1
|
Fritzemeier RG, Akins NS, Arcoria PJ, Paladugu S, Ullman EZ, Allen J, Sheikh R, Nocilla KA, McDaniels ED, Coleman EM, Antonoudiou P, D'Erasmo MP, Bartsch P, Sharma SK, Maguire J, Traynelis SF, Liotta DC. Thienopyrimidinone Derivatives as a GluN2B/C/D Biased, Positive Allosteric Modulator of the N-Methyl-d-Aspartate Receptor. J Med Chem 2025; 68:9303-9322. [PMID: 40254917 DOI: 10.1021/acs.jmedchem.4c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Positive allosteric modulators (PAMs) of the N-methyl-d-aspartate receptor (NMDAR) have been proposed as therapeutics in several neuropsychiatric indications, including schizophrenia, depression, cognitive dysfunction, and anxiety. In particular, GluN2D-containing NMDARs are highly expressed in inhibitory interneurons and are a target of interest for drug development. Toward that end, we describe our investigation into the GluN2-selective EU 1622 series of PAMs that enhance receptor efficacy, increase agonist potency, prolong deactivation time course, reduce single channel conductance, and limit calcium influx. Through SAR studies of the amide, aryl, and thiophene side chains, we identified analogues with submicromolar potency that preferentially potentiate GluN2B-, GluN2C-, and GluN2D-containing NMDARs. Elaboration of the thiophene side chain to block metabolism resulted in the discovery of EU 1622-240 (25b) with improved metabolic stability, oral bioavailability, and CNS penetration in rodents. Consequently, we present data with EU 1622-240 showing the promising properties of this series as a biased GluN2 potentiator.
Collapse
Affiliation(s)
| | - Nicholas S Akins
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Paul J Arcoria
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Srinu Paladugu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Elijah Z Ullman
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - James Allen
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Rehan Sheikh
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Kelsey A Nocilla
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Ellington D McDaniels
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Emanuel M Coleman
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02144, United States
| | - Pantelis Antonoudiou
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02144, United States
| | - Michael P D'Erasmo
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Perry Bartsch
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Savita K Sharma
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02144, United States
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Dennis C Liotta
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Ho YY, Yang Q, Boddu P, Bulkin DA, Warden MR. Infralimbic parvalbumin neural activity facilitates cued threat avoidance. eLife 2025; 12:RP91221. [PMID: 40168058 PMCID: PMC11961119 DOI: 10.7554/elife.91221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
The infralimbic cortex (IL) is essential for flexible behavioral responses to threatening environmental events. Reactive behaviors such as freezing or flight are adaptive in some contexts, but in others a strategic avoidance behavior may be more advantageous. IL has been implicated in avoidance, but the contribution of distinct IL neural subtypes with differing molecular identities and wiring patterns is poorly understood. Here, we study IL parvalbumin (PV) interneurons in mice as they engage in active avoidance behavior, a behavior in which mice must suppress freezing in order to move to safety. We find that activity in inhibitory PV neurons increases during movement to avoid the shock in this behavioral paradigm, and that PV activity during movement emerges after mice have experienced a single shock, prior to learning avoidance. PV neural activity does not change during movement toward cued rewards or during general locomotion in the open field, behavioral paradigms where freezing does not need to be suppressed to enable movement. Optogenetic suppression of PV neurons increases the duration of freezing and delays the onset of avoidance behavior, but does not affect movement toward rewards or general locomotion. These data provide evidence that IL PV neurons support strategic avoidance behavior by suppressing freezing.
Collapse
Affiliation(s)
- Yi-Yun Ho
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
- Cornell Neurotech, Cornell UniversityIthacaUnited States
| | - Qiuwei Yang
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
| | - Priyanka Boddu
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
| | - David A Bulkin
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
- Cornell Neurotech, Cornell UniversityIthacaUnited States
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell UniversityIthacaUnited States
- Cornell Neurotech, Cornell UniversityIthacaUnited States
- Department of Translational Neurosciences, University of Arizona College of MedicinePhoenixUnited States
- Graduate Interdisciplinary Program in Neuroscience, University of ArizonaTucsonUnited States
| |
Collapse
|
3
|
Zhu M, Peng J, Wang M, Lin S, Zhang H, Zhou Y, Dai X, Zhao H, Yu YQ, Shen L, Li XM, Chen J. Transcriptomic and spatial GABAergic neuron subtypes in zona incerta mediate distinct innate behaviors. Nat Commun 2025; 16:3107. [PMID: 40169544 PMCID: PMC11961626 DOI: 10.1038/s41467-025-57896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
Understanding the anatomical connection and behaviors of transcriptomic neuron subtypes is critical to delineating cell type-specific functions in the brain. Here we integrated single-nucleus transcriptomic sequencing, in vivo circuit mapping, optogenetic and chemogenetic approaches to dissect the molecular identity and function of heterogeneous GABAergic neuron populations in the zona incerta (ZI) in mice, a region involved in modulating various behaviors. By microdissecting ZI for transcriptomic and spatial gene expression analyses, our results revealed two non-overlapping Ecel1- and Pde11a-expressing GABAergic neurons with dominant expression in the rostral and medial zona incerta (ZIrEcel1 and ZImPde11a), respectively. The GABAergic projection from ZIrEcel1 to periaqueductal gray mediates self-grooming, while the GABAergic projection from ZImPde11a to the oral part of pontine reticular formation promotes transition from sleep to wakefulness. Together, our results revealed the molecular markers, spatial organization and specific neuronal circuits of two discrete GABAergic projection neuron populations in segregated subregions of the ZI that mediate distinct innate behaviors, advancing our understanding of the functional organization of the brain.
Collapse
Affiliation(s)
- Mengyue Zhu
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jieqiao Peng
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Mi Wang
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shan Lin
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huiying Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Yu Zhou
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xinyue Dai
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huiying Zhao
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yan-Qin Yu
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China
| | - Li Shen
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Center for Brain Science and Brain-Inspired Intelligence, Research Units for Emotion and Emotion Disorders, Chinese Academy of Medical Sciences, Hangzhou, China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 311305, China.
| | - Jiadong Chen
- Department of Neurobiology, Departments of Neurosurgery and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
4
|
Rodriguez-Echemendia PL, Carelli RM. Sex differences in oscillatory signaling dynamics in the prelimbic cortex and nucleus accumbens core during negative affect. Behav Brain Res 2025; 480:115404. [PMID: 39706530 PMCID: PMC11729474 DOI: 10.1016/j.bbr.2024.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Affective processing is important for guiding behavior and its dysfunction can lead to several psychiatric illnesses, including depression and substance use disorders. Conditioned taste aversion (CTA) is used to study learned shifts in affect, and taste reactivity (TR) can effectively track the hedonic properties of appetitive and aversive tastants before and after CTA. While the infralimbic cortex (IL) and its projections to the nucleus accumbens (NAc) shell play a key role in learned negative affect, this role is unique to males. Here, we sought to determine if the prelimbic cortex (PrL) to nucleus accumbens (NAc) core circuit, another prefrontal cortex-accumbens system, tracks innate versus learned negative affect using electrophysiological (local field potential, LFP) methods in male and female rats. As expected, CTA elicited a hedonic shift from an appetitive to an aversive TR profile, regardless of sex. However, time-frequency analyses revealed differential activity in the PrL and NAc core during innate and learned negative affect across sex. Specifically, we found that beta oscillations in the NAc core encode learned negative affect in males, while neither brain region seems to be selectively attuned to innate or learned aversion in females. Importantly, LFP functional connectivity (coherence) indicated that the PrL-NAc core circuit does not track any aspect of learned negative affect in either sex but may be involved in innate aversion in males only. Collectively, these data provide a sex-specific understanding of real-time oscillatory signaling dynamics in the PrL and NAc core during innate versus learned negative affect.
Collapse
Affiliation(s)
- Pedro L Rodriguez-Echemendia
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Regina M Carelli
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
5
|
Negishi K, Navarro VI, Montes LP, Arzate LS, Guerra Ruiz JM, Sotelo D, Toccoli AR, Khan AM. Elaborating the connections of a closed-loop forebrain circuit in the rat: Circumscribed evidence for novel topography within a cortico-striato-pallidal triple descending projection, with thalamic feedback, to the anterior lateral hypothalamic area. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633747. [PMID: 39868339 PMCID: PMC11761604 DOI: 10.1101/2025.01.18.633747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Motivated behaviors are regulated by distributed forebrain networks. Traditional approaches have often focused on individual brain regions and connections that do not capture the topographic organization of forebrain connectivity. We performed co-injections of anterograde and retrograde tract tracers in rats to provide novel high-spatial resolution evidence of topographic connections that elaborate a previously identified closed-loop forebrain circuit implicated in affective and motivational processes. The nodes of this circuit include select regions of the medial prefrontal cortex (defined here more specifically as the cingulate region, CNG), a dorsomedial portion of the nucleus accumbens (ACBdm), a portion of the medial substantia innominata (SIm), and the anterior lateral hypothalamic area (LHAa). The circuit also reportedly receives a feedback loop from the anterior region of the paraventricular thalamic nucleus (PVTa). In this draft report, we provide detailed circumscribed evidence supporting these regions as interconnected nodes, and provide several novel findings concerning the topographic organization of their projections. First, we identified the ACBdm based on its unique connectivity. Anterograde labeling from anterior paraventricular thalamic nucleus (PVTa) and retrograde labeling from medial substantia innominata (SIm) and lateral hypothalamic area (LHA) were restricted to the dorsomedial ACB (ACBdm). Strikingly, this labeling formed a longitudinal column extending along virtually the entire anteroposterior axis of ACBdm. Subsequent analysis revealed a convergence of ACBdm axon terminals and retrogradely labeled neurons from LHA within the anterior SIm. Furthermore, we identified cortical CNG regions related to this circuit. These regions contained retrograde labeling from both ACBdm and LHA, and anterograde labeling from PVTa. These cortical subdomains included regions previously implicated in the circuit but for which detailed organization has been unknown: (1) a region between the posterior prelimbic and infralimbic areas; (2) posterior part of basolateral and basomedial amygdalar nuclei, and (3) anterior pole of ventral subiculum. Our circumscribed findings, which await additional samples and analysis, support the existence of a topographically organized closed-loop circuit and identify two additional novel features: (1) direct evidence for an elaborate core rostrocaudal topography for a cortico-striato-pallidal motif comprising a triple descending projection to the LHA via direct, indirect, and "hyperdirect" pathways, and (2) a thalamic feedback system with specific projections to each cortical and striatal node of the circuit. We discuss the implications of this newly elaborated circuit for understanding the neural basis of motivational processes.
