1
|
Fraser SD, Klaassen RV, Villmann C, Smit AB, Harvey RJ. Milestone Review: Unlocking the Proteomics of Glycine Receptor Complexes. J Neurochem 2025; 169:e70061. [PMID: 40285371 PMCID: PMC12032442 DOI: 10.1111/jnc.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Glycine receptors (GlyRs) are typically known for mediating inhibitory synaptic transmission within the spinal cord and brainstem, but they also have key roles in embryonic brain development, learning/memory, inflammatory pain sensitization, and rhythmic breathing. GlyR dysfunction has been implicated in multiple neurological disease states, including startle disease (GlyR α1β) and neurodevelopmental disorders (NDDs) including autism spectrum disorder (ASD), intellectual disability (ID), developmental delay (DD) and epilepsy (GlyR α2). However, GlyRs do not operate in isolation but depend upon stable and transient protein-protein interactions (PPIs) that influence synaptic localization, homeostasis, signaling pathways, and receptor function. Despite the affinity purification of GlyRs using the antagonist strychnine over four decades ago, we still have much to learn about native GlyR stoichiometry and accessory proteins. In contrast to other neurotransmitter receptors, < 20 potential GlyR interactors have been identified to date. These include some well-known proteins that are vital to inhibitory synapse function, such as the postsynaptic scaffolding protein gephyrin and the RhoGEF collybistin. However, the majority of known interactors either bind to the GlyR α1 and β subunits, or the binding partner in the GlyR complex is unknown. Several potential GlyR interactors are not found at inhibitory synapses and/or have no clear functional role. Moreover, other GlyR interactors are secondary interactors that bind indirectly, for example, via gephyrin. In this review, we provide a critical evaluation of known GlyR interacting proteins and methodological limitations to date. We also provide a road map for the use of innovative and emerging interaction proteomic techniques that will unlock the GlyR interactome. With the emergence of disease-associated missense mutations in the α1, α2 and β subunit intracellular domains in startle disease and NDDs, understanding the identity and roles of GlyR accessory proteins is vital in understanding GlyR function and dysfunction in health and disease.
Collapse
Affiliation(s)
- Sean D. Fraser
- School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- National PTSD Research CentreThompson Institute, University of the Sunshine CoastBirtinyaQueenslandAustralia
| | - Remco V. Klaassen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Carmen Villmann
- Institute of Clinical NeurobiologyUniversity Hospital, Julius‐Maximilians‐University of WürzburgWürzburgGermany
| | - August B. Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchAmsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Robert J. Harvey
- School of HealthUniversity of the Sunshine CoastMaroochydoreQueenslandAustralia
- National PTSD Research CentreThompson Institute, University of the Sunshine CoastBirtinyaQueenslandAustralia
| |
Collapse
|
2
|
Fraser SD, Harvey RJ. The emerging role of glycine receptor α2 subunit defects in neurodevelopmental disorders. Front Mol Neurosci 2025; 18:1550863. [PMID: 40007572 PMCID: PMC11850347 DOI: 10.3389/fnmol.2025.1550863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Rare neurodevelopmental disorders (NDDs) are one of the most significant unmet challenges in healthcare due to their lifelong nature, high management costs, and recurrence within families. This review will focus on newly-emerging genetic forms of NDDs resulting from variants in the glycine receptor (GlyR) α2 subunit gene. Studies using Glra2 knockout mice have convincingly demonstrated that GlyR α2 is essential for cortical interneuron migration and progenitor homeostasis. Genetic inactivation of GlyR α2 impairs the capacity of apical progenitors to generate basal progenitors, resulting in an overall reduction of projection neurons in the cerebral cortex. As a result, microcephaly is observed in newborn Glra2 knockout mice, as well as defects in neuronal morphology, increased susceptibility to seizures, and defects in novel object recognition, motor memory consolidation, righting reflexes, novelty-induced locomotion in the open field test, and motivational reward tasks. Consistent with these findings, we and others have identified missense variants and microdeletions in the human GlyR α2 subunit gene (GLRA2) in individuals with autism spectrum disorder (ASD), developmental delay (DD) and/or intellectual disability (ID), often accompanied by microcephaly, language delay and epilepsy. In this review, we highlight the critical role of the GlyR α2 subunit revealed by knockout mice and our current understanding of GlyR α2 pathomechanisms in human NDDs. Finally, we will consider the current gaps in our knowledge, which include: (i) Limited functional validation for GlyR α2 missense variants associated with human NDDs; (ii) The lack of gain-of-function GlyR α2 mouse models; (iii) Our limited knowledge of GlyR α2 interacting proteins. We also highlight potential future developments in the field, including routes to personalized medicines for individuals with GlyR α2 mutations.
Collapse
Affiliation(s)
- Sean D. Fraser
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Robert J. Harvey
- School of Health, University of the Sunshine Coast, Maroochydore, QLD, Australia
- National PTSD Research Centre, Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| |
Collapse
|
3
|
Altas B, Tuffy LP, Patrizi A, Dimova K, Soykan T, Brandenburg C, Romanowski AJ, Whitten JR, Robertson CD, Khim SN, Crutcher GW, Ambrozkiewicz MC, Yagensky O, Krueger-Burg D, Hammer M, Hsiao HH, Laskowski PR, Dyck L, Puche AC, Sassoè-Pognetto M, Chua JJE, Urlaub H, Jahn O, Brose N, Poulopoulos A. Region-Specific Phosphorylation Determines Neuroligin-3 Localization to Excitatory Versus Inhibitory Synapses. Biol Psychiatry 2024; 96:815-828. [PMID: 38154503 PMCID: PMC11209832 DOI: 10.1016/j.biopsych.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Neuroligin-3 is a postsynaptic adhesion molecule involved in synapse development and function. It is implicated in rare, monogenic forms of autism, and its shedding is critical to the tumor microenvironment of gliomas. While other members of the neuroligin family exhibit synapse-type specificity in localization and function through distinct interactions with postsynaptic scaffold proteins, the specificity of neuroligin-3 synaptic localization remains largely unknown. METHODS We investigated the synaptic localization of neuroligin-3 across regions in mouse and human brain samples after validating antibody specificity in knockout animals. We raised a phospho-specific neuroligin antibody and used phosphoproteomics, cell-based assays, and in utero CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas9) knockout and gene replacement to identify mechanisms that regulate neuroligin-3 localization to distinct synapse types. RESULTS Neuroligin-3 exhibits region-dependent synapse specificity, largely localizing to excitatory synapses in cortical regions and inhibitory synapses in subcortical regions of the brain in both mice and humans. We identified specific phosphorylation of cortical neuroligin-3 at a key binding site for recruitment to inhibitory synapses, while subcortical neuroligin-3 remained unphosphorylated. In vitro, phosphomimetic mutation of that site disrupted neuroligin-3 association with the inhibitory postsynaptic scaffolding protein gephyrin. In vivo, phosphomimetic mutants of neuroligin-3 localized to excitatory postsynapses, while phospho-null mutants localized to inhibitory postsynapses. CONCLUSIONS These data reveal an unexpected region-specific pattern of neuroligin-3 synapse specificity, as well as a phosphorylation-dependent mechanism that regulates its recruitment to either excitatory or inhibitory synapses. These findings add to our understanding of how neuroligin-3 is involved in conditions that may affect the balance of excitation and inhibition.
Collapse
Affiliation(s)
- Bekir Altas
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Liam P Tuffy
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Annarita Patrizi
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Kalina Dimova
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Tolga Soykan
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Cheryl Brandenburg
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea J Romanowski
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Julia R Whitten
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Colin D Robertson
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Saovleak N Khim
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Garrett W Crutcher
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mateusz C Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Oleksandr Yagensky
- Research Group Protein Trafficking in Synaptic Development and Function, Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dilja Krueger-Burg
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Matthieu Hammer
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - He-Hsuan Hsiao
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Pawel R Laskowski
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lydia Dyck
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Adam C Puche
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - John J E Chua
- Research Group Protein Trafficking in Synaptic Development and Function, Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Bioanalytics Group, Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandros Poulopoulos
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
4
|
Wang W, Williams DJ, Teoh JJ, Soundararajan D, Zuberi A, Lutz CM, Frankel WN, Makinson CD. Impaired axon initial segment structure and function in a model of ARHGEF9 developmental and epileptic encephalopathy. Proc Natl Acad Sci U S A 2024; 121:e2400709121. [PMID: 39374387 PMCID: PMC11494352 DOI: 10.1073/pnas.2400709121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 10/09/2024] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are rare but devastating and largely intractable childhood epilepsies. Genetic variants in ARHGEF9, encoding a scaffolding protein important for the organization of the postsynaptic density of inhibitory synapses, are associated with DEE accompanied by complex neurological phenotypes. In a mouse model carrying a patient-derived ARHGEF9 variant associated with severe disease, we observed aggregation of postsynaptic proteins and loss of functional inhibitory synapses at the axon initial segment (AIS), altered axo-axonic synaptic inhibition, disrupted action potential generation, and complex seizure phenotypes consistent with clinical observations. These results illustrate diverse roles of ARHGEF9 that converge on regulation of the structure and function of the AIS, thus revealing a pathological mechanism for ARHGEF9-associated DEE. This unique example of a neuropathological condition associated with multiple AIS dysfunctions may inform strategies for treating neurodevelopmental diseases.
Collapse
Affiliation(s)
- Wanqi Wang
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
| | - Damian J. Williams
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY10032
| | - Jia Jie Teoh
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY10032
| | - Divyalakshmi Soundararajan
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY10032
| | - Aamir Zuberi
- The Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, ME04609
| | - Cathleen M. Lutz
- The Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, ME04609
| | - Wayne N. Frankel
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
- The Rare and Orphan Disease Center, The Jackson Laboratory, Bar Harbor, ME04609
| | - Christopher D. Makinson
- Department of Neurology, Center for Translational Research in Neurodevelopmental Disease, Columbia University Irving Medical Center, New York, NY10032
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY10032
- Department of Neurology, Columbia University Irving Medical Center, New York, NY10032
| |
Collapse
|
5
|
Carricaburu E, Benner O, Burlingham SR, Dos Santos Passos C, Hobaugh N, Karr CH, Chanda S. Gephyrin promotes autonomous assembly and synaptic localization of GABAergic postsynaptic components without presynaptic GABA release. Proc Natl Acad Sci U S A 2024; 121:e2315100121. [PMID: 38889143 PMCID: PMC11214061 DOI: 10.1073/pnas.2315100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Synapses containing γ-aminobutyric acid (GABA) constitute the primary centers for inhibitory neurotransmission in our nervous system. It is unclear how these synaptic structures form and align their postsynaptic machineries with presynaptic terminals. Here, we monitored the cellular distribution of several GABAergic postsynaptic proteins in a purely glutamatergic neuronal culture derived from human stem cells, which virtually lacks any vesicular GABA release. We found that several GABAA receptor (GABAAR) subunits, postsynaptic scaffolds, and major cell-adhesion molecules can reliably coaggregate and colocalize at even GABA-deficient subsynaptic domains, but remain physically segregated from glutamatergic counterparts. Genetic deletions of both Gephyrin and a Gephyrin-associated guanosine di- or triphosphate (GDP/GTP) exchange factor Collybistin severely disrupted the coassembly of these postsynaptic compositions and their proper apposition with presynaptic inputs. Gephyrin-GABAAR clusters, developed in the absence of GABA transmission, could be subsequently activated and even potentiated by delayed supply of vesicular GABA. Thus, molecular organization of GABAergic postsynapses can initiate via a GABA-independent but Gephyrin-dependent intrinsic mechanism.
