1
|
Valenzuela CF, Reid NM, Blanco BB, Carlson VL, Do AB. Impact of Developmental Alcohol Exposure on the Thalamus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:67-92. [PMID: 40128475 DOI: 10.1007/978-3-031-81908-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This chapter comprehensively explores the impact of prenatal alcohol (ethanol) exposure (PAE) on the thalamus, integrating findings from animal models and human studies spanning various developmental stages. Animal model investigations, encompassing first and second trimester-equivalent exposures and the critical third trimester, where the brain growth spurt starts, reveal specific alterations in thalamic structures and circuits, emphasizing the specificity of damage to corticothalamic loops. The ventrobasal thalamic nucleus exhibits a unique response to PAE, involving intricate interactions with postnatal neurogenesis and neurotrophin responsiveness. Third trimester-equivalent exposure consistently induces apoptotic neurodegeneration in various thalamic nuclei, highlighting the heightened susceptibility of the visual thalamus, particularly the lateral geniculate nucleus, during critical developmental periods. The nucleus reuniens, vital for cognitive processes, was shown to be significantly affected by alcohol exposure during this period. Investigations into the trigeminal/somatosensory system activity revealed disruptions in glucose utilization and increased neuronal activity in the thalamus. Research on binge-like alcohol exposure during the brain growth spurt demonstrates lasting modifications in action-potential properties and synaptic currents in thalamic neurons projecting to the retrosplenial cortex. Human studies, employing advanced techniques like super-resolution fetal MRI and functional MRI, underscore the PAE-induced structural and functional consequences in the thalamus and its connections, spanning from fetal development to adulthood. The complex effects of PAE on thalamic structure and function vary across developmental stages, emphasizing the importance of considering factors such as age and concurrent exposures. The development of higher-resolution imaging tools is essential for assessing the impact of PAE on the structure and function of individual thalamic nuclei in humans.
Collapse
Affiliation(s)
- C Fernando Valenzuela
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Natalie M Reid
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Benjamin B Blanco
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Victoria L Carlson
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Alynna B Do
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
2
|
Gilloteaux J, De Swert K, Suain V, Brion JP, Nicaise C. Loss of Ephaptic Contacts in the Murine Thalamus during Osmotic Demyelination Syndrome. Ultrastruct Pathol 2023; 47:398-423. [PMID: 37477534 DOI: 10.1080/01913123.2023.2232452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/10/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND AND AIM A murine model mimicking osmotic demyelination syndrome (ODS) revealed with histology in the relay posterolateral (VPL) and ventral posteromedial (VPM) thalamic nuclei adjoined nerve cell bodies in chronic hyponatremia, amongst the damaged 12 h and 48 h after reinstatement of osmolality. This report aims to verify and complement with ultrastructure other neurophysiology, immunohistochemistry, and molecular biochemistry data to assess the connexin-36 protein, as part of those hinted close contacts.This ODS investigation included four groups of mice: Sham (NN; n = 13), hyponatremic (HN; n = 11), those sacrificed 12 h after a fast restoration of normal natremia (ODS12h; n = 6) and mice sacrificed 48 h afterward, or ODS48 h (n = 9). Out of these, thalamic zones samples included NN (n = 2), HN (n = 2), ODS12h (n = 3) and ODS48h (n = 3). RESULTS Ultrastructure illustrated junctions between nerve cell bodies that were immunolabeled with connexin36 (Cx36) with light microscopy and Western blots. These cell's junctions were reminiscent of low resistance junctions characterized in other regions of the CNS with electrophysiology. Contiguous neurons showed neurolemma contacts in intact and damaged tissues according to their location in the ODS zones, at 12 h and 48 h post correction along with other demyelinating alterations. Neurons and ephaptic contact measurements indicated the highest alterations, including nerve cell necrosis in the ODS epicenter and damages decreased toward the outskirts of the demyelinated zone. CONCLUSION Ephapses contained C × 36between intact or ODS injured neurons in the thalamus appeared to be resilient beyond the core degraded tissue injuries. These could maintain intercellular ionic and metabolite exchanges between these lesser injured regions and, thus, would partake to some brain plasticity repairs.
