1
|
Cannon DJ, Santin JM. Homeostatic regulation of a motor circuit through temperature sensing rather than activity sensing. Curr Biol 2025; 35:2256-2265.e3. [PMID: 40220756 DOI: 10.1016/j.cub.2025.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
Homeostasis is a driving principle in physiology. To achieve homeostatic control of neural activity, neurons monitor their activity levels and then initiate corrective adjustments in excitability when activity strays from a set point. However, fluctuations in the brain microenvironment, such as temperature, pH, and other ions, represent some of the most common perturbations to neural function in animals. Therefore, it is unclear whether activity sensing is a universal strategy for different types of perturbations or whether stability may arise by sensing specific environmental cues. Here, we show that the respiratory network of amphibians mounts a fast homeostatic response to restore motor function following inactivity caused by cooling over the physiological range. This response was not initiated by inactivity but rather by temperature. Compensation involved cold activation of noradrenergic neurons via mechanisms that relied, in part, on inhibition of the Na+/K+ ATPase, causing β-adrenoceptor signaling that enhanced network excitability. Thus, acute cooling initiates a modulatory response that opposes inactivity and enhances network excitability. As the nervous system of all animals is subjected to changes in the microenvironment, some circuits may have selected regulatory systems tuned to environmental variables in place of, or in addition to, activity-dependent control mechanisms.
Collapse
Affiliation(s)
- Delaney J Cannon
- University of Missouri-Columbia, Division of Biological Sciences, Hitt Street, Columbia, MO 65211, USA
| | - Joseph M Santin
- University of Missouri-Columbia, Division of Biological Sciences, Hitt Street, Columbia, MO 65211, USA.
| |
Collapse
|
2
|
Lee M, Marder E. Increased robustness and adaptation to simultaneous temperature and elevated extracellular potassium in the pyloric rhythm of the crab, Cancer borealis. J Neurophysiol 2025; 133:561-571. [PMID: 39852950 DOI: 10.1152/jn.00410.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Animals must deal with numerous perturbations, oftentimes concurrently. In this study, we examine the effects of two perturbations, high extracellular potassium and elevated temperature, on the resilience of the pyloric rhythm of the crab, Cancer borealis. At control temperatures (11°C), high potassium saline (2.5× K+) depolarizes the neurons of the stomatogastric ganglion (STG), and the pyloric rhythm becomes quiescent. Over minutes, while remaining depolarized in high potassium, the pyloric network neurons adapt, and resume their spiking and bursting activity. We compared adaptation to high potassium applications at 20°C to those seen at 11°C. At 20°C, the intracellular waveforms of the neuronal activity seen in high potassium more closely resemble activity in control saline, and adaptation and recovery occur more rapidly. Spike and burst thresholds were measured using slow ramps of injected current from hyperpolarized to depolarized values of membrane potential in the presence of high potassium and at both temperatures. The maximal burst frequencies in control saline were higher at 20°C and subthreshold bursts occurred at a more hyperpolarized membrane potential at 20°C. In high potassium, subthreshold bursts were seen at 20°C, but not at 11°C, whereas spike thresholds were similar at the two temperatures. At both temperatures, a second application of high potassium showed substantially more rapid adaptation than did the first application. Together, these data show that the adaptation to high potassium saline is enhanced by high temperature.NEW & NOTEWORTHY Multiple applications of high potassium saline to the pyloric rhythm of the crab, Cancer borealis show a history-dependent adaptation process that is enhanced at high temperatures.
Collapse
Affiliation(s)
- Margaret Lee
- Biology Department and Volen Center, MS 013, Brandeis University, Waltham, Massachusetts, United States
| | - Eve Marder
- Biology Department and Volen Center, MS 013, Brandeis University, Waltham, Massachusetts, United States
| |
Collapse
|
3
|
Cannon D, Santin JM. Homeostatic regulation of a motor circuit through temperature sensing rather than activity sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632419. [PMID: 39829762 PMCID: PMC11741314 DOI: 10.1101/2025.01.10.632419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Homeostasis is a driving principle in physiology. To achieve homeostatic control of neural activity, neurons monitor their activity levels and then initiate corrective adjustments in excitability when activity strays from a set point. However, fluctuations in the brain microenvironment, such as temperature, pH, and other ions represent some of the most common perturbations to neural function in animals. Therefore, it is unclear if activity sensing is a universal strategy for different types of perturbations or if stability may arise by sensing specific environmental cues. Here we show the respiratory network of amphibians mounts a fast homeostatic response to restore motor function following inactivity caused by cooling over the physiological range. This response was not initiated by inactivity, but rather, by temperature. Compensation involved cold-activation of the noradrenergic system via mechanisms that involve inhibition of the Na+/K+ ATPase, causing β-adrenoceptor signaling that enhanced network excitability. Thus, acute cooling initiates a modulatory response that opposes inactivity and enhances network excitability. As the nervous system of all animals is subjected to changes in the microenvironment, some circuits may have selected regulatory systems tuned to environmental variables in place of, or in addition to, activity-dependent control mechanisms.
Collapse
Affiliation(s)
- Delaney Cannon
- University of Missouri-Columbia, Division of Biological Sciences, Missouri, United States of America
| | - Joseph M Santin
- University of Missouri-Columbia, Division of Biological Sciences, Missouri, United States of America
| |
Collapse
|
4
|
Bruce AS, Crespi JM, Hayes DJ, Lagoudakis A, Lusk JL, Schreiber DM, Wu Q. Differential brain activations between Democrats and Republicans when considering food purchases. Politics Life Sci 2025; 44:60-76. [PMID: 40150998 DOI: 10.1017/pls.2025.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
We measured brain activity using a functional magnetic resonance imaging (fMRI) paradigm and conducted a whole-brain analysis while healthy adult Democrats and Republicans made non-hypothetical food choices. While the food purchase decisions were not significantly different, we found that brain activation during decision-making differs according to the participant's party affiliation. Models of partisanship based on left insula, ventromedial prefrontal cortex, precuneus, superior frontal gyrus, or premotor/supplementary motor area activations achieve better than expected accuracy. Understanding the differential function of neural systems that lead to indistinguishable choices may provide leverage in explaining the broader mechanisms of partisanship.