Collapse
Affiliation(s)
- Etta Carricaburu
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Orion Benner
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Scott R. Burlingham
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | | | - Natalia Hobaugh
- Biological Sciences Division, University of Chicago, Chicago, IL60637
| | - Charles H. Karr
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Soham Chanda
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
- Molecular, Cellular and Integrated Neurosciences Program, Colorado State University, Fort Collins, CO80523
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
6
|
Pollini L, Greco C, Novelli M, Mei D, Pisani F, De Koning‐Tijssen MA, Guerrini R, Leuzzi V, Galosi S. Neurophysiological Analysis of Cortical Myoclonic Tremor and Excessive Startle in ARHGEF9 Deficiency. Mov Disord Clin Pract 2024; 11:434-437. [PMID: 38293791 PMCID: PMC10982589 DOI: 10.1002/mdc3.13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/28/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Affiliation(s)
- Luca Pollini
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Carlo Greco
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Maria Novelli
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Davide Mei
- Neuroscience DepartmentChildren's Hospital Meyer IRCCSFlorenceItaly
| | - Francesco Pisani
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Marina A.J. De Koning‐Tijssen
- Expertise Centre Movement Disorders GroningenUniversity Medical Center GroningenGroningenThe Netherlands
- Department of NeurologyUniversity Medical Centre GroningenGroningenThe Netherlands
| | - Renzo Guerrini
- Neuroscience DepartmentChildren's Hospital Meyer IRCCSFlorenceItaly
| | - Vincenzo Leuzzi
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Serena Galosi
- Department of Human NeuroscienceSapienza University of RomeRomeItaly
| |
Collapse
|
7
|
Drehmann P, Milanos S, Schaefer N, Kasaragod VB, Herterich S, Holzbach-Eberle U, Harvey RJ, Villmann C. Dual Role of Dysfunctional Asc-1 Transporter in Distinct Human Pathologies, Human Startle Disease, and Developmental Delay. eNeuro 2023; 10:ENEURO.0263-23.2023. [PMID: 37903619 PMCID: PMC10668224 DOI: 10.1523/eneuro.0263-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023] Open
Abstract
Human startle disease is associated with mutations in distinct genes encoding glycine receptors, transporters or interacting proteins at glycinergic synapses in spinal cord and brainstem. However, a significant number of diagnosed patients does not carry a mutation in the common genes GLRA1, GLRB, and SLC6A5 Recently, studies on solute carrier 7 subfamily 10 (SLC7A10; Asc-1, alanine-serine-cysteine transporter) knock-out (KO) mice displaying a startle disease-like phenotype hypothesized that this transporter might represent a novel candidate for human startle disease. Here, we screened 51 patients from our patient cohort negative for the common genes and found three exonic (one missense, two synonymous), seven intronic, and single nucleotide changes in the 5' and 3' untranslated regions (UTRs) in Asc-1. The identified missense mutation Asc-1G307R from a patient with startle disease and developmental delay was investigated in functional studies. At the molecular level, the mutation Asc-1G307R did not interfere with cell-surface expression, but disrupted glycine uptake. Substitution of glycine at position 307 to other amino acids, e.g., to alanine or tryptophan did not affect trafficking or glycine transport. By contrast, G307K disrupted glycine transport similar to the G307R mutation found in the patient. Structurally, the disrupted function in variants carrying positively charged residues can be explained by local structural rearrangements because of the large positively charged side chain. Thus, our data suggest that SLC7A10 may represent a rare but novel gene associated with human startle disease and developmental delay.
Collapse
Affiliation(s)
- Paul Drehmann
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Sinem Milanos
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Vikram Babu Kasaragod
- Neurobiology Division, Medical Reserach Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Sarah Herterich
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| | - Ulrike Holzbach-Eberle
- Center for Pediatrics and Adolescent Medicine, Pediatric Neurology, Social Pediatrics and Epileptology, University Hospital Gießen, 35392 Giessen, Germany
| | - Robert J Harvey
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4558, Australia
- Sunshine Coast Health Institute, Birtinya, QLD 4575, Australia
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius Maximilians University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
8
|
Tagore M, Hergenreder E, Perlee SC, Cruz NM, Menocal L, Suresh S, Chan E, Baron M, Melendez S, Dave A, Chatila WK, Nsengimana J, Koche RP, Hollmann TJ, Ideker T, Studer L, Schietinger A, White RM. GABA Regulates Electrical Activity and Tumor Initiation in Melanoma. Cancer Discov 2023; 13:2270-2291. [PMID: 37553760 PMCID: PMC10551668 DOI: 10.1158/2159-8290.cd-23-0389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Oncogenes can initiate tumors only in certain cellular contexts, which is referred to as oncogenic competence. In melanoma, whether cells in the microenvironment can endow such competence remains unclear. Using a combination of zebrafish transgenesis coupled with human tissues, we demonstrate that GABAergic signaling between keratinocytes and melanocytes promotes melanoma initiation by BRAFV600E. GABA is synthesized in melanoma cells, which then acts on GABA-A receptors in keratinocytes. Electron microscopy demonstrates specialized cell-cell junctions between keratinocytes and melanoma cells, and multielectrode array analysis shows that GABA acts to inhibit electrical activity in melanoma/keratinocyte cocultures. Genetic and pharmacologic perturbation of GABA synthesis abrogates melanoma initiation in vivo. These data suggest that GABAergic signaling across the skin microenvironment regulates the ability of oncogenes to initiate melanoma. SIGNIFICANCE This study shows evidence of GABA-mediated regulation of electrical activity between melanoma cells and keratinocytes, providing a new mechanism by which the microenvironment promotes tumor initiation. This provides insights into the role of the skin microenvironment in early melanomas while identifying GABA as a potential therapeutic target in melanoma. See related commentary by Ceol, p. 2128. This article is featured in Selected Articles from This Issue, p. 2109.
Collapse
Affiliation(s)
- Mohita Tagore
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emiliano Hergenreder
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, New York
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York
| | - Sarah C. Perlee
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelly M. Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura Menocal
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York
| | - Shruthy Suresh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Chan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maayan Baron
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Stephanie Melendez
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K. Chatila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeremie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Travis J. Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, New York
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Zhang R, Jiang H, Liu Y, He G. Structure, function, and pathology of Neurexin-3. Genes Dis 2023; 10:1908-1919. [PMID: 37492720 PMCID: PMC10363586 DOI: 10.1016/j.gendis.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Neurexin-3 is primarily localized in the presynaptic membrane and forms complexes with various ligands located in the postsynaptic membrane. Neurexin-3 has important roles in synapse development and synapse functions. Neurexin-3 mediates excitatory presynaptic differentiation by interacting with leucine-rich-repeat transmembrane neuronal proteins. Meanwhile, neurexin-3 modulates the expression of presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors and γ-aminobutyric acid A receptors by interacting with neuroligins at excitatory and inhibitory synapses. Numerous studies have documented the potential contribution of neurexin-3 to neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease, addiction behaviors, and other diseases, which raises hopes that understanding the mechanisms of neurexin-3 may hold the key to developing new strategies for related illnesses. This review comprehensively covers the literature to provide current knowledge of the structure, function, and clinical role of neurexin-3.
Collapse
Affiliation(s)
- Rui Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - HanXiao Jiang
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - YuanJie Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - GuiQiong He
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
10
|
Jung H, Kim S, Ko J, Um JW. Intracellular signaling mechanisms that shape postsynaptic GABAergic synapses. Curr Opin Neurobiol 2023; 81:102728. [PMID: 37236068 DOI: 10.1016/j.conb.2023.102728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
Postsynaptic GABAergic receptors interact with various membrane and intracellular proteins to mediate inhibitory synaptic transmission. They form structural and/or signaling synaptic protein complexes that perform a variety of postsynaptic functions. In particular, the key GABAergic synaptic scaffold, gephyrin, and its interacting partners govern downstream signaling pathways that are essential for GABAergic synapse development, transmission, and plasticity. In this review, we discuss recent researches on GABAergic synaptic signaling pathways. We also outline the main outstanding issues that need to be addressed in this field and highlight the association of dysregulated GABAergic synaptic signaling with the onset of various brain disorders.
Collapse
Affiliation(s)
- Hyeji Jung
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea
| | - Seungjoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea.
| |
Collapse
|
11
|
Adinolfi A, Di Sante G, Rivignani Vaccari L, Tredicine M, Ria F, Bonvissuto D, Corvino V, Sette C, Geloso MC. Regionally restricted modulation of Sam68 expression and Arhgef9 alternative splicing in the hippocampus of a murine model of multiple sclerosis. Front Mol Neurosci 2023; 15:1073627. [PMID: 36710925 PMCID: PMC9878567 DOI: 10.3389/fnmol.2022.1073627] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Multiple sclerosis (MS) and its preclinical models are characterized by marked changes in neuroplasticity, including excitatory/inhibitory imbalance and synaptic dysfunction that are believed to underlie the progressive cognitive impairment (CI), which represents a significant clinical hallmark of the disease. In this study, we investigated several parameters of neuroplasticity in the hippocampus of the experimental autoimmune encephalomyelitis (EAE) SJL/J mouse model, characterized by rostral inflammatory and demyelinating lesions similar to Relapsing-Remitting MS. By combining morphological and molecular analyses, we found that the hippocampus undergoes extensive inflammation in EAE-mice, more pronounced in the CA3 and dentate gyrus (DG) subfields than in the CA1, associated with changes in GABAergic circuitry, as indicated by the increased expression of the interneuron marker Parvalbumin selectively in CA3. By laser-microdissection, we investigated the impact of EAE on the alternative splicing of Arhgef9, a gene encoding a post-synaptic protein playing an essential role in GABAergic synapses and whose mutations have been related to CI and epilepsy. Our results indicate that EAE induces a specific increase in inclusion of the alternative exon 11a only in the CA3 and DG subfields, in line with the higher local levels of inflammation. Consistently, we found a region-specific downregulation of Sam68, a splicing-factor that represses this splicing event. Collectively, our findings confirm a regionalized distribution of inflammation in the hippocampus of EAE-mice. Moreover, since neuronal circuit rearrangement and dynamic remodeling of structural components of the synapse are key processes that contribute to neuroplasticity, our study suggests potential new molecular players involved in EAE-induced hippocampal dysfunction.
Collapse
Affiliation(s)
- Annalisa Adinolfi
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Di Sante
- Section of Human, Clinic and Forensic Anatomy, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luca Rivignani Vaccari
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Tredicine
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Ria
- Section of General Pathology, Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Corvino
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudio Sette
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy,*Correspondence: Claudio Sette, ✉
| | - Maria Concetta Geloso
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy,Maria Concetta Geloso, ✉
| |
Collapse
|
12
|
Loss of CDKL5 Causes Synaptic GABAergic Defects That Can Be Restored with the Neuroactive Steroid Pregnenolone-Methyl-Ether. Int J Mol Sci 2022; 24:ijms24010068. [PMID: 36613509 PMCID: PMC9820583 DOI: 10.3390/ijms24010068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked neurodevelopmental disorder characterised by early-onset drug-resistant epilepsy and impaired cognitive and motor skills. CDD is caused by mutations in cyclin-dependent kinase-like 5 (CDKL5), which plays a well-known role in regulating excitatory neurotransmission, while its effect on neuronal inhibition has been poorly investigated. We explored the potential role of CDKL5 in the inhibitory compartment in Cdkl5-KO male mice and primary hippocampal neurons and found that CDKL5 interacts with gephyrin and collybistin, two crucial organisers of the inhibitory postsynaptic sites. Through molecular and electrophysiological approaches, we demonstrated that CDKL5 loss causes a reduced number of gephyrin puncta and surface exposed γ2 subunit-containing GABAA receptors, impacting the frequency of miniature inhibitory postsynaptic currents, which we ascribe to a postsynaptic function of CDKL5. In line with previous data showing that CDKL5 loss impacts microtubule (MT) dynamics, we showed that treatment with pregnenolone-methyl-ether (PME), which promotes MT dynamics, rescues the above defects. The impact of CDKL5 deficiency on inhibitory neurotransmission might explain the presence of drug-resistant epilepsy and cognitive defects in CDD patients. Moreover, our results may pave the way for drug-based therapies that could bypass the need for CDKL5 and provide effective therapeutic strategies for CDD patients.