Collapse
Affiliation(s)
- Jacques Gilloteaux
- Department of Medicine, URPHyM, NARILIS, Université de Namur, Namur, Belgium
- Department of Anatomical Sciences, St George's University School of Medicine, Newcastle Upon Tyne, UK
| | - Kathleen De Swert
- Department of Medicine, URPHyM, NARILIS, Université de Namur, Namur, Belgium
| | - Valérie Suain
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Pierre Brion
- Laboratory of Histology, Neuroanatomy and Neuropathology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Charles Nicaise
- Department of Medicine, URPHyM, NARILIS, Université de Namur, Namur, Belgium
| |
Collapse
|
3
|
O'Reilly C, Iavarone E, Yi J, Hill SL. Rodent somatosensory thalamocortical circuitry: Neurons, synapses, and connectivity. Neurosci Biobehav Rev 2021; 126:213-235. [PMID: 33766672 DOI: 10.1016/j.neubiorev.2021.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023]
Abstract
As our understanding of the thalamocortical system deepens, the questions we face become more complex. Their investigation requires the adoption of novel experimental approaches complemented with increasingly sophisticated computational modeling. In this review, we take stock of current data and knowledge about the circuitry of the somatosensory thalamocortical loop in rodents, discussing common principles across modalities and species whenever appropriate. We review the different levels of organization, including the cells, synapses, neuroanatomy, and network connectivity. We provide a complete overview of this system that should be accessible for newcomers to this field while nevertheless being comprehensive enough to serve as a reference for seasoned neuroscientists and computational modelers studying the thalamocortical system. We further highlight key gaps in data and knowledge that constitute pressing targets for future experimental work. Filling these gaps would provide invaluable information for systematically unveiling how this system supports behavioral and cognitive processes.
Collapse
Affiliation(s)
- Christian O'Reilly
- Azrieli Centre for Autism Research, Montreal Neurological Institute, McGill University, Montreal, Canada; Ronin Institute, Montclair, NJ, USA; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Elisabetta Iavarone
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jane Yi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sean L Hill
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
4
|
Miller MW. p53-Mediated Activities in NS-5 Neural Stem Cells: Effects of Ethanol. Alcohol Clin Exp Res 2019; 43:655-667. [PMID: 30748015 DOI: 10.1111/acer.13976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transforming growth factor (TGF) β1 and ethanol (EtOH) powerfully inhibit the proliferation, DNA repair, and survival of neural stem cells (NSCs). The present study tests the hypothesis that the EtOH-induced DNA damage response is mediated through p53 pathways and influenced by growth factor signals. METHODS Cultures of nonimmortalized NSCs, NS-5 cells, were transfected with p53 siRNA, exposed to either the mitogenic fibroblast growth factor (FGF) 2 or antimitogenic TGFβ1, and to EtOH. Stage-specific cellular and genomic responses were examined. RESULTS p53 status, EtOH exposure, and growth factor significantly affected the expression of transcripts related to the DNA damage response (including those coding for excision repair proteins), mitotic promoters, and regulators of cell death via the tumor necrosis factor pathway. There were significant compensatory increases in p53 family members, p63 and p73, notably in regard to the regulation of cell cycle restriction and apoptosis. Treatment with p53 siRNA potentiated EtOH- and TGFβ1-induced changes in the numbers of proliferating NSCs and increased the proportion of NSCs expressing the apoptotic marker annexin V. CONCLUSIONS Thus, it appears that EtOH and TGFβ1 affect proliferation, DNA repair, and survival of NSCs via p53-mediated activities.