Collapse
Affiliation(s)
- Amanda S Bruce
- Associate Professor, Department of Pediatrics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - John M Crespi
- Director, Center for Agricultural & Rural Development, Professor, Department of Economics, Iowa State University, Ames, IA, USA
| | - Dermot J Hayes
- Professor of Economics, Iowa State University, Ames, IA, USA
| | - Angelos Lagoudakis
- Graduate Student, Department of Economics, Iowa State University, Ames, IA, USA
| | - Jayson L Lusk
- Regents Professor and Vice President and Dean of the Division of Agricultural Sciences and Natural Resources, Oklahoma State University, Stillwater, OK, USA
| | | | | |
Collapse
|
5
|
Saunders SE, Santin JM. Hibernation reduces GABA signaling in the brainstem to enhance motor activity of breathing at cool temperatures. BMC Biol 2024; 22:251. [PMID: 39497096 PMCID: PMC11533357 DOI: 10.1186/s12915-024-02050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Neural circuits produce reliable activity patterns despite disturbances in the environment. For this to occur, neurons elicit synaptic plasticity during perturbations. However, recent work suggests that plasticity not only regulates circuit activity during disturbances, but these modifications may also linger to stabilize circuits during future perturbations. The implementation of such a regulation scheme for real-life environmental challenges of animals remains unclear. Amphibians provide insight into this problem in a rather extreme way, as circuits that generate breathing are inactive for several months during underwater hibernation and use compensatory plasticity to promote ventilation upon emergence. RESULTS Using ex vivo brainstem preparations and electrophysiology, we find that hibernation in American bullfrogs reduces GABAA receptor (GABAAR) inhibition in respiratory rhythm generating circuits and motor neurons, consistent with a compensatory response to chronic inactivity. Although GABAARs are normally critical for breathing, baseline network output at warm temperatures was not affected. However, when assessed across a range of temperatures, hibernators with reduced GABAAR signaling had greater activity at cooler temperatures, enhancing respiratory motor output under conditions that otherwise strongly depress breathing. CONCLUSIONS Hibernation reduces GABAAR signaling to promote robust respiratory output only at cooler temperatures. Although frogs do not ventilate lungs during underwater hibernation, we suggest this would be beneficial for stabilizing breathing when the animal passes through a large temperature range during emergence in the spring. More broadly, these results demonstrate that compensatory synaptic plasticity can increase the operating range of circuits in harsh environments, thereby promoting adaptive behavior in conditions that suppress activity.
Collapse
Affiliation(s)
- Sandy E Saunders
- Division of Biological Sciences, University of Missouri-Columbia, MO, USA
| | - Joseph M Santin
- Division of Biological Sciences, University of Missouri-Columbia, MO, USA.
| |
Collapse
|
6
|
Schapiro K, Rittenberg JD, Kenngott M, Marder E. I h block reveals separation of timescales in pyloric rhythm response to temperature changes in Cancer borealis. eLife 2024; 13:RP98844. [PMID: 39404608 PMCID: PMC11479588 DOI: 10.7554/elife.98844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Motor systems operate over a range of frequencies and relative timing (phase). We studied the role of the hyperpolarization-activated inward current (Ih) in regulating these features in the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis, as temperature was altered from 11°C to 21°C. Under control conditions, rhythm frequency increased monotonically with temperature, while the phases of the pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons remained constant. Blocking Ih with cesium (Cs+) phase advanced PD offset, LP onset, and LP offset at 11°C, and the latter two further advanced as temperature increased. In Cs+ the frequency increase with temperature diminished and the Q10 of the frequency dropped from ~1.75 to ~1.35. Unexpectedly in Cs+, the frequency dynamics became non-monotonic during temperature transitions; frequency initially dropped as temperature increased, then rose once temperature stabilized, creating a characteristic 'jag'. Interestingly, these jags persisted during temperature transitions in Cs+ when the pacemaker was isolated by picrotoxin, although the temperature-induced change in frequency recovered to control levels. Overall, these data suggest that Ih plays an important role in maintaining smooth transitory responses and persistent frequency increases by different mechanisms in the pyloric circuitry during temperature fluctuations.
Collapse
Affiliation(s)
- Kyra Schapiro
- Biology Department, Brandeis UniversityWalthamUnited States
| | - JD Rittenberg
- Biology Department, Brandeis UniversityWalthamUnited States
| | - Max Kenngott
- Biology Department, Brandeis UniversityWalthamUnited States
| | - Eve Marder
- Biology Department, Brandeis UniversityWalthamUnited States
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| |
Collapse
|
7
|
Albantakis L, Bernard C, Brenner N, Marder E, Narayanan R. The Brain's Best Kept Secret Is Its Degenerate Structure. J Neurosci 2024; 44:e1339242024. [PMID: 39358027 PMCID: PMC11450540 DOI: 10.1523/jneurosci.1339-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
Degeneracy is defined as multiple sets of solutions that can produce very similar system performance. Degeneracy is seen across phylogenetic scales, in all kinds of organisms. In neuroscience, degeneracy can be seen in the constellation of biophysical properties that produce a neuron's characteristic intrinsic properties and/or the constellation of mechanisms that determine circuit outputs or behavior. Here, we present examples of degeneracy at multiple levels of organization, from single-cell behavior, small circuits, large circuits, and, in cognition, drawing conclusions from work ranging from bacteria to human cognition. Degeneracy allows the individual-to-individual variability within a population that creates potential for evolution.
