1
|
Waller TJ, Collins CA, Dus M. Pyruvate kinase deficiency links metabolic perturbations to neurodegeneration and axonal protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.04.647282. [PMID: 40235982 PMCID: PMC11996495 DOI: 10.1101/2025.04.04.647282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neurons rely on tightly regulated metabolic networks to sustain their high-energy demands, particularly through the coupling of glycolysis and oxidative phosphorylation. Here, we investigate the role of pyruvate kinase (PyK), a key glycolytic enzyme, in maintaining axonal and synaptic integrity in the Drosophila melanogaster neuromuscular system. Using genetic deficiencies in PyK, we show that disrupting glycolysis induces progressive synaptic and axonal degeneration and severe locomotor deficits. These effects require the conserved dual leucine zipper kinase (DLK), Jun N-terminal kinase (JNK), and activator protein 1 (AP-1) Fos transcription factor axonal damage signaling pathway and the SARM1 NADase enzyme, a key driver of axonal degeneration. As both DLK and SARM1 regulate degeneration of injured axons (Wallerian degeneration), we probed the effect of PyK loss on this process. Consistent with the idea that metabolic shifts may influence neuronal resilience in context-dependent ways, we find that pyk knockdown delays Wallerian degeneration following nerve injury, suggesting that reducing glycolytic flux can promote axon survival under stress conditions. This protective effect is partially blocked by DLK knockdown and fully abolished by SARM1 overexpression. Together, our findings help bridge metabolism and neurodegenerative signaling by demonstrating that glycolytic perturbations causally activate stress response pathways that dictate the balance between protection and degeneration depending on the system's state. These results provide a mechanistic framework for understanding metabolic contributions to neurodegeneration and highlight the potential of metabolism as a target for therapeutic strategies. Abstract Figure
Collapse
|
2
|
Ng CSC, Liu A, Cui B, Banik SM. Targeted protein relocalization via protein transport coupling. Nature 2024; 633:941-951. [PMID: 39294374 PMCID: PMC11761438 DOI: 10.1038/s41586-024-07950-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 08/14/2024] [Indexed: 09/20/2024]
Abstract
Subcellular protein localization regulates protein function and can be corrupted in cancers1 and neurodegenerative diseases2,3. The rewiring of localization to address disease-driving phenotypes would be an attractive targeted therapeutic approach. Molecules that harness the trafficking of a shuttle protein to control the subcellular localization of a target protein could enforce targeted protein relocalization and rewire the interactome. Here we identify a collection of shuttle proteins with potent ligands amenable to incorporation into targeted relocalization-activating molecules (TRAMs), and use these to relocalize endogenous proteins. Using a custom imaging analysis pipeline, we show that protein steady-state localization can be modulated through molecular coupling to shuttle proteins containing sufficiently strong localization sequences and expressed in the necessary abundance. We analyse the TRAM-induced relocalization of different proteins and then use nuclear hormone receptors as shuttles to redistribute disease-driving mutant proteins such as SMARCB1Q318X, TDP43ΔNLS and FUSR495X. TRAM-mediated relocalization of FUSR495X to the nucleus from the cytoplasm correlated with a reduction in the number of stress granules in a model of cellular stress. With methionyl aminopeptidase 2 and poly(ADP-ribose) polymerase 1 as endogenous cytoplasmic and nuclear shuttles, respectively, we demonstrate relocalization of endogenous PRMT9, SOS1 and FKBP12. Small-molecule-mediated redistribution of nicotinamide nucleotide adenylyltransferase 1 from nuclei to axons in primary neurons was able to slow axonal degeneration and pharmacologically mimic the genetic WldS gain-of-function phenotype in mice resistant to certain types of neurodegeneration4. The concept of targeted protein relocalization could therefore inspire approaches for treating disease through interactome rewiring.
Collapse
Affiliation(s)
| | - Aofei Liu
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Steven M Banik
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
McGuinness HY, Gu W, Shi Y, Kobe B, Ve T. SARM1-Dependent Axon Degeneration: Nucleotide Signaling, Neurodegenerative Disorders, Toxicity, and Therapeutic Opportunities. Neuroscientist 2024; 30:473-492. [PMID: 37002660 PMCID: PMC11282687 DOI: 10.1177/10738584231162508] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Axons are an essential component of the nervous system, and axon degeneration is an early feature of many neurodegenerative disorders. The NAD+ metabolome plays an essential role in regulating axonal integrity. Axonal levels of NAD+ and its precursor NMN are controlled in large part by the NAD+ synthesizing survival factor NMNAT2 and the pro-neurodegenerative NADase SARM1, whose activation triggers axon destruction. SARM1 has emerged as a promising axon-specific target for therapeutic intervention, and its function, regulation, structure, and role in neurodegenerative diseases have been extensively characterized in recent years. In this review, we first introduce the key molecular players involved in the SARM1-dependent axon degeneration program. Next, we summarize recent major advances in our understanding of how SARM1 is kept inactive in healthy neurons and how it becomes activated in injured or diseased neurons, which has involved important insights from structural biology. Finally, we discuss the role of SARM1 in neurodegenerative disorders and environmental neurotoxicity and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Helen Y. McGuinness
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Yun Shi
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Saint Lucia, Australia
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| |
Collapse
|
4
|
Loreto A, Merlini E, Coleman MP. Programmed axon death: a promising target for treating retinal and optic nerve disorders. Eye (Lond) 2024; 38:1802-1809. [PMID: 38538779 PMCID: PMC11226669 DOI: 10.1038/s41433-024-03025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 07/07/2024] Open
Abstract
Programmed axon death is a druggable pathway of axon degeneration that has garnered considerable interest from pharmaceutical companies as a promising therapeutic target for various neurodegenerative disorders. In this review, we highlight mechanisms through which this pathway is activated in the retina and optic nerve, and discuss its potential significance for developing therapies for eye disorders and beyond. At the core of programmed axon death are two enzymes, NMNAT2 and SARM1, with pivotal roles in NAD metabolism. Extensive preclinical data in disease models consistently demonstrate remarkable, and in some instances, complete and enduring neuroprotection when this mechanism is targeted. Findings from animal studies are now being substantiated by genetic human data, propelling the field rapidly toward clinical translation. As we approach the clinical phase, the selection of suitable disorders for initial clinical trials targeting programmed axon death becomes crucial for their success. We delve into the multifaceted roles of programmed axon death and NAD metabolism in retinal and optic nerve disorders. We discuss the role of SARM1 beyond axon degeneration, including its potential involvement in neuronal soma death and photoreceptor degeneration. We also discuss genetic human data and environmental triggers of programmed axon death. Lastly, we touch upon potential therapeutic approaches targeting NMNATs and SARM1, as well as the nicotinamide trials for glaucoma. The extensive literature linking programmed axon death to eye disorders, along with the eye's suitability for drug delivery and visual assessments, makes retinal and optic nerve disorders strong contenders for early clinical trials targeting programmed axon death.
Collapse
Affiliation(s)
- Andrea Loreto
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
- School of Medical Sciences and Save Sight Institute, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
| | - Elisa Merlini
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| | - Michael P Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| |
Collapse
|
5
|
Hasegawa K, Tamaki M, Sakamaki Y, Wakino S. Nmnat1 Deficiency Causes Mitoribosome Excess in Diabetic Nephropathy Mediated by Transcriptional Repressor HIC1. Int J Mol Sci 2024; 25:6384. [PMID: 38928090 PMCID: PMC11204038 DOI: 10.3390/ijms25126384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is involved in renal physiology and is synthesized by nicotinamide mononucleotide adenylyltransferase (NMNAT). NMNAT exists as three isoforms, namely, NMNAT1, NMNAT2, and NMNAT3, encoded by Nmnat1, Nmnat2, and Nmnat3, respectively. In diabetic nephropathy (DN), NAD levels decrease, aggravating renal fibrosis. Conversely, sodium-glucose cotransporter-2 inhibitors increase NAD levels, mitigating renal fibrosis. In this regard, renal NAD synthesis has recently gained attention. However, the renal role of Nmnat in DN remains uncertain. Therefore, we investigated the role of Nmnat by establishing genetically engineered mice. Among the three isoforms, NMNAT1 levels were markedly reduced in the proximal tubules (PTs) of db/db mice. We examined the phenotypic changes in PT-specific Nmnat1 conditional knockout (CKO) mice. In CKO mice, Nmnat1 expression in PTs was downregulated when the tubules exhibited albuminuria, peritubular type IV collagen deposition, and mitochondrial ribosome (mitoribosome) excess. In CKO mice, Nmnat1 deficiency-induced mitoribosome excess hindered mitoribosomal translation of mitochondrial inner membrane-associated oxidative phosphorylation complex I (CI), CIII, CIV, and CV proteins and mitoribosomal dysfunction. Furthermore, the expression of hypermethylated in cancer 1, a transcription repressor, was downregulated in CKO mice, causing mitoribosome excess. Nmnat1 overexpression preserved mitoribosomal function, suggesting its protective role in DN.
Collapse
Affiliation(s)
- Kazuhiro Hasegawa
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.T.); (S.W.)
| | - Masanori Tamaki
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.T.); (S.W.)
| | - Yusuke Sakamaki
- Department of Internal Medicine, Tokyo Dental College Ichikawa General Hospital, Chiba 272-8583, Japan;
| | - Shu Wakino
- Department of Nephrology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.T.); (S.W.)
| |
Collapse
|
6
|
Miyamoto T, Kim C, Chow J, Dugas JC, DeGroot J, Bagdasarian AL, Thottumkara AP, Larhammar M, Calvert ME, Fox BM, Lewcock JW, Kane LA. SARM1 is responsible for calpain-dependent dendrite degeneration in mouse hippocampal neurons. J Biol Chem 2024; 300:105630. [PMID: 38199568 PMCID: PMC10862016 DOI: 10.1016/j.jbc.2024.105630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/10/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Sterile alpha and toll/interleukin receptor motif-containing 1 (SARM1) is a critical regulator of axon degeneration that acts through hydrolysis of NAD+ following injury. Recent work has defined the mechanisms underlying SARM1's catalytic activity and advanced our understanding of SARM1 function in axons, yet the role of SARM1 signaling in other compartments of neurons is still not well understood. Here, we show in cultured hippocampal neurons that endogenous SARM1 is present in axons, dendrites, and cell bodies and that direct activation of SARM1 by the neurotoxin Vacor causes not just axon degeneration, but degeneration of all neuronal compartments. In contrast to the axon degeneration pathway defined in dorsal root ganglia, SARM1-dependent hippocampal axon degeneration in vitro is not sensitive to inhibition of calpain proteases. Dendrite degeneration downstream of SARM1 in hippocampal neurons is dependent on calpain 2, a calpain protease isotype enriched in dendrites in this cell type. In summary, these data indicate SARM1 plays a critical role in neurodegeneration outside of axons and elucidates divergent pathways leading to degeneration in hippocampal axons and dendrites.