Collapse
Affiliation(s)
- Michael W Miller
- Department of Neuroscience and Physiology, State University of New York-Upstate Medical University, Syracuse, New York.,Touro College of Osteopathic Medicine, Middletown, New York.,Research Service, Veterans Affairs Medical Center, Syracuse, New York
| |
Collapse
|
5
|
Balthazart J, Ball GF. Endogenous versus exogenous markers of adult neurogenesis in canaries and other birds: advantages and disadvantages. J Comp Neurol 2014; 522:4100-20. [PMID: 25131458 DOI: 10.1002/cne.23661] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/17/2014] [Accepted: 08/04/2014] [Indexed: 02/03/2023]
Abstract
Although the existence of newborn neurons had originally been suggested, but not broadly accepted, based on studies in adult rodent brains, the presence of an active neurogenesis process in adult homoeothermic vertebrates was first firmly established in songbirds. Adult neurogenesis was initially studied with the tritiated thymidine technique, later replaced by the injection and detection of the marker of DNA replication 5-bromo-2'-deoxyuridine (BrdU). More recently, various endogenous markers were used to identify young neurons or cycling neuronal progenitors. We review here the respective advantages and pitfalls of these different approaches in birds, with specific reference to the microtubule-associated protein, doublecortin (DCX), that has been extensively used to identify young newly born neurons in adult brains. All these techniques of course have limitations. Exogenous markers label cells replicating their DNA only during a brief period and it is difficult to select injection doses that would exhaustively label all these cells without inducing DNA damage that will also result in some form of labeling during repair. On the other hand, specificity of endogenous markers is difficult to establish due to problems related to the specificity of antibodies (these problems can be, but are not always, addressed) and more importantly because it is difficult, if not impossible, to prove that a given marker exhaustively and specifically labels a given cell population. Despite these potential limitations, these endogenous markers and DCX staining in particular clearly represent a useful approach to the detailed study of neurogenesis especially when combined with other techniques such as BrdU.
Collapse
|
6
|
Pienaar IS, van de Berg W. A non-cholinergic neuronal loss in the pedunculopontine nucleus of toxin-evoked Parkinsonian rats. Exp Neurol 2013; 248:213-23. [DOI: 10.1016/j.expneurol.2013.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 06/03/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
|
7
|
McClain JA, Hayes DM, Morris SA, Nixon K. Adolescent binge alcohol exposure alters hippocampal progenitor cell proliferation in rats: effects on cell cycle kinetics. J Comp Neurol 2011; 519:2697-710. [PMID: 21484803 DOI: 10.1002/cne.22647] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Binge alcohol exposure in adolescent rats potently inhibits adult hippocampal neurogenesis by altering neural progenitor cell (NPC) proliferation and survival; however, it is not clear whether alcohol results in an increase or decrease in net proliferation. Thus, the effects of alcohol on hippocampal NPC cell cycle phase distribution and kinetics were assessed in an adolescent rat model of an alcohol use disorder. Cell cycle distribution was measured using a combination of markers (Ki-67, bromodeoxyuridine incorporation, and phosphohistone H3) to determine the proportion of NPCs within G1, S, and G2/M phases of the cell cycle. Cell cycle kinetics were calculated using a cumulative bromodeoxyuridine injection protocol to determine the effect of alcohol on cell cycle length and S-phase duration. Binge alcohol exposure reduced the proportion of NPCs in S-phase, but had no effect on G1 or G2/M phases, indicating that alcohol specifically targets S-phase of the cell cycle. Cell cycle kinetics studies revealed that alcohol reduced NPC cell cycle duration by 36% and shortened S-phase by 62%, suggesting that binge alcohol exposure accelerates progression through the cell cycle. This effect would be expected to increase NPC proliferation, which was supported by a slight, but significant increase in the number of Sox-2+ NPCs residing in the hippocampal subgranular zone following binge alcohol exposure. These studies suggest the mechanism of alcohol inhibition of neurogenesis and also reveal the earliest evidence of the compensatory neurogenesis reaction that has been observed a week after binge alcohol exposure.