Collapse
Affiliation(s)
- Larissa Albantakis
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | | | - Naama Brenner
- Department of Chemical Engineering and Network Biology Research Lab, Technion Israel Institute of Technology, Haifa 32000, Israel
| | - Eve Marder
- Biology Department and Volen Center Brandeis University Waltham, Massachusetts 02454
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
8
|
Jury SH, Gutzler BC, Goldstein JS, Carloni JT, Watson WH. Behavioral thermoregulation of ovigerous American lobsters (Homarus americanus). FISHERIES RESEARCH 2024; 278:107068. [DOI: 10.1016/j.fishres.2024.107068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Stein W, Städele C. Neuromodulator-induced temperature robustness in a motor pattern: a comparative study between two decapod crustaceans. J Exp Biol 2024; 227:jeb247266. [PMID: 39211959 DOI: 10.1242/jeb.247266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
While temperature fluctuations pose significant challenges to the nervous system, many vital neuronal systems in poikilothermic animals function over a broad temperature range. Using the gastric mill pattern generator in the Jonah crab, we previously demonstrated that temperature-induced increases in leak conductance disrupt neuronal function and that neuropeptide modulation provides thermal protection. Here, we show that neuropeptide modulation also increases temperature robustness in Dungeness and green crabs. As in Jonah crabs, higher temperatures increased leak conductance in both species' pattern-generating lateral gastric neuron and terminated rhythmic gastric mill activity. Likewise, increasing descending modulatory projection neuron activity or neuropeptide transmitter application rescued rhythms at elevated temperatures. However, decreasing input resistance using dynamic clamp only restored the rhythm in half of the experiments. Thus, neuropeptide modulation increased temperature robustness in both species, demonstrating that neuropeptide-mediated temperature compensation is not limited to one species, although the underlying cellular compensation mechanisms may be distinct.
Collapse
Affiliation(s)
- Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Carola Städele
- Institute for Neuro- and Sensory Physiology, University of Göttingen Medical Center, 37073 Göttingen, Lower Saxony, Germany
| |
Collapse
|
10
|
Schapiro KA, Rittenberg JD, Kenngott M, Marder E. I h Block Reveals Separation of Timescales in Pyloric Rhythm Response to Temperature Changes in Cancer borealis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592541. [PMID: 38766157 PMCID: PMC11100622 DOI: 10.1101/2024.05.04.592541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Motor systems operate over a range of frequencies and relative timing (phase). We studied the contribution of the hyperpolarization-activated inward current (Ih) to frequency and phase in the pyloric rhythm of the stomatogastric ganglion (STG) of the crab, Cancer borealis as temperature was altered from 11°C to 21°C. Under control conditions, the frequency of the rhythm increased monotonically with temperature, while the phases of the pyloric dilator (PD), lateral pyloric (LP), and pyloric (PY) neurons remained constant. When we blocked Ih with cesium (Cs+) PD offset, LP onset, and LP offset were all phase advanced in Cs+ at 11°C, and the latter two further advanced as temperature increased. In Cs+ the steady state increase in pyloric frequency with temperature diminished and the Q10 of the pyloric frequency dropped from ~1.75 to ~1.35. Unexpectedly in Cs+, the frequency displayed non-monotonic dynamics during temperature transitions; the frequency initially dropped as temperature increased, then rose once temperature stabilized, creating a characteristic "jag". Interestingly, these jags were still present during temperature transitions in Cs+ when the pacemaker was isolated by picrotoxin, although the temperature-induced change in frequency recovered to control levels. Overall, these data suggest that Ih plays an important role in the ability of this circuit to produce smooth transitory responses and persistent frequency increases by different mechanisms during temperature fluctuations.
Collapse
Affiliation(s)
- Kyra A Schapiro
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| | - J D Rittenberg
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| | - Max Kenngott
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454 USA
| |
Collapse
|
11
|
Schapiro K, Marder E. Resilience of circuits to environmental challenge. Curr Opin Neurobiol 2024; 87:102885. [PMID: 38857559 PMCID: PMC11316650 DOI: 10.1016/j.conb.2024.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/11/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
Animals of all kinds evolved to deal with anticipated and unanticipated changes in a variety of features in their environments. Consequently, all environmental perturbations, adaptations, and acclimation involve a myriad of factors that, together, contribute to environmental resilience. New work highlights the importance of neuromodulation in the control of environmental resilience, and illustrates that different components of the nervous system may be differentially resilient to environmental perturbations. Climate change is today pushing animals to deal with previously unanticipated environmental challenges, and therefore understanding the complex biology of adaptation and acclimation to various environmental conditions takes on new urgency.