Collapse
Affiliation(s)
| | - Chaeyoung Kim
- Denali Therapeutics Inc, South San Francisco, California, USA
| | - Johann Chow
- Denali Therapeutics Inc, South San Francisco, California, USA
| | - Jason C Dugas
- Denali Therapeutics Inc, South San Francisco, California, USA
| | - Jack DeGroot
- Denali Therapeutics Inc, South San Francisco, California, USA
| | | | | | | | | | - Brian M Fox
- Denali Therapeutics Inc, South San Francisco, California, USA
| | | | - Lesley A Kane
- Denali Therapeutics Inc, South San Francisco, California, USA.
| |
Collapse
|
7
|
Alexandris AS, Koliatsos VE. NAD +, Axonal Maintenance, and Neurological Disease. Antioxid Redox Signal 2023; 39:1167-1184. [PMID: 37503611 PMCID: PMC10715442 DOI: 10.1089/ars.2023.0350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 07/29/2023]
Abstract
Significance: The remarkable geometry of the axon exposes it to unique challenges for survival and maintenance. Axonal degeneration is a feature of peripheral neuropathies, glaucoma, and traumatic brain injury, and an early event in neurodegenerative diseases. Since the discovery of Wallerian degeneration (WD), a molecular program that hijacks nicotinamide adenine dinucleotide (NAD+) metabolism for axonal self-destruction, the complex roles of NAD+ in axonal viability and disease have become research priority. Recent Advances: The discoveries of the protective Wallerian degeneration slow (WldS) and of sterile alpha and TIR motif containing 1 (SARM1) activation as the main instructive signal for WD have shed new light on the regulatory role of NAD+ in axonal degeneration in a growing number of neurological diseases. SARM1 has been characterized as a NAD+ hydrolase and sensor of NAD+ metabolism. The discovery of regulators of nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) proteostasis in axons, the allosteric regulation of SARM1 by NAD+ and NMN, and the existence of clinically relevant windows of action of these signals has opened new opportunities for therapeutic interventions, including SARM1 inhibitors and modulators of NAD+ metabolism. Critical Issues: Events upstream and downstream of SARM1 remain unclear. Furthermore, manipulating NAD+ metabolism, an overdetermined process crucial in cell survival, for preventing the degeneration of the injured axon may be difficult and potentially toxic. Future Directions: There is a need for clarification of the distinct roles of NAD+ metabolism in axonal maintenance as contrasted to WD. There is also a need to better understand the role of NAD+ metabolism in axonal endangerment in neuropathies, diseases of the white matter, and the early stages of neurodegenerative diseases of the central nervous system. Antioxid. Redox Signal. 39, 1167-1184.
Collapse
Affiliation(s)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, and Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med 2023; 92:101193. [PMID: 37331129 DOI: 10.1016/j.mam.2023.101193] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Glaucoma is a common, complex, multifactorial neurodegenerative disease characterized by progressive dysfunction and then loss of retinal ganglion cells, the output neurons of the retina. Glaucoma is the most common cause of irreversible blindness and affects ∼80 million people worldwide with many more undiagnosed. The major risk factors for glaucoma are genetics, age, and elevated intraocular pressure. Current strategies only target intraocular pressure management and do not directly target the neurodegenerative processes occurring at the level of the retinal ganglion cell. Despite strategies to manage intraocular pressure, as many as 40% of glaucoma patients progress to blindness in at least one eye during their lifetime. As such, neuroprotective strategies that target the retinal ganglion cell and these neurodegenerative processes directly are of great therapeutic need. This review will cover the recent advances from basic biology to on-going clinical trials for neuroprotection in glaucoma covering degenerative mechanisms, metabolism, insulin signaling, mTOR, axon transport, apoptosis, autophagy, and neuroinflammation. With an increased understanding of both the basic and clinical mechanisms of the disease, we are closer than ever to a neuroprotective strategy for glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Katharina Bell
- NHMRC Clinical Trials Centre, University of Sydney, Australia; Eye ACP Duke-NUS, Singapore
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
9
|
Narne P, Phanithi PB. Role of NAD + and FAD in Ischemic Stroke Pathophysiology: An Epigenetic Nexus and Expanding Therapeutic Repertoire. Cell Mol Neurobiol 2023; 43:1719-1768. [PMID: 36180651 PMCID: PMC11412205 DOI: 10.1007/s10571-022-01287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
The redox coenzymes viz., oxidized β-nicotinamide adenine dinucleotide (NAD+) and flavin adenine dinucleotide (FAD) by way of generation of optimal reducing power and cellular energy currency (ATP), control a staggering array of metabolic reactions. The prominent cellular contenders for NAD+ utilization, inter alia, are sirtuins (SIRTs) and poly(ADP-ribose) polymerase (PARP-1), which have been significantly implicated in ischemic stroke (IS) pathogenesis. NAD+ and FAD are also two crucial epigenetic enzyme-required metabolites mediating histone deacetylation and poly(ADP-ribosyl)ation through SIRTs and PARP-1 respectively, and demethylation through FAD-mediated lysine specific demethylase activity. These enzymes and post-translational modifications impinge on the components of neurovascular unit, primarily neurons, and elicit diverse functional upshots in an ischemic brain. These could be circumstantially linked with attendant cognitive deficits and behavioral outcomes in post-stroke epoch. Parsing out the contribution of NAD+/FAD-synthesizing and utilizing enzymes towards epigenetic remodeling in IS setting, together with their cognitive and behavioral associations, combined with possible therapeutic implications will form the crux of this review.
Collapse
Affiliation(s)
- Parimala Narne
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| |
Collapse
|
10
|
Sadr Z, Ghasemi A, Rohani M, Alavi A. NMNAT1 and hereditary spastic paraplegia (HSP): expanding the phenotypic spectrum of NMNAT1 variants. Neuromuscul Disord 2023; 33:295-301. [PMID: 36871412 DOI: 10.1016/j.nmd.2023.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
In the NAD biosynthetic network, the nicotinamide mononucleotide adenylyltransferase (NMNAT) enzyme fuels NAD as a co-substrate for a group of enzymes. Mutations in the nuclear-specific isoform, NMNAT1, have been extensively reported as the cause of Leber congenital amaurosis-type 9 (LCA9). However, there are no reports of NMNAT1 mutations causing neurological disorders by disrupting the maintenance of physiological NAD homeostasis in other types of neurons. In this study, for the first time, the potential association between a NMNAT1 variant and hereditary spastic paraplegia (HSP) is described. Whole-exome sequencing was performed for two affected siblings diagnosed with HSP. Runs of homozygosity (ROH) were detected. The shared variants of the siblings located in the homozygosity blocks were selected. The candidate variant was amplified and Sanger sequenced in the proband and other family members. Homozygous variant c.769G>A:p.(Glu257Lys) in NMNAT1, the most common variant of NMNAT1 in LCA9 patients, located in the ROH of chromosome 1, was detected as a probable disease-causing variant. After detection of the variant in NMNAT1, as a LCA9-causative gene, ophthalmological and neurological re-evaluations were performed. No ophthalmological abnormality was detected and the clinical manifestations of these patients were completely consistent with pure HSP. No NMNAT1 variant had ever been previously reported in HSP patients. However, NMNAT1 variants have been reported in a syndromic form of LCA which is associated with ataxia. In conclusion, our patients expand the clinical spectrum of NMNAT1 variants and represent the first evidence of the probable correlation between NMNAT1 variants and HSP.
Collapse
Affiliation(s)
- Zahra Sadr
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Aida Ghasemi
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mohammad Rohani
- Department of Neurology, Iran University of Medical Sciences, Hazrat Rasool Hospital, Tehran, Iran.
| | - Afagh Alavi
- Genetics research center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Loss of hepatic Nmnat1 has no impact on diet-induced fatty liver disease. Biochem Biophys Res Commun 2022; 636:89-95. [DOI: 10.1016/j.bbrc.2022.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/20/2022]
|
12
|
Cercillieux A, Ciarlo E, Canto C. Balancing NAD + deficits with nicotinamide riboside: therapeutic possibilities and limitations. Cell Mol Life Sci 2022; 79:463. [PMID: 35918544 PMCID: PMC9345839 DOI: 10.1007/s00018-022-04499-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 12/21/2022]
Abstract
Alterations in cellular nicotinamide adenine dinucleotide (NAD+) levels have been observed in multiple lifestyle and age-related medical conditions. This has led to the hypothesis that dietary supplementation with NAD+ precursors, or vitamin B3s, could exert health benefits. Among the different molecules that can act as NAD+ precursors, Nicotinamide Riboside (NR) has gained most attention due to its success in alleviating and treating disease conditions at the pre-clinical level. However, the clinical outcomes for NR supplementation strategies have not yet met the expectations generated in mouse models. In this review we aim to provide a comprehensive view on NAD+ biology, what causes NAD+ deficits and the journey of NR from its discovery to its clinical development. We also discuss what are the current limitations in NR-based therapies and potential ways to overcome them. Overall, this review will not only provide tools to understand NAD+ biology and assess its changes in disease situations, but also to decide which NAD+ precursor could have the best therapeutic potential.