Collapse
Affiliation(s)
- Justin A McClain
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | |
Collapse
|
8
|
Mooney SM, Miller MW. Role of neurotrophins on postnatal neurogenesis in the thalamus: prenatal exposure to ethanol. Neuroscience 2011; 179:256-66. [PMID: 21277941 DOI: 10.1016/j.neuroscience.2011.01.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 01/20/2011] [Accepted: 01/21/2011] [Indexed: 12/23/2022]
Abstract
A second wave of neuronal generation occurs in the ventrobasal nucleus of the rat thalamus (VB) during the first three postnatal weeks. The present study tested the hypotheses (1) that postnatal neurogenesis in the VB is neurotrophin-regulated and (2) that ethanol-induced changes in this proliferation are mediated by neurotrophins. The first studies examined the effects of neurotrophins on the numbers of cycling cells in ex vivo preparations of the VB from 3-day-old rats. The proportion of cycling (Ki-67-positive) VB cells was higher in cultured thalamic slices treated with neurotrophins than in controls. Interestingly, this increase occurred with nerve growth factor (NGF) alone or with a combination of NGF and brain-derived neurotrophic factor (BDNF), but not with BDNF alone. Based on these data, the VBs from young offspring of pregnant rats fed an ethanol-containing or an isocaloric non-alcoholic liquid diet were examined between postnatal day (P) 1 and P31. Studies used enzyme-linked immunosorbent assays and immunoblots to explore the effects of ethanol on the expression of neurotrophins, their receptors, and representative signaling proteins. Ethanol altered the expression of neurotrophins and receptors throughout the first postnatal month. Expression of NGF increased, but there was no change in the expression of BDNF. The high affinity receptors (TrkA and TrkB) were unchanged but ethanol decreased expression of the low affinity receptor, p75. One downstream signaling protein, extracellular signal-regulated kinase (ERK), decreased but Akt expression was unchanged. Thus, postnatal cell proliferation in the VB of young rat pups is neurotrophin-responsive and is affected by ethanol.
Collapse
Affiliation(s)
- S M Mooney
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
9
|
Parri HR, Gould TM, Crunelli V. Sensory and cortical activation of distinct glial cell subtypes in the somatosensory thalamus of young rats. Eur J Neurosci 2011; 32:29-40. [PMID: 20608967 PMCID: PMC2909395 DOI: 10.1111/j.1460-9568.2010.07281.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rodent ventrobasal (VB) thalamus receives sensory inputs from the whiskers and projects to the cortex, from which it receives reciprocal excitatory afferents. Much is known about the properties and functional roles of these glutamatergic inputs to thalamocortical neurons in the VB, but no data are available on how these afferents can affect thalamic glial cells. In this study, we used combined electrophysiological recordings and intracellular calcium ([Ca2+]i) imaging to investigate glial cell responses to synaptic afferent stimulation. VB thalamus glial cells can be divided into two groups based on their [Ca2+]i and electrophysiological responses to sensory and corticothalamic stimulation. One group consists of astrocytes, which stain positively for S100B and preferentially load with SR101, have linear current–voltage relations and low input resistance, show no voltage-dependent [Ca2+]i responses, but express mGluR5-dependent [Ca2+]i transients following stimulation of the sensory and/or corticothalamic excitatory afferent pathways. Cells of the other glial group, by contrast, stain positively for NG2, and are characterized by high input resistance, the presence of voltage-dependent [Ca2+]i elevations and voltage-gated inward currents. There were no synaptically induced [Ca2+]i elevations in these cells under control conditions. These results show that thalamic glial cell responses to synaptic input exhibit different properties to those of thalamocortical neurons. As VB astrocytes can respond to synaptic stimulation and signal to neighbouring neurons, this glial cell organization may have functional implications for the processing of somatosensory information and modulation of behavioural state-dependent thalamocortical network activities.
Collapse
Affiliation(s)
- H Rheinallt Parri
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK.