Collapse
Affiliation(s)
- Kenichiro Negishi
- UTEP Systems Neuroscience Laboratory, The University of Texas at El Paso, El Paso, TX 79968
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968
- PhD Program in Bioscience, The University of Texas at El Paso, El Paso, TX 79968
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory, The University of Texas at El Paso, El Paso, TX 79968
- Present address: Behavioral Neuroscience Branch, IRP/NIDA/NIH, Baltimore, MD
| | - Vanessa I. Navarro
- UTEP Systems Neuroscience Laboratory, The University of Texas at El Paso, El Paso, TX 79968
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968
- PhD Program in Bioscience, The University of Texas at El Paso, El Paso, TX 79968
- UTEP RISE Program, The University of Texas at El Paso, El Paso, TX 79968
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory, The University of Texas at El Paso, El Paso, TX 79968
| | - Laura P. Montes
- UTEP Systems Neuroscience Laboratory, The University of Texas at El Paso, El Paso, TX 79968
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968
- PhD Program in Bioscience, The University of Texas at El Paso, El Paso, TX 79968
| | - Lidice Soto Arzate
- UTEP Systems Neuroscience Laboratory, The University of Texas at El Paso, El Paso, TX 79968
- UTEP LSAMP PRELS Program, The University of Texas at El Paso, El Paso, TX 79968
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory, The University of Texas at El Paso, El Paso, TX 79968
| | - Josdell M. Guerra Ruiz
- UTEP Systems Neuroscience Laboratory, The University of Texas at El Paso, El Paso, TX 79968
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory, The University of Texas at El Paso, El Paso, TX 79968
| | - Diana Sotelo
- UTEP Systems Neuroscience Laboratory, The University of Texas at El Paso, El Paso, TX 79968
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968
- UTEP RISE Program, The University of Texas at El Paso, El Paso, TX 79968
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory, The University of Texas at El Paso, El Paso, TX 79968
| | - Alejandro R. Toccoli
- UTEP Systems Neuroscience Laboratory, The University of Texas at El Paso, El Paso, TX 79968
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968
- UTEP RISE Program, The University of Texas at El Paso, El Paso, TX 79968
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory, The University of Texas at El Paso, El Paso, TX 79968
| | - Arshad M. Khan
- UTEP Systems Neuroscience Laboratory, The University of Texas at El Paso, El Paso, TX 79968
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968
- PhD Program in Bioscience, The University of Texas at El Paso, El Paso, TX 79968
- UTEP RISE Program, The University of Texas at El Paso, El Paso, TX 79968
- UTEP LSAMP PRELS Program, The University of Texas at El Paso, El Paso, TX 79968
- HHMI PERSIST Brain Mapping & Connectomics Undergraduate Teaching Laboratory, The University of Texas at El Paso, El Paso, TX 79968
| |
Collapse
|
6
|
Shi S, Chen T, Su H, Zhao M. Exploring Cortical Interneurons in Substance Use Disorder: From Mechanisms to Therapeutic Perspectives. Neuroscientist 2025:10738584241310156. [PMID: 39772845 DOI: 10.1177/10738584241310156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Interneurons (INs) play a crucial role in the regulation of neural activity within the medial prefrontal cortex (mPFC), a brain region critically involved in executive functions and behavioral control. In recent preclinical studies, dysregulation of INs in the mPFC has been implicated in the pathophysiology of substance use disorder, characterized by vulnerability to chronic drug use. Here, we explore the diversity of mPFC INs and their connectivity and roles in vulnerability to addiction. We also discuss how these INs change over time with drug exposure. Finally, we focus on noninvasive brain stimulation as a therapeutic approach for targeting INs in substance use disorder, highlighting its potential to restore neural circuits.
Collapse
Affiliation(s)
- Sai Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
8
|
Bae JW, Yi JH, Choe SY, Li Y, Jung MW. Cortical VIP neurons as a critical node for dopamine actions. SCIENCE ADVANCES 2025; 11:eadn3221. [PMID: 39742499 DOI: 10.1126/sciadv.adn3221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
Dopamine modulates a wide range of cognitive processes in the prefrontal cortex, but the underlying mechanisms remain unclear. Here, we examined the roles of prefrontal vasoactive intestinal polypeptide (VIP)-expressing neurons and their D1 receptors (D1Rs) in working memory using a delayed match-to-sample task in mice. VIP neurons conveyed robust working-memory signals, and their inactivation impaired behavioral performance. Moreover, selective knockdown of D1Rs in VIP neurons also resulted in impaired performance, indicating the critical role of VIP neurons and their D1Rs in supporting working memory. Additionally, we found that dopamine release dynamics during the delay period varied depending on the target location. Furthermore, dopaminergic terminal stimulation induced a contralateral response bias and enhanced neuronal target selectivity in a laterality-dependent manner. These results suggest that prefrontal dopamine modulates behavioral responses and delay-period activity based on laterality. Overall, these findings shed light on dopamine-modulated prefrontal neural processes underlying higher-order cognitive functions.
Collapse
Affiliation(s)
- Jung Won Bae
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Jee Hyun Yi
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Seo Yeon Choe
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon 34141, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
9
|
Liang J, Zhou Y, Feng Q, Zhou Y, Jiang T, Ren M, Jia X, Gong H, Di R, Jiao P, Luo M. A brainstem circuit amplifies aversion. Neuron 2024; 112:3634-3650.e5. [PMID: 39270652 DOI: 10.1016/j.neuron.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024]
Abstract
Dynamic gain control of aversive signals enables adaptive behavioral responses. Although the role of amygdalar circuits in aversive processing is well established, the neural pathway for amplifying aversion remains elusive. Here, we show that the brainstem circuit linking the interpeduncular nucleus (IPN) with the nucleus incertus (NI) amplifies aversion and promotes avoidant behaviors. IPN GABA neurons are activated by aversive stimuli and their predicting cues, with their response intensity closely tracking aversive values. Activating these neurons does not trigger aversive behavior on its own but rather amplifies responses to aversive stimuli, whereas their ablation or inhibition suppresses such responses. Detailed circuit dissection revealed anatomically distinct subgroups within the IPN GABA neuron population, highlighting the NI-projecting subgroup as the modulator of aversiveness related to fear and opioid withdrawal. These findings unveil the IPN-NI circuit as an aversion amplifier and suggest potential targets for interventions against affective disorders and opioid relapse.
Collapse
Affiliation(s)
- Jingwen Liang
- National Institute of Biological Sciences (NIBS), Beijing 102206, China; Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Yu Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Chinese Institute for Brain Research (CIBR), Beijing 102206, China.
| | - Qiru Feng
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Youtong Zhou
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Tao Jiang
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Miao Ren
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Xueyan Jia
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215125, China
| | - Run Di
- Department of Neurology & Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, National Center for Neurological Disorders, Beijing 100053, China; Neurodegenerative Laboratory of Ministry of Education of the People's Republic of China, Beijing 100053, China
| | - Peijie Jiao
- School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Minmin Luo
- Chinese Institute for Brain Research (CIBR), Beijing 102206, China; New Cornerstone Science Laboratory, Shenzhen 518054, China; Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, Beijing 100005, China; Beijing Institute for Brain Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102206, China.
| |
Collapse
|
10
|
Chen X. Reimagining Cortical Connectivity by Deconstructing Its Molecular Logic into Building Blocks. Cold Spring Harb Perspect Biol 2024; 16:a041509. [PMID: 38621822 PMCID: PMC11529856 DOI: 10.1101/cshperspect.a041509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Comprehensive maps of neuronal connectivity provide a foundation for understanding the structure of neural circuits. In a circuit, neurons are diverse in morphology, electrophysiology, gene expression, activity, and other neuronal properties. Thus, constructing a comprehensive connectivity map requires associating various properties of neurons, including their connectivity, at cellular resolution. A commonly used approach is to use the gene expression profiles as an anchor to which all other neuronal properties are associated. Recent advances in genomics and anatomical techniques dramatically improved the ability to determine and associate the long-range projections of neurons with their gene expression profiles. These studies revealed unprecedented details of the gene-projection relationship, but also highlighted conceptual challenges in understanding this relationship. In this article, I delve into the findings and the challenges revealed by recent studies using state-of-the-art neuroanatomical and transcriptomic techniques. Building upon these insights, I propose an approach that focuses on understanding the gene-projection relationship through basic features in gene expression profiles and projections, respectively, that associate with underlying cellular processes. I then discuss how the developmental trajectories of projections and gene expression profiles create additional challenges and necessitate interrogating the gene-projection relationship across time. Finally, I explore complementary strategies that, together, can provide a comprehensive view of the gene-projection relationship.
Collapse
Affiliation(s)
- Xiaoyin Chen
- Allen Institute for Brain Science, Seattle, Washington 98109, USA
| |
Collapse
|
11
|
Liang D, Labrakakis C. Multiple Posterior Insula Projections to the Brainstem Descending Pain Modulatory System. Int J Mol Sci 2024; 25:9185. [PMID: 39273133 PMCID: PMC11395413 DOI: 10.3390/ijms25179185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The insular cortex is an important hub for sensory and emotional integration. It is one of the areas consistently found activated during pain. While the insular's connections to the limbic system might play a role in the aversive and emotional component of pain, its connections to the descending pain system might be involved in pain intensity coding. Here, we used anterograde tracing with viral expression of mCherry fluorescent protein, to examine the connectivity of insular axons to different brainstem nuclei involved in the descending modulation of pain in detail. We found extensive connections to the main areas of descending pain control, namely, the periaqueductal gray (PAG) and the raphe magnus (RMg). In addition, we also identified an extensive insular connection to the parabrachial nucleus (PBN). Although not as extensive, we found a consistent axonal input from the insula to different noradrenergic nuclei, the locus coeruleus (LC), the subcoereuleus (SubCD) and the A5 nucleus. These connections emphasize a prominent relation of the insula with the descending pain modulatory system, which reveals an important role of the insula in pain processing through descending pathways.
Collapse
Affiliation(s)
- Despoina Liang
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
| | - Charalampos Labrakakis
- Department of Biological Applications and Technology, University of Ioannina, 45110 Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
12
|
Nikolaus S, Chao OY, Henke J, Beu M, Fazari B, Almeida FR, Abdel-Hafiz L, Antke C, Hautzel H, Mamlins E, Müller HW, Huston JP, von Gall C, Giesel FL. 5-HT 1A and 5-HT 2A receptor effects on recognition memory, motor/exploratory behaviors, emotionality and regional dopamine transporter binding in the rat. Behav Brain Res 2024; 469:115051. [PMID: 38777263 DOI: 10.1016/j.bbr.2024.115051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Both dopamine (DA) and serotonin (5-HT) play key roles in numerous functions including motor control, stress response and learning. So far, there is scarce or conflicting evidence about the effects of 5-HT1A and 5-HT2A receptor (R) agonists and antagonists on recognition memory in the rat. This also holds for their effect on cerebral DA as well as 5-HT release. In the present study, we assessed the effects of the 5-HT1AR agonist 8-OH-DPAT and antagonist WAY100,635 and the 5-HT2AR agonist DOI and antagonist altanserin (ALT) on rat behaviors. Moreover, we investigated their impact on monoamine efflux by measuring monoamine transporter binding in various regions of the rat brain. After injection of either 8-OH-DPAT (3 mg/kg), WAY100,635 (0.4 mg/kg), DOI (0.1 mg/kg), ALT (1 mg/kg) or the respective vehicle (saline, DMSO), rats underwent an object and place recognition memory test in the open field. Upon the assessment of object exploration, motor/exploratory parameters and feces excretion, rats were administered the monoamine transporter radioligand N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]-FP-CIT; 8.9 ± 2.6 MBq) into the tail vein. Regional radioactivity accumulations in the rat brain were determined post mortem. Compared vehicle, administration of 8-OH-DPAT impaired memory for place, decreased rearing behavior, and increased ambulation as well as head-shoulder movements. DOI administration led to a reduction in rearing behavior but an increase in head-shoulder motility relative to vehicle. Feces excretion was diminished after ALT relative to vehicle. Dopamine transporter (DAT) binding was increased in the caudateputamen (CP), but decreased in the nucleus accumbens (NAC) after 8-OH-DPAT relative to vehicle. Moreover, DAT binding was decreased in the NAC after ALT relative to vehicle. Findings indicate that 5-HT1AR inhibition and 5-HT2AR activation may impair memory for place. Furthermore, results imply associations not only between recognition memory, motor/exploratory behavior and emotionality but also between the respective parameters and the levels of available DA in CP and NAC.