Collapse
Affiliation(s)
- Kyra Schapiro
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
12
|
Fahoum SRH, Blitz DM. Switching neuron contributions to second network activity. J Neurophysiol 2024; 131:417-434. [PMID: 38197163 PMCID: PMC11305648 DOI: 10.1152/jn.00373.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
Network flexibility is important for adaptable behaviors. This includes neuronal switching, where neurons alter their network participation, including changing from single- to dual-network activity. Understanding the implications of neuronal switching requires determining how a switching neuron interacts with each of its networks. Here, we tested 1) whether "home" and second networks, operating via divergent rhythm generation mechanisms, regulate a switching neuron and 2) if a switching neuron, recruited via modulation of intrinsic properties, contributes to rhythm or pattern generation in a new network. Small, well-characterized feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz) and identified modulatory inputs make the isolated crab (Cancer borealis) stomatogastric nervous system (STNS) a useful model to study neuronal switching. In particular, the neuropeptide Gly1-SIFamide switches the lateral posterior gastric (LPG) neuron (2 copies) from pyloric-only to dual-frequency pyloric/gastric mill (fast/slow) activity via modulation of LPG-intrinsic properties. Using current injections to manipulate neuronal activity, we found that gastric mill, but not pyloric, network neurons regulated the intrinsically generated LPG slow bursting. Conversely, selective elimination of LPG from both networks using photoinactivation revealed that LPG regulated gastric mill neuron-firing frequencies but was not necessary for gastric mill rhythm generation or coordination. However, LPG alone was sufficient to produce a distinct pattern of network coordination. Thus, modulated intrinsic properties underlying dual-network participation may constrain which networks can regulate switching neuron activity. Furthermore, recruitment via intrinsic properties may occur in modulatory states where it is important for the switching neuron to actively contribute to network output.NEW & NOTEWORTHY We used small, well-characterized networks to investigate interactions between rhythmic networks and neurons that switch their network participation. For a neuron switching into dual-network activity, only the second network regulated its activity in that network. In addition, the switching neuron was sufficient but not necessary to coordinate second network neurons and regulated their activity levels. Thus, regulation of switching neurons may be selective, and a switching neuron is not necessarily simply a follower in additional networks.
Collapse
Affiliation(s)
- Savanna-Rae H Fahoum
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio, United States
| | - Dawn M Blitz
- Department of Biology and Center for Neuroscience, Miami University, Oxford, Ohio, United States
| |
Collapse
|
13
|
Anttonen T, Burghi T, Duvall L, Fernandez MP, Gutierrez G, Kermen F, Merlin C, Michaiel A. Neurobiology and Changing Ecosystems: Mechanisms Underlying Responses to Human-Generated Environmental Impacts. J Neurosci 2023; 43:7530-7537. [PMID: 37940589 PMCID: PMC10634574 DOI: 10.1523/jneurosci.1431-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 11/10/2023] Open
Abstract
Human generated environmental change profoundly affects organisms that reside across diverse ecosystems. Although nervous systems evolved to flexibly sense, respond, and adapt to environmental change, it is unclear whether the rapid rate of environmental change outpaces the adaptive capacity of complex nervous systems. Here, we explore neural systems mediating responses to, or impacted by, changing environments, such as those induced by global heating, sensory pollution, and changing habitation zones. We focus on rising temperature and accelerated changes in environments that impact sensory experience as examples of perturbations that directly or indirectly impact neural function, respectively. We also explore a mechanism involved in cross-species interactions that arises from changing habitation zones. We demonstrate that anthropogenic influences on neurons, circuits, and behaviors are widespread across taxa and require further scientific investigation to understand principles underlying neural resilience to accelerating environmental change.SIGNIFICANCE STATEMENT Neural systems evolved over hundreds of millions of years to allow organisms to sense and respond to their environments - to be receptive and responsive, yet flexible. Recent rapid, human-generated environmental changes are testing the limits of the adaptive capacity of neural systems. This presents an opportunity and an urgency to understand how neurobiological processes, including molecular, cellular, and circuit-level mechanisms, are vulnerable or resilient to changing environmental conditions. We showcase examples that range from molecular to circuit to behavioral levels of analysis across several model species, framing a broad neuroscientific approach to explore topics of neural adaptation, plasticity, and resilience. We believe this emerging scientific area is of great societal and scientific importance and will provide a unique opportunity to reexamine our understanding of neural adaptation and the mechanisms underlying neural resilience.
Collapse
Affiliation(s)
- Tommi Anttonen
- Institute of Biology, University of Southern Denmark, Odense, Denmark DK-5230
| | - Thiago Burghi
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom CB2 1PZ
| | - Laura Duvall
- Department of Biological Sciences, Columbia University, New York City, New York 10027
| | - Maria P Fernandez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Gabrielle Gutierrez
- Department of Neuroscience and Behavior, Barnard College, New York City, New York 10027
| | - Florence Kermen
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark DK-1165
| | - Christine Merlin
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Angie Michaiel
- Department of Life Sciences, The Kavli Foundation, Los Angeles, California 90230
| |
Collapse
|
14
|
Marder E. Individual Variability, Statistics, and the Resilience of Nervous Systems of Crabs and Humans to Temperature and Other Perturbations. eNeuro 2023; 10:ENEURO.0425-23.2023. [PMID: 37963654 PMCID: PMC10646886 DOI: 10.1523/eneuro.0425-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454
| |
Collapse
|
15
|
Stein W, Torres G, Giménez L, Espinosa-Novo N, Geißel JP, Vidal-Gadea A, Harzsch S. Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit. Front Cell Neurosci 2023; 17:1263591. [PMID: 37920203 PMCID: PMC10619761 DOI: 10.3389/fncel.2023.1263591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction At the cellular level, acute temperature changes alter ionic conductances, ion channel kinetics, and the activity of entire neuronal circuits. This can result in severe consequences for neural function, animal behavior and survival. In poikilothermic animals, and particularly in aquatic species whose core temperature equals the surrounding water temperature, neurons experience rather rapid and wide-ranging temperature fluctuations. Recent work on pattern generating neural circuits in the crustacean stomatogastric nervous system have demonstrated that neuronal circuits can exhibit an intrinsic robustness to temperature fluctuations. However, considering the increased warming of the oceans and recurring heatwaves due to climate change, the question arises whether this intrinsic robustness can acclimate to changing environmental conditions, and whether it differs between species and ocean habitats. Methods We address these questions using the pyloric pattern generating circuits in the stomatogastric nervous system of two crab species, Hemigrapsus sanguineus and Carcinus maenas that have seen a worldwide expansion in recent decades. Results and discussion Consistent with their history as invasive species, we find that pyloric activity showed a broad temperature robustness (>30°C). Moreover, the temperature-robust range was dependent on habitat temperature in both species. Warm-acclimating animals shifted the critical temperature at which circuit activity breaks down to higher temperatures. This came at the cost of robustness against cold stimuli in H. sanguineus, but not in C. maenas. Comparing the temperature responses of C. maenas from a cold latitude (the North Sea) to those from a warm latitude (Spain) demonstrated that similar shifts in robustness occurred in natural environments. Our results thus demonstrate that neuronal temperature robustness correlates with, and responds to, environmental temperature conditions, potentially preparing animals for changing ecological conditions and shifting habitats.
