1
|
Chen C, Masotti M, Shepard N, Promes V, Tombesi G, Arango D, Manzoni C, Greggio E, Hilfiker S, Kozorovitskiy Y, Parisiadou L. LRRK2 mediates haloperidol-induced changes in indirect pathway striatal projection neurons. Mol Psychiatry 2025:10.1038/s41380-025-03030-z. [PMID: 40269187 DOI: 10.1038/s41380-025-03030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/25/2025]
Abstract
Haloperidol is used to manage psychotic symptoms in several neurological disorders through mechanisms that involve antagonism of dopamine D2 receptors that are highly expressed in the striatum. Significant side effects of haloperidol, known as extrapyramidal symptoms, lead to motor deficits similar to those seen in Parkinson's disease and present a major challenge in clinical settings. The underlying molecular mechanisms responsible for these side effects remain poorly understood. Parkinson's disease-associated leucine-rich repeat kinase 2 (LRRK2) has an essential role in striatal physiology and a known link to dopamine D2 receptor signaling. Here, we systematically explore convergent signaling of haloperidol and LRRK2 through pharmacological or genetic inhibition of LRRK2 kinase, as well as knock-in mouse models expressing pathogenic mutant LRRK2 with increased kinase activity. Behavioral assays show that LRRK2 kinase inhibition ameliorates haloperidol-induced motor changes in mice. A combination of electrophysiological and anatomical approaches reveals that LRRK2 kinase inhibition interferes with haloperidol-induced changes, specifically in striatal neurons of the indirect pathway. Proteomic studies and targeted intracellular pathway analyses demonstrate that haloperidol induces a similar pattern of intracellular signaling as increased LRRK2 kinase activity. Our study suggests that LRRK2 kinase plays a key role in striatal dopamine D2 receptor signaling underlying the undesirable motor side effects of haloperidol. This work opens up new therapeutic avenues for dopamine-related disorders, such as psychosis, also furthering our understanding of Parkinson's disease pathophysiology.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Meghan Masotti
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Nathaniel Shepard
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Vanessa Promes
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Giulia Tombesi
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel Arango
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | | | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | | | - Loukia Parisiadou
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Shi Z, Wen K, Sammudin NH, LoRocco N, Zhuang X. Erasing "bad memories": reversing aberrant synaptic plasticity as therapy for neurological and psychiatric disorders. Mol Psychiatry 2025:10.1038/s41380-025-03013-0. [PMID: 40210977 DOI: 10.1038/s41380-025-03013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/24/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Dopamine modulates corticostriatal plasticity in both the direct and indirect pathways of the cortico-striato-thalamo-cortical (CSTC) loops. These gradual changes in corticostriatal synaptic strengths produce long-lasting changes in behavioral responses. Under normal conditions, these mechanisms enable the selection of the most appropriate responses while inhibiting others. However, under dysregulated dopamine conditions, including a lack of dopamine release or dopamine signaling, these mechanisms could lead to the selection of maladaptive responses and/or the inhibition of appropriate responses in an experience-dependent and task-specific manner. In this review, we propose that preventing or reversing such maladaptive synaptic strengths and erasing such aberrant "memories" could be a disease-modifying therapeutic strategy for many neurological and psychiatric disorders. We review evidence from Parkinson's disease, drug-induced parkinsonism, L-DOPA-induced dyskinesia, obsessive-compulsive disorder, substance use disorders, and depression as well as research findings on animal disease models. Altogether, these studies allude to an emerging theme in translational neuroscience and promising new directions for therapy development. Specifically, we propose that combining pharmacotherapy with behavioral therapy or with deep brain stimulation (DBS) could potentially cause desired changes in specific neural circuits. If successful, one important advantage of correcting aberrant synaptic plasticity is long-lasting therapeutic effects even after treatment has ended. We will also discuss the potential molecular targets for these therapeutic approaches, including the cAMP pathway, proteins involved in synaptic plasticity as well as pathways involved in new protein synthesis. We place special emphasis on RNA binding proteins and epitranscriptomic mechanisms, as they represent a new frontier with the distinct advantage of rapidly and simultaneously altering the synthesis of many proteins locally.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Kailong Wen
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nabilah H Sammudin
- The Committee on Neurobiology, The University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas LoRocco
- The Interdisciplinary Scientist Training Program, The University of Chicago, Chicago, IL, 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, The University of Chicago, Chicago, IL, 60637, USA.
- The Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Chevalier S, Decourt M, Francheteau M, Nicol F, Balbous A, Fernagut PO, Benoit-Marand M. Alpha-synuclein-induced nigrostriatal degeneration and pramipexole treatment disrupt frontostriatal plasticity. NPJ Parkinsons Dis 2024; 10:169. [PMID: 39251645 PMCID: PMC11385550 DOI: 10.1038/s41531-024-00781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Parkinson's disease is characterized by the degeneration of substantia nigra pars compacta (SNc) dopaminergic neurons, leading to motor and cognitive symptoms. Numerous cellular and molecular adaptations following neurodegeneration or dopamine replacement therapy (DRT) have been described in motor networks but little is known regarding associative basal ganglia loops. This study investigated the contributions of nigrostriatal degeneration and pramipexole (PPX) on neuronal activity in the orbitofrontal cortex (OFC), frontostriatal plasticity, and markers of synaptic plasticity. Bilateral nigrostriatal degeneration was induced by viral-mediated expression of human mutated alpha-synuclein in the SNc. Juxtacellular recordings were performed in anesthetized rats to evaluate neuronal activity in the OFC. Recordings in the dorsomedial striatum (DMS) were performed, and spike probability in response to OFC stimulation was measured before and after high-frequency stimulation (HFS). Post-mortem analysis included stereological assessment of nigral neurodegeneration, BDNF and TrkB protein levels. Nigrostriatal neurodegeneration led to altered firing patterns of OFC neurons that were restored by PPX. HFS of the OFC led to an increased spike probability in the DMS, while dopaminergic loss had the opposite effect. PPX led to a decreased spike probability following HFS in control rats and failed to counteract the effect of dopaminergic neurodegeneration. These alterations were associated with decreased levels of BDNF and TrkB in the DMS. This study demonstrates that nigral dopaminergic loss and PPX both contribute to alter frontostriatal transmission, precluding adequate information processing in associative basal ganglia loops as a gateway for the development of non-motor symptoms or non-motor side effects of DRT.
Collapse
Affiliation(s)
- Sarah Chevalier
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Mélina Decourt
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Maureen Francheteau
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - François Nicol
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Anaïs Balbous
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Pierre-Olivier Fernagut
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France
| | - Marianne Benoit-Marand
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, U1084, Poitiers, France.
| |
Collapse
|
4
|
Shi Z, Wen K, Zou Z, Fu W, Guo K, Sammudin NH, Ruan X, Sullere S, Wang S, Zhang X, Thinakaran G, He C, Zhuang X. YTHDF1 mediates translational control by m6A mRNA methylation in adaptation to environmental challenges. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.07.607063. [PMID: 39149343 PMCID: PMC11326287 DOI: 10.1101/2024.08.07.607063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Animals adapt to environmental challenges with long-term changes at the behavioral, circuit, cellular, and synaptic levels which often require new protein synthesis. The discovery of reversible N6-methyladenosine (m6A) modifications of mRNA has revealed an important layer of post-transcriptional regulation which affects almost every phase of mRNA metabolism and therefore translational control. Many in vitro and in vivo studies have demonstrated the significant role of m6A in cell differentiation and survival, but its role in adult neurons is understudied. We used cell-type specific gene deletion of Mettl14, which encodes one of the subunits of the m6A methyltransferase, and Ythdf1, which encodes one of the cytoplasmic m6A reader proteins, in dopamine D1 receptor expressing or D2 receptor expressing neurons. Mettl14 or Ythdf1 deficiency blunted responses to environmental challenges at the behavioral, cellular, and molecular levels. In three different behavioral paradigms, gene deletion of either Mettl14 or Ythdf1 in D1 neurons impaired D1-dependent learning, whereas gene deletion of either Mettl14 or Ythdf1 in D2 neurons impaired D2-dependent learning. At the cellular level, modulation of D1 and D2 neuron firing in response to changes in environments was blunted in all three behavioral paradigms in mutant mice. Ythdf1 deletion resembled impairment caused by Mettl14 deletion in a cell type-specific manner, suggesting YTHDF1 is the main mediator of the functional consequences of m6A mRNA methylation in the striatum. At the molecular level, while striatal neurons in control mice responded to elevated cAMP by increasing de novo protein synthesis, striatal neurons in Ythdf1 knockout mice didn't. Finally, boosting dopamine release by cocaine drastically increased YTHDF1 binding to many mRNA targets in the striatum, especially those that encode structural proteins, suggesting the initiation of long-term neuronal and/or synaptic structural changes. While the m6A-YTHDF1 pathway has similar functional significance at cellular level, its cell type specific deficiency in D1 and D2 neurons often resulted in contrasting behavioral phenotypes, allowing us to cleanly dissociate the opposing yet cooperative roles of D1 and D2 neurons.
Collapse
Affiliation(s)
- Zhuoyue Shi
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Kailong Wen
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Wenqin Fu
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Kathryn Guo
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Nabilah H Sammudin
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Xiangbin Ruan
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Shivang Sullere
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Shuai Wang
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
| | - Xiaochang Zhang
- Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
- The Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Gopal Thinakaran
- Byrd Alzheimer's Center and Research Institute, University of South Florida, Tampa, FL 33613, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, IL 60637, USA
| | - Xiaoxi Zhuang
- The Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
- The Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Chen C, Masotti M, Shepard N, Promes V, Tombesi G, Arango D, Manzoni C, Greggio E, Hilfiker S, Kozorovitskiy Y, Parisiadou L. LRRK2 mediates haloperidol-induced changes in indirect pathway striatal projection neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597594. [PMID: 38895420 PMCID: PMC11185612 DOI: 10.1101/2024.06.06.597594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Haloperidol is used to manage psychotic symptoms in several neurological disorders through mechanisms that involve antagonism of dopamine D2 receptors that are highly expressed in the striatum. Significant side effects of haloperidol, known as extrapyramidal symptoms, lead to motor deficits similar to those seen in Parkinson's disease and present a major challenge in clinical settings. The underlying molecular mechanisms responsible for these side effects remain poorly understood. Parkinson's disease-associated LRRK2 kinase has an important role in striatal physiology and a known link to dopamine D2 receptor signaling. Here, we systematically explore convergent signaling of haloperidol and LRRK2 through pharmacological or genetic inhibition of LRRK2 kinase, as well as knock-in mouse models expressing pathogenic mutant LRRK2 with increased kinase activity. Behavioral assays show that LRRK2 kinase inhibition ameliorates haloperidol-induced motor changes in mice. A combination of electrophysiological and anatomical approaches reveals that LRRK2 kinase inhibition interferes with haloperidol-induced changes, specifically in striatal neurons of the indirect pathway. Proteomic studies and targeted intracellular pathway analyses demonstrate that haloperidol induces a similar pattern of intracellular signaling as increased LRRK2 kinase activity. Our study suggests that LRRK2 kinase plays a key role in striatal dopamine D2 receptor signaling underlying the undesirable motor side effects of haloperidol. This work opens up new therapeutic avenues for dopamine-related disorders, such as psychosis, also furthering our understanding of Parkinson's disease pathophysiology.
