collapse
|
28
|
Tasserie J, Uhrig L, Sitt JD, Manasova D, Dupont M, Dehaene S, Jarraya B. Deep brain stimulation of the thalamus restores signatures of consciousness in a nonhuman primate model. SCIENCE ADVANCES 2022; 8:eabl5547. [PMID: 35302854 PMCID: PMC8932660 DOI: 10.1126/sciadv.abl5547] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/26/2022] [Indexed: 05/27/2023]
Abstract
Loss of consciousness is associated with the disruption of long-range thalamocortical and corticocortical brain communication. We tested the hypothesis that deep brain stimulation (DBS) of central thalamus might restore both arousal and awareness following consciousness loss. We applied anesthesia to suppress consciousness in nonhuman primates. During anesthesia, central thalamic stimulation induced arousal in an on-off manner and increased functional magnetic resonance imaging activity in prefrontal, parietal, and cingulate cortices. Moreover, DBS restored a broad dynamic repertoire of spontaneous resting-state activity, previously described as a signature of consciousness. None of these effects were obtained during the stimulation of a control site in the ventrolateral thalamus. Last, DBS restored a broad hierarchical response to auditory violations that was disrupted under anesthesia. Thus, DBS restored the two dimensions of consciousness, arousal and conscious access, following consciousness loss, paving the way to its therapeutical translation in patients with disorders of consciousness.
Collapse
Affiliation(s)
- Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université de Paris, Paris, France
| | - Jacobo D. Sitt
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Dragana Manasova
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Université de Paris, Paris, France
| | - Morgan Dupont
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
- Collège de France, Université Paris-Sciences-Lettres (PSL), Paris, France
| | - Béchir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
- University of Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, Versailles, France
- Foch Hospital, Suresnes, France
| |
Collapse
|
29
|
Bellet J, Gay M, Dwarakanath A, Jarraya B, van Kerkoerle T, Dehaene S, Panagiotaropoulos TI. Decoding rapidly presented visual stimuli from prefrontal ensembles without report nor post-perceptual processing. Neurosci Conscious 2022; 2022:niac005. [PMID: 35223085 PMCID: PMC8868130 DOI: 10.1093/nc/niac005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 12/09/2021] [Accepted: 01/27/2022] [Indexed: 11/14/2022] Open
Abstract
The role of the primate prefrontal cortex (PFC) in conscious perception is debated. The global neuronal workspace theory of consciousness predicts that PFC neurons should contain a detailed code of the current conscious contents. Previous research showed that PFC is indeed activated in paradigms of conscious visual perception, including no-report paradigms where no voluntary behavioral report of the percept is given, thus avoiding a conflation of signals related to visual consciousness with signals related to the report. Still, it has been argued that prefrontal modulation could reflect post-perceptual processes that may be present even in the absence of report, such as thinking about the perceived stimulus, therefore reflecting a consequence rather than a direct correlate of conscious experience. Here, we investigate these issues by recording neuronal ensemble activity from the macaque ventrolateral PFC during briefly presented visual stimuli, either in isolated trials in which stimuli were clearly perceived or in sequences of rapid serial visual presentation (RSVP) in which perception and post-perceptual processing were challenged. We report that the identity of each stimulus could be decoded from PFC population activity even in the RSVP condition. The first visual signals could be detected at 60 ms after stimulus onset and information was maximal at 150 ms. However, in the RSVP condition, 200 ms after the onset of a stimulus, the decoding accuracy quickly dropped to chance level and the next stimulus started to be decodable. Interestingly, decoding in the ventrolateral PFC was stronger compared to posterior parietal cortex for both isolated and RSVP stimuli. These results indicate that neuronal populations in the macaque PFC reliably encode visual stimuli even under conditions that have been shown to challenge conscious perception and/or substantially reduce the probability of post-perceptual processing in humans. We discuss whether the observed activation reflects conscious access, phenomenal consciousness, or merely a preconscious bottom-up wave.