Collapse
|
13
|
Ravindran E, Ullah N, Mani S, Chew EGY, Tandiono M, Foo JN, Khor CC, Kaindl AM, Siddiqi S. Case report: Expanding the phenotype of ARHGEF17 mutations from increased intracranial aneurysm risk to a neurodevelopmental disease. Front Neurol 2022; 13:1017654. [PMID: 36341116 PMCID: PMC9630465 DOI: 10.3389/fneur.2022.1017654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/30/2022] [Indexed: 01/11/2024] Open
Abstract
RhoGTPase regulators play a key role in the development of the nervous system, and their dysfunction can result in brain malformation and associated disorders. Several guanine nucleotide exchange factors (GEF) have been linked to neurodevelopmental disorders. In line with this, ARHGEF17 has been recently linked as a risk gene to intracranial aneurysms. Here we report siblings of a consanguineous Pakistani family with biallelic variants in the ARHGEF17 gene associated with a neurodevelopmental disorder with intellectual disability, speech delay and motor dysfunction but not aneurysms. Cranial MRI performed in one patient revealed generalized brain atrophy with an enlarged ventricular system, thin corpus callosum and microcephaly. Whole exome sequencing followed by Sanger sequencing in two of the affected individuals revealed a homozygous missense variant (g.11:73021307, c.1624C>T (NM_014786.4), p.R542W) in the ARHGEF17 gene. This variant is in a highly conserved DCLK1 phosphorylation consensus site (I/L/V/F/M]RRXX[pS/pT][I/L/M/V/F) of the protein. Our report expands the phenotypic spectrum of ARHGEF17 variants from increased intracranial aneurysm risk to neurodevelopmental disease and thereby add ARHGEF17 to the list of GEF genes involved in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ethiraj Ravindran
- Charité–Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany
| | - Noor Ullah
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
- Khyber Medical University Institute of Paramedical Sciences (KMU IPMS), Peshawar, Pakistan
| | - Shyamala Mani
- Charité–Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany
| | - Elaine Guo Yan Chew
- Human Genetics, Genome Institute of Singapore, ASTAR, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Moses Tandiono
- Human Genetics, Genome Institute of Singapore, ASTAR, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Jia Nee Foo
- Human Genetics, Genome Institute of Singapore, ASTAR, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Chiea Chuen Khor
- Human Genetics, Genome Institute of Singapore, ASTAR, Singapore, Singapore
- Singapore Eye Research Institute, Singapore, Singapore
| | - Angela M. Kaindl
- Charité–Universitätsmedizin Berlin, Institute of Cell Biology and Neurobiology, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Berlin, Germany
| | - Saima Siddiqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan
| |
Collapse
|
14
|
Li L, Liu H, Qian KY, Nurrish S, Zeng XT, Zeng WX, Wang J, Kaplan JM, Tong XJ, Hu Z. CASK and FARP localize two classes of post-synaptic ACh receptors thereby promoting cholinergic transmission. PLoS Genet 2022; 18:e1010211. [PMID: 36279278 PMCID: PMC9632837 DOI: 10.1371/journal.pgen.1010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Changes in neurotransmitter receptor abundance at post-synaptic elements play a pivotal role in regulating synaptic strength. For this reason, there is significant interest in identifying and characterizing the scaffolds required for receptor localization at different synapses. Here we analyze the role of two C. elegans post-synaptic scaffolding proteins (LIN-2/CASK and FRM-3/FARP) at cholinergic neuromuscular junctions. Constitutive knockouts or muscle specific inactivation of lin-2 and frm-3 dramatically reduced spontaneous and evoked post-synaptic currents. These synaptic defects resulted from the decreased abundance of two classes of post-synaptic ionotropic acetylcholine receptors (ACR-16/CHRNA7 and levamisole-activated AChRs). LIN-2's AChR scaffolding function is mediated by its SH3 and PDZ domains, which interact with AChRs and FRM-3/FARP, respectively. Thus, our findings show that post-synaptic LIN-2/FRM-3 complexes promote cholinergic synaptic transmission by recruiting AChRs to post-synaptic elements.
Collapse
Affiliation(s)
- Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Kang-Ying Qian
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Stephen Nurrish
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xian-Ting Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wan-Xin Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Jiafan Wang
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| | - Joshua M. Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xia-Jing Tong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, Australia
| |
Collapse
|
15
|
Bousgouni V, Inge O, Robertson D, Jones I, Clatworthy I, Bakal C. ARHGEF9 regulates melanoma morphogenesis in environments with diverse geometry and elasticity by promoting filopodial-driven adhesion. iScience 2022; 25:104795. [PMID: 36039362 PMCID: PMC9418690 DOI: 10.1016/j.isci.2022.104795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Rho GTP Exchange Factors (RhoGEFs) and Rho GTPase Activating Proteins (RhoGAPs) are large families of molecules that regulate shape determination in all eukaryotes. In pathologies such as melanoma, RhoGEF and RhoGAP activity underpins the ability of cells to invade tissues of varying elasticity. To identify RhoGEFs and RhoGAPs that regulate melanoma cell shape on soft and/or stiff materials, we performed genetic screens, in tandem with single-cell quantitative morphological analysis. We show that ARHGEF9/Collybistin (Cb) is essential for cell shape determination on both soft and stiff materials, and in cells embedded in 3D soft hydrogel. ARHGEF9 is required for melanoma cells to invade 3D matrices. Depletion of ARHGEF9 results in loss of tension at focal adhesions decreased cell-wide contractility, and the inability to stabilize protrusions. Taken together we show that ARHGEF9 promotes the formation of actin-rich filopodia, which serves to establish and stabilize adhesions and determine melanoma cell shape.
Collapse
Affiliation(s)
- Vicky Bousgouni
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Oliver Inge
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David Robertson
- Division of Breast Cancer Research, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Ian Jones
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Innes Clatworthy
- Core Research Laboratories, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Chris Bakal
- Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| |
Collapse
|
16
|
Imam N, Choudhury S, Heinze KG, Schindelin H. Differential modulation of collybistin conformational dynamics by the closely related GTPases Cdc42 and TC10. Front Synaptic Neurosci 2022; 14:959875. [PMID: 35989712 PMCID: PMC9386560 DOI: 10.3389/fnsyn.2022.959875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Interneuronal synaptic transmission relies on the proper spatial organization of presynaptic neurotransmitter release and its reception on the postsynaptic side by cognate neurotransmitter receptors. Neurotransmitter receptors are incorporated into and arranged within the plasma membrane with the assistance of scaffolding and adaptor proteins. At inhibitory GABAergic postsynapses, collybistin, a neuronal adaptor protein, recruits the scaffolding protein gephyrin and interacts with various neuronal factors including cell adhesion proteins of the neuroligin family, the GABA A receptor α2-subunit and the closely related small GTPases Cdc42 and TC10 (RhoQ). Most collybistin splice variants harbor an N-terminal SH3 domain and exist in an autoinhibited/closed state. Cdc42 and TC10, despite sharing 67.4% amino acid sequence identity, interact differently with collybistin. Here, we delineate the molecular basis of the collybistin conformational activation induced by TC10 with the aid of recently developed collybistin FRET sensors. Time-resolved fluorescence-based FRET measurements reveal that TC10 binds to closed/inactive collybistin leading to relief of its autoinhibition, contrary to Cdc42, which only interacts with collybistin when forced into an open state by the introduction of mutations destabilizing the closed state of collybistin. Taken together, our data describe a TC10-driven signaling mechanism in which collybistin switches from its autoinhibited closed state to an open/active state.
Collapse
Affiliation(s)
- Nasir Imam
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Susobhan Choudhury
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Katrin G. Heinze
- Molecular Microscopy, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Hermann Schindelin
- Institute of Structural Biology, Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
George S, Chiou TT, Kanamalla K, De Blas AL. Recruitment of Plasma Membrane GABA-A Receptors by Submembranous Gephyrin/Collybistin Clusters. Cell Mol Neurobiol 2022; 42:1585-1604. [PMID: 33547626 PMCID: PMC11421751 DOI: 10.1007/s10571-021-01050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/23/2021] [Indexed: 11/29/2022]
Abstract
It has been shown that subunit composition is the main determinant of the synaptic or extrasynaptic localization of GABAA receptors (GABAARs). Synaptic and extrasynaptic GABAARs are involved in phasic and tonic inhibition, respectively. It has been proposed that synaptic GABAARs bind to the postsynaptic gephyrin/collybistin (Geph/CB) lattice, but not the typically extrasynaptic GABAARs. Nevertheless, there are no studies of the direct binding of various types of GABAARs with the submembranous Geph/CB lattice in the absence of other synaptic proteins, some of which are known to interact with GABAARs. We have reconstituted GABAARs of various subunit compositions, together with the Geph/CB scaffold, in HEK293 cells, and have investigated the recruitment of surface GABAARs by submembranous Geph/CB clusters. Results show that the typically synaptic α1β3γ2 GABAARs were trapped by submembranous Geph/CB clusters. The α5β3γ2 GABAARs, which are both synaptic and extrasynaptic, were also trapped by Geph/CB clusters. Extrasynaptic α4β3δ GABAARs consistently showed little or no trapping by the Geph/CB clusters. However, the extrasynaptic α6β3δ, α1β3, α6β3 (and less α4β3) GABAARs were highly trapped by the Geph/CB clusters. AMPA and NMDA glutamate receptors were not trapped. The results suggest: (I) in the absence of other synaptic molecules, the Geph/CB lattice has the capacity to trap not only synaptic but also several typically extrasynaptic GABAARs; (II) the Geph/CB lattice is important but does not play a decisive role in the synaptic localization of GABAARs; and (III) in neurons there must be mechanisms preventing the trapping of several typically extrasynaptic GABAARs by the postsynaptic Geph/CB lattice.
Collapse
Affiliation(s)
- Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Karthik Kanamalla
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, 75 North Eagleville Road, U-3156, Storrs, CT, 06269-3156, USA.
| |
Collapse
|
18
|
Yang H, Liao H, Gan S, Xiao T, Wu L. ARHGEF9 gene variant leads to developmental and epileptic encephalopathy: Genotypic phenotype analysis and treatment exploration. Mol Genet Genomic Med 2022; 10:e1967. [PMID: 35638461 PMCID: PMC9266599 DOI: 10.1002/mgg3.1967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background The ARHGEF9 gene variants have phenotypic heterogeneity, the number of reported clinical cases are limited and the genotype–phenotype relationship is still unpredictable. Methods Clinical data of the patients and their family members were gathered in a retrospective study. The exome sequencing that was performed on peripheral blood samples was applied for genetic analysis. We used the ARHGEF9 gene as a key word to search the PubMed database for cases of ARHGEF9 gene variants that have previously been reported and summarized the reported ARHGEF9 gene variant sites, their corresponding clinical phenotypes, and effective treatment. Results We described five patients with developmental and epileptic encephalopathy caused by ARHGEF9 gene variants. Among them, the antiepileptic treatment of valproic acid and levetiracetam was effective in two cases individually. The exome sequencing results showed five children with point mutations in the ARHGEF9 gene: p.R365H, p.M388V, p.D213E, and p.R63H. So far, a total of 40 children with ARHGEF9 gene variants have been reported. Their main clinical phenotypes include developmental delay, epilepsy, epileptic encephalopathy, and autism spectrum disorders. The variants reported in the literature, including 22 de novo variants, nine maternal variants, and one unknown variant. There were 20 variants associated with epileptic phenotypes, of which six variants are effective for valproic acid treatment. Conclusion The genotypes and phenotypes of ARHGEF9 gene variants represent a wide spectrum, and the clinical phenotype of epilepsy is often refractory and the prognosis is poor. The p.R365H, p.M388V, p.D213E, and p.R63H variants have not been reported in the current literature, and our study has expanded the genotype spectrum of ARHGEF9 gene. Our findings indicate that levetiracetam and valproic acid can effectively control seizures in children with epileptic phenotype caused by ARGHEF9 gene variations. These findings will help clinicians improve the level of diagnosis and treatment of the genetic disease.
Collapse
Affiliation(s)
- Haiyan Yang
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| | - Siyi Gan
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| | - Ting Xiao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Changsha, P.R. China
| |
Collapse
|
19
|
Hines DJ, Contreras A, Garcia B, Barker JS, Boren AJ, Moufawad El Achkar C, Moss SJ, Hines RM. Human ARHGEF9 intellectual disability syndrome is phenocopied by a mutation that disrupts collybistin binding to the GABA A receptor α2 subunit. Mol Psychiatry 2022; 27:1729-1741. [PMID: 35169261 PMCID: PMC9095487 DOI: 10.1038/s41380-022-01468-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/12/2022] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
Abstract
Intellectual disability (ID) is a common neurodevelopmental disorder that can arise from genetic mutations ranging from trisomy to single nucleotide polymorphism. Mutations in a growing number of single genes have been identified as causative in ID, including ARHGEF9. Evaluation of 41 ARHGEF9 patient reports shows ubiquitous inclusion of ID, along with other frequently reported symptoms of epilepsy, abnormal baseline EEG activity, behavioral symptoms, and sleep disturbances. ARHGEF9 codes for the Cdc42 Guanine Nucleotide Exchange Factor 9 collybistin (Cb), a known regulator of inhibitory synapse function via direct interaction with the adhesion molecule neuroligin-2 and the α2 subunit of GABAA receptors. We mutate the Cb binding motif within the large intracellular loop of α2 replacing it with the binding motif for gephyrin from the α1 subunit (Gabra2-1). The Gabra2-1 mutation causes a strong downregulation of Cb expression, particularly at cholecystokinin basket cell inhibitory synapses. Gabra2-1 mice have deficits in working and recognition memory, as well as hyperactivity, anxiety, and reduced social preference, recapitulating the frequently reported features of ARHGEF9 patients. Gabra2-1 mice also have spontaneous seizures during postnatal development which can lead to mortality, and baseline abnormalities in low-frequency wavelengths of the EEG. EEG abnormalities are vigilance state-specific and manifest as sleep disturbance including increased time in wake and a loss of free-running rhythmicity in the absence of light as zeitgeber. Gabra2-1 mice phenocopy multiple features of human ARHGEF9 mutation, and reveal α2 subunit-containing GABAA receptors as a druggable target for treatment of this complex ID syndrome.