Collapse
Affiliation(s)
- Angelique Cercillieux
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Eleonora Ciarlo
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland
| | - Carles Canto
- Nestlé Institute of Health Sciences, Nestlé Research Ltd., EPFL Campus, Innovation Park, Building G, 1015, Lausanne, Switzerland.
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| |
Collapse
|
13
|
Cadiz Diaz A, Schmidt NA, Yamazaki M, Hsieh CJ, Lisse TS, Rieger S. Coordinated NADPH oxidase/hydrogen peroxide functions regulate cutaneous sensory axon de- and regeneration. Proc Natl Acad Sci U S A 2022; 119:e2115009119. [PMID: 35858442 PMCID: PMC9340058 DOI: 10.1073/pnas.2115009119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/30/2022] [Indexed: 01/21/2023] Open
Abstract
Tissue wounding induces cutaneous sensory axon regeneration via hydrogen peroxide (H2O2) that is produced by the epithelial NADPH oxidase, Duox1. Sciatic nerve injury instead induces axon regeneration through neuronal uptake of the NADPH oxidase, Nox2, from macrophages. We therefore reasoned that the tissue environment in which axons are damaged stimulates distinct regenerative mechanisms. Here, we show that cutaneous axon regeneration induced by tissue wounding depends on both neuronal and keratinocyte-specific mechanisms involving H2O2 signaling. Genetic depletion of H2O2 in sensory neurons abolishes axon regeneration, whereas keratinocyte-specific H2O2 depletion promotes axonal repulsion, a phenotype mirrored in duox1 mutants. Intriguingly, cyba mutants, deficient in the essential Nox subunit, p22Phox, retain limited axon regenerative capacity but display delayed Wallerian degeneration and axonal fusion, observed so far only in invertebrates. We further show that keratinocyte-specific oxidation of the epidermal growth factor receptor (EGFR) at a conserved cysteine thiol (C797) serves as an attractive cue for regenerating axons, leading to EGFR-dependent localized epidermal matrix remodeling via the matrix-metalloproteinase, MMP-13. Therefore, wound-induced cutaneous axon de- and regeneration depend on the coordinated functions of NADPH oxidases mediating distinct processes following injury.
Collapse
Affiliation(s)
| | | | - Mamiko Yamazaki
- Department of Regenerative Biology and Medicine, MDI Biological Laboratory, Bar Harbor, ME 04672
| | - Chia-Jung Hsieh
- Department of Biology, University of Miami, Coral Gables, FL 33146
| | - Thomas S. Lisse
- Department of Biology, University of Miami, Coral Gables, FL 33146
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL 33146
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
14
|
Babetto E, Beirowski B. Of axons that struggle to make ends meet: Linking axonal bioenergetic failure to programmed axon degeneration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148545. [PMID: 35339437 DOI: 10.1016/j.bbabio.2022.148545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
Axons are the long, fragile, and energy-hungry projections of neurons that are challenging to sustain. Together with their associated glia, they form the bulk of the neuronal network. Pathological axon degeneration (pAxD) is a driver of irreversible neurological disability in a host of neurodegenerative conditions. Halting pAxD is therefore an attractive therapeutic strategy. Here we review recent work demonstrating that pAxD is regulated by an auto-destruction program that revolves around axonal bioenergetics. We then focus on the emerging concept that axonal and glial energy metabolism are intertwined. We anticipate that these discoveries will encourage the pursuit of new treatment strategies for neurodegeneration.
Collapse
Affiliation(s)
- Elisabetta Babetto
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Bogdan Beirowski
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
15
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
16
|
Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Russell JW. NAD + Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. Int J Mol Sci 2022; 23:4887. [PMID: 35563288 PMCID: PMC9102948 DOI: 10.3390/ijms23094887] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Axon degeneration in diabetic peripheral neuropathy (DPN) is associated with impaired NAD+ metabolism. We tested whether the administration of NAD+ precursors, nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), prevents DPN in models of Type 1 and Type 2 diabetes. NMN was administered to streptozotocin (STZ)-induced diabetic rats and STZ-induced diabetic mice by intraperitoneal injection at 50 or 100 mg/kg on alternate days for 2 months. mice The were fed with a high fat diet (HFD) for 2 months with or without added NR at 150 or 300 mg/kg for 2 months. The administration of NMN to STZ-induced diabetic rats or mice or dietary addition of NR to HFD-fed mice improved sensory function, normalized sciatic and tail nerve conduction velocities, and prevented loss of intraepidermal nerve fibers in skin samples from the hind-paw. In adult dorsal root ganglion (DRG) neurons isolated from HFD-fed mice, there was a decrease in NAD+ levels and mitochondrial maximum reserve capacity. These impairments were normalized in isolated DRG neurons from NR-treated mice. The results indicate that the correction of NAD+ depletion in DRG may be sufficient to prevent DPN but does not significantly affect glucose tolerance, insulin levels, or insulin resistance.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Neda Najimi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Avinash R. Sagi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Sushuma Yarlagadda
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Muhammed Ikbal Arvas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Ahmad F. Hedayat
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Anand Kadakia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- CAMC Institute for Academic Medicine, 415 Morris Street Suite 300, Charleston, WV 25301, USA
| |
Collapse
|
17
|
Steele-Nicholson LJ, Andrews MR. Axon-Targeting Motifs: Mechanisms and Applications of Enhancing Axonal Localisation of Transmembrane Proteins. Cells 2022; 11:cells11060937. [PMID: 35326388 PMCID: PMC8946247 DOI: 10.3390/cells11060937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Neuronal polarity established in developing neurons ensures proper function in the mature nervous system. As functionally distinct cellular compartments, axons and dendrites often require different subsets of proteins to maintain synaptic transmission and overall order. Although neurons in the mature CNS do not regenerate throughout life, their interactions with their extracellular environment are dynamic. The axon remains an overall protected area of the neuron where only certain proteins have access throughout the lifespan of the cell. This is in comparison to the somatodendritic compartment, where although it too has a specialised subset of proteins required for its maintenance, many proteins destined for the axonal compartment must first be trafficked through the former. Recent research has shown that axonal proteins contain specific axon-targeting motifs that permit access to the axonal compartment as well as downstream targeting to the axonal membrane. These motifs target proteins to the axonal compartment by a variety of mechanisms including: promoting segregation into axon-targeted secretory vesicles, increasing interaction with axonal kinesins and enhancing somatodendritic endocytosis. In this review, we will discuss axon-targeting motifs within the context of established neuron trafficking mechanisms. We will also include examples of how these motifs have been applied to target proteins to the axonal compartment to improve both tools for the study of axon biology, and for use as potential therapeutics for axonopathies.
Collapse
Affiliation(s)
- Lloyd J. Steele-Nicholson
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK;
- Centre for Human Development, Stem Cells and Regeneration, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Melissa R. Andrews
- Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, UK;
- Centre for Human Development, Stem Cells and Regeneration, School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Correspondence:
| |
Collapse
|
18
|
Fortunato C, Mazzola F, Raffaelli N. The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions. IUBMB Life 2021; 74:562-572. [PMID: 34866305 PMCID: PMC9299865 DOI: 10.1002/iub.2584] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/06/2023]
Abstract
The enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT) catalyzes a reaction central to all known NAD biosynthetic routes. In mammals, three isoforms with distinct molecular and catalytic properties, different subcellular and tissue distribution have been characterized. Each isoform is essential for cell survival, with a critical role in modulating NAD levels in a compartment‐specific manner. Each isoform supplies NAD to specific NAD‐dependent enzymes, thus regulating their activity with impact on several biological processes, including DNA repair, proteostasis, cell differentiation, and neuronal maintenance. The nuclear NMNAT1 and the cytoplasmic NMNAT2 are also emerging as relevant targets in specific types of cancers and NMNAT2 has a key role in the activation of antineoplastic compounds. This review recapitulates the biochemical properties of the three isoforms and focuses on recent advances on their protective function, involvement in human diseases and role as druggable targets.
Collapse
Affiliation(s)
- Carlo Fortunato
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
19
|
Arthur-Farraj P, Coleman MP. Lessons from Injury: How Nerve Injury Studies Reveal Basic Biological Mechanisms and Therapeutic Opportunities for Peripheral Nerve Diseases. Neurotherapeutics 2021; 18:2200-2221. [PMID: 34595734 PMCID: PMC8804151 DOI: 10.1007/s13311-021-01125-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Since Waller and Cajal in the nineteenth and early twentieth centuries, laboratory traumatic peripheral nerve injury studies have provided great insight into cellular and molecular mechanisms governing axon degeneration and the responses of Schwann cells, the major glial cell type of peripheral nerves. It is now evident that pathways underlying injury-induced axon degeneration and the Schwann cell injury-specific state, the repair Schwann cell, are relevant to many inherited and acquired disorders of peripheral nerves. This review provides a timely update on the molecular understanding of axon degeneration and formation of the repair Schwann cell. We discuss how nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) and sterile alpha TIR motif containing protein 1 (SARM1) are required for axon survival and degeneration, respectively, how transcription factor c-JUN is essential for the Schwann cell response to nerve injury and what each tells us about disease mechanisms and potential therapies. Human genetic association with NMNAT2 and SARM1 strongly suggests aberrant activation of programmed axon death in polyneuropathies and motor neuron disorders, respectively, and animal studies suggest wider involvement including in chemotherapy-induced and diabetic neuropathies. In repair Schwann cells, cJUN is aberrantly expressed in a wide variety of human acquired and inherited neuropathies. Animal models suggest it limits axon loss in both genetic and traumatic neuropathies, whereas in contrast, Schwann cell secreted Neuregulin-1 type 1 drives onion bulb pathology in CMT1A. Finally, we discuss opportunities for drug-based and gene therapies to prevent axon loss or manipulate the repair Schwann cell state to treat acquired and inherited neuropathies and neuronopathies.