Collapse
MESH Headings
- Animals
- Dopamine Plasma Membrane Transport Proteins/metabolism
- Male
- Recognition, Psychology/drug effects
- Recognition, Psychology/physiology
- Exploratory Behavior/drug effects
- Exploratory Behavior/physiology
- Rats
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Motor Activity/drug effects
- Motor Activity/physiology
- Brain/metabolism
- Brain/drug effects
- Emotions/drug effects
- Emotions/physiology
- Serotonin 5-HT1 Receptor Agonists/pharmacology
- Serotonin 5-HT2 Receptor Agonists/pharmacology
- Rats, Wistar
Collapse
Affiliation(s)
- Susanne Nikolaus
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jan Henke
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| | - Markus Beu
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| | - Benedetta Fazari
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Filipe Rodrigues Almeida
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Christina Antke
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| | - Hubertus Hautzel
- Clinic of Nuclear Medicine, University Hospital Essen, Hufelandstraße 55, Essen D-45122, Germany
| | - Eduards Mamlins
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| | - Hans-Wilhelm Müller
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine University, Universitätsstr. 1, Düsseldorf D-40225, Germany
| | - Frederik L Giesel
- Clinic of Nuclear Medicine, Medical Faculty, Heinrich-Heine University, Moorenstr. 5, Düsseldorf D-40225, Germany
| |
Collapse
|
13
|
Gimenez-Gomez P, Le T, Zinter M, M'Angale P, Duran-Laforet V, Freels TG, Pavchinskiy R, Molas S, Schafer DP, Tapper AR, Thomson T, Martin GE. An orbitocortical-thalamic circuit suppresses binge alcohol-drinking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601895. [PMID: 39005328 PMCID: PMC11245026 DOI: 10.1101/2024.07.03.601895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Alcohol consumption remains a significant global health challenge, causing millions of direct and indirect deaths annually. Intriguingly, recent work has highlighted the prefrontal cortex, a major brain area that regulates inhibitory control of behaviors, whose activity becomes dysregulated upon alcohol abuse. However, whether an endogenous mechanism exists within this brain area that limits alcohol consumption is unknown. Here we identify a discrete GABAergic neuronal ensemble in the medial orbitofrontal cortex (mOFC) that is selectively recruited during binge alcohol-drinking and intoxication. Upon alcohol intoxication, this neuronal ensemble suppresses binge drinking behavior. Optogenetically silencing of this population, or its ablation, results in uncontrolled binge alcohol consumption. We find that this neuronal ensemble is specific to alcohol and is not recruited by other rewarding substances. We further show, using brain-wide analysis, that this neuronal ensemble projects widely, and that its projections specifically to the mediodorsal thalamus are responsible for regulating binge alcohol drinking. Together, these results identify a brain circuit in the mOFC that serves to protect against binge drinking by halting alcohol intake. These results provide valuable insights into the complex nature of alcohol abuse and offers potential avenues for the development of mOFC neuronal ensemble-targeted interventions.
Collapse
Affiliation(s)
- P Gimenez-Gomez
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - T Le
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - M Zinter
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - P M'Angale
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - V Duran-Laforet
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - T G Freels
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - R Pavchinskiy
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - S Molas
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA
| | - D P Schafer
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - A R Tapper
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - T Thomson
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - G E Martin
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
14
|
Dautan D, Monai A, Maltese F, Chang X, Molent C, Mauro D, Galbusera A, Vecchia D, Antonelli F, Benedetti A, Drago F, Leggio GM, Pagani M, Fellin T, Gozzi A, Schumann G, Managò F, Papaleo F. Cortico-cortical transfer of socially derived information gates emotion recognition. Nat Neurosci 2024; 27:1318-1332. [PMID: 38769153 DOI: 10.1038/s41593-024-01647-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Emotion recognition and the resulting responses are important for survival and social functioning. However, how socially derived information is processed for reliable emotion recognition is incompletely understood. Here, we reveal an evolutionarily conserved long-range inhibitory/excitatory brain network mediating these socio-cognitive processes. Anatomical tracing in mice revealed the existence of a subpopulation of somatostatin (SOM) GABAergic neurons projecting from the medial prefrontal cortex (mPFC) to the retrosplenial cortex (RSC). Through optogenetic manipulations and Ca2+ imaging fiber photometry in mice and functional imaging in humans, we demonstrate the specific participation of these long-range SOM projections from the mPFC to the RSC, and an excitatory feedback loop from the RSC to the mPFC, in emotion recognition. Notably, we show that mPFC-to-RSC SOM projections are dysfunctional in mouse models relevant to psychiatric vulnerability and can be targeted to rescue emotion recognition deficits in these mice. Our findings demonstrate a cortico-cortical circuit underlying emotion recognition.
Collapse
Affiliation(s)
- Daniel Dautan
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
- Bioclinicum, Karolinska Institute, Stockholm, Sweden
| | - Anna Monai
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Federica Maltese
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Xiao Chang
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P. R. China
| | - Cinzia Molent
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Daniele Mauro
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Federica Antonelli
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Arianna Benedetti
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marco Pagani
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, P. R. China
- Centre for Population Neuroscience and Stratified Medicine (PONS), Charite Mental Health, Department of Psychiatry and Psychotherapy, CCM, Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Francesca Managò
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience area, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
15
|
Braunscheidel K, Okas M, Woodward JJ. Toluene alters the intrinsic excitability and excitatory synaptic transmission of basolateral amygdala neurons. Front Neurosci 2024; 18:1366216. [PMID: 38595974 PMCID: PMC11002899 DOI: 10.3389/fnins.2024.1366216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Inhalant abuse is an important health issue especially among children and adolescents who often encounter these agents in the home. Research into the neurobiological targets of inhalants has lagged behind that of other drugs such as alcohol and psychostimulants. However, studies from our lab and others have begun to reveal how inhalants such as the organic solvent toluene affect neurons in key addiction related areas of the brain including the ventral tegmental area, nucleus accumbens and medial prefrontal cortex. In the present study, we extend these findings and examine the effect of toluene on electrophysiological responses of pyramidal neurons in the basolateral amygdala BLA, a region important for generating emotional and reward based information needed to guide future behavior. Methods Whole-cell patch-clamp electrophysiology recordings of BLA pyramidal neurons in rat brain slices were used to assess toluene effects on intrinsic excitability and excitatory glutamatergic synaptic transmission. Results Acute application of 3 mM but not 0.3 mM toluene produced a small but significant (~20%) increase in current-evoked action potential (AP) firing that reversed following washout of the toluene containing solution. The change in firing during exposure to 3 mM toluene was accompanied by selective changes in AP parameters including reduced latency to first spike, increased AP rise time and decay and a reduction in the fast after-hyperpolization. To examine whether toluene also affects excitatory synaptic signaling, we expressed channelrhodopsin-2 in medial prefrontal cortex neurons and elicited synaptic currents in BLA neurons via light pulses. Toluene (3 mM) reduced light-evoked AMPA-mediated synaptic currents while a lower concentration (0.3 mM) had no effect. The toluene-induced reduction in AMPA-mediated BLA synaptic currents was prevented by the cannabinoid receptor-1 antagonist AM281. Discussion These findings are the first to demonstrate effects of acute toluene on BLA pyramidal neurons and add to existing findings showing that abused inhalants such as toluene have significant effects on neurons in brain regions involved in natural and drug induced reward.
Collapse
Affiliation(s)
| | | | - John J. Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
16
|
Stubbendorff C, Hale E, Day HLL, Smith J, Alvaro GS, Large CH, Stevenson CW. Pharmacological modulation of Kv3 voltage-gated potassium channels regulates fear discrimination and expression in a response-dependent manner. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110829. [PMID: 37451593 DOI: 10.1016/j.pnpbp.2023.110829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Various psychiatric diseases are characterized by aberrant cognition and emotional regulation. This includes inappropriately attributing affective salience to innocuous cues, which can be investigated using translationally relevant preclinical models of fear discrimination. Activity in the underpinning corticolimbic circuitry is governed by parvalbumin-expressing GABAergic interneurons, which also regulate fear discrimination. Kv3 voltage-gated potassium channels are highly expressed in these neurons and are important for controlling their activity, suggesting that pharmacological Kv3 modulation may regulate fear discrimination. We determined the effect of the positive Kv3 modulator AUT00206 given systemically to female rats undergoing limited or extended auditory fear discrimination training, which we have previously shown results in more discrimination or generalization, respectively, based on freezing at retrieval. We also characterized darting and other active fear-related responses. We found that limited training resulted in more discrimination based on freezing, which was unaffected by AUT00206. In contrast, extended training resulted in more generalization based on freezing and the emergence of discrimination based on darting during training and, to a lesser extent, at retrieval. Importantly, AUT00206 given before extended training had dissociable effects on fear discrimination and expression at retrieval depending on the response examined. While AUT00206 mitigated generalization without affecting expression based on freezing, it reduced expression without affecting discrimination based on darting, although darting levels were low overall. These results indicate that pharmacological Kv3 modulation regulates fear discrimination and expression in a response-dependent manner. They also raise the possibility that targeting Kv3 channels may ameliorate perturbed cognition and emotional regulation in psychiatric disease.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Harriet L L Day
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Jessica Smith
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Giuseppe S Alvaro
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Charles H Large
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
17
|
Zhang Y, Chu G, Leng Y, Lin X, Zhou H, Lu Y, Liu B. Parvalbumin-positive neurons in the medial vestibular nucleus contribute to vestibular compensation through commissural inhibition. Front Cell Neurosci 2023; 17:1260243. [PMID: 38026699 PMCID: PMC10663245 DOI: 10.3389/fncel.2023.1260243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Background The commissural inhibitory system between the bilateral medial vestibular nucleus (MVN) plays a key role in vestibular compensation. Calcium-binding protein parvalbumin (PV) is expressed in MVN GABAergic neurons. Whether these neurons are involved in vestibular compensation is still unknown. Methods After unilateral labyrinthectomy (UL), we measured the activity of MVN PV neurons by in vivo calcium imaging, and observed the projection of MVN PV neurons by retrograde neural tracing. After regulating PV neurons' activity by chemogenetic technique, the effects on vestibular compensation were evaluated by behavior analysis. Results We found PV expression and the activity of PV neurons in contralateral but not ipsilateral MVN increased 6 h following UL. ErbB4 is required to maintain GABA release for PV neurons, conditional knockout ErbB4 from PV neurons promoted vestibular compensation. Further investigation showed that vestibular compensation could be promoted by chemogenetic inhibition of contralateral MVN or activation of ipsilateral MVN PV neurons. Additional neural tracing study revealed that considerable MVN PV neurons were projecting to the opposite side of MVN, and that activating the ipsilateral MVN PV neurons projecting to contralateral MVN can promote vestibular compensation. Conclusion Contralateral MVN PV neuron activation after UL is detrimental to vestibular compensation, and rebalancing bilateral MVN PV neuron activity can promote vestibular compensation, via commissural inhibition from the ipsilateral MVN PV neurons. Our findings provide a new understanding of vestibular compensation at the neural circuitry level and a novel potential therapeutic target for vestibular disorders.
Collapse
Affiliation(s)
- Yuejin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangpin Chu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangming Leng
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueling Lin
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Zhou
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Nikolaus S, Chao OY, Beu M, Henke J, Antke C, Wang AL, Fazari B, Mamlins E, Huston JP, Giesel FL. The 5-HT 1A receptor agonist 8-OH-DPAT modulates motor/exploratory activity, recognition memory and dopamine transporter binding in the dorsal and ventral striatum. Neurobiol Learn Mem 2023; 205:107848. [PMID: 37865262 DOI: 10.1016/j.nlm.2023.107848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
In the present studies, we assessed the effect of the 5-HT1A receptor (R) agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) on motor and exploratory behaviors, object and place recognition and dopamine transporter (DAT) and serotonin transporter (SERT) binding in the rat brain. In Experiment I, motor/exploratory behaviors were assessed in an open field after injection of either 8-OH-DPAT (0.1 and 3 mg/kg) or vehicle for 30 min without previous habituation to the open field. In Experiment II, rats underwent a 5-min exploration trial in an open field with two identical objects. After injection of either 8-OH-DPAT (0.1 and 3 mg/kg) or vehicle, rats underwent a 5-min test trial with one of the objects replaced by a novel one and the other object transferred to a novel place. Subsequently, N-o-fluoropropyl-2b-carbomethoxy-3b-(4-[123I]iodophenyl)-nortropane ([123I]FP-CIT; 11 ± 4 MBq) was injected into the tail vein. Regional radioactivity accumulations were determined post mortem with a well counter. In both experiments, 8-OH-DPAT dose-dependently increased ambulation and exploratory head-shoulder motility, whereas rearing was dose-dependently decreased. In the test rial of Experiment II, there were no effects of 8-OH-DPAT on overall activity, sitting and grooming. 8-OH-DPAT dose-dependently impaired recognition of object and place. 8-OH-DPAT (3 mg/kg) increased DAT binding in the dorsal striatum relative to both vehicle and 0.1 mg/kg 8-OH-DPAT. Furthermore, in the ventral striatum, DAT binding was decreased after 3 mg/kg 8-OH-DPAT relative to vehicle. Findings indicate that motor/exploratory behaviors, memory for object and place and regional dopamine function may be modulated by the 5-HT1AR. Since, after 8-OH-DPAT, rats exhibited more horizontal and less (exploratory) vertical motor activity, while overall activity was not different between groups, it may be inferred, that the observed impairment of object recognition was not related to a decrease of motor activity as such, but to a decrease of intrinsic motivation, attention and/or awareness, which are relevant accessories of learning. Furthermore, the present findings on 8-OH-DPAT action indicate associations not only between motor/exploratory behavior and the recognition of object and place but also between the respective parameters and the levels of available DA in dorsal and ventral striatum.