Collapse
Affiliation(s)
- Dustin J Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - April Contreras
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Betsua Garcia
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Jeffrey S Barker
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Austin J Boren
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA.
| |
Collapse
|
20
|
Qiu T, Dai Q, Wang Q. A novel de novo hemizygous ARHGEF9 mutation associated with severe intellectual disability and epilepsy: a case report. J Int Med Res 2021; 49:3000605211058372. [PMID: 34851771 PMCID: PMC8647271 DOI: 10.1177/03000605211058372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
ARHGEF9 encodes collybistin, a brain-specific guanosine diphosphate-guanosine-5′-triphosphate exchange factor that plays an important role in clustering of gephyrin and γ-aminobutyric acid type A receptors in the postsynaptic membrane. Overwhelming evidence suggests that defects in this protein can cause X-linked intellectual disability, which comprises a series of clinical phenotypes, including autism spectrum disorder, behavior disorder, intellectual disability, and febrile seizures. Here, we report a boy with clinical symptoms of severe intellectual disability, epilepsy, and developmental delay and regression. Trio exome sequencing (trio-clinical exome sequencing) identified a novel hemizygous deletion, c.656_c.669delACTTCTTTGAGGCC (p. His219Leu fs*9), in exon 5 of ARHGEF9. This variant was not reported in either the Genome Aggregation Database or our database of 309 patients with neurodevelopmental disorders. Oxcarbazepine and levetiracetam reduced the frequency of the patient’s epileptic seizures to a certain extent, but psychomotor developmental delay and developmental regression became more obvious with age. This case study seeks to report a de novo loss-of-function mutation of ARHGEF9, aiming to emphasize the genetic diagnosis of X-linked intellectual disability and further improve knowledge of the ethnic distribution of ARHGEF9 mutations.
Collapse
Affiliation(s)
- Tong Qiu
- Division of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Qian Dai
- Division of Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Qiu Wang
- Division of Rehabilitation Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Ste20-like Kinase Is Critical for Inhibitory Synapse Maintenance and Its Deficiency Confers a Developmental Dendritopathy. J Neurosci 2021; 41:8111-8125. [PMID: 34400520 DOI: 10.1523/jneurosci.0352-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. However, its function in neurons is unknown. We show that, during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ third-order dendrites both in male and in female mice. Moreover, we demonstrate that SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown caused a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, whereas excitatory neurotransmission was unaffected. Finally, we show that this mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations revealed significant loss of SLK expression. Overall, the present data identify SLK as a key regulator of both dendritic complexity during development and inhibitory synapse maintenance.SIGNIFICANCE STATEMENT We show that dysmorphic neurons of human epileptogenic brain lesions have decreased levels of the Ste20-like kinase (SLK). Decreasing SLK expression in mouse neurons revealed that SLK has essential functions in forming the neuronal dendritic tree and in maintaining inhibitory connections with neighboring neurons.
Collapse
|
22
|
Piro I, Eckes AL, Kasaragod VB, Sommer C, Harvey RJ, Schaefer N, Villmann C. Novel Functional Properties of Missense Mutations in the Glycine Receptor β Subunit in Startle Disease. Front Mol Neurosci 2021; 14:745275. [PMID: 34630038 PMCID: PMC8498107 DOI: 10.3389/fnmol.2021.745275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Startle disease is a rare disorder associated with mutations in GLRA1 and GLRB, encoding glycine receptor (GlyR) α1 and β subunits, which enable fast synaptic inhibitory transmission in the spinal cord and brainstem. The GlyR β subunit is important for synaptic localization via interactions with gephyrin and contributes to agonist binding and ion channel conductance. Here, we have studied three GLRB missense mutations, Y252S, S321F, and A455P, identified in startle disease patients. For Y252S in M1 a disrupted stacking interaction with surrounding aromatic residues in M3 and M4 is suggested which is accompanied by an increased EC50 value. By contrast, S321F in M3 might stabilize stacking interactions with aromatic residues in M1 and M4. No significant differences in glycine potency or efficacy were observed for S321F. The A455P variant was not predicted to impact on subunit folding but surprisingly displayed increased maximal currents which were not accompanied by enhanced surface expression, suggesting that A455P is a gain-of-function mutation. All three GlyR β variants are trafficked effectively with the α1 subunit through intracellular compartments and inserted into the cellular membrane. In vivo, the GlyR β subunit is transported together with α1 and the scaffolding protein gephyrin to synaptic sites. The interaction of these proteins was studied using eGFP-gephyrin, forming cytosolic aggregates in non-neuronal cells. eGFP-gephyrin and β subunit co-expression resulted in the recruitment of both wild-type and mutant GlyR β subunits to gephyrin aggregates. However, a significantly lower number of GlyR β aggregates was observed for Y252S, while for mutants S321F and A455P, the area and the perimeter of GlyR β subunit aggregates was increased in comparison to wild-type β. Transfection of hippocampal neurons confirmed differences in GlyR-gephyrin clustering with Y252S and A455P, leading to a significant reduction in GlyR β-positive synapses. Although none of the mutations studied is directly located within the gephyrin-binding motif in the GlyR β M3-M4 loop, we suggest that structural changes within the GlyR β subunit result in differences in GlyR β-gephyrin interactions. Hence, we conclude that loss- or gain-of-function, or alterations in synaptic GlyR clustering may underlie disease pathology in startle disease patients carrying GLRB mutations.
Collapse
Affiliation(s)
- Inken Piro
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Anna-Lena Eckes
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Vikram Babu Kasaragod
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Robert J. Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Natascha Schaefer
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University Hospital, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Abstract
Neurons are highly specialized cells equipped with a sophisticated molecular machinery for the reception, integration, conduction and distribution of information. The evolutionary origin of neurons remains unsolved. How did novel and pre-existing proteins assemble into the complex machinery of the synapse and of the apparatus conducting current along the neuron? In this review, the step-wise assembly of functional modules in neuron evolution serves as a paradigm for the emergence and modification of molecular machinery in the evolution of cell types in multicellular organisms. The pre-synaptic machinery emerged through modification of calcium-regulated large vesicle release, while the postsynaptic machinery has different origins: the glutamatergic postsynapse originated through the fusion of a sensory signaling module and a module for filopodial outgrowth, while the GABAergic postsynapse incorporated an ancient actin regulatory module. The synaptic junction, in turn, is built around two adhesion modules controlled by phosphorylation, which resemble septate and adherens junctions. Finally, neuronal action potentials emerged via a series of duplications and modifications of voltage-gated ion channels. Based on these origins, key molecular innovations are identified that led to the birth of the first neuron in animal evolution.
Collapse
|
24
|
Zhan FX, Wang SG, Cao L. Advances in hyperekplexia and other startle syndromes. Neurol Sci 2021; 42:4095-4107. [PMID: 34379238 DOI: 10.1007/s10072-021-05493-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 02/03/2023]
Abstract
Startle, a basic alerting reaction common to all mammals, is described as a sudden involuntary movement of the body evoked by all kinds of sudden and unexpected stimulus. Startle syndromes are heterogeneous groups of disorders with abnormal and exaggerated responses to startling events, including hyperekplexia, stimulus-induced disorders, and neuropsychiatric startle syndromes. Hyperekplexia can be attributed to a genetic, idiopathic, or symptomatic cause. Excluding secondary factors, hereditary hyperekplexia, a rare neurogenetic disorder with highly genetic heterogeneity, is characterized by neonatal hypertonia, exaggerated startle response provoked by the sudden external stimuli, and followed by a short period of general stiffness. It mainly arises from defects of inhibitory glycinergic neurotransmission. GLRA1 is the major pathogenic gene of hereditary hyperekplexia, along with many other genes involved in the function of glycinergic inhibitory synapses. While about 40% of patients remain negative genetic findings. Clonazepam, which can specifically upgrade the GABARA1 chloride channels, is the main and most effective administration for hereditary hyperekplexia patients. In this review, with the aim at enhancing the recognition and prompting potential treatment for hyperekplexia, we focused on discussing the advances in hereditary hyperekplexia genetics and the expound progress in pathogenic mechanisms of the glycinergic-synapse-related pathway and then followed by a brief overview of other common startle syndromes.
Collapse
Affiliation(s)
- Fei-Xia Zhan
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Shi-Ge Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China
| | - Li Cao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yi Shan Road, Shanghai, 200233, China.
| |
Collapse
|
25
|
Selective Overexpression of Collybistin in Mouse Hippocampal Pyramidal Cells Enhances GABAergic Neurotransmission and Protects against PTZ-Induced Seizures. eNeuro 2021; 8:ENEURO.0561-20.2021. [PMID: 34083383 PMCID: PMC8281261 DOI: 10.1523/eneuro.0561-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 04/02/2021] [Accepted: 05/23/2021] [Indexed: 11/21/2022] Open
Abstract
Collybistin (CB) is a rho guanine exchange factor found at GABAergic and glycinergic postsynapses that interacts with the inhibitory scaffold protein, gephyrin, and induces accumulation of gephyrin and GABA type-A receptors (GABAARs) to the postsynapse. We have previously reported that the isoform without the src homology 3 (SH3) domain, CBSH3-, is particularly active in enhancing the GABAergic postsynapse in both cultured hippocampal neurons as well as in cortical pyramidal neurons after chronic in vivo expression in in utero electroporated (IUE) rats. Deficiency of CB in knock-out (KO) mice results in absence of gephyrin and gephyrin-dependent GABAARs at postsynaptic sites in several brain regions, including hippocampus. In the present study, we have generated an adeno-associated virus (AAV) that expresses CBSH3- in a cre-dependent manner. Using male and female VGLUT1-IRES-cre or VGAT-IRES-cre mice, we explore the effect of overexpression of CBSH3- in hippocampal pyramidal cells or hippocampal interneurons. The results show that: (1) the accumulation of gephyrin and GABAARs at inhibitory postsynapses in hippocampal pyramidal neurons or interneurons can be enhanced by CBSH3- overexpression; (2) overexpression of CBSH3- in hippocampal pyramidal cells can enhance the strength of inhibitory neurotransmission; and (3) these enhanced inhibitory synapses provide protection against pentylenetetrazole (PTZ)-induced seizures. The results indicate that this AAV vector carrying CBSH3- can be used for in vivo enhancement of GABAergic synaptic transmission in selected target neurons in the brain.
Collapse
|
26
|
Farini D, Cesari E, Weatheritt RJ, La Sala G, Naro C, Pagliarini V, Bonvissuto D, Medici V, Guerra M, Di Pietro C, Rizzo FR, Musella A, Carola V, Centonze D, Blencowe BJ, Marazziti D, Sette C. A Dynamic Splicing Program Ensures Proper Synaptic Connections in the Developing Cerebellum. Cell Rep 2021; 31:107703. [PMID: 32492419 DOI: 10.1016/j.celrep.2020.107703] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/13/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Tight coordination of gene expression in the developing cerebellum is crucial for establishment of neuronal circuits governing motor and cognitive function. However, transcriptional changes alone do not explain all of the switches underlying neuronal differentiation. Here we unveiled a widespread and highly dynamic splicing program that affects synaptic genes in cerebellar neurons. The motifs enriched in modulated exons implicated the splicing factor Sam68 as a regulator of this program. Sam68 controls splicing of exons with weak branchpoints by directly binding near the 3' splice site and competing with U2AF recruitment. Ablation of Sam68 disrupts splicing regulation of synaptic genes associated with neurodevelopmental diseases and impairs synaptic connections and firing of Purkinje cells, resulting in motor coordination defects, ataxia, and abnormal social behavior. These findings uncover an unexpectedly dynamic splicing regulatory network that shapes the synapse in early life and establishes motor and cognitive circuitry in the developing cerebellum.