Collapse
Affiliation(s)
- Peter Arthur-Farraj
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| | - Michael P Coleman
- Department of Clinical Neurosciences, John Van Geest Centre for Brain Repair, University of Cambridge, Robinson Way, Cambridge, CB2 0PY, UK.
| |
Collapse
|
20
|
Steward O, Yonan JM, Falk PM. The Curious Anti-Pathology of the Wld s Mutation: Paradoxical Postsynaptic Spine Growth Accompanies Delayed Presynaptic Wallerian Degeneration. Front Mol Neurosci 2021; 14:735919. [PMID: 34566580 PMCID: PMC8461245 DOI: 10.3389/fnmol.2021.735919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
The Wlds mutation, which arose spontaneously in C57Bl/6 mice, remarkably delays the onset of Wallerian degeneration of axons. This remarkable phenotype has transformed our understanding of mechanisms contributing to survival vs. degeneration of mammalian axons after separation from their cell bodies. Although there are numerous studies of how the Wlds mutation affects axon degeneration, especially in the peripheral nervous system, less is known about how the mutation affects degeneration of CNS synapses. Here, using electron microscopy, we explore how the Wlds mutation affects synaptic terminal degeneration and withering and re-growth of dendritic spines on dentate granule cells following lesions of perforant path inputs from the entorhinal cortex. Our results reveal that substantial delays in the timing of synapse degeneration in Wlds mice are accompanied by paradoxical hypertrophy of spine heads with enlargement of post-synaptic membrane specializations (PSDs) and development of spinules. These increases in the complexity of spine morphology are similar to what is seen following induction of long-term potentiation (LTP). Robust and paradoxical spine growth suggests yet to be characterized signaling processes between amputated but non-degenerating axons and their postsynaptic targets.
Collapse
Affiliation(s)
- Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States.,Department of Neurosurgery, University of California, Irvine, Irvine, CA, United States.,Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Jennifer M Yonan
- Reeve-Irvine Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Paula M Falk
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
21
|
HSPA9/Mortalin mediates axo-protection and modulates mitochondrial dynamics in neurons. Sci Rep 2021; 11:17705. [PMID: 34489498 PMCID: PMC8421332 DOI: 10.1038/s41598-021-97162-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 08/23/2021] [Indexed: 12/21/2022] Open
Abstract
Mortalin is a mitochondrial chaperone protein involved in quality control of proteins imported into the mitochondrial matrix, which was recently described as a sensor of neuronal stress. Mortalin is down-regulated in neurons of patients with neurodegenerative diseases and levels of Mortalin expression are correlated with neuronal fate in animal models of Alzheimer's disease or cerebral ischemia. To date, however, the links between Mortalin levels, its impact on mitochondrial function and morphology and, ultimately, the initiation of neurodegeneration, are still unclear. In the present study, we used lentiviral vectors to over- or under-express Mortalin in primary neuronal cultures. We first analyzed the early events of neurodegeneration in the axonal compartment, using oriented neuronal cultures grown in microfluidic-based devices. We observed that Mortalin down-regulation induced mitochondrial fragmentation and axonal damage, whereas its over-expression conferred protection against axonal degeneration mediated by rotenone exposure. We next demonstrated that Mortalin levels modulated mitochondrial morphology by acting on DRP1 phosphorylation, thereby further illustrating the crucial implication of mitochondrial dynamics on neuronal fate in degenerative diseases.
Collapse
|
22
|
Abstract
Significant advances have been made in recent years in identifying the genetic components of Wallerian degeneration, the process that brings the progressive destruction and removal of injured axons. It has now been accepted that Wallerian degeneration is an active and dynamic cellular process that is well regulated at molecular and cellular levels. In this review, we describe our current understanding of Wallerian degeneration, focusing on the molecular players and mechanisms that mediate the injury response, activate the degenerative program, transduce the death signal, execute the destruction order, and finally, clear away the debris. By highlighting the starring roles and sketching out the molecular script of Wallerian degeneration, we hope to provide a useful framework to understand Wallerian and Wallerian-like degeneration and to lay a foundation for developing new therapeutic strategies to treat axon degeneration in neural injury as well as in neurodegenerative disease. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingsheng Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201203, China; , , .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Hopkins EL, Gu W, Kobe B, Coleman MP. A Novel NAD Signaling Mechanism in Axon Degeneration and its Relationship to Innate Immunity. Front Mol Biosci 2021; 8:703532. [PMID: 34307460 PMCID: PMC8295901 DOI: 10.3389/fmolb.2021.703532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Axon degeneration represents a pathological feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease where axons die before the neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a central signaling pathway forms the basis of this process in many circumstances. This is an axonal NAD-related signaling mechanism mainly regulated by the two key proteins with opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with NADase and related activities. The crosstalk between the axon survival factor NMNAT2 and pro-degenerative factor SARM1 has been extensively characterized and plays an essential role in maintaining the axon integrity. This pathway can be activated in necroptosis and in genetic, toxic or metabolic disorders, physical injury and neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved in regulating innate immunity, potentially linking axon degeneration to the response to pathogens and intercellular signaling. Understanding this NAD-related signaling mechanism enhances our understanding of the process of axon degeneration and enables a path to the development of drugs for a wide range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanor L. Hopkins
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael P. Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Tribble JR, Otmani A, Sun S, Ellis SA, Cimaglia G, Vohra R, Jöe M, Lardner E, Venkataraman AP, Domínguez-Vicent A, Kokkali E, Rho S, Jóhannesson G, Burgess RW, Fuerst PG, Brautaset R, Kolko M, Morgan JE, Crowston JG, Votruba M, Williams PA. Nicotinamide provides neuroprotection in glaucoma by protecting against mitochondrial and metabolic dysfunction. Redox Biol 2021; 43:101988. [PMID: 33932867 PMCID: PMC8103000 DOI: 10.1016/j.redox.2021.101988] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) is a REDOX cofactor and metabolite essential for neuronal survival. Glaucoma is a common neurodegenerative disease in which neuronal levels of NAD decline. We assess the effects of nicotinamide (a precursor to NAD) on retinal ganglion cells (the affected neuron in glaucoma) in normal physiological conditions and across a range of glaucoma relevant insults including mitochondrial stress and axon degenerative insults. We demonstrate retinal ganglion cell somal, axonal, and dendritic neuroprotection by nicotinamide in rodent models which represent isolated ocular hypertensive, axon degenerative, and mitochondrial degenerative insults. We performed metabolomics enriched for small molecular weight metabolites for the retina, optic nerve, and superior colliculus which demonstrates that ocular hypertension induces widespread metabolic disruption, including consistent changes to α-ketoglutaric acid, creatine/creatinine, homocysteine, and glycerophosphocholine. This metabolic disruption is prevented by nicotinamide. Nicotinamide provides further neuroprotective effects by increasing oxidative phosphorylation, buffering and preventing metabolic stress, and increasing mitochondrial size and motility whilst simultaneously dampening action potential firing frequency. These data support continued determination of the utility of long-term nicotinamide treatment as a neuroprotective therapy for human glaucoma. Nicotinamide is neuroprotective in cell and animal models that recapitulate isolated features of glaucoma. Systemic nicotinamide administration has limited molecular side-effects on visual system tissue under basal conditions. Nicotinamide provides a robust reversal in the disease metabolic profile of glaucomatous animals. Nicotinamide increases oxidative phosphorylation, buffers and prevents metabolic stress, and increases mitochondrial size.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Shanshan Sun
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Sevannah A Ellis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.
| | - Gloria Cimaglia
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden; School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Rupali Vohra
- Department of Veterinary and Animal Sciences, Pathobiological Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Drug Design and Pharmacology, Eye Translational Research Unit, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Melissa Jöe
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Abinaya P Venkataraman
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Alberto Domínguez-Vicent
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Eirini Kokkali
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK.
| | - Seungsoo Rho
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea.
| | - Gauti Jóhannesson
- Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden; Wallenberg Centre of Molecular Medicine, Umeå University, Umeå, Sweden.
| | | | - Peter G Fuerst
- WWAMI Medical Education Program, University of Idaho, Moscow, ID, USA.
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, Eye Translational Research Unit, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital Wales, Cardiff, UK; School of Medicine, Cardiff University, Cardiff, UK.
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore; Centre for Vision Research, Neuroscience and Behavioural Disorders, Duke-NUS, Singapore, Singapore.
| | - Marcela Votruba
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK; Cardiff Eye Unit, University Hospital Wales, Cardiff, UK.
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
Shahsavani N, Kataria H, Karimi-Abdolrezaee S. Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166117. [PMID: 33667627 DOI: 10.1016/j.bbadis.2021.166117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022]
Abstract
White matter degeneration is an important pathophysiological event of the central nervous system that is collectively characterized by demyelination, oligodendrocyte loss, axonal degeneration and parenchymal changes that can result in sensory, motor, autonomic and cognitive impairments. White matter degeneration can occur due to a variety of causes including trauma, neurotoxic exposure, insufficient blood flow, neuroinflammation, and developmental and inherited neuropathies. Regardless of the etiology, the degeneration processes share similar pathologic features. In recent years, a plethora of cellular and molecular mechanisms have been identified for axon and oligodendrocyte degeneration including oxidative damage, calcium overload, neuroinflammatory events, activation of proteases, depletion of adenosine triphosphate and energy supply. Extensive efforts have been also made to develop neuroprotective and neuroregenerative approaches for white matter repair. However, less progress has been achieved in this area mainly due to the complexity and multifactorial nature of the degeneration processes. Here, we will provide a timely review on the current understanding of the cellular and molecular mechanisms of white matter degeneration and will also discuss recent pharmacological and cellular therapeutic approaches for white matter protection as well as axonal regeneration, oligodendrogenesis and remyelination.