Collapse
Affiliation(s)
- Joachim Bellet
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Marion Gay
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Abhilash Dwarakanath
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Timo van Kerkoerle
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| | - Theofanis I Panagiotaropoulos
- Cognitive Neuroimaging Unit, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, INSERM, Université Paris-Saclay, NeuroSpin, Gif-Sur-Yvette 91191, France
| |
Collapse
|
30
|
Kitchener PD, Hales CG. What Neuroscientists Think, and Don't Think, About Consciousness. Front Hum Neurosci 2022; 16:767612. [PMID: 35280212 PMCID: PMC8907974 DOI: 10.3389/fnhum.2022.767612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The approach the majority of neuroscientists take to the question of how consciousness is generated, it is probably fair to say, is to ignore it. Although there are active research programs looking at correlates of consciousness, and explorations of informational properties of what might be relevant neural ensembles, the tacitly implied mechanism of consciousness in these approaches is that it somehow just happens. This reliance on a "magical emergence" of consciousness does not address the "objectively unreasonable" proposition that elements that have no attributes or properties that can be said to relate to consciousness somehow aggregate to produce it. Neuroscience has furnished evidence that neurons are fundamental to consciousness; at the fine and gross scale, aspects of our conscious experience depend on specific patterns of neural activity - in some way, the connectivity of neurons computes the features of our experience. So how do we get from knowing that some specific configurations of cells produce consciousness to understanding why this would be the case? Behind the voltages and currents electrophysiologists measure is a staggeringly complex system of electromagnetic fields - these are the fundamental physics of neurons and glia in the brain. The brain is entirely made of electromagnetism (EM) phenomena from the level of the atoms up. The EM field literally manifests the computations, or signaling, or information processing/activities performed by connected cellular ensembles that generate a 1st-person perspective. An investigation into the EM field at the cellular scale provides the possibility of identifying the outward signs of a mechanism in fundamental terms (physics), as opposed to merely describing the correlates of our mental abstractions of it.
Collapse
|
31
|
Baars BJ, Geld N, Kozma R. Global Workspace Theory (GWT) and Prefrontal Cortex: Recent Developments. Front Psychol 2021; 12:749868. [PMID: 34899489 PMCID: PMC8660103 DOI: 10.3389/fpsyg.2021.749868] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 01/20/2023] Open
Affiliation(s)
- Bernard J. Baars
- Center for the Future Mind, Florida Atlantic University, Boca Raton, FL, United States
| | | | - Robert Kozma
- Department of Mathematical Sciences, The University of Memphis, Memphis, TN, United States
| |
Collapse
|
32
|
Josipovic Z. Implicit-explicit gradient of nondual awareness or consciousness as such. Neurosci Conscious 2021; 2021:niab031. [PMID: 34646576 PMCID: PMC8500298 DOI: 10.1093/nc/niab031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/29/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Consciousness is multi-dimensional but is most often portrayed with a two-dimensional (2D) map that has global levels or states on one axis and phenomenal contents on the other. On this map, awareness is conflated either with general alertness or with phenomenal content. This contributes to ongoing difficulties in the scientific understanding of consciousness. Previously, I have proposed that consciousness as such or nondual awareness-a basic non-conceptual, non-propositional awareness in itself free of subject-object fragmentation-is a unique kind that cannot be adequately specified by this 2D map of states and contents. Here, I propose an implicit-explicit gradient of nondual awareness to be added as the z-axis to the existing 2D map of consciousness. This gradient informs about the degree to which nondual awareness is manifest in any experience, independent of the specifics of global state or local content. Alternatively, within the multi-dimensional state space model of consciousness, nondual awareness can be specified by several vectors, each representing one of its properties. In the first part, I outline nondual awareness or consciousness as such in terms of its phenomenal description, its function and its neural correlates. In the second part, I explore the implicit-explicit gradient of nondual awareness and how including it as an additional axis clarifies certain features of everyday dualistic experiences and is especially relevant for understanding the unitary and nondual experiences accessed via different contemplative methods, mind-altering substances or spontaneously.
Collapse
Affiliation(s)
- Zoran Josipovic
- Psychology Department, Graduate School of Arts & Sciences, New York University, New York, NY 10003, USA
- Nonduality Institute, Woodstock, NY 12498, USA
| |
Collapse
|
33
|
Malach R. Local neuronal relational structures underlying the contents of human conscious experience. Neurosci Conscious 2021; 2021:niab028. [PMID: 34513028 PMCID: PMC8415036 DOI: 10.1093/nc/niab028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 01/04/2023] Open
Abstract
While most theories of consciousness posit some kind of dependence on global network activities, I consider here an alternative, localist perspective-in which localized cortical regions each underlie the emergence of a unique category of conscious experience. Under this perspective, the large-scale activation often found in the cortex is a consequence of the complexity of typical conscious experiences rather than an obligatory condition for the emergence of conscious awareness-which can flexibly shift, depending on the richness of its contents, from local to more global activation patterns. This perspective fits a massive body of human imaging, recordings, lesions and stimulation data but opens a fundamental problem: how can the information, defining each content, be derived locally in each cortical region. Here, I will discuss a solution echoing pioneering structuralist ideas in which the content of a conscious experience is defined by its relationship to all other contents within an experiential category. In neuronal terms, this relationship structure between contents is embodied by the local geometry of similarity distances between cortical activation patterns generated during each conscious experience, likely mediated via networks of local neuronal connections. Thus, in order for any conscious experience to appear in an individual's mind, two central conditions must be met. First, a specific configural pattern ("bar-code") of neuronal activity must appear within a local relational geometry, i.e. a cortical area. Second, the individual neurons underlying the activated pattern must be bound into a unified functional ensemble through a burst of recurrent neuronal firing: local "ignitions".