Collapse
Affiliation(s)
- Chuyu Chen
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Meghan Masotti
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Nathaniel Shepard
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Vanessa Promes
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Giulia Tombesi
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniel Arango
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | | | | | - Sabine Hilfiker
- Department of Anesthesiology, Rutgers, New Jersey Medical School, NJ, USA
| | | | - Loukia Parisiadou
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
6
|
Ahmadi M, Rouhi N, Fathollahi Y, Shojaei A, Rezaei M, Rostami S, Saab BJ, Mirnajafi-Zadeh J. A Dual Effect of Dopamine on Hippocampal LTP and Cognitive Functions in Control and Kindled Mice. J Neurosci 2024; 44:e0926212023. [PMID: 38124004 PMCID: PMC10860576 DOI: 10.1523/jneurosci.0926-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The impact of dopamine on synaptic plasticity and cognitive function following seizure is not well understood. Here, using optogenetics in the freely behaving animal, we examined exploratory behavior and short-term memory in control and kindled male mice during tonic stimulation of dopaminergic neurons within the ventral tegmental area (VTA). Furthermore, using field potential recording, we compared the effect of dopamine on synaptic plasticity in stratum radiatum and stratum oriens layers of both ventral and dorsal hippocampal CA1 regions, and again in both control and kindled male mice. Our results demonstrate that tonic stimulation of VTA dopaminergic neurons enhances novelty-driven exploration and short-term spatial memory in kindled mice, essentially rescuing the seizure-induced cognitive impairment. In addition, we found that dopamine has a dual effect on LTP in control versus kindled mice, such that application of dopamine prevented LTP induction in slices from control mice, but rescued LTP in slices taken from the kindled animal. Taken together, our results highlight the potential for dopaminergic modulation in improving synaptic plasticity and cognitive function following seizure.
Collapse
Affiliation(s)
- Mahboubeh Ahmadi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Nahid Rouhi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Amir Shojaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Mahmoud Rezaei
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Sareh Rostami
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Bechara J Saab
- Preclinical Laboratory for Translational Research into Affective Disorders, DPPP, Psychiatric Hospital, University of Zurich, Zurich CH-8008, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH, Zurich 8057, Switzerland
- Mobio Interactive Pte. Ltd., 389637, Singapore, Republic of Singapore
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
- Institute for Brain Sciences and Cognition, Tarbiat Modares University, Tehran 1411713116, Iran
| |
Collapse
|
7
|
Santa C, Rodrigues D, Coelho JF, Anjo SI, Mendes VM, Bessa-Neto D, Dunn MJ, Cotter D, Baltazar G, Monteiro P, Manadas B. Chronic treatment with D2-antagonist haloperidol leads to inhibitory/excitatory imbalance in striatal D1-neurons. Transl Psychiatry 2023; 13:312. [PMID: 37803004 PMCID: PMC10558446 DOI: 10.1038/s41398-023-02609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/08/2023] Open
Abstract
Striatal dysfunction has been implicated in the pathophysiology of schizophrenia, a disorder characterized by positive symptoms such as hallucinations and delusions. Haloperidol is a typical antipsychotic medication used in the treatment of schizophrenia that is known to antagonize dopamine D2 receptors, which are abundantly expressed in the striatum. However, haloperidol's delayed therapeutic effect also suggests a mechanism of action that may go beyond the acute blocking of D2 receptors. Here, we performed proteomic analysis of striatum brain tissue and found more than 400 proteins significantly altered after 30 days of chronic haloperidol treatment in mice, namely proteins involved in glutamatergic and GABAergic synaptic transmission. Cell-type specific electrophysiological recordings further revealed that haloperidol not only reduces the excitability of striatal medium spiny neurons expressing dopamine D2 receptors (D2-MSNs) but also affects D1-MSNs by increasing the ratio of inhibitory/excitatory synaptic transmission (I/E ratio) specifically onto D1-MSNs but not D2-MSNs. Therefore, we propose the slow remodeling of D1-MSNs as a mechanism mediating the delayed therapeutic effect of haloperidol over striatum circuits. Understanding how haloperidol exactly contributes to treating schizophrenia symptoms may help to improve therapeutic outcomes and elucidate the molecular underpinnings of this disorder.
Collapse
Affiliation(s)
- Cátia Santa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- III - Institute of Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal
| | - Joana F Coelho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sandra I Anjo
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Diogo Bessa-Neto
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Michael J Dunn
- Proteome Research Centre, UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, and Medical Sciences, University College Dublin, Dublin, Ireland
| | - David Cotter
- RCSI Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre Beaumont, Dublin, Ireland
| | - Graça Baltazar
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Patrícia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimaraes, Portugal.
- Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
| |
Collapse
|
8
|
Dopamine Dynamics and Neurobiology of Non-Response to Antipsychotics, Relevance for Treatment Resistant Schizophrenia: A Systematic Review and Critical Appraisal. Biomedicines 2023; 11:biomedicines11030895. [PMID: 36979877 PMCID: PMC10046109 DOI: 10.3390/biomedicines11030895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Treatment resistant schizophrenia (TRS) is characterized by a lack of, or suboptimal response to, antipsychotic agents. The biological underpinnings of this clinical condition are still scarcely understood. Since all antipsychotics block dopamine D2 receptors (D2R), dopamine-related mechanisms should be considered the main candidates in the neurobiology of antipsychotic non-response, although other neurotransmitter systems play a role. The aims of this review are: (i) to recapitulate and critically appraise the relevant literature on dopamine-related mechanisms of TRS; (ii) to discuss the methodological limitations of the studies so far conducted and delineate a theoretical framework on dopamine mechanisms of TRS; and (iii) to highlight future perspectives of research and unmet needs. Dopamine-related neurobiological mechanisms of TRS may be multiple and putatively subdivided into three biological points: (1) D2R-related, including increased D2R levels; increased density of D2Rs in the high-affinity state; aberrant D2R dimer or heteromer formation; imbalance between D2R short and long variants; extrastriatal D2Rs; (2) presynaptic dopamine, including low or normal dopamine synthesis and/or release compared to responder patients; and (3) exaggerated postsynaptic D2R-mediated neurotransmission. Future points to be addressed are: (i) a more neurobiologically-oriented phenotypic categorization of TRS; (ii) implementation of neurobiological studies by directly comparing treatment resistant vs. treatment responder patients; (iii) development of a reliable animal model of non-response to antipsychotics.
Collapse
|
9
|
Osacka J, Kiss A, Bacova Z, Tillinger A. Effects of antipsychotics, haloperidol and olanzapine, on the expression of apoptosis-related genes in mouse mHippoE-2 cells and rat hippocampus. Endocr Regul 2023; 57:152-161. [PMID: 37561834 DOI: 10.2478/enr-2023-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Objective. Modified levels of pro- (caspase3, Bax) and anti-apoptotic (Bcl-2) regulatory proteins have been detected in certain brain areas of schizophrenic patients indicating a possible dysregulation of apoptosis. In the present study, effects of antipsychotics, haloperidol (HAL) and olanzapine (OLA), on the gene expression of caspase3 (casp3), Bax and Bcl-2 were studied in vitro in mouse hippocampal mHippoE-2 cell line and in vivo in the hippocampus of MK-801 animal schizophrenia model with the aim to provide evidence that antipsychotics may affect the activity of apoptosis-related markers. Methods. mHippoE-2 cells were incubated with MK-801 (20 µM), HAL (10 µM), and OLA (10 µM) alone or combined, MK-801+HAL/OLA, for 24, 48, and 72 h. Male Sprague Dawley rats were injected with saline or MK-801 (0.5 mg/kg) for 6 days and since the 7th day, they were treated with vehicle (VEH), HAL (1 mg/kg) or OLA (2 mg/kg) for the next 7 days. The casp3, Bax and Bcl-2 gene expression in mHippoE-2 cells and rat hippocampus was measured by RT-PCR. Results. In mHippoE-2 cells, casp3 gene expression was increased by MK-801 and OLA treatments alone for 48 h, HAL treatment alone for 24 and 72 h, and co-treatment with MK-801+OLA for 24 and 72 h compared to controls. HAL and OLA suppressed the stimulatory effect of MK-801 on casp3 mRNA levels in cells after 48 h of incubation. Bax mRNA levels in mHippoE-2 cells were decreased after HAL treatment for 24 and 48 h, and also after co-treatment with MK-801+HAL for 72 h. In vivo, MK-801 decreased mRNA levels of both pro-apoptotic markers, casp3 and Bax, in hippocampus of VEH-treated rats and Bax mRNA levels in hippocampus of HAL-treated animals. OLA reversed the inhibitory effect of MK-801 on casp3 expression in the VEH-treated animals. Neither MK-801 nor antipsychotics induced changes in the gene expression of anti-apoptotic marker Bcl-2 in mHippoE-2 cells as well as hippocampus of rats. Conclusions. The results of the present study demonstrate that antipsychotics, HAL and OLA, may affect mRNA levels of pro-apoptotic markers in hippocampal cells in vitro, but not in vivo. The obtained data do not clearly support the assumed potentiating role of MK-801 in inducing apoptosis in specific brain areas and a possible protective role of antipsychotics against induction of apoptosis. The obtained data may contribute to a deeper insight into the neurodevelopmental changes connected with schizophrenia.
Collapse
Affiliation(s)
- Jana Osacka
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander Kiss
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Bacova
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrej Tillinger
- 1Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
10
|
Onimus O, Valjent E, Fisone G, Gangarossa G. Haloperidol-Induced Immediate Early Genes in Striatopallidal Neurons Requires the Converging Action of cAMP/PKA/DARPP-32 and mTOR Pathways. Int J Mol Sci 2022; 23:ijms231911637. [PMID: 36232936 PMCID: PMC9569967 DOI: 10.3390/ijms231911637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Antipsychotics share the common pharmacological feature of antagonizing the dopamine 2 receptor (D2R), which is abundant in the striatum and involved in both the therapeutic and side effects of this drug’s class. The pharmacological blockade of striatal D2R, by disinhibiting the D2R-containing medium-sized spiny neurons (MSNs), leads to a plethora of molecular, cellular and behavioral adaptations, which are central in the action of antipsychotics. Here, we focused on the cell type-specific (D2R-MSNs) regulation of some striatal immediate early genes (IEGs), such as cFos, Arc and Zif268. Taking advantage of transgenic mouse models, pharmacological approaches and immunofluorescence analyses, we found that haloperidol-induced IEGs in the striatum required the synergistic activation of A2a (adenosine) and NMDA (glutamate) receptors. At the intracellular signaling level, we found that the PKA/DARPP-32 and mTOR pathways synergistically cooperate to control the induction of IEGs by haloperidol. By confirming and further expanding previous observations, our results provide novel insights into the regulatory mechanisms underlying the molecular/cellular action of antipsychotics in the striatum.