Collapse
Affiliation(s)
- Susanne Nikolaus
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany.
| | - Owen Y Chao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Markus Beu
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Jan Henke
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Christina Antke
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - An-Li Wang
- Department of Pharmacology and Toxicology, Jacob School of Medicine and Biomedical Sciences, University at Buffalo, 1021 Main Street, Buffalo, NY 14203, USA
| | - Benedetta Fazari
- Institute of Anatomy II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Eduards Mamlins
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| | - Joseph P Huston
- Center for Behavioural Neuroscience, Institute of Experimental Psychology, Heinrich-Heine University, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, Moorenstr. 5, D-40225 Düsseldorf, Germany
| |
Collapse
|
19
|
Bai F, Huang L, Deng J, Long Z, Hao X, Chen P, Wu G, Wen H, Deng Q, Bao X, Huang J, Yang M, Li D, Ren Y, Zhang M, Xiong Y, Li H. Prelimbic area to lateral hypothalamus circuit drives social aggression. iScience 2023; 26:107718. [PMID: 37810230 PMCID: PMC10551839 DOI: 10.1016/j.isci.2023.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/06/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Controlling aggression is a vital skill in social species such as rodents and humans and has been associated with the medial prefrontal cortex (mPFC). In this study, we showed that during aggressive behavior, the activity of GABAergic neurons in the prelimbic area (PL) of the mPFC was significantly suppressed. Specific activation of GABAergic PL neurons significantly curbed male-to-male aggression and inhibited conditioned place preference (CPP) for aggression-paired contexts, whereas specific inhibition of GABAergic PL neurons brought about the opposite effect. Moreover, GABAergic projections from PL neurons to the lateral hypothalamus (LH) orexinergic neurons mediated aggressive behavior. Finally, directly modulated LH-orexinergic neurons influence aggressive behavior. These results suggest that GABAergic PL-orexinergic LH projection is an important control circuit for intermale aggressive behavior, both of which could be targets for curbing aggression.
Collapse
Affiliation(s)
- Fuhai Bai
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lu Huang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Zonghong Long
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xianglin Hao
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Penghui Chen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Guangyan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Huizhong Wen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Qiangting Deng
- Editorial Office of Journal of Army Medical University, Chongqing 400038, China
| | - Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ming Yang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Defeng Li
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yukun Ren
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Min Zhang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
20
|
Hernández-Frausto M, Bilash OM, Masurkar AV, Basu J. Local and long-range GABAergic circuits in hippocampal area CA1 and their link to Alzheimer's disease. Front Neural Circuits 2023; 17:1223891. [PMID: 37841892 PMCID: PMC10570439 DOI: 10.3389/fncir.2023.1223891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
GABAergic inhibitory neurons are the principal source of inhibition in the brain. Traditionally, their role in maintaining the balance of excitation-inhibition has been emphasized. Beyond homeostatic functions, recent circuit mapping and functional manipulation studies have revealed a wide range of specific roles that GABAergic circuits play in dynamically tilting excitation-inhibition coupling across spatio-temporal scales. These span from gating of compartment- and input-specific signaling, gain modulation, shaping input-output functions and synaptic plasticity, to generating signal-to-noise contrast, defining temporal windows for integration and rate codes, as well as organizing neural assemblies, and coordinating inter-regional synchrony. GABAergic circuits are thus instrumental in controlling single-neuron computations and behaviorally-linked network activity. The activity dependent modulation of sensory and mnemonic information processing by GABAergic circuits is pivotal for the formation and maintenance of episodic memories in the hippocampus. Here, we present an overview of the local and long-range GABAergic circuits that modulate the dynamics of excitation-inhibition and disinhibition in the main output area of the hippocampus CA1, which is crucial for episodic memory. Specifically, we link recent findings pertaining to GABAergic neuron molecular markers, electrophysiological properties, and synaptic wiring with their function at the circuit level. Lastly, given that area CA1 is particularly impaired during early stages of Alzheimer's disease, we emphasize how these GABAergic circuits may contribute to and be involved in the pathophysiology.
Collapse
Affiliation(s)
- Melissa Hernández-Frausto
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
| | - Olesia M. Bilash
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Arjun V. Masurkar
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, NY, United States
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Center for Neural Science, New York University, New York, NY, United States
| |
Collapse
|
21
|
Glover EJ, Margaret Starr E, Gascon A, Clayton-Stiglbauer K, Amegashie CL, Selchick AH, Vaughan DT, Wayman WN, Woodward JJ, Chandler LJ. Involvement of cortical input to the rostromedial tegmental nucleus in aversion to foot shock. Neuropsychopharmacology 2023; 48:1455-1464. [PMID: 37221326 PMCID: PMC10425416 DOI: 10.1038/s41386-023-01612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
The rostromedial tegmental nucleus (RMTg) encodes negative reward prediction error (RPE) and plays an important role in guiding behavioral responding to aversive stimuli. Previous research has focused on regulation of RMTg activity by the lateral habenula despite studies revealing RMTg afferents from other regions including the frontal cortex. The current study provides a detailed anatomical and functional analysis of cortical input to the RMTg of male rats. Retrograde tracing uncovered dense cortical input to the RMTg spanning the medial prefrontal cortex, the orbitofrontal cortex and anterior insular cortex. Afferents were most dense in the dorsomedial subregion of the PFC (dmPFC), an area that is also implicated in both RPE signaling and aversive responding. RMTg-projecting dmPFC neurons originate in layer V, are glutamatergic, and collateralize to select brain regions. In-situ mRNA hybridization revealed that neurons in this circuit are predominantly D1 receptor-expressing with a high degree of D2 receptor colocalization. Consistent with cFos induction in this neural circuit during exposure to foot shock and shock-predictive cues, optogenetic stimulation of dmPFC terminals in the RMTg drove avoidance. Lastly, acute slice electrophysiology and morphological studies revealed that exposure to repeated foot shock resulted in significant physiological and structural changes consistent with a loss of top-down modulation of RMTg-mediated signaling. Altogether, these data reveal the presence of a prominent cortico-subcortical projection involved in adaptive behavioral responding to aversive stimuli such as foot shock and provide a foundation for future work aimed at exploring alterations in circuit function in diseases characterized by deficits in cognitive control over reward and aversion.
Collapse
Affiliation(s)
- Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
| | - E Margaret Starr
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Andres Gascon
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Kacey Clayton-Stiglbauer
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christen L Amegashie
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Alyson H Selchick
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Dylan T Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Wesley N Wayman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
22
|
Araya A, Gallegos S, Maldonado A, Rivera-Meza M, Chandra R, Lobo MK, Aguayo LG. Overexpression of wild type glycine alpha 1 subunit rescues ethanol sensitivity in accumbal receptors and reduces binge drinking in mice. Neuropsychopharmacology 2023; 48:1367-1376. [PMID: 36175550 PMCID: PMC10353986 DOI: 10.1038/s41386-022-01459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 09/07/2022] [Indexed: 11/09/2022]
Abstract
The nucleus accumbens (nAc) is a critical region in the brain reward system since it integrates abundant synaptic inputs contributing to the control of neuronal excitability in the circuit. The presence of inhibitory α1 glycine receptor (GlyRs) subunits, sensitive to ethanol, has been recently reported in accumbal neurons suggesting that they are protective against excessive binge consumption. In the present study, we used viral vectors (AAV) to overexpress mutant and WT α1 subunits in accumbal neurons in D1 Cre and α1 KI mice. Injection of a Cre-inducible AAV carrying an ethanol insensitive α1 subunit in D1 Cre neurons was unable to affect sensitivity to ethanol in GlyRs or affect ethanol drinking. On the other hand, using an AAV that transduced WT α1 GlyRs in GABAergic neurons in the nAc of high-ethanol consuming mice caused a reduction in ethanol intake as reflected by lowered drinking in the dark and reduced blood ethanol concentration. As expected, the AAV increased the glycine current density by 5-fold without changing the expression of GABAA receptors. Examination of the ethanol sensitivity in isolated accumbal neurons indicated that the GlyRs phenotype changed from an ethanol resistant to an ethanol sensitive type. These results support the conclusion that increased inhibition in the nAc can control excessive ethanol consumption and that selective targeting of GlyRs by pharmacotherapy might provide a mechanistic procedure to reduce ethanol binge.
Collapse
Affiliation(s)
- Anibal Araya
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepcion, Chile
| | - Scarlet Gallegos
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepcion, Chile
| | - Adolfo Maldonado
- Laboratory of Experimental Pharmacology, Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, Universidad de Chile, Santiago, Chile
| | - Mario Rivera-Meza
- Laboratory of Experimental Pharmacology, Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical Sciences and Pharmacy, Universidad de Chile, Santiago, Chile
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepcion, Chile.
| |
Collapse
|
23
|
Martínez-Rivera FJ, Pérez-Torres J, Velázquez-Díaz CD, Sánchez-Navarro MJ, Huertas-Pérez CI, Diehl MM, Phillips ML, Haber SN, Quirk GJ. A Novel Insular/Orbital-Prelimbic Circuit That Prevents Persistent Avoidance in a Rodent Model of Compulsive Behavior. Biol Psychiatry 2023; 93:1000-1009. [PMID: 35491274 DOI: 10.1016/j.biopsych.2022.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND A common symptom of obsessive-compulsive disorder is the persistent avoidance of cues incorrectly associated with negative outcomes. This maladaptation becomes increasingly evident as subjects fail to respond to extinction-based treatments such as exposure-with-response prevention therapy. While previous studies have highlighted the role of the insular-orbital cortex in fine-tuning avoidance-based decisions, little is known about the projections from this area that might modulate compulsive-like avoidance. METHODS Here, we used anatomical tract-tracing, single-unit recording, and optogenetics to characterize the projections from the insular-orbital cortex. To model exposure-with-response prevention and persistent avoidance in rats, we used the platform-mediated avoidance task followed by extinction-with-response prevention training. RESULTS Using tract-tracing and unit recording, we found that projections from the agranular insular/lateral orbital (AI/LO) cortex to the prefrontal cortex predominantly target the rostral portion of the prelimbic (rPL) cortex and excite rPL neurons. Photoinhibiting this projection induced persistent avoidance after extinction-with-response prevention training, an effect that was still present 1 week later. Consistent with this, photoexcitation of this projection prevented persistent avoidance in overtrained rats. This projection to rPL appears to be key for AI/LO's effects, considering that there was no effect of photoinhibiting AI/LO projections to the ventral striatum or basolateral amygdala. CONCLUSIONS Our findings suggest that projections from the AI/LO to the rPL decreases the likelihood of avoidance behavior following extinction. In humans, this connectivity may share some homology of projections from lateral prefrontal cortices (i.e., ventrolateral prefrontal cortex, orbitofrontal cortex, and insula) to other prefrontal areas and the anterior cingulate cortex, suggesting that reduced activity in these pathways may contribute to obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Freddyson J Martínez-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico.