Collapse
Affiliation(s)
- Narjes Shahsavani
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hardeep Kataria
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
26
|
Sasaki Y, Kakita H, Kubota S, Sene A, Lee TJ, Ban N, Dong Z, Lin JB, Boye SL, DiAntonio A, Boye SE, Apte RS, Milbrandt J. SARM1 depletion rescues NMNAT1-dependent photoreceptor cell death and retinal degeneration. eLife 2020; 9:e62027. [PMID: 33107823 PMCID: PMC7591247 DOI: 10.7554/elife.62027] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 01/02/2023] Open
Abstract
Leber congenital amaurosis type nine is an autosomal recessive retinopathy caused by mutations of the NAD+ synthesis enzyme NMNAT1. Despite the ubiquitous expression of NMNAT1, patients do not manifest pathologies other than retinal degeneration. Here we demonstrate that widespread NMNAT1 depletion in adult mice mirrors the human pathology, with selective loss of photoreceptors highlighting the exquisite vulnerability of these cells to NMNAT1 loss. Conditional deletion demonstrates that NMNAT1 is required within the photoreceptor. Mechanistically, loss of NMNAT1 activates the NADase SARM1, the central executioner of axon degeneration, to trigger photoreceptor death and vision loss. Hence, the essential function of NMNAT1 in photoreceptors is to inhibit SARM1, highlighting an unexpected shared mechanism between axonal degeneration and photoreceptor neurodegeneration. These results define a novel SARM1-dependent photoreceptor cell death pathway and identifies SARM1 as a therapeutic candidate for retinopathies.
Collapse
Affiliation(s)
- Yo Sasaki
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
| | - Hiroki Kakita
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
- Department of Perinatal and Neonatal Medicine, Aichi Medical UniversityAichiJapan
| | - Shunsuke Kubota
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Abdoulaye Sene
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Tae Jun Lee
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Norimitsu Ban
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Zhenyu Dong
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Joseph B Lin
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
| | - Sanford L Boye
- Department of Pediatrics, Powell Gene Therapy CenterGainesvilleUnited States
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Needleman Center for Neurometabolism and Axonal TherapeuticsSt. LouisUnited States
| | - Shannon E Boye
- Department of Pediatrics, Division of Cellular and Molecular TherapyGainesvilleUnited States
| | - Rajendra S Apte
- Department of Ophthalmology and Visual Sciences, Washington University School of MedicineSt. LouisUnited States
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Department of Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
- Needleman Center for Neurometabolism and Axonal TherapeuticsSt. LouisUnited States
| |
Collapse
|
27
|
Deletion of CD38 and supplementation of NAD+ attenuate axon degeneration in a mouse facial nerve axotomy model. Sci Rep 2020. [DOI: 10.1006/jfan.1996.0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AbstractFollowing facial nerve axotomy, nerve function is not fully restored even after reconstruction. This may be attributed to axon degeneration/neuronal death and sustained neuroinflammation. CD38 is an enzyme that catalyses the hydrolysis of nicotinamide adenine dinucleotide (NAD+) and is a candidate molecule for regulating neurodegeneration and neuroinflammation. In this study, we analyzed the effect of CD38 deletion and NAD+ supplementation on neuronal death and glial activation in the facial nucleus in the brain stem, and on axon degeneration and immune cell infiltration in the distal portion of the facial nerve after axotomy in mice. Compared with wild-type mice, CD38 knockout (KO) mice showed reduced microglial activation in the facial nucleus, whereas the levels of neuronal death were not significantly different. In contrast, the axon degeneration and demyelination were delayed, and macrophage accumulation was reduced in the facial nerve of CD38 KO mice after axotomy. Supplementation of NAD+ with nicotinamide riboside slowed the axon degeneration and demyelination, although it did not alter the level of macrophage infiltration after axotomy. These results suggest that CD38 deletion and supplementation of NAD+ may protect transected axon cell-autonomously after facial nerve axotomy.
Collapse
|
28
|
Takaso Y, Noda M, Hattori T, Roboon J, Hatano M, Sugimoto H, Brenner C, Yamamoto Y, Okamoto H, Higashida H, Ito M, Yoshizaki T, Hori O. Deletion of CD38 and supplementation of NAD + attenuate axon degeneration in a mouse facial nerve axotomy model. Sci Rep 2020; 10:17795. [PMID: 33082370 PMCID: PMC7576594 DOI: 10.1038/s41598-020-73984-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Following facial nerve axotomy, nerve function is not fully restored even after reconstruction. This may be attributed to axon degeneration/neuronal death and sustained neuroinflammation. CD38 is an enzyme that catalyses the hydrolysis of nicotinamide adenine dinucleotide (NAD+) and is a candidate molecule for regulating neurodegeneration and neuroinflammation. In this study, we analyzed the effect of CD38 deletion and NAD+ supplementation on neuronal death and glial activation in the facial nucleus in the brain stem, and on axon degeneration and immune cell infiltration in the distal portion of the facial nerve after axotomy in mice. Compared with wild-type mice, CD38 knockout (KO) mice showed reduced microglial activation in the facial nucleus, whereas the levels of neuronal death were not significantly different. In contrast, the axon degeneration and demyelination were delayed, and macrophage accumulation was reduced in the facial nerve of CD38 KO mice after axotomy. Supplementation of NAD+ with nicotinamide riboside slowed the axon degeneration and demyelination, although it did not alter the level of macrophage infiltration after axotomy. These results suggest that CD38 deletion and supplementation of NAD+ may protect transected axon cell-autonomously after facial nerve axotomy.
Collapse
Affiliation(s)
- Yuji Takaso
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masao Noda
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Pediatric Otolaryngology, Jichi Children's Medical Center Tochigi, Jichi Medical University, Tochigi, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Jureepon Roboon
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Miyako Hatano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hisashi Sugimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, USA.,Department of Diabetes & Cancer Metabolism, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroshi Okamoto
- Department of Biochemistry and Molecular Vascular Biology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruhiro Higashida
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Makoto Ito
- Department of Pediatric Otolaryngology, Jichi Children's Medical Center Tochigi, Jichi Medical University, Tochigi, Japan
| | - Tomokazu Yoshizaki
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
29
|
Jiang Y, Liu T, Lee CH, Chang Q, Yang J, Zhang Z. The NAD+-mediated self-inhibition mechanism of pro-neurodegenerative SARM1. Nature 2020; 588:658-663. [DOI: 10.1038/s41586-020-2862-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
|
30
|
A glycolytic shift in Schwann cells supports injured axons. Nat Neurosci 2020; 23:1215-1228. [PMID: 32807950 DOI: 10.1038/s41593-020-0689-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/07/2020] [Indexed: 01/09/2023]
Abstract
Axon degeneration is a hallmark of many neurodegenerative disorders. The current assumption is that the decision of injured axons to degenerate is cell-autonomously regulated. Here we show that Schwann cells (SCs), the glia of the peripheral nervous system, protect injured axons by virtue of a dramatic glycolytic upregulation that arises in SCs as an inherent adaptation to axon injury. This glycolytic response, paired with enhanced axon-glia metabolic coupling, supports the survival of axons. The glycolytic shift in SCs is largely driven by the metabolic signaling hub, mammalian target of rapamycin complex 1, and the downstream transcription factors hypoxia-inducible factor 1-alpha and c-Myc, which together promote glycolytic gene expression. The manipulation of glial glycolytic activity through this pathway enabled us to accelerate or delay the degeneration of perturbed axons in acute and subacute rodent axon degeneration models. Thus, we demonstrate a non-cell-autonomous metabolic mechanism that controls the fate of injured axons.
Collapse
|
31
|
Figley MD, DiAntonio A. The SARM1 axon degeneration pathway: control of the NAD + metabolome regulates axon survival in health and disease. Curr Opin Neurobiol 2020; 63:59-66. [PMID: 32311648 PMCID: PMC7483800 DOI: 10.1016/j.conb.2020.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Axons are essential for nervous system function and axonal pathology is a common hallmark of many neurodegenerative diseases. Over a century and a half after the original description of Wallerian axon degeneration, advances over the past five years have heralded the emergence of a comprehensive, mechanistic model of an endogenous axon degenerative process that can be activated by both injury and disease. Axonal integrity is maintained by the opposing actions of the survival factors NMNAT2 and STMN2 and pro-degenerative molecules DLK and SARM1. The balance between axon survival and self-destruction is intimately tied to axonal NAD+ metabolism. These mechanistic insights may enable axon-protective therapies for a variety of human neurodegenerative diseases including peripheral neuropathy, traumatic brain injury and potentially ALS and Parkinson's.
Collapse
Affiliation(s)
- Matthew D Figley
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, 660 Euclid Avenue, St. Louis, MO 63110, USA; Needleman Center for Neurometabolism and Axonal Therapeutics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
32
|
Cambronne XA, Kraus WL. Location, Location, Location: Compartmentalization of NAD + Synthesis and Functions in Mammalian Cells. Trends Biochem Sci 2020; 45:858-873. [PMID: 32595066 DOI: 10.1016/j.tibs.2020.05.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
The numerous biological roles of NAD+ are organized and coordinated via its compartmentalization within cells. The spatial and temporal partitioning of this intermediary metabolite is intrinsic to understanding the impact of NAD+ on cellular signaling and metabolism. We review evidence supporting the compartmentalization of steady-state NAD+ levels in cells, as well as how the modulation of NAD+ synthesis dynamically regulates signaling by controlling subcellular NAD+ concentrations. We further discuss potential benefits to the cell of compartmentalizing NAD+, and methods for measuring subcellular NAD+ levels.
Collapse
Affiliation(s)
- Xiaolu A Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Models of Axon Degeneration in Drosophila Larvae. Methods Mol Biol 2020. [PMID: 32524490 DOI: 10.1007/978-1-0716-0585-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The fruit fly Drosophila melanogaster has been a powerful model to study axonal biology including axon degeneration and regeneration (Brace et al., J Neurosci 34:8398-8410, 2014; Valakh et al. J Neurosci 33:17863-17,873, 2013; Xiong and Collins J Neurosci 32:610-615, 2012; Xiong et al. 191:211-223, 2010). Both adult and larval injury models have been developed in the fruit fly. This chapter focuses on in vivo and ex vivo methods developed for studying axon degeneration in Drosophila larvae. Additional models have been developed in the adult fly including injury models of olfactory receptor neurons in the brain and a model of axonal degeneration of sensory axons in the wing (Fang and Bonini, Annu Rev. Cell Dev Biol 28:575-597, 2012; Hoopfer et al. Neuron 50:883-895, 2006; Neukomm et al. Proc Natl Acad Sci U S A 111:9965-9970, 2014).