Collapse
Affiliation(s)
- Oriane Onimus
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, Inserm, 34094 Montpellier, France
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
- Correspondence:
| |
Collapse
|
11
|
Parmar S, Tadavarty R, Sastry BR. G-protein coupled receptors and synaptic plasticity in sleep deprivation. World J Psychiatry 2021; 11:954-980. [PMID: 34888167 PMCID: PMC8613756 DOI: 10.5498/wjp.v11.i11.954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/05/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Insufficient sleep has been correlated to many physiological and psychoneurological disorders. Over the years, our understanding of the state of sleep has transcended from an inactive period of rest to a more active state involving important cellular and molecular processes. In addition, during sleep, electrophysiological changes also occur in pathways in specific regions of the mammalian central nervous system (CNS). Activity mediated synaptic plasticity in the CNS can lead to long-term and sometimes permanent strengthening and/or weakening synaptic strength affecting neuronal network behaviour. Memory consolidation and learning that take place during sleep cycles, can be affected by changes in synaptic plasticity during sleep disturbances. G-protein coupled receptors (GPCRs), with their versatile structural and functional attributes, can regulate synaptic plasticity in CNS and hence, may be potentially affected in sleep deprived conditions. In this review, we aim to discuss important functional changes that can take place in the CNS during sleep and sleep deprivation and how changes in GPCRs can lead to potential problems with therapeutics with pharmacological interventions.
Collapse
Affiliation(s)
- Shweta Parmar
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Ramakrishna Tadavarty
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| | - Bhagavatula R Sastry
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver V6T 1Z3, British Columbia, Canada
| |
Collapse
|
12
|
Li Y, Rong J, Zhong H, Liang M, Zhu C, Chang F, Zhou R. Prenatal Stress Leads to the Altered Maturation of Corticostriatal Synaptic Plasticity and Related Behavioral Impairments Through Epigenetic Modifications of Dopamine D2 Receptor in Mice. Mol Neurobiol 2021; 58:317-328. [PMID: 32935231 DOI: 10.1007/s12035-020-02127-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022]
Abstract
Prenatal stress (PRS) had a long-term adverse effect on motor behaviors. Corticostriatal synaptic plasticity, a cellular basis for motor controlling, has been proven to participate in the pathogenesis of many behavior disorders. Based on the reports about the involvement of epigenetic DNA alterations in PRS-induced long-term effects, this research investigated the influence of PRS on the development and maturation of corticostriatal synaptic plasticity and related behaviors and explored the underlying epigenetic mechanism. Subjects were male offspring of dams that were exposed to stress three times per day from the 10th day of pregnancy until delivery. The development and maturation of plasticity at corticostriatal synapses, dopamine signaling, behavioral habituation, and DNA methylation were examined and analyzed. Control mice expressed long-term potentiation (LTP) at corticostriatal synapses during postnatal days (PD) 12-14 and produced long-term depression (LTD) during PD 20-60. However, PRS mice exhibited sustained LTP during PD 12-60. The treatment with dopamine 2 receptor (D2R) agonist quinpirole recovered striatal LTD and improved the impaired behavioral habituation in PD 45 adult PRS mice. Additionally, adult PRS mice showed reduced D2R, excess DNA methyltransferase 1 (DNMT1), increased binding of DNMT1 to D2R promoter, and hypermethylation at D2R promoter in the striatum. The DNMT1 inhibitor 5-aza-deoxycytidine restored striatal synaptic plasticity and improved behavioral habituation in adult PRS mice via D2R-mediated dopamine signaling. DNMT1-associated D2R hypermethylation is responsible for altering the maturation of plasticity at corticostriatal synapses and impairing the behavioral habituation in PRS mice.
Collapse
Affiliation(s)
- Yingchun Li
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Jing Rong
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Haiquan Zhong
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Min Liang
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Chunting Zhu
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Fei Chang
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China
| | - Rong Zhou
- Department of Physiology, Nanjing Medical University, Longmian Avenue 101, Jiangning District, Nanjing City, 211166, Jiangsu Province, China.
| |
Collapse
|
13
|
Ramírez-Jarquín UN, Shahani N, Pryor W, Usiello A, Subramaniam S. The mammalian target of rapamycin (mTOR) kinase mediates haloperidol-induced cataleptic behavior. Transl Psychiatry 2020; 10:336. [PMID: 33009372 PMCID: PMC7532208 DOI: 10.1038/s41398-020-01014-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/20/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine/threonine kinase protein complex (mTORC1 or mTORC2) that orchestrates diverse functions ranging from embryonic development to aging. However, its brain tissue-specific roles remain less explored. Here, we have identified that the depletion of the mTOR gene in the mice striatum completely prevented the extrapyramidal motor side effects (catalepsy) induced by the dopamine 2 receptor (D2R) antagonist haloperidol, which is the most widely used typical antipsychotic drug. Conversely, a lack of striatal mTOR in mice did not affect catalepsy triggered by the dopamine 1 receptor (D1R) antagonist SCH23390. Along with the lack of cataleptic effects, the administration of haloperidol in mTOR mutants failed to increase striatal phosphorylation levels of ribosomal protein pS6 (S235/236) as seen in control animals. To confirm the observations of the genetic approach, we used a pharmacological method and determined that the mTORC1 inhibitor rapamycin has a profound influence upon post-synaptic D2R-dependent functions. We consistently found that pretreatment with rapamycin entirely prevented (in a time-dependent manner) the haloperidol-induced catalepsy, and pS6K (T389) and pS6 (S235/236) signaling upregulation, in wild-type mice. Collectively, our data indicate that striatal mTORC1 blockade may offer therapeutic benefits with regard to the prevention of D2R-dependent extrapyramidal motor side effects of haloperidol in psychiatric illness.
Collapse
Affiliation(s)
- Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Neelam Shahani
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - William Pryor
- grid.214007.00000000122199231Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida 33458 USA
| | - Alessandro Usiello
- grid.9841.40000 0001 2200 8888Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy ,grid.4691.a0000 0001 0790 385XLaboratory of Behavioral Neuroscience, CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Florida, Jupiter, Florida, 33458, USA.
| |
Collapse
|
14
|
The role of glutamate receptors and their interactions with dopamine and other neurotransmitters in the development of tardive dyskinesia: preclinical and clinical results. Behav Pharmacol 2020; 31:511-523. [PMID: 32459694 DOI: 10.1097/fbp.0000000000000563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tardive dyskinesia is a serious, disabling, movement disorder associated with the ongoing use of antipsychotic medication. Current evidence regarding the pathophysiology of tardive dyskinesia is mainly based on preclinical animal models and is still not completely understood. The leading preclinical hypothesis of tardive dyskinesia development includes dopaminergic imbalance in the direct and indirect pathways of the basal ganglia, cholinergic deficiency, serotonin receptor disturbances, neurotoxicity, oxidative stress, and changes in synaptic plasticity. Although, the role of the glutamatergic system has been confirmed in preclinical tardive dyskinesia models it seems to have been neglected in recent reviews. This review focuses on the role and interactions of glutamate receptors with dopamine, acetylcholine, and serotonin in the neuropathology of tardive dyskinesia development. Moreover, preclinical and clinical results of the differentiated effectiveness of N-methyl-D-aspartate (NMDA) receptor antagonists are discussed with a special focus on antagonists that bind with the GluN2B subunit of NMDA receptors. This review also presents new combinations of drugs that are worth considering in the treatment of tardive dyskinesia.
Collapse
|
15
|
Wang LL, Yan C, Shao YX, Lv QY, Neumann D, Ettinger U, Cheung EFC, Yi ZH, Chan RCK. Revisiting anticipatory hedonic processing in patients with schizophrenia: An examination between representation activation and maintenance. Schizophr Res 2020; 216:138-146. [PMID: 31882275 DOI: 10.1016/j.schres.2019.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/01/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND Anticipatory anhedonia is one of the key deficits found in patients with schizophrenia (SCZ). However, the underlying mechanism of this deficit remains unclear. The present study examined whether representation activation and maintenance capacity influenced anticipatory experiences in SCZ patients. METHODS We recruited 46 SCZ patients (26 males) and 45 matched healthy controls (24 males). The Reward Representation Activation and Maintenance (RRAM) Task was administrated to assess anticipatory experience and representation activation and maintenance capacity. RESULTS SCZ patients exhibited lower subjective arousal than controls in anticipation of rewards with high probability when representation activation and maintenance were difficult to accomplish. SCZ patients also tended to reduce their button presses more than HC when they were required to maintain reward representation. CONCLUSIONS Our findings suggest that representation activation and maintenance may partially account for anticipatory anhedonia observed in SCZ patients.
Collapse
Affiliation(s)
- Ling-Ling Wang
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, China; Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yan
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, China.
| | - Yu-Xin Shao
- Key Laboratory of Brain Functional Genomics (MOE&STCSM), Shanghai Changning-ECNU Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, China
| | - Qin-Yu Lv
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - David Neumann
- School of Applied Psychology, Health Group, Griffith University, Brisbane, Australia
| | | | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region
| | - Zheng-Hui Yi
- Schizophrenia Program, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
16
|
Milosevic L, Dallapiazza RF, Munhoz RP, Kalia SK, Popovic MR, Hutchison WD. Case Studies in Neuroscience: Lack of inhibitory synaptic plasticity in the substantia nigra pars reticulata of a patient with lithium-induced tremor. J Neurophysiol 2019; 122:1367-1372. [PMID: 31411948 DOI: 10.1152/jn.00203.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tremor is a well-known side effect from many psychiatric medications, including lithium and dopamine antagonists. In patients whose psychiatric symptoms are stabilized and only respond to certain medications, deep brain stimulation may offer relief of the consequent motor complications. We report the case of an elderly male with disabling tremor related to lithium therapy for bipolar affective disorder, who was subsequently treated with deep brain stimulation. In this patient, we obtained recordings from the substantia nigra pars reticulata and performed a high-frequency stimulation protocol that robustly elicits long-term potentiation (LTP)-like changes in patients with Parkinson's disease. We hypothesized that in this patient, who did not have Parkinson's disease, the levels of inhibitory plasticity would be much greater. However, we found an unanticipated lack of plasticity in the patient with lithium-induced tremor, compared with two de novo control patients with Parkinson's disease. This patient was successfully treated with deep brain stimulation in the vicinity of the ventral oral posterior nucleus, an area of the thalamus that receives inputs from the basal ganglia. We postulate that the lithium-induced blockade of LTP may bring about motor complications such as tremor while simultaneously contributing to the therapeutic mechanism for treating the symptoms of psychiatric disorders such as bipolar affective disorder.NEW & NOTEWORTHY Use of a dual-microelectrode technique enabled us to compare long-term potentiation (LTP)-like changes in a patient with lithium-induced tremor to that of patients with Parkinson's disease. This study corroborated the findings in rodent brain slices that chronic lithium treatment may block LTP. Whereas a deficit in LTP may underlie the therapeutic mechanism for treating psychiatric disorders such as bipolar affective disorder, it may simultaneously contribute to consequent appearance of tremor.