| | - José Pérez-Torres
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Coraly D Velázquez-Díaz
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Marcos J Sánchez-Navarro
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Carlos I Huertas-Pérez
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Maria M Diehl
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York; McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, School of Medicine, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
24
|
Cho KKA, Shi J, Phensy AJ, Turner ML, Sohal VS. Long-range inhibition synchronizes and updates prefrontal task activity. Nature 2023; 617:548-554. [PMID: 37100905 PMCID: PMC10191848 DOI: 10.1038/s41586-023-06012-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/24/2023] [Indexed: 04/28/2023]
Abstract
Changes in patterns of activity within the medial prefrontal cortex enable rodents, non-human primates and humans to update their behaviour to adapt to changes in the environment-for example, during cognitive tasks1-5. Parvalbumin-expressing inhibitory neurons in the medial prefrontal cortex are important for learning new strategies during a rule-shift task6-8, but the circuit interactions that switch prefrontal network dynamics from maintaining to updating task-related patterns of activity remain unknown. Here we describe a mechanism that links parvalbumin-expressing neurons, a new callosal inhibitory connection, and changes in task representations. Whereas nonspecifically inhibiting all callosal projections does not prevent mice from learning rule shifts or disrupt the evolution of activity patterns, selectively inhibiting only callosal projections of parvalbumin-expressing neurons impairs rule-shift learning, desynchronizes the gamma-frequency activity that is necessary for learning8 and suppresses the reorganization of prefrontal activity patterns that normally accompanies rule-shift learning. This dissociation reveals how callosal parvalbumin-expressing projections switch the operating mode of prefrontal circuits from maintenance to updating by transmitting gamma synchrony and gating the ability of other callosal inputs to maintain previously established neural representations. Thus, callosal projections originating from parvalbumin-expressing neurons represent a key circuit locus for understanding and correcting the deficits in behavioural flexibility and gamma synchrony that have been implicated in schizophrenia and related conditions9,10.
Collapse
Affiliation(s)
- Kathleen K A Cho
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
- Institut du Cerveau-Paris Brain Institute, Sorbonne Université, Inserm U1127-CNRS UMR 7225, Paris, France.
| | - Jingcheng Shi
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Aarron J Phensy
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Marc L Turner
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer JF, Durstewitz D, Leibold C, Diester I. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 2023; 111:1020-1036. [PMID: 37023708 DOI: 10.1016/j.neuron.2023.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health & Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Christian Leibold
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ilka Diester
- Optophysiology - Optogenetics and Neurophysiology, IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
26
|
He ZX, Xi K, Liu KJ, Yue MH, Wang Y, Yin YY, Liu L, He XX, Yu HL, Xing ZK, Zhu XJ. A Nucleus Accumbens Tac1 Neural Circuit Regulates Avoidance Responses to Aversive Stimuli. Int J Mol Sci 2023; 24:ijms24054346. [PMID: 36901777 PMCID: PMC10001899 DOI: 10.3390/ijms24054346] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Neural circuits that control aversion are essential for motivational regulation and survival in animals. The nucleus accumbens (NAc) plays an important role in predicting aversive events and translating motivations into actions. However, the NAc circuits that mediate aversive behaviors remain elusive. Here, we report that tachykinin precursor 1 (Tac1) neurons in the NAc medial shell regulate avoidance responses to aversive stimuli. We show that NAcTac1 neurons project to the lateral hypothalamic area (LH) and that the NAcTac1→LH pathway contributes to avoidance responses. Moreover, the medial prefrontal cortex (mPFC) sends excitatory inputs to the NAc, and this circuit is involved in the regulation of avoidance responses to aversive stimuli. Overall, our study reveals a discrete NAc Tac1 circuit that senses aversive stimuli and drives avoidance behaviors.
Collapse
|
27
|
Mazo C, Nissant A, Saha S, Peroni E, Lledo PM, Lepousez G. Long-range GABAergic projections contribute to cortical feedback control of sensory processing. Nat Commun 2022; 13:6879. [PMID: 36371430 PMCID: PMC9653434 DOI: 10.1038/s41467-022-34513-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
In the olfactory system, the olfactory cortex sends glutamatergic projections back to the first stage of olfactory processing, the olfactory bulb (OB). Such corticofugal excitatory circuits - a canonical circuit motif described in all sensory systems- dynamically adjust early sensory processing. Here, we uncover a corticofugal inhibitory feedback to OB, originating from a subpopulation of GABAergic neurons in the anterior olfactory cortex and innervating both local and output OB neurons. In vivo imaging and network modeling showed that optogenetic activation of cortical GABAergic projections drives a net subtractive inhibition of both spontaneous and odor-evoked activity in local as well as output neurons. In output neurons, stimulation of cortical GABAergic feedback enhances separation of population odor responses in tufted cells, but not mitral cells. Targeted pharmacogenetic silencing of cortical GABAergic axon terminals impaired discrimination of similar odor mixtures. Thus, corticofugal GABAergic projections represent an additional circuit motif in cortical feedback control of sensory processing.
Collapse
Affiliation(s)
- Camille Mazo
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France.
- Champalimaud Foundation, Lisbon, Portugal.
| | - Antoine Nissant
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Soham Saha
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Enzo Peroni
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France
| | - Pierre-Marie Lledo
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France.
| | - Gabriel Lepousez
- Institut Pasteur, Université Paris Cité, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3571, Perception and Memory Unit, F-75015, Paris, France.
| |
Collapse
|
28
|
Kupferschmidt DA, Cummings KA, Joffe ME, MacAskill A, Malik R, Sánchez-Bellot C, Tejeda HA, Yarur Castillo H. Prefrontal Interneurons: Populations, Pathways, and Plasticity Supporting Typical and Disordered Cognition in Rodent Models. J Neurosci 2022; 42:8468-8476. [PMID: 36351822 PMCID: PMC9665918 DOI: 10.1523/jneurosci.1136-22.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Prefrontal cortex (PFC) inhibitory microcircuits regulate the gain and timing of pyramidal neuron firing, coordinate neural ensemble interactions, and gate local and long-range neural communication to support adaptive cognition and contextually tuned behavior. Accordingly, perturbations of PFC inhibitory microcircuits are thought to underlie dysregulated cognition and behavior in numerous psychiatric diseases and relevant animal models. This review, based on a Mini-Symposium presented at the 2022 Society for Neuroscience Meeting, highlights recent studies providing novel insights into: (1) discrete medial PFC (mPFC) interneuron populations in the mouse brain; (2) mPFC interneuron connections with, and regulation of, long-range mPFC afferents; and (3) circuit-specific plasticity of mPFC interneurons. The contributions of such populations, pathways, and plasticity to rodent cognition are discussed in the context of stress, reward, motivational conflict, and genetic mutations relevant to psychiatric disease.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, 20892
| | - Kirstie A Cummings
- Department of Neurobiology, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, 35233
| | - Max E Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Andrew MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom, WC1E 6BT
| | - Ruchi Malik
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, California, 94158
| | - Candela Sánchez-Bellot
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom, WC1E 6BT
- Laboratorio de Circuitos Neuronales, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain, 28002
| | - Hugo A Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, Maryland, 20892
| | - Hector Yarur Castillo
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, Bethesda, Maryland, 20892
| |
Collapse
|
29
|
Ariza-Salamanca DF, Corrales-Hernández MG, Pachón-Londoño MJ, Hernández-Duarte I. Molecular and cellular mechanisms leading to catatonia: an integrative approach from clinical and preclinical evidence. Front Mol Neurosci 2022; 15:993671. [PMID: 36245923 PMCID: PMC9558725 DOI: 10.3389/fnmol.2022.993671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
This review aims to describe the clinical spectrum of catatonia, in order to carefully assess the involvement of astrocytes, neurons, oligodendrocytes, and microglia, and articulate the available preclinical and clinical evidence to achieve a translational understanding of the cellular and molecular mechanisms behind this disorder. Catatonia is highly common in psychiatric and acutely ill patients, with prevalence ranging from 7.6% to 38%. It is usually present in different psychiatric conditions such as mood and psychotic disorders; it is also a consequence of folate deficiency, autoimmunity, paraneoplastic disorders, and even autistic spectrum disorders. Few therapeutic options are available due to its complexity and poorly understood physiopathology. We briefly revisit the traditional treatments used in catatonia, such as antipsychotics, electroconvulsive therapy, and benzodiazepines, before assessing novel therapeutics which aim to modulate molecular pathways through different mechanisms, including NMDA antagonism and its allosteric modulation, and anti-inflammatory drugs to modulate microglia reaction and mitigate oxidative stress, such as lithium, vitamin B12, and NMDAr positive allosteric modulators.
Collapse
Affiliation(s)
- Daniel Felipe Ariza-Salamanca
- Medical and Health Sciences Education Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- *Correspondence: Daniel Felipe Ariza-Salamanca
| | - María Gabriela Corrales-Hernández
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - María José Pachón-Londoño
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Isabella Hernández-Duarte
- Pharmacology Unit, Department of Biomedical Sciences, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
30
|
Hamel L, Cavdaroglu B, Yeates D, Nguyen D, Riaz S, Patterson D, Khan N, Kirolos N, Roper K, Ha QA, Ito R. Cortico-Striatal Control over Adaptive Goal-Directed Responding Elicited by Cues Signaling Sucrose Reward or Punishment. J Neurosci 2022; 42:3811-3822. [PMID: 35351827 PMCID: PMC9087743 DOI: 10.1523/jneurosci.2175-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/21/2022] Open
Abstract
The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been associated with the expression of adaptive and maladaptive behavior elicited by fear-related and drug-associated cues. However, reported effects of mPFC manipulations on cue-elicited natural reward-seeking and inhibition thereof have been varied, with few studies examining cortico-striatal contributions in tasks that require adaptive responding to cues signaling reward and punishment within the same session. The current study aimed to better elucidate the role of mPFC and NAc subdivisions, and their functional connectivity in cue-elicited adaptive responding using a novel discriminative cue responding task. Male Long-Evans rats learned to lever-press on a VR5 schedule for a discriminative cue signaling reward, and to avoid pressing the same lever in the presence of another cue signaling punishment. Postacquisition, prelimbic (PL) and infralimbic (IL) areas of the mPFC, NAc core, shell, PL-core, or IL-shell circuits were pharmacologically or chemogenetically inhibited while animals performed under (1) nonreinforced (extinction) conditions, where the appetitive and aversive cues were presented in alternating trials alone or as a compound stimulus; and (2) reinforced conditions, whereby cued responding was accompanied by associated outcomes. PL and IL inactivation attenuated nonreinforced and reinforced goal-directed cue responding, whereas NAc core and shell inactivation impaired nonreinforced responding for the appetitive, but not aversive cue. Furthermore, PL-core and IL-shell inhibition disinhibited nonreinforced but not reinforced cue responding. Our findings implicate the mPFC as a site of confluence of motivationally significant cues and outcomes, and in the regulation of nonreinforced cue responding via downstream NAc targets.SIGNIFICANCE STATEMENT The ability to discriminate and respond appropriately to environmental cues that signal availability of reward or punishment is essential for survival. The medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) have been implicated in adaptive and maladaptive behavior elicited by fear-related and drug-associated cues. However, less is known about the role they play in orchestrating adaptive responses to natural reward and punishment cues within the same behavioral task. Here, using a novel discriminative cue responding task combined with pharmacological or chemogenetic inhibition of mPFC, NAc and mPFC-NAc circuits, we report that mPFC is critically involved in responding to changing cued response-outcomes, both when the responses are reinforced, and nonreinforced. Furthermore, the mPFC coordinates nonreinforced discriminative cue responding by suppressing inappropriate responding via downstream NAc targets.