| | | | | |
Collapse
|
10
|
Tsanov M, Chah E, Wright N, Vann SD, Reilly R, Erichsen JT, Aggleton JP, O'Mara SM. Oscillatory entrainment of thalamic neurons by theta rhythm in freely moving rats. J Neurophysiol 2010; 105:4-17. [PMID: 20962067 DOI: 10.1152/jn.00771.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The anterior thalamic nuclei are assumed to support episodic memory with anterior thalamic dysfunction a core feature of diencephalic amnesia. To date, the electrophysiological characterization of this region in behaving rodents has been restricted to the anterodorsal nucleus. Here we compared single-unit spikes with population activity in the anteroventral nucleus (AV) of freely moving rats during foraging and during naturally occurring sleep. We identified AV units that synchronize their bursting activity in the 6-11 Hz range. We show for the first time in freely moving rats that a subgroup of AV neurons is strongly entrained by theta oscillations. This feature together with their firing properties and spike shape suggests they be classified as "theta" units. To prove the selectivity of AV theta cells for theta rhythm, we compared the relation of spiking rhythmicity to local field potentials during theta and non-theta periods. The most distinguishable non-theta oscillations in rodent anterior thalamus are sleep spindles. We therefore compared the firing properties of AV units during theta and spindle periods. We found that theta and spindle oscillations differ in their spatial distribution within AV, suggesting separate cellular sources for these oscillations. While theta-bursting neurons were related to the distribution of local field theta power, spindle amplitude was independent of the theta units' position. Slow- and fast-spiking bursting units that are selectively entrained to theta rhythm comprise 23.7% of AV neurons. Our results provide a framework for electrophysiological classification of AV neurons as part of theta limbic circuitry.
Collapse
Affiliation(s)
- Marian Tsanov
- Trinity College Institute of Neuroscience. Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee SC, Cruikshank SJ, Connors BW. Electrical and chemical synapses between relay neurons in developing thalamus. J Physiol 2010; 588:2403-15. [PMID: 20457735 PMCID: PMC2915516 DOI: 10.1113/jphysiol.2010.187096] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 05/07/2010] [Indexed: 11/08/2022] Open
Abstract
Gap junction-mediated electrical synapses interconnect diverse types of neurons in the mammalian brain, and they may play important roles in the synchronization and development of neural circuits. Thalamic relay neurons are the major source of input to neocortex. Electrical synapses have not been directly observed between relay neurons in either developing or adult animals. We tested for electrical synapses by recording from pairs of relay neurons in acute slices of developing ventrobasal nucleus (VBN) of the thalamus from rats and mice. Electrical synapses were common between VBN relay neurons during the first postnatal week, and then declined sharply during the second week. Electrical coupling was reduced among cells of connexin36 (Cx36) knockout mice; however, some neuron pairs remained coupled. This implies that electrical synapses between the majority of coupled VBN neurons require Cx36 but that other gap junction proteins also contribute. The anatomical distribution of a beta-galactosidase reporter indicated that Cx36 was expressed in some VBN neurons during the first postnatal week and sharply declined over the second week, consistent with our physiological results. VBN relay neurons also communicated via chemical synapses. Rare pairs of relay neurons excited one another monosynaptically. Much more commonly, spikes in one relay neuron evoked disynaptic inhibition (via the thalamic reticular nucleus) in the same or a neighbouring relay neuron. Disynaptic inhibition between VBN cells emerged as electrical coupling was decreasing, during the second postnatal week. Our results demonstrate that thalamic relay neurons communicate primarily via electrical synapses during early postnatal development, and then lose their electrical coupling as a chemical synapse-mediated inhibitory circuit matures.
Collapse
Affiliation(s)
- Seung-Chan Lee
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
12
|
The Role of Cell Fusion in Physiological and Reparative Regeneration of the Cerebral Cortex. Bull Exp Biol Med 2010; 148:825-8. [DOI: 10.1007/s10517-010-0827-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Mooney SM, Miller MW. Prenatal exposure to ethanol affects postnatal neurogenesis in thalamus. Exp Neurol 2010; 223:566-73. [PMID: 20170653 DOI: 10.1016/j.expneurol.2010.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 01/08/2023]
Abstract
The number of neurons in the ventrobasal thalamus (VB) in the adolescent rat is unaffected by prenatal exposure to ethanol. This is in sharp contrast to other parts of the trigeminal-somatosensory system, which exhibit 30-35% fewer neurons after prenatal ethanol exposure. The present study tested the hypothesis that prenatal ethanol exposure affects dynamic changes in the numbers of VB neurons; such changes reflect the sum of cell proliferation and death. Neuronal number in the VB was determined during the first postnatal month in the offspring of pregnant Long-Evans rats fed an ethanol-containing diet or pair-fed an isocaloric non-alcoholic liquid diet. Offspring were examined between postnatal day (P) 1 and P30. The size of the VB and neuronal number were determined stereologically. Prenatal exposure to ethanol did not significantly alter neuronal number on any individual day, nor was the prenatal generation of VB neurons affected. Interestingly, prenatal ethanol exposure did affect the pattern of the change in neuronal number over time; total neuronal number was stable in the ethanol-treated pups after P12, but it continued to rise in the controls until P21. In addition, the rate of cell proliferation during the postnatal period was greater in ethanol-treated animals. Thus, the rate of neuronal acquisition is altered by ethanol, and by deduction, there appears to be less ethanol-induced neuronal loss in the VB. A contributor to these changes is a latent effect of ethanol on postnatal neurogenesis in the VB and the apparent survival of new neurons.