Collapse
Affiliation(s)
- Luka Milosevic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Robert F Dallapiazza
- Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Ontario, Canada
| | - Renato P Munhoz
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Division of Neurosurgery, Toronto Western Hospital - University Health Network, Toronto, Ontario, Canada.,Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Milos R Popovic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
| | - William D Hutchison
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Foute Nelong T, Manduca JD, Zonneveld PM, Perreault ML. Asenapine maleate normalizes low frequency oscillatory deficits in a neurodevelopmental model of schizophrenia. Neurosci Lett 2019; 711:134404. [PMID: 31356843 DOI: 10.1016/j.neulet.2019.134404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022]
Abstract
Asenapine maleate (AM) is an atypical antipsychotic that, unlike many other antipsychotics, shows some efficacy in treating cognitive dysfunction in schizophrenia. Normal cognitive function has long since been associated with high frequency neuronal oscillations. However, recent research has highlighted the potential importance of low frequency oscillations. Here, the impact of AM on low frequency neural oscillatory activity was evaluated in the methylazoxymethanol acetate (MAM) rat model system used for the study schizophrenia, and the oscillatory signatures compared to those of haloperidol (HAL) and clozapine (CLZ). AM and CLZ normalized low frequency spectral power deficits in the prefrontal cortex, while HAL and AM reversed corticostriatal and corticocortical delta coherence deficits. However, only chronic AM administration normalized corticostriatal and corticocortical delta coherence deficits between 3-4 Hz. These findings support the idea that antipsychotic-induced amelioration of both delta coherence and power may be important for therapeutic efficacy in treating the cognitive deficits inherent in schizophrenia.
Collapse
Affiliation(s)
- Tapia Foute Nelong
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada.
| | - Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada.
| | - Paula M Zonneveld
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada.
| | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada.
| |
Collapse
|
18
|
Schwarz AP, Rotov AY, Chuprina OI, Krytskaya DU, Trofimov AN, Kosheverova VV, Ischenko AM, Zubareva OE. Developmental prefrontal mRNA expression of D2 dopamine receptor splice variants and working memory impairments in rats after early life Interleukin-1β elevation. Neurobiol Learn Mem 2018; 155:231-238. [PMID: 30092312 DOI: 10.1016/j.nlm.2018.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/13/2018] [Accepted: 08/03/2018] [Indexed: 11/29/2022]
Abstract
Long (D2L) and Short (D2S) isoforms of D2 dopamine receptor differ in their biochemical and physiological properties, which could affect functioning of prefrontal cortex. Contribution of distinct D2 dopamine receptor isoforms to cognitive dysfunctions and its developmental regulation are currently not fully elucidated. In the present study, we evaluated developmental mRNA expression of D2S/D2L dopamine receptor isoforms within the rat medial prefrontal cortex (mPFC) in the model of neurodevelopmental cognitive dysfunction. Working memory performance (Y-maze spontaneous alternations) and D2S/D2L mRNA expression in the mPFC (by qRT-PCR) were evaluated in juvenile (P27), adolescent (P42-47) and adult (P75-90) rats after chronic early life treatment with proinflammatory cytokine interleukin (IL)-1β (1 µg/kg i.p. daily P15-21). It was shown that IL-1β elevation during the 3rd week of life leads to working memory deficit originating in juvenile animals and persisting into adulthood. D2S mRNA expression was strongly downregulated during adolescence, and such downregulation was exaggerated in animals injected with IL-1β during P15-21. Early life IL-1β administrations influenced developmental changes in the D2S/D2L mRNA ratio. This measure was found to be decreased in adolescent and adult control (intact and vehicle-treated) rats compared to juvenile control, while in the case of IL-1β-treated animals, the decrease in D2S/D2L ratio was observed only in adulthood but not in adolescence compared to juvenile rats. During the adolescence, D2S mRNA expression was downregulated and D2S/D2L ratio was upregulated in the mPFC of rats treated with IL-1β during the 3rd week of life compared to controls. Based on these data we conclude that changes in the developmental expression of D2 dopamine receptor splice variants within mPFC may underlie long-lasting cognitive deficit associated with neonatal pathology.
Collapse
Affiliation(s)
- Alexander P Schwarz
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia.
| | - Alexander Yu Rotov
- Laboratory of Evolution of the Sensory Organs, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 199223 St. Petersburg, Russia
| | - Olga I Chuprina
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Darya U Krytskaya
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Alexander N Trofimov
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia
| | - Vera V Kosheverova
- Laboratory of Intracellular Membranes Dynamics, Department of the Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, Tikhoretsky avenue 4, 194064 St. Petersburg, Russia
| | - Alexander M Ischenko
- Laboratory of Protein Biochemistry, Research Institute of Highly Pure Biopreparations, Pudozhskaya street 7, 197110 St. Petersburg, Russia
| | - Olga E Zubareva
- Laboratory of Neurobiology of the Brain Integrative Functions, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, Akademika Pavlova street 12, 197376 St. Petersburg, Russia; Laboratory of Molecular Mechanisms of Neuronal Interactions, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Thorez avenue 44, 199223 St. Petersburg, Russia
| |
Collapse
|
19
|
Beeler JA, Mourra D. To Do or Not to Do: Dopamine, Affordability and the Economics of Opportunity. Front Integr Neurosci 2018; 12:6. [PMID: 29487508 PMCID: PMC5816947 DOI: 10.3389/fnint.2018.00006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Five years ago, we introduced the thrift hypothesis of dopamine (DA), suggesting that the primary role of DA in adaptive behavior is regulating behavioral energy expenditure to match the prevailing economic conditions of the environment. Here we elaborate that hypothesis with several new ideas. First, we introduce the concept of affordability, suggesting that costs must necessarily be evaluated with respect to the availability of resources to the organism, which computes a value not only for the potential reward opportunity, but also the value of resources expended. Placing both costs and benefits within the context of the larger economy in which the animal is functioning requires consideration of the different timescales against which to compute resource availability, or average reward rate. Appropriate windows of computation for tracking resources requires corresponding neural substrates that operate on these different timescales. In discussing temporal patterns of DA signaling, we focus on a neglected form of DA plasticity and adaptation, changes in the physical substrate of the DA system itself, such as up- and down-regulation of receptors or release probability. We argue that changes in the DA substrate itself fundamentally alter its computational function, which we propose mediates adaptations to longer temporal horizons and economic conditions. In developing our hypothesis, we focus on DA D2 receptors (D2R), arguing that D2R implements a form of “cost control” in response to the environmental economy, serving as the “brain’s comptroller”. We propose that the balance between the direct and indirect pathway, regulated by relative expression of D1 and D2 DA receptors, implements affordability. Finally, as we review data, we discuss limitations in current approaches that impede fully investigating the proposed hypothesis and highlight alternative, more semi-naturalistic strategies more conducive to neuroeconomic investigations on the role of DA in adaptive behavior.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| | - Devry Mourra
- Department of Psychology, Queens College, City University of New York, New York, NY, United States.,CUNY Neuroscience Consortium, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
20
|
Errico F, Nuzzo T, Carella M, Bertolino A, Usiello A. The Emerging Role of Altered d-Aspartate Metabolism in Schizophrenia: New Insights From Preclinical Models and Human Studies. Front Psychiatry 2018; 9:559. [PMID: 30459655 PMCID: PMC6232865 DOI: 10.3389/fpsyt.2018.00559] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/17/2018] [Indexed: 01/08/2023] Open
Abstract
Besides d-serine, another d-amino acid with endogenous occurrence in the mammalian brain, d-aspartate, has been recently shown to influence NMDA receptor (NMDAR)-mediated transmission. d-aspartate is present in the brain at extracellular level in nanomolar concentrations, binds to the agonist site of NMDARs and activates this subclass of glutamate receptors. Along with its direct effect on NMDARs, d-aspartate can also evoke considerable l-glutamate release in specific brain areas through the presynaptic activation of NMDA, AMPA/kainate and mGlu5 receptors. d-aspartate is enriched in the embryonic brain of rodents and humans and its concentration strongly decreases after birth, due to the post-natal expression of the catabolising enzyme d-aspartate oxidase (DDO). Based on the hypothesis of NMDAR hypofunction in schizophrenia pathogenesis, recent preclinical and clinical studies suggested a relationship between perturbation of d-aspartate metabolism and this psychiatric disorder. Consistently, neurophysiological and behavioral characterization of Ddo knockout (Ddo -/-) and d-aspartate-treated mice highlighted that abnormally higher endogenous d-aspartate levels significantly increase NMDAR-mediated synaptic plasticity, neuronal spine density and memory. Remarkably, increased d-aspartate levels influence schizophrenia-like phenotypes in rodents, as indicated by improved fronto-hippocampal connectivity, attenuated prepulse inhibition deficits and reduced activation of neuronal circuitry induced by phencyclidine exposure. In healthy humans, a genetic polymorphism associated with reduced prefrontal DDO gene expression predicts changes in prefrontal phenotypes including greater gray matter volume and enhanced functional activity during working memory. Moreover, neurochemical detections in post-mortem brain of schizophrenia-affected patients have shown significantly reduced d-aspartate content in prefrontal regions, associated with increased DDO mRNA expression or DDO enzymatic activity. Overall, these findings suggest a possible involvement of dysregulated embryonic d-aspartate metabolism in schizophrenia pathophysiology and, in turn, highlight the potential use of free d-aspartate supplementation as a new add-on therapy for treating the cognitive symptoms of this mental illness.