Collapse
|
34
|
The Potential of Acellular Dermal Matrix Combined With Neural Stem Cells Induced From Human Adipose-Derived Stem Cells in Nerve Tissue Engineering. Ann Plast Surg 2020; 82:S108-S118. [PMID: 30540605 DOI: 10.1097/sap.0000000000001731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Reconstruction of segmental peripheral nerve gap is still challenging when the autografts are unavailable owing to limited availability of donor site and functional recovery. The creation of artificial conduits composed of biological or synthetic materials is still developing. Acellular dermal matrix (ADM) has been widely studied and its extension and plasticity properties may become suitable nerve conduits under different forms of nerve gaps. Adipose-derived stem cells (ADSCs) have the potential to differentiate into various cell types of different germ layers including neural stem cells (NSCs). The purpose of this experiment is to use ADM as a scaffold combined with NSCs induced by ADSCs to establish neural tissue engineering. METHODS The ADSCs were isolated from syringe-liposuction adipose tissue harvested from abdominal fat and then cultured in keratinocyte serum free media to trigger into neural stem cells. Stem cells were confirmed by the expression of surface markers nestin and SOX2 in NSCs with Western blot and immunofluorescent staining. Matrix enzyme treatment was used to obtain ADM to remove immunogenic cells while maintaining the integrity of the basement membrane complex and the extracellular matrix structure of the dermis. The NSCs were cocultured with ADM for 3 days, and survival markers Ki67 and neural stem cell markers nestin were detected. RESULTS These NSCs can form neurospheres and express nestin and SOX2. The NSC can further coculture with ADM, and it will continue to express survivor markers and neural stem cell markers on ADM. CONCLUSIONS These findings provide evidence that the combination of ADM and NSC has the same potential as neural tissue engineering as other acellular sciatic nerve.
Collapse
|
35
|
Axon degeneration: mechanistic insights lead to therapeutic opportunities for the prevention and treatment of peripheral neuropathy. Pain 2020; 160 Suppl 1:S17-S22. [PMID: 31008845 DOI: 10.1097/j.pain.0000000000001528] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peripheral neuropathy is the most common neurodegenerative disease affecting hundreds of millions of patients worldwide and is an important cause of chronic pain. Typical peripheral neuropathies are characterized by dysesthesias including numbness, crawling skin, a sensation of "pins and needles," and burning and stabbing pain. In addition, peripheral neuropathy can affect the motor and autonomic systems leading to symptoms such as weakness, constipation, and dysregulation of blood pressure. Peripheral neuropathies can be either hereditary or acquired and are a common consequence of diabetes and treatment with chemotherapy agents. Many neuropathies are due to degeneration of long axons; however, the mechanisms driving axon loss were unknown, and so no therapies are available to preserve vulnerable axons and prevent the development of peripheral neuropathy. With the recent identification of SARM1 as an injury-activated NADase enzyme that triggers axon degeneration, there is now a coherent picture emerging for the mechanism of axonal self-destruction. Here, we will present evidence that inhibiting the SARM1 pathway can prevent the development of peripheral neuropathy, describe the emerging mechanistic understanding of the axon degeneration program, and discuss how these mechanistic insights may be translated to the clinic for the prevention and treatment of peripheral neuropathy and other neurodegenerative disorders.
Collapse
|
36
|
Programmed axon degeneration: from mouse to mechanism to medicine. Nat Rev Neurosci 2020; 21:183-196. [PMID: 32152523 DOI: 10.1038/s41583-020-0269-3] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Wallerian degeneration is a widespread mechanism of programmed axon degeneration. In the three decades since the discovery of the Wallerian degeneration slow (WldS) mouse, research has generated extensive knowledge of the molecular mechanisms underlying Wallerian degeneration, demonstrated its involvement in non-injury disorders and found multiple ways to block it. Recent developments have included: the detection of NMNAT2 mutations that implicate Wallerian degeneration in rare human diseases; the capacity for lifelong rescue of a lethal condition related to Wallerian degeneration in mice; the discovery of 'druggable' enzymes, including SARM1 and MYCBP2 (also known as PHR1), in Wallerian pathways; and the elucidation of protein structures to drive further understanding of the underlying mechanisms and drug development. Additionally, new data have indicated the potential of these advances to alleviate a number of common disorders, including chemotherapy-induced and diabetic peripheral neuropathies, traumatic brain injury, and amyotrophic lateral sclerosis.
Collapse
|
37
|
Yang ZY, Liu J, Chu HC. Effect of NMDAR-NMNAT1/2 pathway on neuronal cell damage and cognitive impairment of sevoflurane-induced aged rats. Neurol Res 2020; 42:108-117. [PMID: 31941414 DOI: 10.1080/01616412.2019.1710393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: The possible effect of NMDAR (N-methyl-D-aspartate receptor)-NMNAT1/2 (nicotinamide/nicotinic acid mono-nucleotide adenylyltransferase) signaling pathway on the neuronal cell damage and cognitive impairment of aged rats anesthetized by sevoflurane was explored.Methods: Adult male Wistar rats were selected and divided into Control, Sevo (Sevoflurane), Sevo+DCS (NMDAR agonist D-cycloserine) 30 mg/kg, Sevo+DCS 100 mg/kg, and Sevo+DCS 200 mg/kg groups. Morris water maze and fear conditioning text were used to observe cognitive function changes of rats. The inflammatory cytokines were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) assay, neuronal apoptosis by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labelling (TUNEL) staining and MDAR-NMNAT1/2 pathway-related proteins by Western blotting.Results: The longer escape latency, decreased platform crossing times and reduced staying time spent in platform quadrant were found in rats from Sevo group, with decreased percentage of freezing time in contextual test and tone cued test; and meanwhile, these rats had increased inflammatory cytokines (interleukin (IL)-1β, tumor necrosis factor (TNF-α), IL-6, and IL-8) and neuronal apoptosis, but declined expressions of MDAR-NMNAT1/2 pathway-related proteins. However, the above changes were exhibited an opposite tendency in those Sevo rats treated with different concentrations of DCS (including 30, 100, and 200 mg/kg, respectively). Particularly, the improving effect of low-dose DCS on each aspect in aged rats was better than high-dose ones.Conclusion: Activation of NMDAR-NMNAT1/2 signaling pathway could not only reduce neuronal apoptosis, but also alleviate sevoflurane-induced neuronal inflammation and cognitive impairment in aged rats.
Collapse
Affiliation(s)
- Zhan-Yun Yang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.,Department of Anesthesiology, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| | - Jun Liu
- Department of Orthopedics, Jining No. 2 People's Hospital, Jining, Shandong Province, China
| | - Hai-Chen Chu
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
38
|
Day P, Alves N, Daniell E, Dasgupta D, Ogborne R, Steeper A, Raza M, Ellis C, Fawcett J, Keynes R, Muir E. Targeting chondroitinase ABC to axons enhances the ability of chondroitinase to promote neurite outgrowth and sprouting. PLoS One 2020; 15:e0221851. [PMID: 31961897 PMCID: PMC6974052 DOI: 10.1371/journal.pone.0221851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND There is currently no effective treatment for promoting regeneration of injured nerves in patients who have sustained injury to the central nervous system such as spinal cord injury. Chondroitinase ABC is an enzyme, which promotes neurite outgrowth and regeneration. It has shown considerable promise as a therapy for these conditions. The aim of the study is to determine if targeting chondroitinase ABC expression to the neuronal axon can further enhance its ability to promote axon outgrowth. Long-distance axon regeneration has not yet been achieved, and would be a significant step in attaining functional recovery following spinal cord injury. METHODOLOGY/PRINCIPAL FINDINGS To investigate this, neuronal cultures were transfected with constructs encoding axon-targeted chondroitinase, non-targeted chondroitinase or GFP, and the effects on neuron outgrowth and sprouting determined on substrates either permissive or inhibitory to neuron regeneration. The mechanisms underlying the observed effects were also explored. Targeting chondroitinase to the neuronal axon markedly enhances its ability to promote neurite outgrowth. The increase in neurite length is associated with an upregulation of β-integrin staining at the axonal cell surface. Staining for phosphofocal adhesion kinase, is also increased, indicating that the β-integrins are in an activated state. Expression of chondroitinase within the neurons also resulted in a decrease in expression of PTEN and RhoA, molecules which present a block to neurite outgrowth, thus identifying two of the pathways by which ChABC promotes neurite outgrowth. CONCLUSIONS / SIGNIFICANCE The novel finding that targeting ChABC to the axon significantly enhances its ability to promote neurite extension, suggests that this may be an effective way of promoting long-distance axon regeneration following spinal cord injury. It could also potentially improve its efficacy in the treatment of other pathologies, where it has been shown to promote recovery, such as myocardial infarction, stroke and Parkinson's disease.