Collapse
Affiliation(s)
- Donatella Farini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Eleonora Cesari
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Robert J Weatheritt
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; EMBL Australia, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Gina La Sala
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Chiara Naro
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Davide Bonvissuto
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy
| | - Vanessa Medici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Marika Guerra
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Chiara Di Pietro
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Francesca Romana Rizzo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; San Raffaele Pisana and University San Raffaele, IRCCS, Rome, Italy
| | | | - Valeria Carola
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Department of Dynamic and Clinical Psychology, University of Rome Sapienza, Rome, Italy
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Benjamin J Blencowe
- Donnelly Centre and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniela Marazziti
- Institute of Cell Biology and Neurobiology, CNR, Monterotondo, Rome, Italy
| | - Claudio Sette
- Fondazione Santa Lucia, IRCCS, Rome, Italy; Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
27
|
Wagner S, Lee C, Rojas L, Specht CG, Rhee J, Brose N, Papadopoulos T. The α3 subunit of GABA A receptors promotes formation of inhibitory synapses in the absence of collybistin. J Biol Chem 2021; 296:100709. [PMID: 33901490 PMCID: PMC8141935 DOI: 10.1016/j.jbc.2021.100709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 01/03/2023] Open
Abstract
Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects—or synaptopathies—are at the basis of many neurological and psychiatric disorders. Collybistin (CB), a brain-specific guanine nucleotide exchange factor, is essential for the formation of γ-aminobutyric acidergic (GABAergic) postsynapses in defined regions of the mammalian forebrain, including the hippocampus and basolateral amygdala. This process depends on a direct interaction of CB with the scaffolding protein gephyrin, which leads to the redistribution of gephyrin into submembranous clusters at nascent inhibitory synapses. Strikingly, synaptic clustering of gephyrin and GABAA type A receptors (GABAARs) in several brain regions, including the cerebral cortex and certain thalamic areas, is unperturbed in CB-deficient mice, indicating that the formation of a substantial subset of inhibitory postsynapses must be controlled by gephyrin-interacting proteins other than CB. Previous studies indicated that the α3 subunit of GABAARs (GABAAR-α3) binds directly and with high affinity to gephyrin. Here, we provide evidence (i) that a homooligomeric GABAAR-α3A343W mutant induces the formation of submembranous gephyrin clusters independently of CB in COS-7 cells, (ii) that gephyrin clustering is unaltered in the neuronal subpopulations endogenously expressing the GABAAR-α3 in CB-deficient brains, and (iii) that exogenous expression of GABAAR-α3 partially rescues impaired gephyrin clustering in CB-deficient hippocampal neurons. Our results identify an important role of GABAAR-α3 in promoting gephyrin-mediated and CB-independent formation of inhibitory postsynapses.
Collapse
Affiliation(s)
- Sven Wagner
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - ChoongKu Lee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lucia Rojas
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Christian G Specht
- Diseases and Hormones of the Nervous System (DHNS), Inserm U1195, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
28
|
Zhou L, Kiss E, Demmig R, Kirsch J, Nawrotzki RA, Kuhse J. Binding of gephyrin to microtubules is regulated by its phosphorylation at Ser270. Histochem Cell Biol 2021; 156:5-18. [PMID: 33796945 PMCID: PMC8277605 DOI: 10.1007/s00418-021-01973-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2021] [Indexed: 12/23/2022]
Abstract
Gephyrin is a multifunctional scaffolding protein anchoring glycine- and subtypes of GABA type A- receptors at inhibitory postsynaptic membrane specializations by binding to the microtubule (MT) and/or the actin cytoskeleton. However, the conditions under which gephyrin can bind to MTs and its regulation are currently unknown. Here, we demonstrate that during the purification of MTs from rat brain by sedimentation of polymerized tubulin using high-speed centrifugation a fraction of gephyrin was bound to MTs, whereas gephyrin phosphorylated at the CDK5-dependent site Ser270 was detached from MTs and remained in the soluble protein fraction. Moreover, after collybistin fostered phosphorylation at Ser270 the binding of a recombinant gephyrin to MTs was strongly reduced in co-sedimentation assays. Correspondingly, upon substitution of wild-type gephyrin with recombinant gephyrin carrying alanine mutations at putative CDK5 phosphorylation sites the binding of gephyrin to MTs was increased. Furthermore, the analysis of cultured HEK293T and U2OS cells by immunofluorescence-microscopy disclosed a dispersed and punctuated endogenous gephyrin immunoreactivity co-localizing with MTs which was evidently not phosphorylated at Ser270. Thus, our study provides additional evidence for the binding of gephyrin to MTs in brain tissue and in in vitro cell systems. More importantly, our findings indicate that gephyrin-MT binding is restricted to a specific gephyrin fraction and depicts phosphorylation of gephyrin as a regulatory mechanism of this process by showing that soluble gephyrin detached from MTs can be detected specifically with the mAb7a antibody, which recognizes the Ser270 phosphorylated- version of gephyrin.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Eva Kiss
- Department of Cellular and Molecular Biology, University of Medicine, Pharmacy, Science and Technology "G.E. Palade" of Târgu Mures, Târgu Mures, Romania
| | - Rebecca Demmig
- University of Konstanz, Molecular Genetics, Konstanz, Germany
| | - Joachim Kirsch
- Department of Anatomy and Cell Biology, Institut für Anatomie und Zellbiologie, University of Heidelberg, Lehrstuhl II, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Ralph Alexander Nawrotzki
- Department of Anatomy and Cell Biology, Institut für Anatomie und Zellbiologie, University of Heidelberg, Lehrstuhl II, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Jochen Kuhse
- Department of Anatomy and Cell Biology, Institut für Anatomie und Zellbiologie, University of Heidelberg, Lehrstuhl II, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| |
Collapse
|
29
|
Ghesh L, Besnard T, Nizon M, Trochu E, Landeau-Trottier G, Breheret F, Thauvin-Robinet C, Bruel AL, Kuentz P, Coubes C, Cuisset L, Mignot C, Keren B, Bézieau S, Cogné B. Loss-of-function variants in ARHGEF9 are associated with an X-linked intellectual disability dominant disorder. Hum Mutat 2021; 42:498-505. [PMID: 33600053 DOI: 10.1002/humu.24188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 02/14/2021] [Indexed: 01/12/2023]
Abstract
ARHGEF9 defects lead to an X-linked intellectual disability disorder related to inhibitory synaptic dysfunction. This condition is more frequent in males, with a few affected females reported. Up to now, sequence variants and gross deletions have been identified in males, while only chromosomal aberrations have been reported in affected females who showed a skewed pattern of X-chromosome inactivation (XCI), suggesting an X-linked recessive (XLR) disorder. We report three novel loss-of-function (LoF) variants in ARHGEF9: A de novo synonymous variant affecting splicing (NM_015185.2: c.1056G>A, p.(Lys352=)) in one female; a nonsense variant in another female (c.865C>T, p.(Arg289*)), that is, also present as a somatically mosaic variant in her father, and a de novo nonsense variant in a boy (c.899G>A; p.(Trp300*)). Both females showed a random XCI. Thus, we suggest that missense variants are responsible for an XLR disorder affecting males and that LoF variants, mainly occurring de novo, may be responsible for an X-linked dominant disorder affecting males and females.
Collapse
Affiliation(s)
- Leïla Ghesh
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Thomas Besnard
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- l'institut du thorax, Université de Nantes, CNRS, INSERM, Nantes, France
| | - Mathilde Nizon
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- l'institut du thorax, Université de Nantes, CNRS, INSERM, Nantes, France
| | - Eva Trochu
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | | | - Flora Breheret
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Christel Thauvin-Robinet
- FHU TRANSLAD, Centre Hospitalier Universitaire Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
- Génétique des Anomalies du Développement, Inserm UMR 1231, Université de Bourgogne, Dijon, France
- Centre de Génétique et Centre de Référence Déficience Intellectuelle de causes rares, Hôpital d'Enfants, Centre Hospitalier Universitaire Dijon-Bourgogne, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon, Dijon, France
| | - Ange-Line Bruel
- FHU TRANSLAD, Centre Hospitalier Universitaire Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
- Génétique des Anomalies du Développement, Inserm UMR 1231, Université de Bourgogne, Dijon, France
- UF Innovation en diagnostic génomique des maladies rares, CHU Dijon, Dijon, France
| | - Paul Kuentz
- FHU TRANSLAD, Centre Hospitalier Universitaire Dijon-Bourgogne et Université de Bourgogne-Franche Comté, Dijon, France
- Génétique des Anomalies du Développement, Inserm UMR 1231, Université de Bourgogne, Dijon, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Montpellier, France
| | - Laurence Cuisset
- Laboratoire de Génétique et Biologie Moléculaires, Département Médico-Universitaire BioPhyGen, Hôpital Cochin, APHP, Université de Paris, Paris, France
| | - Cyril Mignot
- Institut du Cerveau et de la Moelle épinière, ICM, INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France
- Service de Génétique clinique et Médicale, CHU Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Boris Keren
- Service de Génétique clinique et Médicale, CHU Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- l'institut du thorax, Université de Nantes, CNRS, INSERM, Nantes, France
| | - Benjamin Cogné
- Service de Génétique Médicale, Centre Hospitalier Universitaire de Nantes, Nantes, France
- l'institut du thorax, Université de Nantes, CNRS, INSERM, Nantes, France
| |
Collapse
|
30
|
George S, Bear J, Taylor MJ, Kanamalla K, Fekete CD, Chiou TT, Miralles CP, Papadopoulos T, De Blas AL. Collybistin SH3-protein isoforms are expressed in the rat brain promoting gephyrin and GABA-A receptor clustering at GABAergic synapses. J Neurochem 2021; 157:1032-1051. [PMID: 33316079 DOI: 10.1111/jnc.15270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/18/2020] [Accepted: 12/08/2020] [Indexed: 01/21/2023]
Abstract
Collybistin (CB) is a guanine nucleotide exchange factor (GEF) selectively localized at GABAergic and glycinergic postsynapses. Analysis of mRNA shows that several isoforms of collybistin are expressed in the brain. Some of the isoforms have a SH3 domain (CBSH3+) and some have no SH3 domain (CBSH3-). The CBSH3+ mRNAs are predominantly expressed over CBSH3-. However, in an immunoblot study of mouse brain homogenates, only CBSH3+ protein isoforms were detected, proposing that CBSH3- protein might not be expressed in the brain. The expression or lack of expression of CBSH3- protein is an important issue because CBSH3- has a strong effect in promoting the postsynaptic clustering of gephyrin and GABA-A receptors (GABAA Rs). Moreover CBSH3- is constitutively active; therefore lower expression of CBSH3- protein might play a relatively stronger functional role than the more abundant but self-inhibited CBSH3+ isoforms, which need to be activated. We are now showing that: (a) CBSH3- protein is expressed in the brain; (b) parvalbumin positive (PV+) interneurons show higher expression of CBSH3- protein than other neurons; (c) CBSH3- is associated with GABAergic synapses in various regions of the brain and (d) knocking down CBSH3- in hippocampal neurons decreases the synaptic clustering of gephyrin and GABAA Rs. The results show that CBSH3- protein is expressed in the brain and that it plays a significant role in the size regulation of the GABAergic postsynapse.
Collapse
Affiliation(s)
- Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - John Bear
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Michael J Taylor
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Karthik Kanamalla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Celia P Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | | | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
31
|
Schäfer J, Förster L, Mey I, Papadopoulos T, Brose N, Steinem C. Neuroligin-2 dependent conformational activation of collybistin reconstituted in supported hybrid membranes. J Biol Chem 2020; 295:18604-18613. [PMID: 33127642 PMCID: PMC7939476 DOI: 10.1074/jbc.ra120.015347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/27/2020] [Indexed: 12/23/2022] Open
Abstract
The assembly of the postsynaptic transmitter sensing machinery at inhibitory nerve cell synapses requires the intimate interplay between cell adhesion proteins, scaffold and adaptor proteins, and γ-aminobutyric acid (GABA) or glycine receptors. We developed an in vitro membrane system to reconstitute this process, to identify the essential protein components, and to define their mechanism of action, with a specific focus on the mechanism by which the cytosolic C terminus of the synaptic cell adhesion protein Neuroligin-2 alters the conformation of the adaptor protein Collybistin-2 and thereby controls Collybistin-2-interactions with phosphoinositides (PtdInsPs) in the plasma membrane. Supported hybrid membranes doped with different PtdInsPs and 1,2-dioleoyl-sn-glycero-3-{[N-(5-amino-1-carboxypentyl)iminodiacetic acid]succinyl} nickel salt (DGS-NTA(Ni)) to allow for the specific adsorption of the His6-tagged intracellular domain of Neuroligin-2 (His-cytNL2) were prepared on hydrophobically functionalized silicon dioxide substrates via vesicle spreading. Two different collybistin variants, the WT protein (CB2SH3) and a mutant that adopts an intrinsically 'open' and activated conformation (CB2SH3/W24A-E262A), were bound to supported membranes in the absence or presence of His-cytNL2. The corresponding binding data, obtained by reflectometric interference spectroscopy, show that the interaction of the C terminus of Neuroligin-2 with Collybistin-2 induces a conformational change in Collybistin-2 that promotes its interaction with distinct membrane PtdInsPs.