Collapse
Affiliation(s)
- Francesco Errico
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Italy
| | - Tommaso Nuzzo
- Translational Neuroscience Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Massimo Carella
- Translational Neuroscience Unit, IRCCS Casa Sollievo Della Sofferenza, San Giovanni Rotondo, Italy
| | - Alessandro Bertolino
- Group of Psychiatric Neuroscience, Department of Basic Medical Science, Neuroscience and Sense Organs, Aldo Moro University, Bari, Italy
| | - Alessandro Usiello
- Laboratory of Behavioural Neuroscience, Ceinge Biotecnologie Avanzate, Naples, Italy.,Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università Degli Studi Della Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
21
|
Chikama K, Yamada H, Tsukamoto T, Kajitani K, Nakabeppu Y, Uchimura N. Chronic atypical antipsychotics, but not haloperidol, increase neurogenesis in the hippocampus of adult mouse. Brain Res 2017; 1676:77-82. [DOI: 10.1016/j.brainres.2017.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 11/28/2022]
|
22
|
Altered Development of Synapse Structure and Function in Striatum Caused by Parkinson's Disease-Linked LRRK2-G2019S Mutation. J Neurosci 2017; 36:7128-41. [PMID: 27383589 DOI: 10.1523/jneurosci.3314-15.2016] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/26/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) can cause Parkinson's disease (PD), and the most common disease-associated mutation, G2019S, increases kinase activity. Because LRRK2 expression levels rise during synaptogenesis and are highest in dorsal striatal spiny projection neurons (SPNs), we tested the hypothesis that the LRRK2-G2019S mutation would alter development of excitatory synaptic networks in dorsal striatum. To circumvent experimental confounds associated with LRRK2 overexpression, we used mice expressing LRRK2-G2019S or D2017A (kinase-dead) knockin mutations. In whole-cell recordings, G2019S SPNs exhibited a fourfold increase in sEPSC frequency compared with wild-type SPNs in postnatal day 21 mice. Such heightened neural activity was increased similarly in direct- and indirect-pathway SPNs, and action potential-dependent activity was particularly elevated. Excitatory synaptic activity in D2017A SPNs was similar to wild type, indicating a selective effect of G2019S. Acute exposure to LRRK2 kinase inhibitors normalized activity, supporting that excessive neural activity in G2019S SPNs is mediated directly and is kinase dependent. Although dendritic arborization and densities of excitatory presynaptic terminals and postsynaptic dendritic spines in G2019S SPNs were similar to wild type, G2019S SPNs displayed larger spines that were matched functionally by a shift toward larger postsynaptic response amplitudes. Acutely isolating striatum from overlying neocortex normalized sEPSC frequency in G2019S mutants, supporting that abnormal corticostriatal activity is involved. These findings indicate that the G2019S mutation imparts a gain-of-abnormal function to SPN activity and morphology during a stage of development when activity can permanently modify circuit structure and function. SIGNIFICANCE STATEMENT Mutations in the kinase domain of leucine-rich repeat kinase 2 (LRRK2) follow Parkinson's disease (PD) heritability. How such mutations affect brain function is poorly understood. LRRK2 expression levels rise after birth at a time when synapses are forming and are highest in dorsal striatum, suggesting that LRRK2 regulates development of striatal circuits. During a period of postnatal development when activity plays a large role in permanently shaping neural circuits, our data show how the most common PD-causing LRRK2 mutation dramatically alters excitatory synaptic activity and the shape of postsynaptic structures in striatum. These findings provide new insight into early functional and structural aberrations in striatal connectivity that may predispose striatal circuitry to both motor and nonmotor dysfunction later in life.
Collapse
|
23
|
Chronic Nicotine Mitigates Aberrant Inhibitory Motor Learning Induced by Motor Experience under Dopamine Deficiency. J Neurosci 2017; 36:5228-40. [PMID: 27170121 DOI: 10.1523/jneurosci.2754-15.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/26/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Although dopamine receptor antagonism has long been associated with impairments in motor performance, more recent studies have shown that dopamine D2 receptor (D2R) antagonism, paired with a motor task, not only impairs motor performance concomitant with the pharmacodynamics of the drug, but also impairs future motor performance once antagonism has been relieved. We have termed this phenomenon "aberrant motor learning" and have suggested that it may contribute to motor symptoms in movement disorders such as Parkinson's disease (PD). Here, we show that chronic nicotine (cNIC), but not acute nicotine, treatment mitigates the acquisition of D2R-antagonist-induced aberrant motor learning in mice. Although cNIC mitigates D2R-mediated aberrant motor learning, cNIC has no effect on D1R-mediated motor learning. β2-containing nicotinic receptors in dopamine neurons likely mediate the protective effect of cNIC against aberrant motor learning, because selective deletion of β2 nicotinic subunits in dopamine neurons reduced D2R-mediated aberrant motor learning. Finally, both cNIC treatment and β2 subunit deletion blunted postsynaptic responses to D2R antagonism. These results suggest that a chronic decrease in function or a downregulation of β2-containing nicotinic receptors protects the striatal network against aberrant plasticity and aberrant motor learning induced by motor experience under dopamine deficiency. SIGNIFICANCE STATEMENT Increasingly, aberrant plasticity and aberrant learning are recognized as contributing to the development and progression of movement disorders. Here, we show that chronic nicotine (cNIC) treatment or specific deletion of β2 nicotinic receptor subunits in dopamine neurons mitigates aberrant motor learning induced by dopamine D2 receptor (D2R) blockade in mice. Moreover, both manipulations also reduced striatal dopamine release and blunt postsynaptic responses to D2R antagonists. These results suggest that chronic downregulation of function and/or receptor expression of β2-containing nicotinic receptors alters presynaptic and postsynaptic striatal signaling to protect against aberrant motor learning. Moreover, these results suggest that cNIC treatment may alleviate motor symptoms and/or delay the deterioration of motor function in movement disorders by blocking aberrant motor learning.
Collapse
|
24
|
Sebel LE, Graves SM, Chan CS, Surmeier DJ. Haloperidol Selectively Remodels Striatal Indirect Pathway Circuits. Neuropsychopharmacology 2017; 42:963-973. [PMID: 27577602 PMCID: PMC5312058 DOI: 10.1038/npp.2016.173] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 01/20/2023]
Abstract
Typical antipsychotic drugs are widely thought to alleviate the positive symptoms of schizophrenia by antagonizing dopamine D2 receptors expressed by striatal spiny projection neurons (SPNs). What is less clear is why antipsychotics have a therapeutic latency of weeks. Using a combination of physiological and anatomical approaches in ex vivo brain slices from transgenic mice, it was found that 2 weeks of haloperidol treatment induced both intrinsic and synaptic adaptations specifically within indirect pathway SPNs (iSPNs). Perphenazine treatment had similar effects. Some of these adaptations were homeostatic, including a drop in intrinsic excitability and pruning of excitatory corticostriatal glutamatergic synapses. However, haloperidol treatment also led to strengthening of a subset of excitatory corticostriatal synapses. This slow remodeling of corticostriatal iSPN circuitry is likely to play a role in mediating the delayed therapeutic action of neuroleptics.
Collapse
Affiliation(s)
- Luke E Sebel
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Steven M Graves
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C Savio Chan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA,Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 E Superior, Chicago, IL 60611, USA, Tel: +1 312 503 4904, Fax: +1 312 503 5101, E-mail:
| |
Collapse
|
25
|
Reinen JM, Van Snellenberg JX, Horga G, Abi-Dargham A, Daw ND, Shohamy D. Motivational Context Modulates Prediction Error Response in Schizophrenia. Schizophr Bull 2016; 42:1467-1475. [PMID: 27105903 PMCID: PMC5049527 DOI: 10.1093/schbul/sbw045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
BACKGROUND Recent findings demonstrate that patients with schizophrenia are worse at learning to predict rewards than losses, suggesting that motivational context modulates learning in this disease. However, these findings derive from studies in patients treated with antipsychotic medications, D2 receptor antagonists that may interfere with the neural systems that underlie motivation and learning. Thus, it remains unknown how motivational context affects learning in schizophrenia, separate from the effects of medication. METHODS To examine the impact of motivational context on learning in schizophrenia, we tested 16 unmedicated patients with schizophrenia and 23 matched controls on a probabilistic learning task while they underwent functional magnetic resonance imaging (fMRI) under 2 conditions: one in which they pursued rewards, and one in which they avoided losses. Computational models were used to derive trial-by-trial prediction error responses to feedback. RESULTS Patients performed worse than controls on the learning task overall, but there were no behavioral effects of condition. FMRI revealed an attenuated prediction error response in patients in the medial prefrontal cortex, striatum, and medial temporal lobe when learning to predict rewards, but not when learning to avoid losses. CONCLUSIONS Patients with schizophrenia showed differences in learning-related brain activity when learning to predict rewards, but not when learning to avoid losses. Together with prior work, these results suggest that motivational deficits related to learning in schizophrenia are characteristic of the disease and not solely a result of antipsychotic treatment.
Collapse
Affiliation(s)
- Jenna M. Reinen
- Department of Psychology, Columbia University, New York, NY;,Department of Psychology, Yale University, New Haven, CT;,*To whom correspondence should be addressed; Department of Psychology, Yale University, 1 Prospect Street, New Haven, CT 06511, US; tel: 203-436-9449, fax: 203-432-7172, e-mail:
| | - Jared X. Van Snellenberg
- Department of Psychiatry, Columbia University Medical Center, New York, NY;,Division of Translational Imaging, New York State Psychiatric Institute, New York, NY
| | - Guillermo Horga
- Department of Psychiatry, Columbia University Medical Center, New York, NY;,Division of Translational Imaging, New York State Psychiatric Institute, New York, NY
| | - Anissa Abi-Dargham
- Department of Psychiatry, Columbia University Medical Center, New York, NY;,Division of Translational Imaging, New York State Psychiatric Institute, New York, NY
| | - Nathaniel D. Daw
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ;,These authors contributed equally to this work
| | - Daphna Shohamy
- Department of Psychology, Columbia University, New York, NY;,Zuckerman Mind, Brain, Behavior Institute and Kavli Center for Brain Science, Columbia University, New York, NY.,These authors contributed equally to this work
| |
Collapse
|
26
|
A splicing-regulatory polymorphism in DRD2 disrupts ZRANB2 binding, impairs cognitive functioning and increases risk for schizophrenia in six Han Chinese samples. Mol Psychiatry 2016; 21:975-82. [PMID: 26347318 DOI: 10.1038/mp.2015.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/12/2023]
Abstract
The rs1076560 polymorphism of DRD2 (encoding dopamine receptor D2) is associated with alternative splicing and cognitive functioning; however, a mechanistic relationship to schizophrenia has not been shown. Here, we demonstrate that rs1076560(T) imparts a small but reliable risk for schizophrenia in a sample of 616 affected families and five independent replication samples totaling 4017 affected and 4704 unaffected individuals (odds ratio=1.1; P=0.004). rs1076560(T) was associated with impaired verbal fluency and comprehension in schizophrenia but improved performance among healthy comparison subjects. rs1076560(T) also associated with lower D2 short isoform expression in postmortem brain. rs1076560(T) disrupted a binding site for the splicing factor ZRANB2, diminished binding affinity between DRD2 pre-mRNA and ZRANB2 and abolished the ability of ZRANB2 to modulate short:long isoform-expression ratios of DRD2 minigenes in cell culture. Collectively, this work implicates rs1076560(T) as one possible risk factor for schizophrenia in the Han Chinese population, and suggests molecular mechanisms by which it may exert such influence.