Collapse
Affiliation(s)
- Priscilla Day
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nuno Alves
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Esther Daniell
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Debayan Dasgupta
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Rosalie Ogborne
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ashley Steeper
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Mansoor Raza
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Clare Ellis
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - James Fawcett
- John Van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom
| | - Roger Keynes
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Elizabeth Muir
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Chandrasekaran K, Salimian M, Konduru SR, Choi J, Kumar P, Long A, Klimova N, Ho CY, Kristian T, Russell JW. Overexpression of Sirtuin 1 protein in neurons prevents and reverses experimental diabetic neuropathy. Brain 2019; 142:3737-3752. [PMID: 31754701 PMCID: PMC6885680 DOI: 10.1093/brain/awz324] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
In diabetic neuropathy, there is activation of axonal and sensory neuronal degeneration pathways leading to distal axonopathy. The nicotinamide-adenine dinucleotide (NAD+)-dependent deacetylase enzyme, Sirtuin 1 (SIRT1), can prevent activation of these pathways and promote axonal regeneration. In this study, we tested whether increased expression of SIRT1 protein in sensory neurons prevents and reverses experimental diabetic neuropathy induced by a high fat diet (HFD). We generated a transgenic mouse that is inducible and overexpresses SIRT1 protein in neurons (nSIRT1OE Tg). Higher levels of SIRT1 protein were localized to cortical and hippocampal neuronal nuclei in the brain and in nuclei and cytoplasm of small to medium sized neurons in dorsal root ganglia. Wild-type and nSIRT1OE Tg mice were fed with either control diet (6.2% fat) or a HFD (36% fat) for 2 months. HFD-fed wild-type mice developed neuropathy as determined by abnormal motor and sensory nerve conduction velocity, mechanical allodynia, and loss of intraepidermal nerve fibres. In contrast, nSIRT1OE prevented a HFD-induced neuropathy despite the animals remaining hyperglycaemic. To test if nSIRT1OE would reverse HFD-induced neuropathy, nSIRT1OE was activated after mice developed peripheral neuropathy on a HFD. Two months after nSIRT1OE, we observed reversal of neuropathy and an increase in intraepidermal nerve fibre. Cultured adult dorsal root ganglion neurons from nSIRT1OE mice, maintained at high (30 mM) total glucose, showed higher basal and maximal respiratory capacity when compared to adult dorsal root ganglion neurons from wild-type mice. In dorsal root ganglion protein extracts from nSIRT1OE mice, the NAD+-consuming enzyme PARP1 was deactivated and the major deacetylated protein was identified to be an E3 protein ligase, NEDD4-1, a protein required for axonal growth, regeneration and proteostasis in neurodegenerative diseases. Our results indicate that nSIRT1OE prevents and reverses neuropathy. Increased mitochondrial respiratory capacity and NEDD4 activation was associated with increased axonal growth driven by neuronal overexpression of SIRT1. Therapies that regulate NAD+ and thereby target sirtuins may be beneficial in human diabetic sensory polyneuropathy.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sruthi R Konduru
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Pranith Kumar
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aaron Long
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nina Klimova
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence to: James W. Russell, MBChB, MS Professor, Department of Neurology, Anatomy and Neurobiology University of Maryland School of Medicine 3S-129, 110 South Paca Street, Baltimore, MD 21201-1642, USA E-mail:
| |
Collapse
|
40
|
Improved Motor Nerve Regeneration by SIRT1/Hif1a-Mediated Autophagy. Cells 2019; 8:cells8111354. [PMID: 31671642 PMCID: PMC6912449 DOI: 10.3390/cells8111354] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Complete restoring of functional connectivity between neurons or target tissue after traumatic lesions is still an unmet medical need. Using models of nerve axotomy and compression, we investigated the effect of autophagy induction by genetic and pharmacological manipulation on motor nerve regeneration. ATG5 or NAD+-dependent deacetylase sirtuin-1 (SIRT1) overexpression on spinal motoneurons stimulates mTOR-independent autophagy and facilitates a growth-competent state improving motor axonal regeneration with better electromyographic records after nerve transection and suture. In agreement with this, using organotypic spinal cord cultures and the human cell line SH-SY5Y, we observed that the activation of SIRT1 and autophagy by NeuroHeal increased neurite outgrowth and length extension and that this was mediated by downstream HIF1a. To conclude, SIRT1/Hifα-dependent autophagy confers a more pro-regenerative phenotype to motoneurons after peripheral nerve injury. Altogether, we provide evidence showing that autophagy induction by SIRT1/Hifα activation or NeuroHeal treatment is a novel therapeutic option for improving motor nerve regeneration and functional recovery after injury.
Collapse
|
41
|
Llobet Rosell A, Neukomm LJ. Axon death signalling in Wallerian degeneration among species and in disease. Open Biol 2019; 9:190118. [PMID: 31455157 PMCID: PMC6731592 DOI: 10.1098/rsob.190118] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Axon loss is a shared feature of nervous systems being challenged in neurological disease, by chemotherapy or mechanical force. Axons take up the vast majority of the neuronal volume, thus numerous axonal intrinsic and glial extrinsic support mechanisms have evolved to promote lifelong axonal survival. Impaired support leads to axon degeneration, yet underlying intrinsic signalling cascades actively promoting the disassembly of axons remain poorly understood in any context, making the development to attenuate axon degeneration challenging. Wallerian degeneration serves as a simple model to study how axons undergo injury-induced axon degeneration (axon death). Severed axons actively execute their own destruction through an evolutionarily conserved axon death signalling cascade. This pathway is also activated in the absence of injury in diseased and challenged nervous systems. Gaining insights into mechanisms underlying axon death signalling could therefore help to define targets to block axon loss. Herein, we summarize features of axon death at the molecular and subcellular level. Recently identified and characterized mediators of axon death signalling are comprehensively discussed in detail, and commonalities and differences across species highlighted. We conclude with a summary of engaged axon death signalling in humans and animal models of neurological conditions. Thus, gaining mechanistic insights into axon death signalling broadens our understanding beyond a simple injury model. It harbours the potential to define targets for therapeutic intervention in a broad range of human axonopathies.
Collapse
Affiliation(s)
- Arnau Llobet Rosell
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, VD, Switzerland
| | - Lukas J Neukomm
- Department of Fundamental Neurosciences, University of Lausanne, Rue du Bugnon 9, 1005 Lausanne, VD, Switzerland
| |
Collapse
|
42
|
Luchniak A, Mahamdeh M, Howard J. Nicotinamide adenine dinucleotides and their precursor NMN have no direct effect on microtubule dynamics in purified brain tubulin. PLoS One 2019; 14:e0220794. [PMID: 31393939 PMCID: PMC6687165 DOI: 10.1371/journal.pone.0220794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 07/23/2019] [Indexed: 11/18/2022] Open
Abstract
Microtubules are dynamic cytoskeletal polymers that provide mechanical support for cellular structures, and play important roles in cell division, migration, and intracellular transport. Their intrinsic dynamic instability, primarily controlled by polymerization-dependent GTP hydrolysis, allows for rapid rearrangements of microtubule arrays in response to signaling cues. In neurons, increases in intracellular levels of nicotinamide adenine dinucleotide (NAD+) can protect against microtubule loss and axonal degeneration elicited by axonal transection. The protective effects of NAD+ on microtubule loss have been shown to be indirect in some systems, for example through the sirtuin-3 pathway. However, it is still possible that NAD+ and related metabolites have direct effects on microtubule dynamics to promote assembly or inhibit disassembly. To address this question, we reconstituted microtubule dynamics in an in vitro assay with purified bovine brain tubulin and examined the effects of NAD+, NADH, and NMN. We found that the compounds had only small effects on the dynamics at the plus and minus ends of the microtubules. Furthermore, these effects were not statistically significant. Consequently, our data support earlier findings that NADs and their precursors influence microtubule growth through indirect mechanisms.
Collapse
Affiliation(s)
- Anna Luchniak
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Mohammed Mahamdeh
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
43
|
Chandrasekaran K, Anjaneyulu M, Choi J, Kumar P, Salimian M, Ho CY, Russell JW. Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD +-dependent SIRT1-PGC-1α-TFAM pathway. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 145:177-209. [PMID: 31208524 DOI: 10.1016/bs.irn.2019.04.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Survival of human peripheral nervous system neurons and associated distal axons is highly dependent on energy. Diabetes invokes a maladaptation in glucose and lipid energy metabolism in adult sensory neurons, axons and Schwann cells. Mitochondrial (Mt) dysfunction has been implicated as an etiological factor in failure of energy homeostasis that results in a low intrinsic aerobic capacity within the neuron. Over time, this energy failure can lead to neuronal and axonal degeneration and results in increased oxidative injury in the neuron and axon. One of the key pathways that is impaired in diabetic peripheral neuropathy (DPN) is the energy sensing pathway comprising the nicotinamide-adenine dinucleotide (NAD+)-dependent Sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α)/Mt transcription factor A (TFAM or mtTFA) signaling pathway. Knockout of PGC-1α exacerbates DPN, whereas overexpression of human TFAM is protective. LY379268, a selective metabolomic glutamate receptor 2/3 (mGluR2/3) receptor agonist, also upregulates the SIRT1/PGC-1α/TFAM signaling pathway and prevents DPN through glutamate recycling in Schwann/satellite glial (SG) cells and by improving dorsal root ganglion (DRG) neuronal Mt function. Furthermore, administration of nicotinamide riboside (NR), a precursor of NAD+, prevents and reverses DPN, in part by increasing NAD+ levels and SIRT1 activity. In summary, we review the role of NAD+, mitochondria and the SIRT1-PGC-1α-TFAM pathway both from the perspective of pathogenesis and therapy in DPN.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Muragundla Anjaneyulu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Preclinical Division, Syngene International Ltd., Bangalore, India
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States
| | - Pranith Kumar
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, United States; Veterans Affairs Maryland Health Care System, Baltimore, MD, United States; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
44
|
Keeping the balance in NAD metabolism. Biochem Soc Trans 2019; 47:119-130. [PMID: 30626706 DOI: 10.1042/bst20180417] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022]
Abstract
Research over the last few decades has extended our understanding of nicotinamide adenine dinucleotide (NAD) from a vital redox carrier to an important signalling molecule that is involved in the regulation of a multitude of fundamental cellular processes. This includes DNA repair, cell cycle regulation, gene expression and calcium signalling, in which NAD is a substrate for several families of regulatory proteins, such as sirtuins and ADP-ribosyltransferases. At the molecular level, NAD-dependent signalling events differ from hydride transfer by cleavage of the dinucleotide into an ADP-ribosyl moiety and nicotinamide. Therefore, non-redox functions of NAD require continuous biosynthesis of the dinucleotide. Maintenance of cellular NAD levels is mainly achieved by nicotinamide salvage, yet a variety of other precursors can be used to sustain cellular NAD levels via different biosynthetic routes. Biosynthesis and consumption of NAD are compartmentalised at the subcellular level, and currently little is known about the generation and role of some of these subcellular NAD pools. Impaired biosynthesis or increased NAD consumption is deleterious and associated with ageing and several pathologies. Insults to neurons lead to depletion of axonal NAD and rapid degeneration, partial rescue can be achieved pharmacologically by administration of specific NAD precursors. Restoring NAD levels by stimulating biosynthesis or through supplementation with precursors also produces beneficial therapeutic effects in several disease models. In this review, we will briefly discuss the most recent achievements and the challenges ahead in this diverse research field.