Collapse
Affiliation(s)
- Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- Stiftung Alfried Krupp Kolleg Greifswald, Greifswald, Germany
| | - Gabriela Torres
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Luis Giménez
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom
| | - Noé Espinosa-Novo
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Jan Phillipp Geißel
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Andrés Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
16
|
Marom S, Marder E. A biophysical perspective on the resilience of neuronal excitability across timescales. Nat Rev Neurosci 2023; 24:640-652. [PMID: 37620600 DOI: 10.1038/s41583-023-00730-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Neuronal membrane excitability must be resilient to perturbations that can take place over timescales from milliseconds to months (or even years in long-lived animals). A great deal of attention has been paid to classes of homeostatic mechanisms that contribute to long-term maintenance of neuronal excitability through processes that alter a key structural parameter: the number of ion channel proteins present at the neuronal membrane. However, less attention has been paid to the self-regulating 'automatic' mechanisms that contribute to neuronal resilience by virtue of the kinetic properties of ion channels themselves. Here, we propose that these two sets of mechanisms are complementary instantiations of feedback control, together enabling resilience on a wide range of temporal scales. We further point to several methodological and conceptual challenges entailed in studying these processes - both of which involve enmeshed feedback control loops - and consider the consequences of these mechanisms of resilience.
Collapse
Affiliation(s)
- Shimon Marom
- Faculty of Medicine, Technion - Institute of Technology, Haifa, Israel.
| | - Eve Marder
- Biology Department, Brandeis University, Waltham, MA, USA.
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
17
|
Evans CG, Barry MA, Perkins MH, Jing J, Weiss KR, Cropper EC. Variable task switching in the feeding network of Aplysia is a function of differential command input. J Neurophysiol 2023; 130:941-952. [PMID: 37671445 PMCID: PMC10648941 DOI: 10.1152/jn.00190.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
Command systems integrate sensory information and then activate the interneurons and motor neurons that mediate behavior. Much research has established that the higher-order projection neurons that constitute these systems can play a key role in specifying the nature of the motor activity induced, or determining its parametric features. To a large extent, these insights have been obtained by contrasting activity induced by stimulating one neuron (or set of neurons) to activity induced by stimulating a different neuron (or set of neurons). The focus of our work differs. We study one type of motor program, ingestive feeding in the mollusc Aplysia californica, which can either be triggered when a single projection neuron (CBI-2) is repeatedly stimulated or can be triggered by projection neuron coactivation (e.g., activation of CBI-2 and CBI-3). We ask why this might be an advantageous arrangement. The cellular/molecular mechanisms that configure motor activity are different in the two situations because the released neurotransmitters differ. We focus on an important consequence of this arrangement, the fact that a persistent state can be induced with repeated CBI-2 stimulation that is not necessarily induced by CBI-2/3 coactivation. We show that this difference can have consequences for the ability of the system to switch from one type of activity to another.NEW & NOTEWORTHY We study a type of motor program that can be induced either by stimulating a higher-order projection neuron that induces a persistent state, or by coactivating projection neurons that configure activity but do not produce a state change. We show that when an activity is configured without a state change, it is possible to immediately return to an intermediate state that subsequently can be converted to any type of motor program.
Collapse
Affiliation(s)
- Colin G Evans
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Michael A Barry
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Matthew H Perkins
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Jian Jing
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Brain Sciences, Chemistry and Biomedicine Innovation Center, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, Advanced Institute for Life Sciences, School of Life Sciences, Nanjing University, Nanjing, China
| | - Klaudiusz R Weiss
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Elizabeth C Cropper
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
18
|
Scherer JS, Sandbote K, Schultze BL, Kretzberg J. Synaptic input and temperature influence sensory coding in a mechanoreceptor. Front Cell Neurosci 2023; 17:1233730. [PMID: 37771930 PMCID: PMC10522859 DOI: 10.3389/fncel.2023.1233730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/22/2023] [Indexed: 09/30/2023] Open
Abstract
Many neurons possess more than one spike initiation zone (SIZ), which adds to their computational power and functional flexibility. Integrating inputs from different origins is especially relevant for sensory neurons that rely on relative spike timing for encoding sensory information. Yet, it is poorly understood if and how the propagation of spikes generated at one SIZ in response to sensory stimulation is affected by synaptic inputs triggering activity of other SIZ, and by environmental factors like temperature. The mechanosensory Touch (T) cell in the medicinal leech is an ideal model system to study these potential interactions because it allows intracellular recording and stimulation of its soma while simultaneously touching the skin in a body-wall preparation. The T cell reliably elicits spikes in response to somatic depolarization, as well as to tactile skin stimulation. Latencies of spikes elicited in the skin vary across cells, depending on the touch location relative to the cell's receptive field. However, repetitive stimulation reveals that tactilely elicited spikes are more precisely timed than spikes triggered by somatic current injection. When the soma is hyperpolarized to mimic inhibitory synaptic input, first spike latencies of tactilely induced spikes increase. If spikes from both SIZ follow shortly after each other, the arrival time of the second spike at the soma can be delayed. Although the latency of spikes increases by the same factor when the temperature decreases, the effect is considerably stronger for the longer absolute latencies of spikes propagating from the skin to the soma. We therefore conclude that the propagation time of spikes from the skin is modulated by internal factors like synaptic inputs, and by external factors like temperature. Moreover, fewer spikes are detected when spikes from both origins are expected to arrive at the soma in temporal proximity. Hence, the leech T cell might be a key for understanding how the interaction of multiple SIZ impacts temporal and rate coding of sensory information, and how cold-blooded animals can produce adequate behavioral responses to sensory stimuli based on temperature-dependent relative spike timing.