Collapse
Affiliation(s)
- Laurie Hamel
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Bilgehan Cavdaroglu
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Dylan Yeates
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - David Nguyen
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Sadia Riaz
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Dylan Patterson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5 Canada
| | - Nisma Khan
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Nardin Kirolos
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Katherine Roper
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Quynh An Ha
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, M1C 1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5 Canada
| |
Collapse
|
31
|
Long-Term Effects of Repeated Social Defeat Stress on Brain Activity during Social Interaction in BALB/c Mice. eNeuro 2022; 9:ENEURO.0068-22.2022. [PMID: 35437264 PMCID: PMC9070729 DOI: 10.1523/eneuro.0068-22.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022] Open
Abstract
Understanding the long-term effects of stress on brain function is crucial for understanding the mechanisms of depression. The BALB/c mouse strain has high susceptibility to stress and is thus an effective model for depression. The long-term effects of repeated social defeat stress (SDS) on BALB/c mice, however, are not clear. Here, we investigated the effects of repeated SDS in male BALB/c mice over the subsequent two weeks. Some defeated mice immediately exhibited social avoidance, whereas anxiety-like behavior was only evident at later periods. Furthermore, defeated mice segregated into two groups based on the level of social avoidance, namely, avoidant and nonavoidant mice. The characteristic of avoidance or nonavoidance in each individual was not fixed over the two weeks. In addition, we developed a semi-automated method for analyzing c-Fos expression in the mouse brain to investigate the effect of repeated SDS on brain activity more than two weeks after the end of the stress exposure. Following social interaction, c-Fos expression was reduced in several brain regions in the defeated mice compared with control mice. The correlation of c-Fos expression among these brain areas, with exception of the medial prefrontal cortex (mPFC) and central amygdala (CeA), was increased in defeated mice, suggesting increased synchrony. Notably, c-Fos expression in the lateral habenula (LHb) was different between mice that exhibited social avoidance from immediately after the repeated SDS and those that exhibited social avoidance only at later periods. These observations provide insight into the long-term effects of social stress on behavior and brain activity.
Collapse
|
32
|
Malik R, Li Y, Schamiloglu S, Sohal VS. Top-down control of hippocampal signal-to-noise by prefrontal long-range inhibition. Cell 2022; 185:1602-1617.e17. [PMID: 35487191 PMCID: PMC10027400 DOI: 10.1016/j.cell.2022.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/15/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Prefrontal cortex (PFC) is postulated to exert "top-down control" on information processing throughout the brain to promote specific behaviors. However, pathways mediating top-down control remain poorly understood. In particular, knowledge about direct prefrontal connections that might facilitate top-down control of hippocampal information processing remains sparse. Here we describe monosynaptic long-range GABAergic projections from PFC to hippocampus. These preferentially inhibit vasoactive intestinal polypeptide-expressing interneurons, which are known to disinhibit hippocampal microcircuits. Indeed, stimulating prefrontal-hippocampal GABAergic projections increases hippocampal feedforward inhibition and reduces hippocampal activity in vivo. The net effect of these actions is to specifically enhance the signal-to-noise ratio for hippocampal encoding of object locations and augment object-induced increases in spatial information. Correspondingly, activating or inhibiting these projections promotes or suppresses object exploration, respectively. Together, these results elucidate a top-down prefrontal pathway in which long-range GABAergic projections target disinhibitory microcircuits, thereby enhancing signals and network dynamics underlying exploratory behavior.
Collapse
Affiliation(s)
- Ruchi Malik
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Yi Li
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Selin Schamiloglu
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
| | - Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
33
|
Huang C, Wang Y, Chen P, Shan QH, Wang H, Ding LF, Bi GQ, Zhou JN. Single-cell reconstruction reveals input patterns and pathways into corticotropin-releasing factor neurons in the central amygdala in mice. Commun Biol 2022; 5:322. [PMID: 35388122 PMCID: PMC8986827 DOI: 10.1038/s42003-022-03260-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/11/2022] [Indexed: 11/30/2022] Open
Abstract
Corticotropin-releasing factor (CRF) neurons are one of the most densely distributed cell types in the central amygdala (CeA), and are involved in a wide range of behaviors including anxiety and learning. However, the fundamental input circuits and patterns of CeA-CRF neurons are still unclear. Here, we generate a monosynaptic-input map onto CeA-CRF neurons at single-cell resolution via a retrograde rabies-virus system. We find all inputs are located in 44 nested subregions that directly innervate CeA-CRF neurons; most of them are top-down convergent inputs expressing Ca2+/calmodulin-dependent protein kinase II, and are centralized in cortex, especially in the layer 4 of the somatosensory cortex, which may directly relay information from the thalamus. While the bottom-up divergent inputs have the highest proportion of glutamate decarboxylase expression. Finally, en passant structures of single input neuron are revealed by in-situ reconstruction in a modified 3D-reference atlas, represented by a Periaqueductal gray-Subparafascicular nucleus-Subthalamic nucleus-Globus pallidus-Caudoputamen-CeA pathway. Taken together, our findings provide morphological and connectivity properties of inputs onto CeA-CRF neurons, which may provide insights for future studies interrogating circuit mechanisms of CeA-CRF neurons in mediating various functions. Viral retrograde tracing identifies input regions and patterns into the corticotropin releasing factor-expressing neurons in central amygdala, providing an important resource to disentangle the role of these cells in fear and anxiety.
Collapse
Affiliation(s)
- Chuan Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Yu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Peng Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qing-Hong Shan
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hao Wang
- National Engineering Laboratory for Brain-inspired Intelligence Technology and Application, University of Science and Technology of China, Hefei, China.,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| | - Lu-Feng Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiang-Ning Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, PR China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
34
|
Sohal VS. Transforming Discoveries About Cortical Microcircuits and Gamma Oscillations Into New Treatments for Cognitive Deficits in Schizophrenia. Am J Psychiatry 2022; 179:267-276. [PMID: 35360913 DOI: 10.1176/appi.ajp.20220147] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major cause of disability in schizophrenia is cognitive impairment, which remains largely refractory to existing treatments. This reflects the fact that antipsychotics and other therapies have not been designed to address specific brain abnormalities that cause cognitive impairment. This overview proposes that understanding how specific cellular and synaptic loci within cortical microcircuits contribute to cortical gamma oscillations may reveal treatments for cognitive impairment. Gamma oscillations are rhythmic patterns of high frequency (∼30-100 Hz) neuronal activity that are synchronized within and across brain regions, generated by a class of inhibitory interneurons that express parvalbumin, and recruited during a variety of cognitive tasks. In schizophrenia, both parvalbumin interneuron function and task-evoked gamma oscillations are deficient. While it has long been controversial whether gamma oscillations are merely a biomarker of circuit function or actually contribute to information processing by neuronal networks, recent neurobiological studies in mice have shown that disrupting or enhancing synchronized gamma oscillations can reproduce or ameliorate cognitive deficits resembling those seen in schizophrenia. In fact, transiently enhancing the synchrony of parvalbumin interneuron-generated gamma oscillations can lead to long-lasting improvements in cognition in mice that model aspects of schizophrenia. Gamma oscillations emerge from specific patterns of connections between a variety of cell types within cortical microcircuits. Thus, a critical next step is to understand how specific cell types and synapses generate gamma oscillations, mediate the effects of gamma oscillations on information processing, and/or undergo plasticity following the induction of gamma oscillations. Modulating these circuit loci, potentially in combination with other approaches such as cognitive training and brain stimulation, may yield potent and selective interventions for enhancing cognition in schizophrenia.
Collapse
Affiliation(s)
- Vikaas S Sohal
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, and Kavli Institute for Fundamental Neuroscience, University of California, San Francisco
| |
Collapse
|
35
|
Biel A, Castanza AS, Rutherford R, Fair SR, Chifamba L, Wester JC, Hester ME, Hevner RF. AUTS2 Syndrome: Molecular Mechanisms and Model Systems. Front Mol Neurosci 2022; 15:858582. [PMID: 35431798 PMCID: PMC9008325 DOI: 10.3389/fnmol.2022.858582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 01/16/2023] Open
Abstract
AUTS2 syndrome is a genetic disorder that causes intellectual disability, microcephaly, and other phenotypes. Syndrome severity is worse when mutations involve 3' regions (exons 9-19) of the AUTS2 gene. Human AUTS2 protein has two major isoforms, full-length (1259 aa) and C-terminal (711 aa), the latter produced from an alternative transcription start site in exon 9. Structurally, AUTS2 contains the putative "AUTS2 domain" (∼200 aa) conserved among AUTS2 and its ohnologs, fibrosin, and fibrosin-like-1. Also, AUTS2 contains extensive low-complexity sequences and intrinsically disordered regions, features typical of RNA-binding proteins. During development, AUTS2 is expressed by specific progenitor cell and neuron types, including pyramidal neurons and Purkinje cells. AUTS2 localizes mainly in cell nuclei, where it regulates transcription and RNA metabolism. Some studies have detected AUTS2 in neurites, where it may regulate cytoskeletal dynamics. Neurodevelopmental functions of AUTS2 have been studied in diverse model systems. In zebrafish, auts2a morphants displayed microcephaly. In mice, excision of different Auts2 exons (7, 8, or 15) caused distinct phenotypes, variously including neonatal breathing abnormalities, cerebellar hypoplasia, dentate gyrus hypoplasia, EEG abnormalities, and behavioral changes. In mouse embryonic stem cells, AUTS2 could promote or delay neuronal differentiation. Cerebral organoids, derived from an AUTS2 syndrome patient containing a pathogenic missense variant in exon 9, exhibited neocortical growth defects. Emerging technologies for analysis of human cerebral organoids will be increasingly useful for understanding mechanisms underlying AUTS2 syndrome. Questions for future research include whether AUTS2 binds RNA directly, how AUTS2 regulates neurogenesis, and how AUTS2 modulates neural circuit formation.
Collapse
Affiliation(s)
- Alecia Biel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Anthony S. Castanza
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Summer R. Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Lincoln Chifamba
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jason C. Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Mark E. Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Robert F. Hevner
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
36
|
Urrutia-Piñones J, Morales-Moraga C, Sanguinetti-González N, Escobar AP, Chiu CQ. Long-Range GABAergic Projections of Cortical Origin in Brain Function. Front Syst Neurosci 2022; 16:841869. [PMID: 35392440 PMCID: PMC8981584 DOI: 10.3389/fnsys.2022.841869] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
The study of long-range GABAergic projections has traditionally been focused on those with subcortical origin. In the last few years, cortical GABAergic neurons have been shown to not only mediate local inhibition, but also extend long-range axons to remote cortical and subcortical areas. In this review, we delineate the different types of long-range GABAergic neurons (LRGNs) that have been reported to arise from the hippocampus and neocortex, paying attention to the anatomical and functional circuits they form to understand their role in behavior. Although cortical LRGNs are similar to their interneuron and subcortical counterparts, they comprise distinct populations that show specific patterns of cortico-cortical and cortico-fugal connectivity. Functionally, cortical LRGNs likely induce timed disinhibition in target regions to synchronize network activity. Thus, LRGNs are emerging as a new element of cortical output, acting in concert with long-range excitatory projections to shape brain function in health and disease.