Collapse
Affiliation(s)
- Jonas Schäfer
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany
| | - Lucas Förster
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany
| | - Ingo Mey
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany
| | | | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Claudia Steinem
- Institute for Organic and Biomolecular Chemistry, Georg August University, Göttingen, Germany; Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany.
| |
Collapse
|
32
|
A proline-rich motif in the large intracellular loop of the glycine receptor α1 subunit interacts with the Pleckstrin homology domain of collybistin. J Adv Res 2020; 29:95-106. [PMID: 33842008 PMCID: PMC8020344 DOI: 10.1016/j.jare.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/14/2020] [Accepted: 09/30/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction The inhibitory glycine receptor (GlyR), a mediator of fast synaptic inhibition, is located and held at neuronal synapses through the anchoring proteins gephyrin and collybistin. Stable localization of neurotransmitter receptors is essential for synaptic function. In case of GlyRs, only beta subunits were known until now to mediate synaptic anchoring. Objectives We identified a poly-proline II helix (PPII) in position 365–373 of the intra-cellular TM3-4 loop of the human GlyRα1 subunit as a novel potential synaptic anchoring site. The potential role of the PPII helix as synaptic anchoring site was tested. Methods Glycine receptors and collybistin variants were generated and recombinantly expressed in HEK293 cells and cultured neurons. Receptor function was assessed using patch-clamp electrophysiology, protein-protein interaction was studied using co-immuno-precipitation and pulldown experiments. Results Recombinantly expressed collybistin bound to isolated GlyRα1 TM3-4 loops in GST-pulldown assays. When the five proline residues P365A, P366A, P367A, P369A, P373A (GlyRα1P1-5A) located in the GlyRα1-PPII helix were replaced by alanines, the PPII secondary structure was disrupted. Recombinant GlyRα1P1-5A mutant subunits displayed normal cell surface expression and wildtype-like ion channel function, but binding to collybistin was abolished. The GlyRα1-collybistin interaction was independently confirmed by o-immunoprecipitation assays using full-length GlyRα1 subunits. Surprisingly, the interaction was not mediated by the SH3 domain of collybistin, but by its Pleckstrin homology (PH) domain. The mutation GlyRα1P366L, identified in a hyperekplexia patient, is also disrupting the PPII helix, and caused reduced collybistin binding. Conclusion Our data suggest a novel interaction between α1 GlyR subunits and collybistin, which is physiologically relevant in vitro and in vivo and may contribute to postsynaptic anchoring of glycine receptors.
Collapse
|
33
|
Nakamura Y, Morrow DH, Nathanson AJ, Henley JM, Wilkinson KA, Moss SJ. Phosphorylation on Ser-359 of the α2 subunit in GABA type A receptors down-regulates their density at inhibitory synapses. J Biol Chem 2020; 295:12330-12342. [PMID: 32620552 PMCID: PMC7458806 DOI: 10.1074/jbc.ra120.014303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/25/2020] [Indexed: 11/06/2022] Open
Abstract
GABA type A receptors (GABAARs) mediate fast synaptic inhibition and are trafficked to functionally diverse synapses. However, the precise molecular mechanisms that regulate the synaptic targeting of these receptors are unclear. Whereas it has been previously shown that phosphorylation events in α4, β, and γ subunits of GABAARs govern their function and trafficking, phosphorylation of other subunits has not yet been demonstrated. Here, we show that the α2 subunit of GABAARs is phosphorylated at Ser-359 and enables dynamic regulation of GABAAR binding to the scaffolding proteins gephyrin and collybistin. We initially identified Ser-359 phosphorylation by MS analysis, and additional experiments revealed that it is regulated by the activities of cAMP-dependent protein kinase (PKA) and the protein phosphatase 1 (PP1) and/or PP2A. GST-based pulldowns and coimmunoprecipitation experiments demonstrate preferential binding of both gephyrin and collybistin to WT and an S359A phosphonull variant, but not to an S359D phosphomimetic variant. Furthermore, the decreased capacity of the α2 S359D variant to bind collybistin and gephyrin decreased the density of synaptic α2-containing GABAAR clusters and caused an absence of α2 enrichment in the axon initial segment. These results suggest that PKA-mediated phosphorylation and PP1/PP2A-dependent dephosphorylation of the α2 subunit play a role in the dynamic regulation of GABAAR accumulation at inhibitory synapses, thereby regulating the strength of synaptic inhibition. The MS data have been deposited to ProteomeXchange, with the data set identifier PXD019597.
Collapse
Affiliation(s)
- Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Danielle H. Morrow
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - Anna J. Nathanson
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - Jeremy M. Henley
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Kevin A. Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, University of Bristol, Bristol, United Kingdom
| | - Stephen J. Moss
- Department of Neuroscience, Tufts University, School of Medicine, Boston, Massachusetts, USA,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom,For correspondence: S. J. Moss,
| |
Collapse
|
34
|
Nathanson AJ, Zhang Y, Smalley JL, Ollerhead TA, Rodriguez Santos MA, Andrews PM, Wobst HJ, Moore YE, Brandon NJ, Hines RM, Davies PA, Moss SJ. Identification of a Core Amino Acid Motif within the α Subunit of GABA ARs that Promotes Inhibitory Synaptogenesis and Resilience to Seizures. Cell Rep 2020; 28:670-681.e8. [PMID: 31315046 PMCID: PMC8283774 DOI: 10.1016/j.celrep.2019.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/08/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
SUMMARY The fidelity of inhibitory neurotransmission is dependent on the accumulation of γ-aminobutyric acid type A receptors (GABAARs) at the appropriate synaptic sites. Synaptic GABAARs are constructed from α(1–3), β(1–3), and γ2 subunits, and neurons can target these subtypes to specific synapses. Here, we identify a 15-amino acid inhibitory synapse targeting motif (ISTM) within the α2 subunit that promotes the association between GABAARs and the inhibitory scaffold proteins collybistin and gephyrin. Using mice in which the ISTM has been introduced into the α1 subunit (Gabra1–2 mice), we show that the ISTM is critical for axo-axonic synapse formation, the efficacy of GABAergic neurotransmission, and seizure sensitivity. The Gabra1–2 mutation rescues seizure-induced lethality in Gabra2–1 mice, which lack axo-axonic synapses due to the deletion of the ISTM from the α2 subunit. Taken together, our data demonstrate that the ISTM plays a critical role in promoting inhibitory synapse formation, both in the axonic and somatodendritic compartments. In Brief Molecular mechanisms regulating specific synaptic GABAAR accumulation are critical for the fidelity of inhibitory neurotransmission. Nathanson et al. show that strengthening the interaction between α1-GABAARs and collybistin via genetic manipulation results in augmented synaptic targeting of these receptors, enhanced inhibitory neurotransmission, and seizure resilience.
Collapse
Affiliation(s)
- Anna J Nathanson
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Yihui Zhang
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Joshua L Smalley
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Thomas A Ollerhead
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Peter M Andrews
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Heike J Wobst
- AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 02451, USA
| | - Yvonne E Moore
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nicholas J Brandon
- AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA; AstraZeneca Neuroscience, IMED Biotech Unit, R&D, Boston, MA 02451, USA
| | - Rochelle M Hines
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA 02111, USA; AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA 02111, USA; Department of Neuroscience, Physiology and Pharmacology, University College, London WC1E 6BT, UK.
| |
Collapse
|
35
|
Saini AG, Pandey S. Hyperekplexia and other startle syndromes. J Neurol Sci 2020; 416:117051. [PMID: 32721683 DOI: 10.1016/j.jns.2020.117051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 11/18/2022]
Abstract
Abnormal startle syndromes are classified into hyperekplexia, stimulus-induced, and neuropsychiatric startle syndromes. Hyperekplexia is attributed to a genetic, idiopathic, or symptomatic cause. Hereditary hyperekplexia is a treatable neurogenetic disorder. In patients with a hyperactive startle response, the first step is to characterize the extent and associations of 'response.' Secondary or symptomatic causes are particularly important in children, as they provide useful clinical clues to an underlying neurodevelopmental or neurodegenerative disorders. Particular attention should be given to any neonate or infant with generalized or episodic stiffness, drug-refractory seizures, recurrent apnea, stimulus-sensitive behavioral states, or sudden infant death syndrome. Eliciting a non-habituating head-retraction reflex to repeated nose tapping should be a part of routine examination of all new-borns. Vigevano maneuver should be taught to all families and health-care workers as an emergency rescue measure. The onset of excessive startle after infancy should direct investigations for an acquired cause such as brainstem injury, antibodies against glycine receptors, and neurodegeneration. Finally, one should not forget to evaluate unexplained cases of abnormal gait and frequent falls in adults for underlying undiagnosed startle syndromes. Oral clonazepam is an effective therapy besides behavioral and safety interventions for hereditary cases. The outcomes in genetic cases are good overall.
Collapse
Affiliation(s)
- Arushi Gahlot Saini
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sanjay Pandey
- Department of Neurology, Govind Ballabh Pant Institute of Postgraduate medical education and research, JLN Marg, New Delhi 110002, India.
| |
Collapse
|
36
|
A Novel Glycine Receptor Variant with Startle Disease Affects Syndapin I and Glycinergic Inhibition. J Neurosci 2020; 40:4954-4969. [PMID: 32354853 DOI: 10.1523/jneurosci.2490-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/24/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
Glycine receptors (GlyRs) are the major mediators of fast synaptic inhibition in the adult human spinal cord and brainstem. Hereditary mutations to GlyRs can lead to the rare, but potentially fatal, neuromotor disorder hyperekplexia. Most mutations located in the large intracellular domain (TM3-4 loop) of the GlyRα1 impair surface expression levels of the receptors. The novel GLRA1 mutation P366L, located in the TM3-4 loop, showed normal surface expression but reduced chloride currents, and accelerated whole-cell desensitization observed in whole-cell recordings. At the single-channel level, we observed reduced unitary conductance accompanied by spontaneous opening events in the absence of extracellular glycine. Using peptide microarrays and tandem MS-based analysis methods, we show that the proline-rich stretch surrounding P366 mediates binding to syndapin I, an F-BAR domain protein involved in membrane remodeling. The disruption of the noncanonical Src homology 3 recognition motif by P366L reduces syndapin I binding. These data suggest that the GlyRα1 subunit interacts with intracellular binding partners and may therefore play a role in receptor trafficking or synaptic anchoring, a function thus far only ascribed to the GlyRβ subunit. Hence, the P366L GlyRα1 variant exhibits a unique set of properties that cumulatively affect GlyR functionality and thus might explain the neuropathological mechanism underlying hyperekplexia in the mutant carriers. P366L is the first dominant GLRA1 mutation identified within the GlyRα1 TM3-4 loop that affects GlyR physiology without altering protein expression at the whole-cell and surface levels.SIGNIFICANCE STATEMENT We show that the intracellular domain of the inhibitory glycine receptor α1 subunit contributes to trafficking and synaptic anchoring. A proline-rich stretch in this receptor domain forms a noncanonical recognition motif important for the interaction with syndapin I (PACSIN1). The disruption of this motif, as present in a human patient with hyperekplexia led to impaired syndapin I binding. Functional analysis revealed that the altered proline-rich stretch determines several functional physiological parameters of the ion channel (e.g., faster whole-cell desensitization) reduced unitary conductance and spontaneous opening events. Thus, the proline-rich stretch from the glycine receptor α1 subunit represents a multifunctional intracellular protein motif.
Collapse
|
37
|
Zhan F, Zhang C, Wang S, Zhu Z, Chen G, Zhao M, Cao L. Excessive Startle with Novel GLRA1 Mutations in 4 Chinese Patients and a Literature Review of GLRA1-Related Hyperekplexia. J Clin Neurol 2020; 16:230-236. [PMID: 32319239 PMCID: PMC7174104 DOI: 10.3988/jcn.2020.16.2.230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose Hyperekplexia (HPX), a rare neurogenetic disorder, is classically characterized by neonatal hypertonia, exaggerated startle response provoked by the sudden external stimuli and followed by a shortly general stiffness. Glycine receptor alpha 1 (GLRA1) is the major pathogenic gene of the disease. We described the clinical manifestations of genetically confirmed HPX patients and made a literature review of GLRA1-related HPX to improve the early recognition and prompt the management of the disorder. Methods Extensive clinical evaluations were analyzed in 4 Chinese HPX patients from two unrelated families. Next generation sequencing was conducted in the probands. Sanger sequence and segregation analysis were applied to confirm the findings. Results All four patients including 3 males and 1 female presented with excessive startle reflex, a cautious gait and recurrent falls. Moreover, startle episodes were dramatically improved with the treatment of clonazepam in all cases. Exome sequencing revealed 2 homozygous GLRA1 mutations in the patients. The mutation c.1286T>A p.I429N has been previously reported, while c.754delC p.L252* is novel. Conclusions HPX is a treatable disease, and clonazepam is the drug of choice. By studying and reviewing the disorder, we summarized the phenotype, expanded the genotype spectrum, and discussed the possible pathogenic mechanisms to enhance the understanding and recognition of the disease. Early awareness of the disease is crucial to the prompt and proper administration, as well as the genetic counseling.