Collapse
Affiliation(s)
- Jens-Steffen Scherer
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Kevin Sandbote
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Bjarne L. Schultze
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
| | - Jutta Kretzberg
- Department of Neuroscience, Computational Neuroscience, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Department of Neuroscience, Cluster of Excellence Hearing4all, Faculty VI, University of Oldenburg, Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
19
|
Alonso LM, Rue MCP, Marder E. Gating of homeostatic regulation of intrinsic excitability produces cryptic long-term storage of prior perturbations. Proc Natl Acad Sci U S A 2023; 120:e2222016120. [PMID: 37339223 PMCID: PMC10293857 DOI: 10.1073/pnas.2222016120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Neurons and neuronal circuits must maintain their function throughout the life of the organism despite changing environments. Previous theoretical and experimental work suggests that neurons monitor their activity using intracellular calcium concentrations to regulate their intrinsic excitability. Models with multiple sensors can distinguish among different patterns of activity, but previous work using models with multiple sensors produced instabilities that lead the models' conductances to oscillate and then to grow without bound and diverge. We now introduce a nonlinear degradation term that explicitly prevents the maximal conductances to grow beyond a bound. We combine the sensors' signals into a master feedback signal that can be used to modulate the timescale of conductance evolution. Effectively, this means that the negative feedback can be gated on and off according to how far the neuron is from its target. The modified model recovers from multiple perturbations. Interestingly, depolarizing the models to the same membrane potential with current injection or with simulated high extracellular K+ produces different changes in conductances, arguing that caution must be used in interpreting manipulations that serve as a proxy for increased neuronal activity. Finally, these models accrue traces of prior perturbations that are not visible in their control activity after perturbation but that shape their responses to subsequent perturbations. These cryptic or hidden changes may provide insight into disorders such as posttraumatic stress disorder that only become visible in response to specific perturbations.
Collapse
Affiliation(s)
- Leandro M. Alonso
- Volen Center and Biology Department, Brandeis University, Waltham, MA02454
| | - Mara C. P. Rue
- Volen Center and Biology Department, Brandeis University, Waltham, MA02454
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA02454
| |
Collapse
|
20
|
Zang Y, Marder E, Marom S. Sodium channel slow inactivation normalizes firing in axons with uneven conductance distributions. Curr Biol 2023; 33:1818-1824.e3. [PMID: 37023754 PMCID: PMC10175232 DOI: 10.1016/j.cub.2023.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023]
Abstract
The Na+ channels that are important for action potentials show rapid inactivation, a state in which they do not conduct, although the membrane potential remains depolarized.1,2 Rapid inactivation is a determinant of millisecond-scale phenomena, such as spike shape and refractory period. Na+ channels also inactivate orders of magnitude more slowly, and this slow inactivation has impacts on excitability over much longer timescales than those of a single spike or a single inter-spike interval.3,4,5,6,7,8,9,10 Here, we focus on the contribution of slow inactivation to the resilience of axonal excitability11,12 when ion channels are unevenly distributed along the axon. We study models in which the voltage-gated Na+ and K+ channels are unevenly distributed along axons with different variances, capturing the heterogeneity that biological axons display.13,14 In the absence of slow inactivation, many conductance distributions result in spontaneous tonic activity. Faithful axonal propagation is achieved with the introduction of Na+ channel slow inactivation. This "normalization" effect depends on relations between the kinetics of slow inactivation and the firing frequency. Consequently, neurons with characteristically different firing frequencies will need to implement different sets of channel properties to achieve resilience. The results of this study demonstrate the importance of the intrinsic biophysical properties of ion channels in normalizing axonal function.
Collapse
Affiliation(s)
- Yunliang Zang
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA.