Collapse
Affiliation(s)
- Jocelyn Urrutia-Piñones
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Camila Morales-Moraga
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Nicole Sanguinetti-González
- Ph.D. Program in Neuroscience, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Angelica P. Escobar
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Neurobiología y Fisiopatología Integrativa, Universidad de Valparaíso, Valparaíso, Chile
| | - Chiayu Q. Chiu
- Facultad de Ciencias, Instituto de Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
37
|
Apicella AJ, Marchionni I. VIP-Expressing GABAergic Neurons: Disinhibitory vs. Inhibitory Motif and Its Role in Communication Across Neocortical Areas. Front Cell Neurosci 2022; 16:811484. [PMID: 35221922 PMCID: PMC8867699 DOI: 10.3389/fncel.2022.811484] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
GABAergic neurons play a crucial role in shaping cortical activity. Even though GABAergic neurons constitute a small fraction of cortical neurons, their peculiar morphology and functional properties make them an intriguing and challenging task to study. Here, we review the basic anatomical features, the circuit properties, and the possible role in the relevant behavioral task of a subclass of GABAergic neurons that express vasoactive intestinal polypeptide (VIP). These studies were performed using transgenic mice in which the VIP-expressing neurons can be recognized using fluorescent proteins and optogenetic manipulation to control (or regulate) their electrical activity. Cortical VIP-expressing neurons are more abundant in superficial cortical layers than other cortical layers, where they are mainly studied. Optogenetic and paired recordings performed in ex vivo cortical preparations show that VIP-expressing neurons mainly exert their inhibitory effect onto somatostatin-expressing (SOM) inhibitory neurons, leading to a disinhibitory effect onto excitatory pyramidal neurons. However, this subclass of GABAergic neurons also releases neurotransmitters onto other GABAergic and non-GABAergic neurons, suggesting other possible circuit roles than a disinhibitory effect. The heterogeneity of VIP-expressing neurons also suggests their involvement and recruitment during different functions via the inhibition/disinhibition of GABAergic and non-GABAergic neurons locally and distally, depending on the specific local circuit in which they are embedded, with potential effects on the behavioral states of the animal. Although VIP-expressing neurons represent only a tiny fraction of GABAergic inhibitory neurons in the cortex, these neurons’ selective activation/inactivation could produce a relevant behavioral effect in the animal. Regardless of the increasing finding and discoveries on this subclass of GABAergic neurons, there is still a lot of missing information, and more studies should be done to unveil their role at the circuit and behavior level in different cortical layers and across different neocortical areas.
Collapse
Affiliation(s)
- Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, United States
| | - Ivan Marchionni
- Department of Biomedical Sciences, University of Padova, Padua, Italy.,Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| |
Collapse
|
38
|
Siemsen BM, Barry SM, Vollmer KM, Green LM, Brock AG, Westphal AM, King RA, DeVries DM, Otis JM, Cowan CW, Scofield MD. A Subset of Nucleus Accumbens Neurons Receiving Dense and Functional Prelimbic Cortical Input Are Required for Cocaine Seeking. Front Cell Neurosci 2022; 16:844243. [PMID: 35281297 PMCID: PMC8907444 DOI: 10.3389/fncel.2022.844243] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background Prelimbic cortical projections to the nucleus accumbens core are critical for cue-induced cocaine seeking, but the identity of the accumbens neuron(s) targeted by this projection, and the transient neuroadaptations contributing to relapse within these cells, remain unknown. Methods Male Sprague-Dawley rats underwent cocaine or sucrose self-administration, extinction, and cue-induced reinstatement. Pathway-specific chemogenetics, patch-clamp electrophysiology, in vivo electrochemistry, and high-resolution confocal microscopy were used to identify and characterize a small population of nucleus accumbens core neurons that receive dense prelimbic cortical input to determine their role in regulating cue-induced cocaine and natural reward seeking. Results Chemogenetic inhibition of prelimbic cortical projections to the nucleus accumbens core suppressed cue-induced cocaine relapse and normalized real-time cue-evoked increases in accumbens glutamate release to that of sucrose seeking animals. Furthermore, chemogenetic inhibition of the population of nucleus accumbens core neurons receiving the densest prelimbic cortical input suppressed cocaine, but not sucrose seeking. These neurons also underwent morphological plasticity during the peak of cocaine seeking in the form of dendritic spine expansion and increased ensheathment by astroglial processes at large spines. Conclusion We identified and characterized a unique subpopulation of nucleus accumbens neurons that receive dense prelimbic cortical input. The functional specificity of this subpopulation is underscored by their ability to mediate cue-induced cocaine relapse, but not sucrose seeking. This subset of cells represents a novel target for addiction therapeutics revealed by anterograde targeting to interrogate functional circuits imbedded within a known network.
Collapse
Affiliation(s)
- Benjamin M. Siemsen
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Sarah M. Barry
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Kelsey M. Vollmer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Lisa M. Green
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Ashley G. Brock
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Annaka M. Westphal
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Raven A. King
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Derek M. DeVries
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - James M. Otis
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Christopher W. Cowan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Michael D. Scofield
- Department of Anesthesia and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
39
|
Morales L, González-Alonso A, Desfilis E, Medina L. Precise Mapping of Otp Expressing Cells Across Different Pallial Regions Throughout Ontogenesis Using Otp-Specific Reporter Transgenic Mice. Front Neural Circuits 2022; 16:831074. [PMID: 35250495 PMCID: PMC8891171 DOI: 10.3389/fncir.2022.831074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Taking advantage of two Otp-specific reporter lines of transgenic mice (Otp-eGFP and Otp-Cre; Rpl22-HA), we identify and describe different Otp cell populations across various pallial regions, including the pallial amygdala, the piriform cortex, the mesocortex, the neocortex, and the hippocampal complex. Some of these populations can be followed throughout development, suggesting migration from external sources (for example, those of the pallial amygdala and at least some of the cingulate cortex). Other cells become visible during postnatal development (some of those in the neocortex and hippocampal formation) or in adulthood (those of the parahippocampal lobe), and seem to be produced locally. We discuss the possible role of Otp in these different populations during different moments of ontogenesis. We also analyze the connectivity patterns of some of these cells and discuss their functional implications. For example, our data suggest that Otp cells of the pallial amygdala might be engaged in networks with other Otp cells of the medial amygdala with the same embryonic origin, and may regulate specific aspects of social behavior. Regarding Otp cells in the parahippocampal lobe, they seem to be projection neurons and may regulate hippocampal function during spatial navigation and memory formation. The two reporter transgenic mice employed here provide very powerful tools for high precision studies on these different Otp cells of the pallium, but careful attention should be paid to the age and to differences between lines.
Collapse
Affiliation(s)
- Lorena Morales
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Alba González-Alonso
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- Serra Húnter Fellows, Lleida, Spain
| | - Loreta Medina
- Departament de Medicina Experimental, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary Developmental Neurobiology, Lleida’s Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
- Serra Húnter Fellows, Lleida, Spain
- *Correspondence: Loreta Medina, ,
| |
Collapse
|
40
|
Mack NR, Deng SX, Yang SS, Shu YS, Gao WJ. Prefrontal Cortical Control of Anxiety: Recent Advances. Neuroscientist 2022:10738584211069071. [PMID: 35086369 PMCID: PMC9869286 DOI: 10.1177/10738584211069071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dysfunction in the prefrontal cortex is commonly implicated in anxiety disorders, but the mechanisms remain unclear. Approach-avoidance conflict tasks have been extensively used in animal research to better understand how changes in neural activity within the prefrontal cortex contribute to avoidance behaviors, which are believed to play a major role in the maintenance of anxiety disorders. In this article, we first review studies utilizing in vivo electrophysiology to reveal the relationship between changes in neural activity and avoidance behavior in rodents. We then review recent studies that take advantage of optical and genetic techniques to test the unique contribution of specific prefrontal cortex circuits and cell types to the control of anxiety-related avoidance behaviors. This new body of work reveals that behavior during approach-avoidance conflict is dynamically modulated by individual cell types, distinct neural pathways, and specific oscillatory frequencies. The integration of these different pathways, particularly as mediated by interactions between excitatory and inhibitory neurons, represents an exciting opportunity for the future of understanding anxiety.
Collapse
Affiliation(s)
- Nancy R. Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Sui-Xin Deng
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - You-Sheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China,Corresponding author: You-Sheng Shu, Ph.D., Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Fudan University, 131 Dong’an Road, Xuhui District, Shanghai, 200032, China, ; Wen-Jun Gao, M.D., Ph.D.,
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129,Corresponding author: You-Sheng Shu, Ph.D., Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Fudan University, 131 Dong’an Road, Xuhui District, Shanghai, 200032, China, ; Wen-Jun Gao, M.D., Ph.D.,
| |
Collapse
|
41
|
Kearns AM, Siemsen BM, Hopkins JL, Weber RA, Scofield MD, Peters J, Reichel CM. Chemogenetic inhibition of corticostriatal circuits reduces cued reinstatement of methamphetamine seeking. Addict Biol 2022; 27:e13097. [PMID: 34431593 PMCID: PMC8809357 DOI: 10.1111/adb.13097] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022]
Abstract
Methamphetamine (meth) causes enduring changes within the medial prefrontal cortex (mPFC) and the nucleus accumbens (NA). Projections from the mPFC to the NA have a distinct dorsal-ventral distribution, with the prelimbic (PL) mPFC projecting to the NAcore, and the infralimbic (IL) mPFC projecting to the NAshell. Inhibition of these circuits has opposing effects on cocaine relapse. Inhibition of PL-NAcore reduces cued reinstatement of cocaine seeking and IL-NAshell inhibition reinstates cocaine seeking. Meth, however, exhibits a different profile, as pharmacological inhibition of either the PL or IL decrease cued reinstatement of meth-seeking. The potentially opposing roles of the PL-NAcore and IL-NAshell projections remain to be explored in the context of cued meth seeking. Here we used an intersectional viral vector approach that employs a retrograde delivery of Cre from the NA and Cre-dependent expression of DREADD in the mPFC, in both male and female rats to inhibit or activate these parallel pathways. Inhibition of the PL-NAcore circuit reduced cued reinstatement of meth seeking under short and long-access meth self-administration and after withdrawal with and without extinction. Inhibition of the IL-NAshell also decreased meth cued reinstatement. Activation of the parallel circuits was without an effect. These studies show that inhibition of the PL-NAcore or the IL-NAshell circuits can inhibit reinstated meth seeking. Thus, the neural circuitry mediating cued reinstatement of meth seeking is similar to cocaine in the dorsal, but not ventral, mPFC-NA circuit.
Collapse
Affiliation(s)
- Angela M. Kearns
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| | - Benjamin M. Siemsen
- Department of Anesthesiology Medical University of South Carolina Charleston South Carolina USA
| | - Jordan L. Hopkins
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| | - Rachel A. Weber
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| | - Michael D. Scofield
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
- Department of Anesthesiology Medical University of South Carolina Charleston South Carolina USA
| | - Jamie Peters
- Department of Anesthesiology University of Colorado Denver Aurora Colorado USA
- Department of Pharmacology University of Colorado Denver Aurora Colorado USA
| | - Carmela M. Reichel
- Department of Neuroscience Medical University of South Carolina Charleston South Carolina USA
| |
Collapse
|
42
|
AlSubaie R, Wee RWS, Ritoux A, Mishchanchuk K, Passlack J, Regester D, MacAskill AF. Control of parallel hippocampal output pathways by amygdalar long-range inhibition. eLife 2021; 10:e74758. [PMID: 34845987 PMCID: PMC8654375 DOI: 10.7554/elife.74758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Projections from the basal amygdala (BA) to the ventral hippocampus (vH) are proposed to provide information about the rewarding or threatening nature of learned associations to support appropriate goal-directed and anxiety-like behaviour. Such behaviour occurs via the differential activity of multiple, parallel populations of pyramidal neurons in vH that project to distinct downstream targets, but the nature of BA input and how it connects with these populations is unclear. Using channelrhodopsin-2-assisted circuit mapping in mice, we show that BA input to vH consists of both excitatory and inhibitory projections. Excitatory input specifically targets BA- and nucleus accumbens-projecting vH neurons and avoids prefrontal cortex-projecting vH neurons, while inhibitory input preferentially targets BA-projecting neurons. Through this specific connectivity, BA inhibitory projections gate place-value associations by controlling the activity of nucleus accumbens-projecting vH neurons. Our results define a parallel excitatory and inhibitory projection from BA to vH that can support goal-directed behaviour.