Collapse
|
27
|
Abstract
Endophenotypes are quantitative, heritable traits that may help to elucidate the pathophysiologic mechanisms underlying complex disease syndromes, such as schizophrenia. They can be assessed at numerous levels of analysis; here, we review electrophysiological endophenotypes that have shown promise in helping us understand schizophrenia from a more mechanistic point of view. For each endophenotype, we describe typical experimental procedures, reliability, heritability, and reported gene and neurobiological associations. We discuss recent findings regarding the genetic architecture of specific electrophysiological endophenotypes, as well as converging evidence from EEG studies implicating disrupted balance of glutamatergic signaling and GABAergic inhibition in the pathophysiology of schizophrenia. We conclude that refining the measurement of electrophysiological endophenotypes, expanding genetic association studies, and integrating data sets are important next steps for understanding the mechanisms that connect identified genetic risk loci for schizophrenia to the disease phenotype.
Collapse
Affiliation(s)
- Emily Owens
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA
| | - David C Glahn
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT,Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
28
|
Errico F, Mothet JP, Usiello A. d-Aspartate: An endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. J Pharm Biomed Anal 2015; 116:7-17. [DOI: 10.1016/j.jpba.2015.03.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/11/2015] [Accepted: 03/23/2015] [Indexed: 12/14/2022]
|
29
|
Rethinking psychopharmacotherapy: The role of treatment context and brain plasticity in antidepressant and antipsychotic interventions. Neurosci Biobehav Rev 2015; 60:51-64. [PMID: 26616735 DOI: 10.1016/j.neubiorev.2015.11.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/09/2015] [Accepted: 11/16/2015] [Indexed: 01/08/2023]
Abstract
Emerging evidence indicates that treatment context profoundly affects psychopharmacological interventions. We review the evidence for the interaction between drug application and the context in which the drug is given both in human and animal research. We found evidence for this interaction in the placebo response in clinical trials, in our evolving knowledge of pharmacological and environmental effects on neural plasticity, and in animal studies analyzing environmental influences on psychotropic drug effects. Experimental placebo research has revealed neurobiological trajectories of mechanisms such as patients' treatment expectations and prior treatment experiences. Animal research confirmed that "enriched environments" support positive drug effects, while unfavorable environments (low sensory stimulation, low rates of social contacts) can even reverse the intended treatment outcome. Finally we provide recommendations for context conditions under which psychotropic drugs should be applied. Drug action should be steered by positive expectations, physical activity, and helpful social and physical environmental stimulation. Future drug trials should focus on fully controlling and optimizing such drug×environment interactions to improve trial sensitivity and treatment outcome.
Collapse
|
30
|
Sprecher KE, Ferrarelli F, Benca RM. Sleep and plasticity in schizophrenia. Curr Top Behav Neurosci 2015; 25:433-58. [PMID: 25608723 DOI: 10.1007/7854_2014_366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Schizophrenia is a devastating mental illness with a worldwide prevalence of approximately 1%. Although the clinical features of the disorder were described over one hundred years ago, its neurobiology is still largely elusive despite several decades of research. Schizophrenia is associated with marked sleep disturbances and memory impairment. Above and beyond altered sleep architecture, sleep rhythms including slow waves and spindles are disrupted in schizophrenia. In the healthy brain, these rhythms reflect and participate in plastic processes during sleep. This chapter discusses evidence that schizophrenia patients exhibit dysfunction of sleep-mediated plasticity on a behavioral, cellular, and molecular level and offers suggestions on how the study of sleeping brain activity can shed light on the pathophysiological mechanisms of the disorder.
Collapse
Affiliation(s)
- Kate E Sprecher
- Department of Psychiatry, Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
31
|
Price R, Salavati B, Graff-Guerrero A, Blumberger DM, Mulsant BH, Daskalakis ZJ, Rajji TK. Effects of antipsychotic D2 antagonists on long-term potentiation in animals and implications for human studies. Prog Neuropsychopharmacol Biol Psychiatry 2014; 54:83-91. [PMID: 24819820 PMCID: PMC4138225 DOI: 10.1016/j.pnpbp.2014.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
Abstract
In people with schizophrenia, cognitive abilities - including memory - are strongly associated with functional outcome. Long-term potentiation (LTP) is a form of neuroplasticity that is believed to be the physiological basis for memory. It has been postulated that antipsychotic medication can impair long-term potentiation and cognition by altering dopaminergic transmission. Thus, a systematic review was performed in order to assess the relationship between antipsychotics and D2 antagonists on long-term potentiation. The majority of studies on LTP and antipsychotics have found that acute administration of antipsychotics was associated with impairments in LTP in wild-type animals. In contrast, chronic administration and acute antipsychotics in animal models of schizophrenia were not. Typical and atypical antipsychotics and other D2 antagonists behaved similarly, with the exception of clozapine and olanzapine. Clozapine caused potentiation independent of tetanization, while olanzapine facilitated tetanus-induced potentiation. These studies are limited in their ability to model the effects of antipsychotics in patients with schizophrenia as they were largely performed in wild-type animals as opposed to humans with schizophrenia, and assessed after acute rather than chronic treatment. Further studies using patients with schizophrenia receiving chronic antipsychotic treatment are needed to better understand the effects of these medications in this population.
Collapse
Affiliation(s)
- Rae Price
- Institute of Medical Science, Faculty of Medicine, University of Toronto,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto
| | - Bahar Salavati
- Institute of Medical Science, Faculty of Medicine, University of Toronto,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto
| | - Ariel Graff-Guerrero
- Institute of Medical Science, Faculty of Medicine, University of Toronto,Department of Psychiatry, Faculty of Medicine, University of Toronto,Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto
| | - Daniel M. Blumberger
- Institute of Medical Science, Faculty of Medicine, University of Toronto,Department of Psychiatry, Faculty of Medicine, University of Toronto,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto,Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto
| | - Benoit H. Mulsant
- Institute of Medical Science, Faculty of Medicine, University of Toronto,Department of Psychiatry, Faculty of Medicine, University of Toronto,Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto
| | - Zafiris J. Daskalakis
- Institute of Medical Science, Faculty of Medicine, University of Toronto,Department of Psychiatry, Faculty of Medicine, University of Toronto,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto
| | - Tarek K. Rajji
- Institute of Medical Science, Faculty of Medicine, University of Toronto,Department of Psychiatry, Faculty of Medicine, University of Toronto,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto,Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto,Corresponding author: 80 Workman Way, Room 6312, Toronto, Ontario, Canada M6J 1H4. Phone: +1 416 535 8501 x 33661. Fax: +1 416 583 1307.
| |
Collapse
|
32
|
Abstract
Elevation of inflammatory cytokines in the striatum precedes symptoms in a number of motor dysfunctions, but it is unclear whether this is part of the disease process or an adaptive response to the pathology. In pyramidal cells, TNFα drives the insertion of AMPA-type glutamate receptors into synapses, and contributes to the homeostatic regulation of circuit activity in the developing neocortex. Here we demonstrate that in the mouse dorsolateral striatum, TNFα drives the internalization of AMPARs and reduces corticostriatal synaptic strength, dephosphorylates DARPP-32 and GluA1, and results in a preferential removal of Ca(2+)-permeable AMPARs. Striatal TNFα signaling appears to be adaptive in nature, as TNFα is upregulated in response to the prolonged blockade of D2 dopamine receptors and is necessary to reduce the expression of extrapyramidal symptoms induced by chronic haloperidol treatment. These data indicate that TNFα is a regulator of glutamatergic synaptic strength in the adult striatum in a manner distinct from its regulation of synapses on pyramidal cells and mediates an adaptive response during pathological conditions.
Collapse
|
33
|
Antipsychotic dose modulates behavioral and neural responses to feedback during reinforcement learning in schizophrenia. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2014; 14:189-201. [DOI: 10.3758/s13415-014-0261-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Martella G, Maltese M, Nisticò R, Schirinzi T, Madeo G, Sciamanna G, Ponterio G, Tassone A, Mandolesi G, Vanni V, Pignatelli M, Bonsi P, Pisani A. Regional specificity of synaptic plasticity deficits in a knock-in mouse model of DYT1 dystonia. Neurobiol Dis 2014; 65:124-32. [PMID: 24503369 DOI: 10.1016/j.nbd.2014.01.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 01/24/2014] [Indexed: 01/07/2023] Open
Abstract
DYT1 dystonia is a movement disorder caused by a deletion in the C-terminal of the protein torsinA. It is unclear how torsinA mutation might disrupt cellular processes encoding motor activity, and whether this impairment occurs in specific brain regions. Here, we report a selective impairment of corticostriatal synaptic plasticity in knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) as compared to controls (Tor1a(+/+) mice). In striatal spiny neurons from Tor1a(+/Δgag) mice, high-frequency stimulation failed to induce long-term depression (LTD), whereas long-term potentiation (LTP) exhibited increased amplitude. Of interest, blockade of D2 dopamine receptors (D2Rs) increased LTP in Tor1a(+/+) mice to a level comparable to that measured in Tor1a(+/Δgag) mice and normalized the levels of potentiation across mouse groups. A low-frequency stimulation (LFS) protocol was unable to depotentiate corticostriatal synapses in Tor1a(+/Δgag) mice. Muscarinic M1 acetylcholine receptor (mAChR) blockade rescued plasticity deficits. Additionally, we found an abnormal responsiveness of cholinergic interneurons to D2R activation, consisting in an excitatory response rather than the expected inhibition, further confirming an imbalance between dopaminergic and cholinergic signaling in the striatum. Conversely, synaptic activity and plasticity in the CA1 hippocampal region were unaltered in Tor1a(+/Δgag) mice. Importantly, the M1 mAChR-dependent enhancement of hippocampal LTP was unaffected in both genotypes. Similarly, both basic properties of dopaminergic nigral neurons and their responses to D2R activation were normal. These results provide evidence for a regional specificity of the electrophysiological abnormalities observed and demonstrate the reproducibility of such alterations in distinct models of DYT1 dystonia.