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham, MA 02454, USA
| | - Shimon Marom
- Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
21
|
Powell DJ, Owens E, Bergsund MM, Cooper M, Newstein P, Berner E, Janmohamed R, Dickinson PS. The role of feedback and modulation in determining temperature resiliency in the lobster cardiac nervous system. Front Neurosci 2023; 17:1113843. [PMID: 36968508 PMCID: PMC10034192 DOI: 10.3389/fnins.2023.1113843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Changes in ambient temperature affect all biological processes. However, these effects are process specific and often vary non-linearly. It is thus a non-trivial problem for neuronal circuits to maintain coordinated, functional output across a range of temperatures. The cardiac nervous systems in two species of decapod crustaceans, Homarus americanus and Cancer borealis, can maintain function across a wide but physiologically relevant temperature range. However, the processes that underlie temperature resilience in neuronal circuits and muscle systems are not fully understood. Here, we demonstrate that the non-isolated cardiac nervous system (i.e., the whole heart: neurons, effector organs, intrinsic feedback systems) in the American lobster, H. americanus, is more sensitive to warm temperatures than the isolated cardiac ganglion (CG) that controls the heartbeat. This was surprising as modulatory processes known to stabilize the output from the CG are absent when the ganglion is isolated. One source of inhibitory feedback in the intact cardiac neuromuscular system is nitric oxide (NO), which is released in response to heart contractions. We hypothesized that the greater temperature tolerance observed in the isolated CG is due to the absence of NO feedback. Here, we demonstrate that applying an NO donor to the isolated CG reduces its temperature tolerance. Similarly, we show that the NO synthase inhibitor L-nitroarginine (LNA) increases the temperature tolerance of the non-isolated nervous system. This is sufficient to explain differences in temperature tolerance between the isolated CG and the whole heart. However, in an intact lobster, the heart and CG are modulated by an array of endogenous peptides and hormones, many of which are positive regulators of the heartbeat. Many studies have demonstrated that excitatory modulators increase temperature resilience. However, this neuromuscular system is regulated by both excitatory and inhibitory peptide modulators. Perfusing SGRNFLRFamide, a FLRFamide-like peptide, through the heart increases the non-isolated nervous system’s tolerance to high temperatures. In contrast, perfusing myosuppressin, a peptide that negatively regulates the heartbeat frequency, decreases the temperature tolerance. Our data suggest that, in this nervous system, positive regulators of neural output increase temperature tolerance of the neuromuscular system, while modulators that decrease neural output decrease temperature tolerance.
Collapse
Affiliation(s)
- Daniel J. Powell
- Department of Biology, Bowdoin College, Brunswick, ME, United States
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Elizabeth Owens
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Marie M. Bergsund
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Maren Cooper
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Peter Newstein
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Emily Berner
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Rania Janmohamed
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
| | - Patsy S. Dickinson
- Department of Biology, Bowdoin College, Brunswick, ME, United States
- Program in Neuroscience, Bowdoin College, Brunswick, ME, United States
- *Correspondence: Patsy S. Dickinson,
| |
Collapse
|
22
|
Michaiel AM, Bernard A. Neurobiology and changing ecosystems: Toward understanding the impact of anthropogenic influences on neurons and circuits. Front Neural Circuits 2022; 16:995354. [PMID: 36569799 PMCID: PMC9769128 DOI: 10.3389/fncir.2022.995354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Rapid anthropogenic environmental changes, including those due to habitat contamination, degradation, and climate change, have far-reaching effects on biological systems that may outpace animals' adaptive responses. Neurobiological systems mediate interactions between animals and their environments and evolved over millions of years to detect and respond to change. To gain an understanding of the adaptive capacity of nervous systems given an unprecedented pace of environmental change, mechanisms of physiology and behavior at the cellular and biophysical level must be examined. While behavioral changes resulting from anthropogenic activity are becoming increasingly described, identification and examination of the cellular, molecular, and circuit-level processes underlying those changes are profoundly underexplored. Hence, the field of neuroscience lacks predictive frameworks to describe which neurobiological systems may be resilient or vulnerable to rapidly changing ecosystems, or what modes of adaptation are represented in our natural world. In this review, we highlight examples of animal behavior modification and corresponding nervous system adaptation in response to rapid environmental change. The underlying cellular, molecular, and circuit-level component processes underlying these behaviors are not known and emphasize the unmet need for rigorous scientific enquiry into the neurobiology of changing ecosystems.
Collapse
|
23
|
Keifer J. Emergence of In Vitro Preparations and Their Contribution to Understanding the Neural Control of Behavior in Vertebrates. J Neurophysiol 2022; 128:511-526. [PMID: 35946803 DOI: 10.1152/jn.00142.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One of the longstanding goals of the field of neuroscience is to understand the neural control of behavior in both invertebrate and vertebrate species. A series of early discoveries showed that certain motor patterns like locomotion could be generated by neuronal circuits without sensory feedback or descending control systems. These were called fictitious, or "fictive", motor programs because they could be expressed by neurons in the absence of movement. This finding lead investigators to isolate central nervous system tissue and maintain it in a dish in vitro to better study mechanisms of motor pattern generation. A period of rapid development of in vitro preparations from invertebrate species that could generate fictive motor programs from the activity of central pattern generating circuits (CPGs) emerged that was gradually followed by the introduction of such preparations from vertebrates. Here, I will review some of the notable in vitropreparations from both mammalian and non-mammalian vertebrate species developed to study the neural circuits underlying a variety of complex behaviors. This approach has been instrumental in delineating not only the cellular substrates underlying locomotion, respiration, scratching, and other behaviors, but also mechanisms underlying the modifiability of motor pathways through synaptic plasticity. In vitro preparations have had a significant impact on the field of motor systems neuroscience and the expansion of our understanding of how nervous systems control behavior. The field is ready for further advancement of this approach to explore neural substrates for variations in behavior generated by social and seasonal context, and the environment.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Vermillion, SD, United States
| |
Collapse
|
24
|
Stein W, DeMaegd ML, Benson AM, Roy RS, Vidal-Gadea AG. Combining Old and New Tricks: The Study of Genes, Neurons, and Behavior in Crayfish. Front Physiol 2022; 13:947598. [PMID: 35874546 PMCID: PMC9297122 DOI: 10.3389/fphys.2022.947598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 12/04/2022] Open
Abstract
For over a century the nervous system of decapod crustaceans has been a workhorse for the neurobiology community. Many fundamental discoveries including the identification of electrical and inhibitory synapses, lateral and pre-synaptic inhibition, and the Na+/K+-pump were made using lobsters, crabs, or crayfish. Key among many advantages of crustaceans for neurobiological research is the unique access to large, accessible, and identifiable neurons, and the many distinct and complex behaviors that can be observed in lab settings. Despite these advantages, recent decades have seen work on crustaceans hindered by the lack of molecular and genetic tools required for unveiling the cellular processes contributing to neurophysiology and behavior. In this perspective paper, we argue that the recently sequenced marbled crayfish, Procambarus virginalis, is suited to become a genetic model system for crustacean neuroscience. P. virginalis are parthenogenetic and produce genetically identical offspring, suggesting that germline transformation creates transgenic animal strains that are easy to maintain across generations. Like other decapod crustaceans, marbled crayfish possess large neurons in well-studied circuits such as the giant tail flip neurons and central pattern generating neurons in the stomatogastric ganglion. We provide initial data demonstrating that marbled crayfish neurons are accessible through standard physiological and molecular techniques, including single-cell electrophysiology, gene expression measurements, and RNA-interference. We discuss progress in CRISPR-mediated manipulations of the germline to knock-out target genes using the ‘Receptor-mediated ovary transduction of cargo’ (ReMOT) method. Finally, we consider the impact these approaches will have for neurophysiology research in decapod crustaceans and more broadly across invertebrates.