Collapse
Affiliation(s)
- Rawan AlSubaie
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Ryan WS Wee
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Anne Ritoux
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Karyna Mishchanchuk
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Jessica Passlack
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Daniel Regester
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Andrew F MacAskill
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
43
|
Conti E, Scaglione A, de Vito G, Calugi F, Pasquini M, Pizzorusso T, Micera S, Allegra Mascaro AL, Pavone FS. Combining Optogenetic Stimulation and Motor Training Improves Functional Recovery and Perilesional Cortical Activity. Neurorehabil Neural Repair 2021; 36:107-118. [PMID: 34761714 DOI: 10.1177/15459683211056656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. An ischemic stroke is followed by the remapping of motor representation and extensive changes in cortical excitability involving both hemispheres. Although stimulation of the ipsilesional motor cortex, especially when paired with motor training, facilitates plasticity and functional restoration, the remapping of motor representation of the single and combined treatments is largely unexplored. Objective. We investigated if spatio-temporal features of motor-related cortical activity and the new motor representations are related to the rehabilitative treatment or if they can be specifically associated to functional recovery. Methods. We designed a novel rehabilitative treatment that combines neuro-plasticizing intervention with motor training. In detail, optogenetic stimulation of peri-infarct excitatory neurons expressing Channelrhodopsin 2 was associated with daily motor training on a robotic device. The effectiveness of the combined therapy was compared with spontaneous recovery and with the single treatments (ie optogenetic stimulation or motor training). Results. We found that the extension and localization of the new motor representations are specific to the treatment, where most treatments promote segregation of the motor representation to the peri-infarct region. Interestingly, only the combined therapy promotes both the recovery of forelimb functionality and the rescue of spatio-temporal features of motor-related activity. Functional recovery results from a new excitatory/inhibitory balance between hemispheres as revealed by the augmented motor response flanked by the increased expression of parvalbumin positive neurons in the peri-infarct area. Conclusions. Our findings highlight that functional recovery and restoration of motor-related neuronal activity are not necessarily coupled during post-stroke recovery. Indeed the reestablishment of cortical activation features of calcium transient is distinctive of the most effective therapeutic approach, the combined therapy.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy
| | - Alessandro Scaglione
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy
| | - Giuseppe de Vito
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Francesco Calugi
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Maria Pasquini
- The BioRobotics Institute and Department of Excellence in Robotics and AI, 19005Scuola Superiore Sant'Anna, Pisa, Italy.,Center for Neuroprosthetics and Institute of Bioengineering, 454629Bertarelli Foundation Chair in Translational NeuroEngineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tommaso Pizzorusso
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,Department of Neuroscience, Psychology, Drug Research and Child Health, 9300University of Florence, Florence, Italy
| | - Silvestro Micera
- The BioRobotics Institute and Department of Excellence in Robotics and AI, 19005Scuola Superiore Sant'Anna, Pisa, Italy.,Center for Neuroprosthetics and Institute of Bioengineering, 454629Bertarelli Foundation Chair in Translational NeuroEngineering, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, 9327National Research Council, Pisa, Italy.,226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy
| | - Francesco Saverio Pavone
- 226476European Laboratory for Non-linear Spectroscopy University of Florence, Florence, Italy.,Department of Physics and Astronomy, 9300University of Florence, Florence, Italy.,National Institute of Optics, 9327National Research Council, Florence, Italy
| |
Collapse
|
44
|
Bach EC, Weiner JL. Binge-like alcohol drinking remodels the inhibitory microcircuitry of the prelimbic cortex in male and female mice. Neuropsychopharmacology 2021; 46:1859-1860. [PMID: 34285370 PMCID: PMC8429577 DOI: 10.1038/s41386-021-01103-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Eva C. Bach
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - Jeffrey L. Weiner
- grid.241167.70000 0001 2185 3318Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC USA
| |
Collapse
|
45
|
Development, Diversity, and Death of MGE-Derived Cortical Interneurons. Int J Mol Sci 2021; 22:ijms22179297. [PMID: 34502208 PMCID: PMC8430628 DOI: 10.3390/ijms22179297] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/17/2022] Open
Abstract
In the mammalian brain, cortical interneurons (INs) are a highly diverse group of cells. A key neurophysiological question concerns how each class of INs contributes to cortical circuit function and whether specific roles can be attributed to a selective cell type. To address this question, researchers are integrating knowledge derived from transcriptomic, histological, electrophysiological, developmental, and functional experiments to extensively characterise the different classes of INs. Our hope is that such knowledge permits the selective targeting of cell types for therapeutic endeavours. This review will focus on two of the main types of INs, namely the parvalbumin (PV+) or somatostatin (SOM+)-containing cells, and summarise the research to date on these classes.
Collapse
|
46
|
Bertero A, Garcia C, Apicella AJ. Corticofugal VIP Gabaergic Projection Neurons in the Mouse Auditory and Motor Cortex. Front Neural Circuits 2021; 15:714780. [PMID: 34366798 PMCID: PMC8343102 DOI: 10.3389/fncir.2021.714780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Anatomical and physiological studies have described the cortex as a six-layer structure that receives, elaborates, and sends out information exclusively as excitatory output to cortical and subcortical regions. This concept has increasingly been challenged by several anatomical and functional studies that showed that direct inhibitory cortical outputs are also a common feature of the sensory and motor cortices. Similar to their excitatory counterparts, subsets of Somatostatin- and Parvalbumin-expressing neurons have been shown to innervate distal targets like the sensory and motor striatum and the contralateral cortex. However, no evidence of long-range VIP-expressing neurons, the third major class of GABAergic cortical inhibitory neurons, has been shown in such cortical regions. Here, using anatomical anterograde and retrograde viral tracing, we tested the hypothesis that VIP-expressing neurons of the mouse auditory and motor cortices can also send long-range projections to cortical and subcortical areas. We were able to demonstrate, for the first time, that VIP-expressing neurons of the auditory cortex can reach not only the contralateral auditory cortex and the ipsilateral striatum and amygdala, as shown for Somatostatin- and Parvalbumin-expressing long-range neurons, but also the medial geniculate body and both superior and inferior colliculus. We also demonstrate that VIP-expressing neurons of the motor cortex send long-range GABAergic projections to the dorsal striatum and contralateral cortex. Because of its presence in two such disparate cortical areas, this would suggest that the long-range VIP projection is likely a general feature of the cortex’s network.
Collapse
Affiliation(s)
- Alice Bertero
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, United States
| | - Charles Garcia
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, United States
| | - Alfonso Junior Apicella
- Department of Biology, Neurosciences Institute, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
47
|
Bae JW, Jeong H, Yoon YJ, Bae CM, Lee H, Paik SB, Jung MW. Parallel processing of working memory and temporal information by distinct types of cortical projection neurons. Nat Commun 2021; 12:4352. [PMID: 34272368 PMCID: PMC8285375 DOI: 10.1038/s41467-021-24565-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
It is unclear how different types of cortical projection neurons work together to support diverse cortical functions. We examined the discharge characteristics and inactivation effects of intratelencephalic (IT) and pyramidal tract (PT) neurons-two major types of cortical excitatory neurons that project to cortical and subcortical structures, respectively-in the deep layer of the medial prefrontal cortex in mice performing a delayed response task. We found stronger target-dependent firing of IT than PT neurons during the delay period. We also found the inactivation of IT neurons, but not PT neurons, impairs behavioral performance. In contrast, PT neurons carry more temporal information than IT neurons during the delay period. Our results indicate a division of labor between IT and PT projection neurons in the prefrontal cortex for the maintenance of working memory and for tracking the passage of time, respectively.
Collapse
Affiliation(s)
- Jung Won Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Huijeong Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Young Ju Yoon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Chan Mee Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea
| | - Hyeonsu Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Se-Bum Paik
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Program of Brain and Cognitive Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Korea.
| |
Collapse
|
48
|
Obesity and dietary fat influence dopamine neurotransmission: exploring the convergence of metabolic state, physiological stress, and inflammation on dopaminergic control of food intake. Nutr Res Rev 2021; 35:236-251. [PMID: 34184629 DOI: 10.1017/s0954422421000196] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of this review is to explore how metabolic changes induced by diets high in saturated fat (HFD) affect nucleus accumbens (NAc) dopamine neurotransmission and food intake, and to explore how stress and inflammation influence this process. Recent evidence linked diet-induced obesity and HFD with reduced dopamine release and reuptake. Altered dopamine neurotransmission could disrupt satiety circuits between NAc dopamine terminals and projections to the hypothalamus. The NAc directs learning and motivated behaviours based on homeostatic needs and psychological states. Therefore, impaired dopaminergic responses to palatable food could contribute to weight gain by disrupting responses to food cues or stress, which impacts type and quantity of food consumed. Specifically, saturated fat promotes neuronal resistance to anorectic hormones and activation of immune cells that release proinflammatory cytokines. Insulin has been shown to regulate dopamine neurotransmission by enhancing satiety, but less is known about effects of diet-induced stress. Therefore, changes to dopamine signalling due to HFD warrant further examination to characterise crosstalk of cytokines with endocrine and neurotransmitter signals. A HFD promotes a proinflammatory environment that may disrupt neuronal endocrine function and dopamine signalling that could be exacerbated by the hypothalamic-pituitary-adrenal and κ-opioid receptor stress systems. Together, these adaptive changes may dysregulate eating by changing NAc dopamine during hedonic versus homeostatic food intake. This could drive palatable food cravings during energy restriction and hinder weight loss. Understanding links between HFD and dopamine neurotransmission will inform treatment strategies for diet-induced obesity and identify molecular candidates for targeted therapeutics.
Collapse
|
49
|
Tan LL, Oswald MJ, Kuner R. Neurobiology of brain oscillations in acute and chronic pain. Trends Neurosci 2021; 44:629-642. [PMID: 34176645 DOI: 10.1016/j.tins.2021.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
Pain is a complex perceptual phenomenon. Coordinated activity among local and distant brain networks is a central element of the neural underpinnings of pain. Brain oscillatory rhythms across diverse frequency ranges provide a functional substrate for coordinating activity across local neuronal ensembles and anatomically distant brain areas in pain networks. This review addresses parallels between insights from human and rodent analyses of oscillatory rhythms in acute and chronic pain and discusses recent rodent-based studies that have shed light on mechanistic underpinnings of brain oscillatory dynamics in pain-related behaviors. We highlight the potential for therapeutic modulation of oscillatory rhythms, and identify outstanding questions and challenges to be addressed in future research.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany.
| | - Manfred Josef Oswald
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany.
| |
Collapse
|
50
|
Bittar TP, Labonté B. Functional Contribution of the Medial Prefrontal Circuitry in Major Depressive Disorder and Stress-Induced Depressive-Like Behaviors. Front Behav Neurosci 2021; 15:699592. [PMID: 34234655 PMCID: PMC8257081 DOI: 10.3389/fnbeh.2021.699592] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Despite decades of research on the neurobiology of major depressive disorder (MDD), the mechanisms underlying its expression remain unknown. The medial prefrontal cortex (mPFC), a hub region involved in emotional processing and stress response elaboration, is highly impacted in MDD patients and animal models of chronic stress. Recent advances showed alterations in the morphology and activity of mPFC neurons along with profound changes in their transcriptional programs. Studies at the circuitry level highlighted the relevance of deciphering the contributions of the distinct prefrontal circuits in the elaboration of adapted and maladapted behavioral responses in the context of chronic stress. Interestingly, MDD presents a sexual dimorphism, a feature recognized in the molecular field but understudied on the circuit level. This review examines the recent literature and summarizes the contribution of the mPFC circuitry in the expression of MDD in males and females along with the morphological and functional alterations that change the activity of these neuronal circuits in human MDD and animal models of depressive-like behaviors.
Collapse
Affiliation(s)
- Thibault P. Bittar
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|