Collapse
Affiliation(s)
- Rafael Malach
- Department of Brain Sciences, Weizmann Institute of Science, 200 Herzl St. POB 76100, Rehovot, Israel
- The School of Psychological Sciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| |
Collapse
|
34
|
Abstract
Consciousness, its neural underpinnings, and the role of frontal cortex are highly debated topics. New evidence shows that human frontal cortex can bias conscious perception. What does this really mean about its contribution to consciousness?
Collapse
|
35
|
Abstract
In this My word, Joseph LeDoux explores what the emotional lives of other mammals might be like. He proposes that better understanding of the brain mechanisms of emotional consciousness in humans might shed light on the kinds of conscious capacities that might be possible in non-human primates and non-primate mammals, given the kinds of brains they possess.
Collapse
|
36
|
Huels ER, Groenhout T, Fields CW, Liu T, Mashour GA, Pal D. Inactivation of Prefrontal Cortex Delays Emergence From Sevoflurane Anesthesia. Front Syst Neurosci 2021; 15:690717. [PMID: 34305541 PMCID: PMC8299111 DOI: 10.3389/fnsys.2021.690717] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/10/2021] [Indexed: 01/21/2023] Open
Abstract
Studies aimed at investigating brain regions involved in arousal state control have been traditionally limited to subcortical structures. In the current study, we tested the hypothesis that inactivation of prefrontal cortex, but not two subregions within parietal cortex—somatosensory barrel field and medial/lateral parietal association cortex—would suppress arousal, as measured by an increase in anesthetic sensitivity. Male and female Sprague Dawley rats were surgically prepared for recording electroencephalogram and bilateral infusion into prefrontal cortex (N = 13), somatosensory barrel field (N = 10), or medial/lateral parietal association cortex (N = 9). After at least 10 days of post-surgical recovery, 156 μM tetrodotoxin or saline was microinjected into one of the cortical sites. Ninety minutes after injection, rats were anesthetized with 2.5% sevoflurane and the time to loss of righting reflex, a surrogate for loss of consciousness, was measured. Sevoflurane was stopped after 45 min and the time to return of righting reflex, a surrogate for return of consciousness, was measured. Tetrodotoxin-mediated inactivation of all three cortical sites decreased (p < 0.05) the time to loss of righting reflex. By contrast, only inactivation of prefrontal cortex, but not somatosensory barrel field or medial/lateral parietal association cortex, increased (p < 0.001) the time to return of righting reflex. Burst suppression ratio was not altered following inactivation of any of the cortical sites, suggesting that there was no global effect due to pharmacologic lesion. These findings demonstrate that prefrontal cortex plays a causal role in emergence from anesthesia and behavioral arousal.
Collapse
Affiliation(s)
- Emma R Huels
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Trent Groenhout
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Christopher W Fields
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Tiecheng Liu
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
37
|
Mashour GA, Palanca BJA, Basner M, Li D, Wang W, Blain-Moraes S, Lin N, Maier K, Muench M, Tarnal V, Vanini G, Ochroch EA, Hogg R, Schwartz M, Maybrier H, Hardie R, Janke E, Golmirzaie G, Picton P, McKinstry-Wu AR, Avidan MS, Kelz MB. Recovery of consciousness and cognition after general anesthesia in humans. eLife 2021; 10:59525. [PMID: 33970101 PMCID: PMC8163502 DOI: 10.7554/elife.59525] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding how the brain recovers from unconsciousness can inform neurobiological theories of consciousness and guide clinical investigation. To address this question, we conducted a multicenter study of 60 healthy humans, half of whom received general anesthesia for 3 hr and half of whom served as awake controls. We administered a battery of neurocognitive tests and recorded electroencephalography to assess cortical dynamics. We hypothesized that recovery of consciousness and cognition is an extended process, with differential recovery of cognitive functions that would commence with return of responsiveness and end with return of executive function, mediated by prefrontal cortex. We found that, just prior to the recovery of consciousness, frontal-parietal dynamics returned to baseline. Consistent with our hypothesis, cognitive reconstitution after anesthesia evolved over time. Contrary to our hypothesis, executive function returned first. Early engagement of prefrontal cortex in recovery of consciousness and cognition is consistent with global neuronal workspace theory.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Ben JA Palanca
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Mathias Basner
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Duan Li
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Wei Wang
- Department of Mathematics and Statistics, Washington UniversitySt. LouisUnited States
| | - Stefanie Blain-Moraes
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Nan Lin
- Department of Mathematics and Statistics, Washington UniversitySt. LouisUnited States
| | - Kaitlyn Maier
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Maxwell Muench
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Vijay Tarnal
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Giancarlo Vanini
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - E Andrew Ochroch
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Rosemary Hogg
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Marlon Schwartz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hannah Maybrier
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Randall Hardie
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ellen Janke
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Goodarz Golmirzaie
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Paul Picton
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Andrew R McKinstry-Wu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael S Avidan
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
| | - Max B Kelz
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|