Collapse
Affiliation(s)
- G Martella
- Department of System Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M Maltese
- Department of System Medicine, University of Rome "Tor Vergata", Italy
| | - R Nisticò
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - T Schirinzi
- Department of System Medicine, University of Rome "Tor Vergata", Italy
| | - G Madeo
- Department of System Medicine, University of Rome "Tor Vergata", Italy
| | - G Sciamanna
- Department of System Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Ponterio
- Department of System Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Tassone
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Mandolesi
- Department of System Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - V Vanni
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M Pignatelli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - P Bonsi
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Pisani
- Department of System Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
35
|
Deserno L, Boehme R, Heinz A, Schlagenhauf F. Reinforcement learning and dopamine in schizophrenia: dimensions of symptoms or specific features of a disease group? Front Psychiatry 2013; 4:172. [PMID: 24391603 PMCID: PMC3870301 DOI: 10.3389/fpsyt.2013.00172] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/07/2013] [Indexed: 01/26/2023] Open
Abstract
Abnormalities in reinforcement learning are a key finding in schizophrenia and have been proposed to be linked to elevated levels of dopamine neurotransmission. Behavioral deficits in reinforcement learning and their neural correlates may contribute to the formation of clinical characteristics of schizophrenia. The ability to form predictions about future outcomes is fundamental for environmental interactions and depends on neuronal teaching signals, like reward prediction errors. While aberrant prediction errors, that encode non-salient events as surprising, have been proposed to contribute to the formation of positive symptoms, a failure to build neural representations of decision values may result in negative symptoms. Here, we review behavioral and neuroimaging research in schizophrenia and focus on studies that implemented reinforcement learning models. In addition, we discuss studies that combined reinforcement learning with measures of dopamine. Thereby, we suggest how reinforcement learning abnormalities in schizophrenia may contribute to the formation of psychotic symptoms and may interact with cognitive deficits. These ideas point toward an interplay of more rigid versus flexible control over reinforcement learning. Pronounced deficits in the flexible or model-based domain may allow for a detailed characterization of well-established cognitive deficits in schizophrenia patients based on computational models of learning. Finally, we propose a framework based on the potentially crucial contribution of dopamine to dysfunctional reinforcement learning on the level of neural networks. Future research may strongly benefit from computational modeling but also requires further methodological improvement for clinical group studies. These research tools may help to improve our understanding of disease-specific mechanisms and may help to identify clinically relevant subgroups of the heterogeneous entity schizophrenia.
Collapse
Affiliation(s)
- Lorenz Deserno
- Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig , Germany ; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Rebecca Boehme
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Florian Schlagenhauf
- Max Planck Institute for Human Cognitive and Brain Sciences , Leipzig , Germany ; Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
36
|
Neve KA, Ford CP, Buck DC, Grandy DK, Neve RL, Phillips TJ. Normalizing dopamine D2 receptor-mediated responses in D2 null mutant mice by virus-mediated receptor restoration: comparing D2L and D2S. Neuroscience 2013; 248:479-87. [PMID: 23811070 DOI: 10.1016/j.neuroscience.2013.06.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/31/2013] [Accepted: 06/18/2013] [Indexed: 11/29/2022]
Abstract
D2 receptor null mutant (Drd2(-/-)) mice have altered responses to the rewarding and locomotor effects of psychostimulant drugs, which is evidence of a necessary role for D2 receptors in these behaviors. Furthermore, work with mice that constitutively express only the D2 receptor short form (D2S), as a result of genetic deletion of the long form (D2L), provides the basis for a current model in which D2L is thought to be the postsynaptic D2 receptor on medium spiny neurons in the basal forebrain, and D2S the autoreceptor that regulates the activity of dopamine neurons and dopamine synthesis and release. Because constitutive genetic deletion of the D2 or D2L receptor may cause compensatory changes that influence functional outcomes, our approach is to identify aspects of the abnormal phenotype of a Drd2(-/-) mouse that can be normalized by virus-mediated D2 receptor expression. Drd2(-/-) mice are deficient in basal and methamphetamine-induced locomotor activation and lack D2 receptor agonist-induced activation of G protein-regulated inward rectifying potassium channels (GIRKs) in dopaminergic neurons. Here we show that virus-mediated expression of D2L in the nucleus accumbens significantly restored methamphetamine-induced locomotor activation, but not basal locomotor activity, compared to mice receiving the control virus. It also restored the effect of methamphetamine to decrease time spent in the center of the activity chamber in female but not male Drd2(-/-) mice. Furthermore, the effect of expression of D2S was indistinguishable from D2L. Similarly, virus-mediated expression of either D2S or D2L in substantia nigra neurons restored D2 agonist-induced activation of GIRKs. In this acute expression system, the alternatively spliced forms of the D2 receptor appear to be equally capable of acting as postsynaptic receptors and autoreceptors.
Collapse
Affiliation(s)
- K A Neve
- Research Service, Portland VA Medical Center, and Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | - C P Ford
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - D C Buck
- Research Service, Portland VA Medical Center, and Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| | - D K Grandy
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - R L Neve
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA.
| | - T J Phillips
- Research Service, Portland VA Medical Center, and Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
37
|
Cortical surface area correlates with STON2 gene Ser307Pro polymorphism in first-episode treatment-naïve patients with schizophrenia. PLoS One 2013; 8:e64090. [PMID: 23785397 PMCID: PMC3681785 DOI: 10.1371/journal.pone.0064090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/09/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Evidence shows that STON2 gene is associated with synaptic function and schizophrenia. This study aims to explore the relationship between two functional polymorphisms (Ser307Pro and Ala851Ser) of STON2 gene and the cortical surface area in first-episode treatment-naïve patients with schizophrenia and healthy controls. METHODOLOGY/PRINCIPAL FINDINGS Magnetic resonance imaging of the whole cortical surface area, which was computed by an automated surface-based technique (FreeSurfer), was obtained from 74 first-episode treatment-naïve patients with schizophrenia and 55 healthy controls. Multiple regression analysis was performed to investigate the effect of genotype subgroups on the cortical surface area. A significant genotype-by-diagnosis effect on the cortical surface area was observed. Pro-allele carriers of Ser307Pro polymorphism had larger right inferior temporal surface area than Ser/Ser carriers in the patients with schizophrenia; however, no significant difference was found in the same area in the healthy controls. The Ala851Ser polymorphism of STON2 gene was not significantly associated with the cortical surface area in patients with schizophrenia and healthy controls. CONCLUSIONS/SIGNIFICANCE The present study demonstrated that the functional variant of the STON2 gene could alter cortical surface area on the right inferior temporal and contribute to the pathogenesis of schizophrenia.
Collapse
|
38
|
Parametric studies of antipsychotic-induced sensitization in the conditioned avoidance response model: roles of number of drug exposure, drug dose, and test-retest interval. Behav Pharmacol 2012; 23:380-91. [PMID: 22732209 DOI: 10.1097/fbp.0b013e32835651ea] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Repeated haloperidol and olanzapine treatment produces an enhanced disruption of avoidance responding, a validated measure of antipsychotic activity. Experimental parameters affecting this sensitization-like effect have not been thoroughly examined. The present study investigated the role of three parameters (number of injections, dose, and interval between initial exposure and challenge) in antipsychotic sensitization in the conditioned avoidance response paradigm. Well-trained Sprague-Dawley rats received different numbers of drug treatment (1-5 days) or different doses of haloperidol (0.025-0.10 mg/kg, subcutaneously) or olanzapine (0.5-2.0 mg/kg, subcutaneously). After certain time intervals (4, 10 or 17 days), they were tested for the expression of haloperidol or olanzapine sensitization in a challenge test in which all rats were injected with a lower dose of haloperidol (0.025 mg/kg) or olanzapine (0.5 mg/kg). Throughout the drug-treatment period, both haloperidol and olanzapine dose-dependently enhanced their disruption of avoidance responding. Three days later, the sensitization induced by a low dose of haloperidol (0.025 mg/kg) or olanzapine (0.5 mg/kg) was only apparent in rats that received treatment for 5 days, but not in those that received treatment for 1-4 days. The sensitization induced by the medium and high doses of haloperidol (0.05 and 0.10 mg/kg) or olanzapine (1.0 and 2.0 mg/kg) was still robust even with only 3 days of treatment. The sensitization induced by a 3-day haloperidol (0.10 mg/kg) and olanzapine (2.0 mg/kg) treatment was long-lasting, still detectable 17 days after the last drug treatment. This study suggests that antipsychotic sensitization is a robust behavioral phenomenon. Its induction and expression are strongly influenced by parameters such as number of drug exposures, drug dose, and test-retest interval. Given the importance of antipsychotic sensitization in the maintenance of antipsychotic effects in the clinic, this study introduces a paradigm that can be used to investigate the behavioral and neurobiological mechanisms underlying antipsychotic sensitization.
Collapse
|
39
|
Abstract
Decreases in brain dopamine (DA) lead to catalepsy, quantified by the time a rat remains with its forepaws resting on a suspended horizontal bar. Low doses of the DA D2 receptor-preferring antagonist haloperidol repeatedly injected in a particular environment lead to gradual day-to-day increases in catalepsy (catalepsy sensitization) and subsequent testing following an injection of saline reveal conditioned catalepsy. We tested the hypothesis that D1-like and D2 receptors play different roles in catalepsy sensitization and in acquisition and expression of conditioned catalepsy. Rats were repeatedly treated with the DA D1-like receptor antagonist SCH 23990 (0.05, 0.1 and 0.25 mg/kg i.p.), the D2 receptor-preferring antagonist haloperidol (0.1, 0.25 and 0.5 mg/kg i.p.) or a combination of the two drugs and tested for catalepsy each day in the same environment. Following 10 drug treatment days, rats were injected with saline and tested for conditioned catalepsy in the previously drug-paired environment. Haloperidol did not elicit cataleptic responses in the initial session; however, rats developed sensitization with repeated testing. Significant catalepsy sensitization was not observed in rats repeatedly tested with SCH 23390. When rats were injected and tested with saline following haloperidol sensitization they exhibited conditioned catalepsy in the test environment; conditioned catalepsy was not seen following SCH 23390. Rats treated with 0.05 mg/kg SCH 23390+0.25 mg/kg haloperidol showed catalepsy sensitization but failed to show conditioned catalepsy. Conversely, SCH 23390 (0.05 mg/kg) given on the test day after sensitization to haloperidol (0.25 mg/kg) failed to block conditioned catalepsy. Repeated antagonism of D2 receptors leads to catalepsy sensitization with repeated testing in a specific environment. Conditioned catalepsy requires intact D1-like receptor function during sensitization sessions but not during test sessions. In conclusion, repeated antagonism of D2, but not D1-like receptors leads to catalepsy sensitization with repeated testing in a specific environment. Conditioned catalepsy requires functional D1-like receptors during sensitization sessions but not during test sessions.