Collapse
Affiliation(s)
- Sandra M Mooney
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
14
|
Müller D, Hida B, Guidone G, Speth RC, Michurina TV, Enikolopov G, Middendorff R. Expression of guanylyl cyclase (GC)-A and GC-B during brain development: evidence for a role of GC-B in perinatal neurogenesis. Endocrinology 2009; 150:5520-9. [PMID: 19837875 DOI: 10.1210/en.2009-0490] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atrial (ANP) and C-type (CNP) natriuretic peptide generate physiological effects via selective activation of two closely related membrane receptors with guanylyl cyclase (GC) activity, known as GC-A and GC-B. As yet, however, the discrete roles for ANP/GC-A vs. CNP/GC-B signaling in many mammalian tissues are still poorly understood. We here used receptor affinity labeling and GC assays to characterize comparatively GC-A/GC-B expression and functional activity during rat brain development. The study revealed that GC-B predominates in the developing and GC-A in the adult brain, with regional differences each between cerebral cortex, cerebellum, and brain stem. Whereas GC-A levels nearly continuously increase between embryonal d 18 and adult, GC-B expression in brain is highest and widely distributed around postnatal d 1. The striking perinatal GC-B peak coincides with elevated expression of nestin, a marker protein for neural stem/progenitor cells. Immunohistochemical investigations revealed a cell body-restricted subcellular localization of GC-B and perinatal abundance of GC-B-expressing cells in regions high in nestin-expressing cells. However, and supported by examination of nestin-GFP transgenic mice, GC-B and nestin are not coexpressed in the same cells. Rather, GC-B(+) cells are distinguished by expression of NeuN, an early marker of differentiating neurons. These findings suggest that GC-B(+) cells represent neuronal fate-specific progeny of nestin(+) progenitors and raise the attention to specific and pronounced activities of CNP/GC-B signaling during perinatal brain maturation. The absence of this activity may cause the neurological disorders observed in GC-B-deficient mice.
Collapse
Affiliation(s)
- Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ito Y, Nakamura S, Tanaka H, Tsuruma K, Shimazawa M, Araie M, Hara H. Lomerizine, a Ca2+ channel blocker, protects against neuronal degeneration within the visual center of the brain after retinal damage in mice. CNS Neurosci Ther 2009; 16:103-14. [PMID: 19788586 DOI: 10.1111/j.1755-5949.2009.00081.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to determine whether lomerizine, a Ca(2+) channel blocker, protects against neuronal degeneration within the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC) after the induction of retinal damage by intravitreal injection of N-methyl-D-aspartate (NMDA) in mice. NMDA (20 mM/2 microL) was injected into the vitreous body of the left eye in mice (DAY 0). Lomerizine at 30 mg/kg, p.o. was administered daily from immediately after the injection of NMDA (DAY 0) to 90 days after (DAY 90). To investigate the neuroprotective effects of lomerizine, the retina, dLGN, and SC were examined using histochemistry and immunohistochemistry. Lomerizine reduced the retinal damage induced by NMDA and partially prevented the transsynaptic neuronal degeneration within dLGN and SC on the contralateral side. Moreover, lomerizine reduced the intravitreal NMDA induced decrease in the light-induced expression of c-Fos in the contralateral dLGN (used in this study to evaluate residual vision). These results indicate that lomerizine affords some protection against transsynaptic neuronal degeneration within the visual center of the mouse brain.