Collapse
Affiliation(s)
- Feixia Zhan
- Department of Neurology, RuiJin Hospital & RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Zhang
- Department of Neurology, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou, China
| | - Shige Wang
- Department of Neurology, RuiJin Hospital & RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Zhu
- Department of Neurology, RuiJin Hospital & RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Chen
- Department of Neurology, RuiJin Hospital & RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingliang Zhao
- Department of Neurology, RuiJin Hospital & RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Cao
- Department of Neurology, RuiJin Hospital & RuiJin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
38
|
Zhang Y, Wu LL, Zheng XL, Lin CM. C.292G>A, a novel glycine receptor alpha 1 subunit gene (GLRA1) mutation found in a Chinese patient with hyperekplexia: A case report. Medicine (Baltimore) 2020; 99:e19968. [PMID: 32332682 PMCID: PMC7220787 DOI: 10.1097/md.0000000000019968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION Hyperekplexia is a rare hereditary neurological disorder; only 5 glycine receptor alpha 1 subunit gene (GLRA1) mutations have been reported in 5 Chinese patients. We report a Chinese infant with hyperekplexia and a novel mutation at c.292G > A. PATIENT CONCERNS A Chinese infant with hyperekplexia and a novel mutation at c.292G > A. DIAGNOSIS All exons of GLRA1 were sequenced in her parents and her, which revealed a mutation at c.1030C > T and another novel mutation at c.292G > A. Her diagnosis was confirmed as hereditary hyperekplexia with GlRA1 hybrid gene mutations based on the sequencing results. INTERVENTIONS She was treated with clonazepam. OUTCOMES Her muscle hypertonia recovered rapidly and the excessive startle reflex to unexpected stimuli was significantly reduced. CONCLUSION Genetic DNA sequencing is a crucial method for diagnosing hyperekplexia-related gene mutation.
Collapse
|
39
|
van der Spek SJF, Koopmans F, Paliukhovich I, Ramsden SL, Harvey K, Harvey RJ, Smit AB, Li KW. Glycine Receptor Complex Analysis Using Immunoprecipitation-Blue Native Gel Electrophoresis-Mass Spectrometry. Proteomics 2020; 20:e1900403. [PMID: 31984645 DOI: 10.1002/pmic.201900403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 11/07/2022]
Abstract
The pentameric glycine receptor (GlyR), comprising the α1 and β subunits, is a major inhibitory ionotropic receptor in brainstem and spinal cord. GlyRs interact with gephyrin (GPHN), a scaffold protein that anchors the GlyR in the plasma membrane and enables it to form clusters in glycinergic postsynapses. Using an interaction proteomics approach, evidence of the ArfGEFs IQ motif and Sec7 domain 3 (IQSEC3) and IQ motif and Sec7 domain 2 (IQSEC2) as two novel synaptic proteins interacting with GlyR complexes is provided. When the affinity-isolated GlyR complexes are fractionated by blue native gel electrophoresis and characterized by mass spectrometry, GlyR α1β-GPHN appears as the most abundant complex with a molecular weight of ≈1 MDa, and GlyR α1β-GPHN-IQSEC3 as a minor protein complex of ≈1.2 MDa. A third GlyR α1β-GPHN-IQSEC2 complex exists at the lowest amount with a mass similar to the IQSEC3 containing complex. Using yeast two-hybrid it is demonstrated that IQSEC3 interacts with the GlyR complex by binding to the GPHN G domain at the N-terminal of the IQSEC3 IQ-like domain. The data provide direct evidence of the interaction of IQSEC3 with GlyR-GPHN complexes, underscoring a potential role of these ArfGEFs in the function of glycinergic synapses.
Collapse
Affiliation(s)
- Sophie J F van der Spek
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Sarah L Ramsden
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick square, WC1N 1AX, London, UK
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, 29-39 Brunswick square, WC1N 1AX, London, UK
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland, 4558, Australia.,Sunshine Coast Health Institute, Birtinya, Queensland, 4575, Australia
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
40
|
Kilisch M, Mayer S, Mitkovski M, Roehse H, Hentrich J, Schwappach B, Papadopoulos T. A GTPase-induced switch in phospholipid affinity of collybistin contributes to synaptic gephyrin clustering. J Cell Sci 2020; 133:jcs.232835. [PMID: 31932505 DOI: 10.1242/jcs.232835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 12/19/2019] [Indexed: 11/20/2022] Open
Abstract
Synaptic transmission between neurons relies on the exact spatial organization of postsynaptic transmitter receptors, which are recruited and positioned by dedicated scaffolding and regulatory proteins. At GABAergic synapses, the regulatory protein collybistin (Cb, also known as ARHGEF9) interacts with small GTPases, cell adhesion proteins and phosphoinositides to recruit the scaffolding protein gephyrin and GABAA receptors to nascent synapses. We dissected the interaction of Cb with the small Rho-like GTPase TC10 (also known as RhoQ) and phospholipids. Our data define a protein-lipid interaction network that controls the clustering of gephyrin at synapses. Within this network, TC10 and monophosphorylated phosphoinositides, particulary phosphatidylinositol 3-phosphate (PI3P), provide a coincidence detection platform that allows the accumulation and activation of Cb in endomembranes. Upon activation, TC10 induces a phospholipid affinity switch in Cb, which allows Cb to specifically interact with phosphoinositide species present at the plasma membrane. We propose that this GTPase-based regulatory switch mechanism represents an important step in the process of tethering of Cb-dependent scaffolds and receptors at nascent postsynapses.
Collapse
Affiliation(s)
- Markus Kilisch
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Simone Mayer
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, Göttingen 37075, Germany
| | - Miso Mitkovski
- MPI-EM Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, Göttingen 37075, Germany
| | - Heiko Roehse
- MPI-EM Light Microscopy Facility, Max Planck Institute of Experimental Medicine, Hermann-Rein Str. 3, Göttingen 37075, Germany
| | - Jennifer Hentrich
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Blanche Schwappach
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| | - Theofilos Papadopoulos
- Department of Molecular Biology, Universitätsmedizin Göttingen, Humboldtallee 23, Göttingen 37073, Germany
| |
Collapse
|
41
|
Yao R, Zhang Y, Liu J, Wang J, Xu Y, Li N, Wang J, Yu T. Clinical and Molecular Characterization of Three Novel ARHGEF9 Mutations in Patients with Developmental Delay and Epilepsy. J Mol Neurosci 2020; 70:908-915. [PMID: 31942680 DOI: 10.1007/s12031-019-01465-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/05/2019] [Indexed: 11/30/2022]
Abstract
Mutations in the rho guanine nucleotide exchange factor 9 gene (ARHGEF9) are present in patients with heterogeneous phenotypes including psychomotor developmental delay and variable degrees of epilepsy. Malfunction of collybistin (CB) encoded by ARHGEF9 leading to impaired clustering of gephyrin-dependent glycine receptors and γ-aminobutyric acid type A (GABAα) receptors is a crucial pathogenic mechanism. Here, we report on three patients with epilepsy and mental retardation. We studied three male patients with epilepsy and mild to moderate mental retardation. We conducted targeted panel sequencing of genes known to cause inherited disorders. In vitro studies and transcriptional experiments were performed to evaluate the functional and splicing effects of these variants on CB. Two novel missense variants (p.I294T and p.R357I) and one novel splicing variant (c.381+3A>G) in ARHGEF9 were identified in the three patients, respectively. In vitro studies confirmed that the two missense variants disrupted CB-mediated accumulation of gephyrin in submembrane microclusters. Transcriptional experiments of the splicing variant revealed the presence of aberrant transcripts leading to truncated protein product. Significance: Our cases and functional studies enrich our understanding of the phenotypic and genotypic spectrum of ARHGEF9.
Collapse
Affiliation(s)
- Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Yi Zhang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Jie Liu
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Jiwen Wang
- Department of Neurology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Yufei Xu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
42
|
Nathanson AJ, Davies PA, Moss SJ. Inhibitory Synapse Formation at the Axon Initial Segment. Front Mol Neurosci 2019; 12:266. [PMID: 31749683 PMCID: PMC6848228 DOI: 10.3389/fnmol.2019.00266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022] Open
Abstract
The axon initial segment (AIS) is the site of action potential (AP) initiation in most neurons and is thus a critical site in the regulation of neuronal excitability. Normal function within the discrete AIS compartment requires intricate molecular machinery to ensure the proper concentration and organization of voltage-gated and ligand-gated ion channels; in humans, dysfunction at the AIS due to channel mutations is commonly associated with epileptic disorders. In this review, we will examine the molecular mechanisms underlying the formation of the only synapses found at the AIS: synapses containing γ-aminobutyric type A receptors (GABAARs). GABAARs are heteropentamers assembled from 19 possible subunits and are the primary mediators of fast synaptic inhibition in the brain. Although the total GABAAR population is incredibly heterogeneous, only one specific GABAAR subtype—the α2-containing receptor—is enriched at the AIS. These AIS synapses are innervated by GABAergic chandelier cells, and this inhibitory signaling is thought to contribute to the tight control of AP firing. Here, we will summarize the progress made in understanding the regulation of GABAAR synapse formation, concentrating on post-translational modifications of subunits and on interactions with intracellular proteins. We will then discuss subtype-specific synapse formation, with a focus on synapses found at the AIS, and how these synapses influence neuronal excitation.
Collapse
Affiliation(s)
- Anna J Nathanson
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Paul A Davies
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States.,AstraZeneca Tufts Laboratory for Basic and Translational Neuroscience, Boston, MA, United States.,Department of Neuroscience, Physiology and Pharmacology, University College, London, United Kingdom
| |
Collapse
|
43
|
Khayenko V, Maric HM. Targeting GABA AR-Associated Proteins: New Modulators, Labels and Concepts. Front Mol Neurosci 2019; 12:162. [PMID: 31293385 PMCID: PMC6606717 DOI: 10.3389/fnmol.2019.00162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
γ-aminobutyric acid type A receptors (GABAARs) are the major mediators of synaptic inhibition in the brain. Aberrant GABAAR activity or regulation is observed in various neurodevelopmental disorders, neurodegenerative diseases and mental illnesses, including epilepsy, Alzheimer’s and schizophrenia. Benzodiazepines, anesthetics and other pharmaceutics targeting these receptors find broad clinical use, but their inherent lack of receptor subtype specificity causes unavoidable side effects, raising a need for new or adjuvant medications. In this review article, we introduce a new strategy to modulate GABAeric signaling: targeting the intracellular protein interactors of GABAARs. Of special interest are scaffolding, anchoring and supporting proteins that display high GABAAR subtype specificity. Recent efforts to target gephyrin, the major intracellular integrator of GABAergic signaling, confirm that GABAAR-associated proteins can be successfully targeted through diverse molecules, including recombinant proteins, intrabodies, peptide-based probes and small molecules. Small-molecule artemisinins and peptides derived from endogenous interactors, that specifically target the universal receptor binding site of gephyrin, acutely affect synaptic GABAAR numbers and clustering, modifying neuronal transmission. Interference with GABAAR trafficking provides another way to modulate inhibitory signaling. Peptides blocking the binding site of GABAAR to AP2 increase the surface concentration of GABAAR clusters and enhance GABAergic signaling. Engineering of gephyrin binding peptides delivered superior means to interrogate neuronal structure and function. Fluorescent peptides, designed from gephyrin binders, enable live neuronal staining and visualization of gephyrin in the post synaptic sites with submicron resolution. We anticipate that in the future, novel fluorescent probes, with improved size and binding efficiency, may find wide application in super resolution microscopy studies, enlightening the nanoscale architecture of the inhibitory synapse. Broader studies on GABAAR accessory proteins and the identification of the exact molecular binding interfaces and affinities will advance the development of novel GABAAR modulators and following in vivo studies will reveal their clinical potential as adjuvant or stand-alone drugs.
Collapse
Affiliation(s)
- Vladimir Khayenko
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.,Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Hans Michael Maric
- Institute of Structural Biology, Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany.,Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
44
|
Que L, Winterer J, Földy C. Deep Survey of GABAergic Interneurons: Emerging Insights From Gene-Isoform Transcriptomics. Front Mol Neurosci 2019; 12:115. [PMID: 31133800 PMCID: PMC6514532 DOI: 10.3389/fnmol.2019.00115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
GABAergic interneuron diversity is a key feature in the brain that helps to create different brain activity patterns and behavioral states. Cell type classification schemes—based on anatomical, physiological and molecular features—have provided us with a detailed understanding of the distinct types that constitute this diversity and their contribution to brain function. Over recent years, the utility of single-cell RNAseq has majorly complemented this existing framework, vastly expanding our knowledge base, particularly regarding molecular features. Single-cell gene-expression profiles of tens of thousands of GABAergic cells from many different types are now available. The analysis of these data has shed new lights onto previous classification principles and illuminates a path towards a deeper understanding of molecular hallmarks behind interneuron diversity. A large part of such molecular features is synapse-related. These include ion channels and receptors, as well as key synaptic organizers and trans-synaptic signaling molecules. Increasing evidence suggests that transcriptional and post-transcriptional modifications further diversify these molecules and generate cell type-specific features. Thus, unraveling the cell type-specific nature of gene-isoform expression will be a key in cell type classification. This review article discusses progress in the transcriptomic survey of interneurons and insights that have begun to manifest from isoform-level analyses.