Collapse
Affiliation(s)
- Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- Stiftung Alfried Krupp Kolleg Greifswald, Greifswald, Germany
- *Correspondence: Wolfgang Stein, ; Andrés G. Vidal-Gadea,
| | - Margaret L. DeMaegd
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- Center for Neural Sciences, New York University, New York, NY, United States
| | - Abigail M. Benson
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Rajit S. Roy
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Andrés G. Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- *Correspondence: Wolfgang Stein, ; Andrés G. Vidal-Gadea,
| |
Collapse
|
25
|
Städele C, Stein W. Neuromodulation Enables Temperature Robustness and Coupling Between Fast and Slow Oscillator Circuits. Front Cell Neurosci 2022; 16:849160. [PMID: 35418838 PMCID: PMC8996074 DOI: 10.3389/fncel.2022.849160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
Acute temperature changes can disrupt neuronal activity and coordination with severe consequences for animal behavior and survival. Nonetheless, two rhythmic neuronal circuits in the crustacean stomatogastric ganglion (STG) and their coordination are maintained across a broad temperature range. However, it remains unclear how this temperature robustness is achieved. Here, we dissociate temperature effects on the rhythm generating circuits from those on upstream ganglia. We demonstrate that heat-activated factors extrinsic to the rhythm generators are essential to the slow gastric mill rhythm’s temperature robustness and contribute to the temperature response of the fast pyloric rhythm. The gastric mill rhythm crashed when its rhythm generator in the STG was heated. It was restored when upstream ganglia were heated and temperature-matched to the STG. This also increased the activity of the peptidergic modulatory projection neuron (MCN1), which innervates the gastric mill circuit. Correspondingly, MCN1’s neuropeptide transmitter stabilized the rhythm and maintained it over a broad temperature range. Extrinsic neuromodulation is thus essential for the oscillatory circuits in the STG and enables neural circuits to maintain function in temperature-compromised conditions. In contrast, integer coupling between pyloric and gastric mill rhythms was independent of whether extrinsic inputs and STG pattern generators were temperature-matched or not, demonstrating that the temperature robustness of the coupling is enabled by properties intrinsic to the rhythm generators. However, at near-crash temperature, integer coupling was maintained only in some animals while it was absent in others. This was true despite regular rhythmic activity in all animals, supporting that degenerate circuit properties result in idiosyncratic responses to environmental challenges.
Collapse
|
26
|
Tamvacakis AN, Lillvis JL, Sakurai A, Katz PS. The Consistency of Gastropod Identified Neurons Distinguishes Intra-Individual Plasticity From Inter-Individual Variability in Neural Circuits. Front Behav Neurosci 2022; 16:855235. [PMID: 35309684 PMCID: PMC8928192 DOI: 10.3389/fnbeh.2022.855235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Gastropod mollusks are known for their large, individually identifiable neurons, which are amenable to long-term intracellular recordings that can be repeated from animal to animal. The constancy of individual neurons can help distinguish state-dependent or temporal variation within an individual from actual variability between individual animals. Investigations into the circuitry underlying rhythmic swimming movements of the gastropod species, Tritonia exsulans and Pleurobranchaea californica have uncovered intra- and inter-individual variability in synaptic connectivity and serotonergic neuromodulation. Tritonia has a reliably evoked escape swim behavior that is produced by a central pattern generator (CPG) composed of a small number of identifiable neurons. There is apparent individual variability in some of the connections between neurons that is inconsequential for the production of the swim behavior under normal conditions, but determines whether that individual can swim following a neural lesion. Serotonergic neuromodulation of synaptic strength intrinsic to the CPG creates neural circuit plasticity within an individual and contributes to reorganization of the network during recovery from injury and during learning. In Pleurobranchaea, variability over time in the modulatory actions of serotonin and in expression of serotonin receptor genes in an identified neuron directly reflects variation in swimming behavior. Tracking behavior and electrophysiology over hours to days was necessary to identify the functional consequences of these intra-individual, time-dependent variations. This work demonstrates the importance of unambiguous neuron identification, properly assessing the animal and network states, and tracking behavior and physiology over time to distinguish plasticity within the same animal at different times from variability across individual animals.
Collapse
Affiliation(s)
| | | | - Akira Sakurai
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Paul S. Katz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
- *Correspondence: Paul S. Katz,
| |
Collapse
|