Collapse
|
45
|
Carty M, Bowie AG. SARM: From immune regulator to cell executioner. Biochem Pharmacol 2019; 161:52-62. [PMID: 30633870 DOI: 10.1016/j.bcp.2019.01.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023]
Abstract
SARM is the fifth and most conserved member of the Toll/Il-1 Receptor (TIR) adaptor family. However, unlike the other TIR adaptors, MyD88, Mal, TRIF and TRAM, SARM does not participate in transducing signals downstream of TLRs. By contrast SARM inhibits TLR signalling by interacting with the adaptors TRIF and MyD88. In addition, SARM also has positive roles in innate immunity by activating specific transcriptional programs following immune challenge. SARM has a pivotal role in activating different forms of cell death following cellular stress and viral infection. Many of these functions of mammalian SARM are also reflected in SARM orthologues in lower organisms such as C. elegans and Drosophila. SARM expression is particularly enriched in neurons of the CNS and SARM has a critical role in neuronal death and in axon degeneration. Recent fascinating molecular insights have been revealed as to the molecular mechanism of SARM mediated axon degeneration. SARM has been shown to deplete NAD+ by possessing intrinsic NADase activity in the TIR domain of the protein. This activity can be activated experimentally by forced dimerization of the TIR domain. It is thought that this activity of SARM is normally switched off by the axo-protective activities of NMNAT2 which maintain low levels of the NAD+ precursor NMN. Therefore, there is now great excitement in the field of SARM research as targeting this enzymatic activity of SARM may lead to the development of new therapies for neurodegenerative diseases such as multiple sclerosis and motor neuron disease.
Collapse
Affiliation(s)
- Michael Carty
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
46
|
Neumann B, Linton C, Giordano-Santini R, Hilliard MA. Axonal fusion: An alternative and efficient mechanism of nerve repair. Prog Neurobiol 2018; 173:88-101. [PMID: 30500382 DOI: 10.1016/j.pneurobio.2018.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Injuries to the nervous system can cause lifelong morbidity due to the disconnect that occurs between nerve cells and their cellular targets. Re-establishing these lost connections is the ultimate goal of endogenous regenerative mechanisms, as well as those induced by exogenous manipulations in a laboratory or clinical setting. Reconnection between severed neuronal fibers occurs spontaneously in some invertebrate species and can be induced in mammalian systems. This process, known as axonal fusion, represents a highly efficient means of repair after injury. Recent progress has greatly enhanced our understanding of the molecular control of axonal fusion, demonstrating that the machinery required for the engulfment of apoptotic cells is repurposed to mediate the reconnection between severed axon fragments, which are subsequently merged by fusogen proteins. Here, we review our current understanding of naturally occurring axonal fusion events, as well as those being ectopically produced with the aim of achieving better clinical outcomes.
Collapse
Affiliation(s)
- Brent Neumann
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne VIC 3800, Australia.
| | - Casey Linton
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rosina Giordano-Santini
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
47
|
Fujita Y, Yamashita T. Sirtuins in Neuroendocrine Regulation and Neurological Diseases. Front Neurosci 2018; 12:778. [PMID: 30416425 PMCID: PMC6213750 DOI: 10.3389/fnins.2018.00778] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022] Open
Abstract
Silent information regulator 1 (SIRT1) is a mammalian homolog of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin family. Sirtuin was originally studied as the lifespan-extending gene, silent information regulator 2 (SIRT2) in budding yeast. There are seven mammalian homologs of sirtuin (SIRT1–7), and SIRT1 is the closest homolog to SIRT2. SIRT1 modulates various key targets via deacetylation. In addition to histones, these targets include transcription factors, such as forkhead box O (FOXO), Ku70, p53, NF-κB, PPAR-gamma co-activator 1-alpha (PGC-1α), and peroxisome proliferator-activated receptor γ (PPARγ). SIRT1 has many biological functions, including aging, cell survival, differentiation, and metabolism. Genetic and physiological analyses in animal models have shown beneficial roles for SIRT1 in the brain during both development and adulthood. Evidence from in vivo and in vitro studies have revealed that SIRT1 regulates the cellular fate of neural progenitors, axon elongation, dendritic branching, synaptic plasticity, and endocrine function. In addition to its importance in physiological processes, SIRT1 has also been implicated in protection of neurons from degeneration in models of neurological diseases, such as traumatic brain injury and Alzheimer’s disease. In this review, we focus on the role of SIRT1 in the neuroendocrine system and neurodegenerative diseases. We also discuss the potential therapeutic implications of targeting the sirtuin pathway.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan.,WPI Immunology Frontier Research Center, Osaka University, Suita, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
48
|
Girouard MP, Bueno M, Julian V, Drake S, Byrne AB, Fournier AE. The Molecular Interplay between Axon Degeneration and Regeneration. Dev Neurobiol 2018; 78:978-990. [PMID: 30022605 DOI: 10.1002/dneu.22627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022]
Abstract
Neurons face a series of morphological and molecular changes following trauma and in the progression of neurodegenerative disease. In neurons capable of mounting a spontaneous regenerative response, including invertebrate neurons and mammalian neurons of the peripheral nervous system (PNS), axons regenerate from the proximal side of the injury and degenerate on the distal side. Studies of Wallerian degeneration slow (WldS /Ola) mice have revealed that a level of coordination between the processes of axon regeneration and degeneration occurs during successful repair. Here, we explore how shared cellular and molecular pathways that regulate both axon regeneration and degeneration coordinate the two distinct outcomes in the proximal and distal axon segments. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
- Marie-Pier Girouard
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Mardja Bueno
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Victoria Julian
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Sienna Drake
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| | - Alexandra B Byrne
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Alyson E Fournier
- Department of Neurology & Neurosurgery, Montréal Neurological Institute, Montréal, Quebec H3A 2B4, Canada
| |
Collapse
|
49
|
Yamagishi Y, Tessier-Lavigne M. An Atypical SCF-like Ubiquitin Ligase Complex Promotes Wallerian Degeneration through Regulation of Axonal Nmnat2. Cell Rep 2017; 17:774-782. [PMID: 27732853 DOI: 10.1016/j.celrep.2016.09.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/05/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022] Open
Abstract
Axon degeneration is a tightly regulated, self-destructive program that is a critical feature of many neurodegenerative diseases, but the molecular mechanisms regulating this program remain poorly understood. Here, we identify S-phase kinase-associated protein 1A (Skp1a), a core component of a Skp/Cullin/F-box (SCF)-type E3 ubiquitin ligase complex, as a critical regulator of axon degeneration after injury in mammalian neurons. Depletion of Skp1a prolongs survival of injured axons in vitro and in the optic nerve in vivo. We demonstrate that Skp1a regulates the protein level of the nicotinamide adenine dinucleotide (NAD)+ synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2) in axons. Loss of axonal Nmnat2 contributes to a local ATP deficit that triggers axon degeneration. Knockdown of Skp1a elevates basal levels of axonal Nmnat2, thereby delaying axon degeneration through prolonged maintenance of axonal ATP. Consistent with Skp1a functioning through regulation of Nmnat2, Skp1a knockdown fails to protect axons from Nmnat2 knockdown. These results illuminate the molecular mechanism underlying Skp1a-dependent axonal destruction.
Collapse
Affiliation(s)
- Yuya Yamagishi
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY 10065, USA
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
50
|
Walker LJ, Summers DW, Sasaki Y, Brace EJ, Milbrandt J, DiAntonio A. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. eLife 2017; 6. [PMID: 28095293 PMCID: PMC5241118 DOI: 10.7554/elife.22540] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/05/2017] [Indexed: 12/31/2022] Open
Abstract
Injury-induced (Wallerian) axonal degeneration is regulated via the opposing actions of pro-degenerative factors such as SARM1 and a MAPK signal and pro-survival factors, the most important of which is the NAD+ biosynthetic enzyme NMNAT2 that inhibits activation of the SARM1 pathway. Here we investigate the mechanism by which MAPK signaling facilitates axonal degeneration. We show that MAPK signaling promotes the turnover of the axonal survival factor NMNAT2 in cultured mammalian neurons as well as the Drosophila ortholog dNMNAT in motoneurons. The increased levels of NMNAT2 are required for the axonal protection caused by loss of MAPK signaling. Regulation of NMNAT2 by MAPK signaling does not require SARM1, and so cannot be downstream of SARM1. Hence, pro-degenerative MAPK signaling functions upstream of SARM1 by limiting the levels of the essential axonal survival factor NMNAT2 to promote injury-dependent SARM1 activation. These findings are consistent with a linear molecular pathway for the axonal degeneration program. DOI:http://dx.doi.org/10.7554/eLife.22540.001
Collapse
Affiliation(s)
- Lauren J Walker
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States
| | - Daniel W Summers
- Department of Genetics, Washington University Medical School, Saint Louis, United States
| | - Yo Sasaki
- Department of Genetics, Washington University Medical School, Saint Louis, United States
| | - E J Brace
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States
| | - Jeffrey Milbrandt
- Department of Genetics, Washington University Medical School, Saint Louis, United States.,Hope Center for Neurological Disorders, Saint Louis, United States
| | - Aaron DiAntonio
- Department of Developmental Biology, Washington University Medical School, Saint Louis, United States.,Hope Center for Neurological Disorders, Saint Louis, United States
| |
Collapse
|