Collapse
Affiliation(s)
- Lin Que
- Laboratory of Neural Connectivity, Faculties of Medicine and Natural Sciences, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Neural Connectivity, Faculties of Medicine and Natural Sciences, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Csaba Földy
- Laboratory of Neural Connectivity, Faculties of Medicine and Natural Sciences, Brain Research Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Niftullayev S, Lamarche-Vane N. Regulators of Rho GTPases in the Nervous System: Molecular Implication in Axon Guidance and Neurological Disorders. Int J Mol Sci 2019; 20:E1497. [PMID: 30934641 PMCID: PMC6471118 DOI: 10.3390/ijms20061497] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022] Open
Abstract
One of the fundamental steps during development of the nervous system is the formation of proper connections between neurons and their target cells-a process called neural wiring, failure of which causes neurological disorders ranging from autism to Down's syndrome. Axons navigate through the complex environment of a developing embryo toward their targets, which can be far away from their cell bodies. Successful implementation of neuronal wiring, which is crucial for fulfillment of all behavioral functions, is achieved through an intimate interplay between axon guidance and neural activity. In this review, our focus will be on axon pathfinding and the implication of some of its downstream molecular components in neurological disorders. More precisely, we will talk about axon guidance and the molecules implicated in this process. After, we will briefly review the Rho family of small GTPases, their regulators, and their involvement in downstream signaling pathways of the axon guidance cues/receptor complexes. We will then proceed to the final and main part of this review, where we will thoroughly comment on the implication of the regulators for Rho GTPases-GEFs (Guanine nucleotide Exchange Factors) and GAPs (GTPase-activating Proteins)-in neurological diseases and disorders.
Collapse
Affiliation(s)
- Sadig Niftullayev
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the MUHC, Montreal, QC H4A 3J1, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada.
| |
Collapse
|
46
|
Vuilleumier PH, Fritsche R, Schliessbach J, Schmitt B, Arendt-Nielsen L, Zeilhofer HU, Curatolo M. Mutations affecting glycinergic neurotransmission in hyperekplexia increase pain sensitivity. Brain 2019; 141:63-71. [PMID: 29149236 DOI: 10.1093/brain/awx289] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/19/2017] [Indexed: 11/14/2022] Open
Abstract
See Dickenson (doi:10.1093/brain/awx334) for a scientific commentary on this article.Inhibitory interneurons in the spinal cord use glycine and GABA for fast inhibitory neurotransmission. While there is abundant research on these inhibitory pain pathways in animal models, their relevance in humans remains unclear, largely due to the limited possibility to manipulate selectively these pathways in humans. Hyperekplexia is a rare human disease that is caused by loss-of-function mutations in genes encoding for glycine receptors and glycine transporters. In the present study, we tested whether hyperekplexia patients display altered pain perception or central pain modulation compared with healthy subjects. Seven patients with genetically and clinically confirmed hyperekplexia were compared to 14 healthy age- and sex-matched controls. The following quantitative sensory tests were performed: pressure pain detection threshold (primary outcome), ice water tolerance, single and repeated electrical pain detection thresholds, nociceptive withdrawal reflex threshold, and conditioned pain modulation. Statistical analysis was performed using linear mixed models. Hyperekplexia patients displayed lower pain thresholds than healthy controls for all of the quantitative sensory tests [mean (standard deviation)]: pressure pain detection threshold [273 (170) versus 475 (115) kPa, P = 0.003], ice water tolerance [49.2 (36.5) versus 85.7 (35.0) s, P = 0.015], electrical single pain detection threshold [5.42 (2.64) versus 7.47 (2.62) mA, P = 0.012], electrical repeated pain detection threshold [3.76 (1.41) versus 5.8 (1.73) mA, P = 0.003], and nociceptive withdrawal reflex [7.42 (3.63) versus 14.1 (6.9) mA, P = 0.015]. Conditioned pain modulation was significantly reduced in hyperekplexia [increase to baseline: 53.2 (63.7) versus 105 (57) kPa, P = 0.030]. Our data demonstrate increased pain sensitivity and impaired central pain modulation in hyperekplexia patients, supporting the importance of glycinergic neurotransmission for central pain modulation in humans.
Collapse
Affiliation(s)
- Pascal Henri Vuilleumier
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Switzerland
| | - Raphael Fritsche
- Department of Ophthalmology, Canton Hospital of Lucerne, Switzerland
| | - Jürg Schliessbach
- Department of Anaesthesiology and Pain Medicine, Bern University Hospital, University of Bern, Switzerland
| | - Bernhard Schmitt
- Department of Child Neurology, Children's Hospital, University of Zurich, Switzerland
| | - Lars Arendt-Nielsen
- Center for Sensory-Motor Interaction, School of Medicine, University of Aalborg, Denmark
| | - Hanns Ulrich Zeilhofer
- Institute of Pharmacology and Toxicology, University of Zurich, and Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Switzerland
| | - Michele Curatolo
- Center for Sensory-Motor Interaction, School of Medicine, University of Aalborg, Denmark.,Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, USA
| |
Collapse
|
47
|
Postsynaptic protein organization revealed by electron microscopy. Curr Opin Struct Biol 2019; 54:152-160. [PMID: 30904821 PMCID: PMC6753054 DOI: 10.1016/j.sbi.2019.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/02/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022]
Abstract
Neuronal synapses are key devices for transmitting and processing information in the nervous system. Synaptic plasticity, generally regarded as the cellular basis of learning and memory, involves changes of subcellular structures that take place at the nanoscale. High-resolution imaging methods, especially electron microscopy (EM), have allowed for quantitative analysis of such nanoscale structures in different types of synapses. In particular, the semi-ordered organization of neurotransmitter receptors and their interacting scaffolds in the postsynaptic density have been characterized for both excitatory and inhibitory synapses by studies using various EM techniques such as immuno-EM, electron tomography of high-pressure freezing and freeze-substituted samples, and cryo electron tomography. These techniques, in combination with new correlative approaches, will further facilitate our understanding of the molecular organization underlying diverse functions of neuronal synapses.
Collapse
|
48
|
Chiou TT, Long P, Schumann-Gillett A, Kanamarlapudi V, Haas SA, Harvey K, O'Mara ML, De Blas AL, Kalscheuer VM, Harvey RJ. Mutation p.R356Q in the Collybistin Phosphoinositide Binding Site Is Associated With Mild Intellectual Disability. Front Mol Neurosci 2019; 12:60. [PMID: 30914922 PMCID: PMC6422930 DOI: 10.3389/fnmol.2019.00060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/19/2019] [Indexed: 11/13/2022] Open
Abstract
The recruitment of inhibitory GABAA receptors to neuronal synapses requires a complex interplay between receptors, neuroligins, the scaffolding protein gephyrin and the GDP-GTP exchange factor collybistin (CB). Collybistin is regulated by protein-protein interactions at the N-terminal SH3 domain, which can bind neuroligins 2/4 and the GABAAR α2 subunit. Collybistin also harbors a RhoGEF domain which mediates interactions with gephyrin and catalyzes GDP-GTP exchange on Cdc42. Lastly, collybistin has a pleckstrin homology (PH) domain, which binds phosphoinositides, such as phosphatidylinositol 3-phosphate (PI3P/PtdIns3P) and phosphatidylinositol 4-monophosphate (PI4P/PtdIns4P). PI3P located in early/sorting endosomes has recently been shown to regulate the postsynaptic clustering of gephyrin and GABAA receptors and consequently the strength of inhibitory synapses in cultured hippocampal neurons. This process is disrupted by mutations in the collybistin gene (ARHGEF9), which cause X-linked intellectual disability (XLID) by a variety of mechanisms converging on disrupted gephyrin and GABAA receptor clustering at central synapses. Here we report a novel missense mutation (chrX:62875607C>T, p.R356Q) in ARHGEF9 that affects one of the two paired arginine residues in the PH domain that were predicted to be vital for binding phosphoinositides. Functional assays revealed that recombinant collybistin CB3SH3- R356Q was deficient in PI3P binding and was not able to translocate EGFP-gephyrin to submembrane microaggregates in an in vitro clustering assay. Expression of the PI3P-binding mutants CB3SH3- R356Q and CB3SH3- R356N/R357N in cultured hippocampal neurones revealed that the mutant proteins did not accumulate at inhibitory synapses, but instead resulted in a clear decrease in the overall number of synaptic gephyrin clusters compared to controls. Molecular dynamics simulations suggest that the p.R356Q substitution influences PI3P binding by altering the range of structural conformations adopted by collybistin. Taken together, these results suggest that the p.R356Q mutation in ARHGEF9 is the underlying cause of XLID in the probands, disrupting gephyrin clustering at inhibitory GABAergic synapses via loss of collybistin PH domain phosphoinositide binding.
Collapse
Affiliation(s)
- Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Philip Long
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | | | | | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kirsten Harvey
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Megan L O'Mara
- Research School of Chemistry, The Australian National University, Canberra, ACT, Australia
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Vera M Kalscheuer
- Group Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert J Harvey
- School of Health and Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| |
Collapse
|
49
|
Murphy SC, Recio A, de la Fuente C, Guo LT, Shelton GD, Clark LA. A glycine transporter SLC6A5 frameshift mutation causes startle disease in Spanish greyhounds. Hum Genet 2019; 138:509-513. [PMID: 30847549 DOI: 10.1007/s00439-019-01986-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/19/2019] [Indexed: 11/29/2022]
Abstract
Startle disease, or hyperekplexia, is a glycinergic disorder characterized by hypertonia and apnea that is triggered by noise and/or touch. Mutations in five genes have been associated with startle disease in humans, dogs, cattle, and mice. We identified a novel recessive startle disease in a family of Spanish greyhounds. Whole genome resequencing of an affected dog revealed a homozygous two base pair deletion in the ninth exon of SLC6A5, encoding the presynaptic glycine transporter. The deletion is predicted to cause a frameshift, p.S460FfsX47, leading to a premature stop codon that truncates over a third of the protein. Family members were genotyped for the deletion, and findings were consistent with an autosomal recessive inheritance pattern. The pathogenic variant was absent from 34 unrelated greyhounds, 659 domestic dogs of pure and mixed breeds, and 54 wild canids, suggesting it occurred recently and may be private to the family. The findings of this study can be used to inform future breeding decisions and prevent dissemination of the deleterious allele in greyhounds.
Collapse
Affiliation(s)
- Sarah C Murphy
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Alfredo Recio
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Clinica Veterinaria Levante, San Javier, Murcia, Spain
| | - Cristian de la Fuente
- Fundació Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Leigh Anne Clark
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
50
|
Witte H, Schreiner D, Scheiffele P. A Sam68-dependent alternative splicing program shapes postsynaptic protein complexes. Eur J Neurosci 2019; 49:1436-1453. [PMID: 30589479 DOI: 10.1111/ejn.14332] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/30/2022]
Abstract
Alternative splicing is one of the key mechanisms to increase the diversity of cellular transcriptomes, thereby expanding the coding capacity of the genome. This diversity is of particular importance in the nervous system with its elaborated cellular networks. Sam68, a member of the Signal Transduction Associated RNA-binding (STAR) family of RNA-binding proteins, is expressed in the developing and mature nervous system but its neuronal functions are poorly understood. Here, we perform genome-wide mapping of the Sam68-dependent alternative splicing program in mice. We find that Sam68 is required for the regulation of a set of alternative splicing events in pre-mRNAs encoding several postsynaptic scaffolding molecules that are central to the function of GABAergic and glutamatergic synapses. These components include Collybistin (Arhgef9), Gephyrin (Gphn), and Densin-180 (Lrrc7). Sam68-regulated Lrrc7 variants engage in differential protein interactions with signalling proteins, thus, highlighting a contribution of the Sam68 splicing program to shaping synaptic complexes. These findings suggest an important role for Sam68-dependent alternative splicing in the regulation of synapses in the central nervous system.
Collapse
Affiliation(s)
- Harald Witte
- Biozentrum of the University of Basel, Basel, Switzerland
| | - Dietmar Schreiner
- Biozentrum of the University of Basel, Basel, Switzerland.,Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | | |
Collapse
|