Collapse
Affiliation(s)
- Yasushi Ito
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, Gifu, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Ling L, Zeng J, Pei Z, Cheung RTF, Hou Q, Xing S, Zhang S. Neurogenesis and angiogenesis within the ipsilateral thalamus with secondary damage after focal cortical infarction in hypertensive rats. J Cereb Blood Flow Metab 2009; 29:1538-46. [PMID: 19536072 DOI: 10.1038/jcbfm.2009.76] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurogenesis and angiogenesis in the subventricular zone and peri-infarct region have been confirmed. However, newly formed neuronal cells and blood vessels that appear in the nonischemic ipsilateral ventroposterior nucleus (VPN) of the thalamus with secondary damage after stroke has not been previously studied. Twenty-four stroke-prone renovascular hypertensive rats were subjected to distal right middle cerebral artery occlusion (MCAO) or sham operation. 5'-Bromo-2'-deoxyuridine (BrdU) was used to label cell proliferation. Rats were killed at 7 or 14 days after the operation. Neuronal nuclei (NeuN), OX-42, BrdU, nestin, laminin(+), BrdU(+)/nestin(+), BrdU(+)/NeuN(+), nestin(+)/GFAP(+)(glial fibrillary acidic protein), and BrdU(+)/laminin(+) immunoreactive cells were detected within the ipsilateral VPN. The primary infarction was confined to the right somatosensory cortex. Within the ipsilateral VPN of the ischemic rats, the number of NeuN(+) neurons decreased, the OX-42(+) microglia cells were activated, and BrdU(+) and nestin(+) cells were detected at day 7 after MCAO and increased in number at day 14. Moreover, BrdU(+)/nestin(+) cells and BrdU(+)/NeuN(+) cells were detected at day 14 after MCAO. In addition, the ischemic rats showed a significant increase in vascular density in the ipsilateral VPN compared with the sham-operated rats. These results suggest that secondary damage with neurogenesis and angiogenesis of the ipsilateral VPN of the thalamus occurs after focal cortical infarction.
Collapse
Affiliation(s)
- Li Ling
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Ito Y, Nakamura S, Tanaka H, Shimazawa M, Araie M, Hara H. Memantine protects against secondary neuronal degeneration in lateral geniculate nucleus and superior colliculus after retinal damage in mice. CNS Neurosci Ther 2008; 14:192-202. [PMID: 18801112 DOI: 10.1111/j.1755-5949.2008.00050.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The purpose of this study, on mice, was to determine whether memantine, a glutamate-receptor antagonist of the N-methyl-(d)-aspartate (NMDA) subtype, protects against neuronal degeneration in the dorsal lateral geniculate nucleus (dLGN) and superior colliculus (SC) after the induction of retinal damage by intravitreal injection of NMDA. NMDA (20 mM/2 microl) was injected into the vitreous body of the left eye in mice (day 0). To evaluate the neuroprotective effect of memantine, mice were assigned to one of two memantine-treated groups: receiving a daily administration of memantine at 30 mg/kg/day, p.o. either from day 0 (administered at 1 h before NMDA injection) to day 90 (pretreated group) or from day 7 to day 90 (post-treated group). The pretreated group exhibited significant suppression of the retinal damage induced by intravitreal injection of NMDA and significant prevention of transsynaptic neuronal degeneration in the dLGN and SC on the contralateral side. Although the mice of the post-treated group displayed no reversion of such retinal damage, they did exhibit protection against neuronal degeneration in the LGN and SC on the contralateral side. These data indicate that memantine can protect against transsynaptic neuronal degeneration in the murine brain (LGN and SC) even if treatment is begun after retinal ganglion cell (RGC) death has started. Memantine protects against the secondary neuronal degeneration in brain regions in the visual pathway that occurs after retinal damage in mice.
Collapse
Affiliation(s)
- Yasushi Ito
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu 502-8585, Japan
| | | | | | | | | | | |
Collapse
|