Collapse
|
40
|
New insights on the role of free D-aspartate in the mammalian brain. Amino Acids 2012; 43:1861-71. [PMID: 22851050 DOI: 10.1007/s00726-012-1356-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/27/2012] [Indexed: 12/23/2022]
Abstract
Free D-aspartate (D-Asp) occurs in substantial amounts in the brain at the embryonic phase and in the first few postnatal days, and strongly decreases in adulthood. Temporal reduction of D-Asp levels depends on the postnatal onset of D-aspartate oxidase (DDO) activity, the only enzyme able to selectively degrade this D-amino acid. Several results indicate that D-Asp binds and activates N-methyl-D-aspartate receptors (NMDARs). Accordingly, recent studies have demonstrated that deregulated, higher levels of D-Asp, in knockout mice for Ddo gene and in D-Asp-treated mice, modulate hippocampal NMDAR-dependent long-term potentiation (LTP) and spatial memory. Moreover, similarly to D-serine, administration of D-Asp to old mice is able to rescue the physiological age-related decay of hippocampal LTP. In agreement with a neuromodulatory action of D-Asp on NMDARs, increased levels of this D-amino acid completely suppress long-term depression at corticostriatal synapses and attenuate the prepulse inhibition deficits produced in mice by the psychotomimetic drugs, amphetamine and MK-801. Based on the evidence which points to the ability of D-Asp to act as an endogenous agonist on NMDARs and considering the abundance of D-Asp during prenatal and early life, future studies will be crucial to address the effect of this molecule in the developmental processes of the brain controlled by the activation of NMDARs.
Collapse
|
41
|
Teo JT, Edwards MJ, Bhatia K. Tardive dyskinesia is caused by maladaptive synaptic plasticity: A hypothesis. Mov Disord 2012; 27:1205-15. [DOI: 10.1002/mds.25107] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 05/22/2012] [Accepted: 06/11/2012] [Indexed: 12/19/2022] Open
|
42
|
Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. J Neurosci 2012; 32:12-20. [PMID: 22219266 DOI: 10.1523/jneurosci.3405-11.2012] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The neural mechanisms behind cognitive deficits in schizophrenia still remain unclear. Functional neuroimaging studies on working memory (WM) yielded inconsistent results, suggesting task performance as a moderating variable of prefrontal activation. Beyond regional specific activation, disordered integration of brain regions was supposed as a critical pathophysiological mechanism of cognitive deficits in schizophrenia. Here, we first hypothesized that prefrontal activation implicated in WM depends primarily on task performance and therefore stratified participants into performance subgroups. Second, in line with the dysconnectivity hypothesis, we asked whether connectivity in the prefrontal-parietal network underlying WM is altered in all patients. We used functional magnetic resonance imaging in human subjects (41 schizophrenia patients, 42 healthy controls) and dynamic causal modeling to examine effective connectivity during a WM task. In line with our first hypothesis, we found that prefrontal activation was differentially modulated by task performance: there was a significant task by group by performance interaction revealing an increase of activation with performance in patients and a decrease with performance in controls. Beyond that, we show for the first time that WM-dependent effective connectivity from prefrontal to parietal cortex is reduced in all schizophrenia patients. This finding was independent of performance. In conclusion, our results are in line with the highly influential hypothesis that the relationship between WM performance and prefrontal activation follows an inverted U-shaped function. Moreover, this study in a large sample of patients reveals a mechanism underlying prefrontal inefficiency and cognitive deficits in schizophrenia, thereby providing direct experimental evidence for the dysconnectivity hypothesis.
Collapse
|
43
|
Schierberl K, Giordano T, Satpute S, Hao J, Kaur G, Hofmann F, Moosmang S, Striessnig J, Rajadhyaksha A. Cav 1.3 L-type Ca ( 2+) channels mediate long-term adaptation in dopamine D2L-mediated GluA1 trafficking in the dorsal striatum following cocaine exposure. Channels (Austin) 2012; 6:11-7. [PMID: 22419037 DOI: 10.4161/chan.19324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AMPA receptor (AMPAR) plasticity at glutamatergic synapses in the mesostriatal dopaminergic pathway has been implicated in persistent cocaine-induced behavioral responses; however, the precise mechanism underlying these changes remains unknown. Utilizing cocaine psychomotor sensitization in mice we find that repeated cocaine results in a basal reduction of Ser 845 GluA1 and cell surface GluA1 levels in the dorsal striatum (dStr) following a protracted withdrawal period, an adaptation that is dependent on Cav 1.3 channels but not those expressed in the VTA. We find that the basally-induced decrease in this phosphoprotein is the result of recruitment of the striatal dopamine D2 pathway, as evidenced by enhanced levels of D2 receptor (D2R) mRNA expression and D2R function as examined using the D2R antagonist, eticlopride, as well as alterations in the phosphorylation status of several downstream molecular targets of D2R's, including CREB, DARPP-32, Akt and GSK3β. Taken together with our recently published findings examining similar phenomena in the nucleus accumbens (NAc), these results underscore the utilization of divergent molecular mechanisms in the dStr, in mediating cocaine-induced persistent behavioral changes.
Collapse
Affiliation(s)
- Kathryn Schierberl
- Graduate Program in Neuroscience, Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Errico F, Bonito-Oliva A, Bagetta V, Vitucci D, Romano R, Zianni E, Napolitano F, Marinucci S, Di Luca M, Calabresi P, Fisone G, Carta M, Picconi B, Gardoni F, Usiello A. Higher free d-aspartate and N-methyl-d-aspartate levels prevent striatal depotentiation and anticipate l-DOPA-induced dyskinesia. Exp Neurol 2011; 232:240-50. [DOI: 10.1016/j.expneurol.2011.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/31/2011] [Accepted: 09/09/2011] [Indexed: 11/26/2022]
|
45
|
Beeler JA. Preservation of function in Parkinson's disease: what's learning got to do with it? Brain Res 2011; 1423:96-113. [PMID: 22000081 DOI: 10.1016/j.brainres.2011.09.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 08/06/2011] [Accepted: 09/20/2011] [Indexed: 01/16/2023]
Abstract
Dopamine denervation gives rise to abnormal corticostriatal plasticity; however, its role in the symptoms and progression of Parkinson's disease (PD) has not been articulated or incorporated into current clinical models. The 'integrative selective gain' framework proposed here integrates dopaminergic mechanisms known to modulate basal ganglia throughput into a single conceptual framework: (1) synaptic weights, the neural instantiation of accumulated experience and skill modulated by dopamine-dependent plasticity and (2) system gain, the operating parameters of the basal ganglia, modulated by dopamine's on-line effects on cell excitability, glutamatergic transmission and the balance between facilitatory and inhibitory pathways. Within this framework and based on recent work, a hypothesis is presented that prior synaptic weights and established skills can facilitate motor performance and preserve function despite diminished dopamine; however, dopamine denervation induces aberrant corticostriatal plasticity that degrades established synaptic weights and replaces them with inappropriate, inhibitory learning that inverts the function of the basal ganglia resulting in 'anti-optimization' of motor performance. Consequently, mitigating aberrant corticostriatal plasticity represents an important therapeutic objective, as reflected in the long-duration response to levodopa, reinterpreted here as the correction of aberrant learning. It is proposed that viewing aberrant corticostriatal plasticity and learning as a provisional endophenotype of PD would facilitate investigation of this hypothesis.
Collapse
Affiliation(s)
- Jeff A Beeler
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
46
|
Waltz JA, Frank MJ, Wiecki TV, Gold JM. Altered probabilistic learning and response biases in schizophrenia: behavioral evidence and neurocomputational modeling. Neuropsychology 2011; 25:86-97. [PMID: 21090899 DOI: 10.1037/a0020882] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Patients with schizophrenia (SZ) show reinforcement learning impairments related to both the gradual/procedural acquisition of reward contingencies, and the ability to use trial-to-trial feedback to make rapid behavioral adjustments. METHOD We used neurocomputational modeling to develop plausible mechanistic hypotheses explaining reinforcement learning impairments in individuals with SZ. We tested the model with a novel Go/NoGo learning task in which subjects had to learn to respond or withhold responses when presented with different stimuli associated with different probabilities of gains or losses in points. We analyzed data from 34 patients and 23 matched controls, characterizing positive- and negative-feedback-driven learning in both a training phase and a test phase. RESULTS Consistent with simulations from a computational model of aberrant dopamine input to the basal ganglia patients, patients with SZ showed an overall increased rate of responding in the training phase, together with reduced response-time acceleration to frequently rewarded stimuli across training blocks, and a reduced relative preference for frequently rewarded training stimuli in the test phase. Patients did not differ from controls on measures of procedural negative-feedback-driven learning, although patients with SZ exhibited deficits in trial-to-trial adjustments to negative feedback, with these measures correlating with negative symptom severity. CONCLUSIONS These findings support the hypothesis that patients with SZ have a deficit in procedural "Go" learning, linked to abnormalities in DA transmission at D1-type receptors, despite a "Go bias" (increased response rate), potentially related to excessive tonic dopamine. Deficits in trial-to-trial reinforcement learning were limited to a subset of patients with SZ with severe negative symptoms, putatively stemming from prefrontal cortical dysfunction.
Collapse
Affiliation(s)
- James A Waltz
- Department of Psychiatry, University of Maryland School of Medicine, MD Psychiatric Research Center, P.O. Box 21247, Baltimore, MD 21228, USA.
| | | | | | | |
Collapse
|
47
|
Crawford CA, Akopian G, Ring J, Jakowec MW, Petzinger GM, Andersen JK, Vittozzi-Wong P, Wang K, Farley CM, Charntikov S, Mitroi D, Beal MF, Chow R, Walsh JP. Acute and long-term response of dopamine nigrostriatal synapses to a single, low-dose episode of 3-nitropropionic acid-mediated chemical hypoxia. Synapse 2010; 65:339-50. [PMID: 20730800 DOI: 10.1002/syn.20852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 07/26/2010] [Indexed: 11/11/2022]
Abstract
The goal of the present investigation was to determine the persistence of striatal (DA) dopaminergic dysfunction after a mild chemically induced hypoxic event in Fisher 344 rats. To this end, we gave a single injection of the mitochondrial complex II inhibitor 3-nitropropionic acid (3-NP; 16.5 mg/kg, i.p.) to 2-month old male F344 rats and measured various indices of striatal DA functioning and lipid peroxidation over a 3-month span. Separate groups of rats were used to measure rod walking, evoked DA release, DA content, malondialdehyde (MDA) accumulation, DA receptor binding, and tyrosine hydroxylase (TH) activity. The results showed that 3-NP exposure reduced most measures of DA functioning including motoric ability, DA release, and D(2) receptor densities for 1 to 3 months postdrug administration. Interestingly, DA content was reduced 1 week after 3-NP exposure, but rose to 147% of control values 1 month after 3-NP treatment. MDA accumulation, a measure of lipid peroxidation activity, was increased 24 h and 1 month after 3-NP treatment. 3-NP did not affect TH activity, suggesting that alterations in DA functioning were not the result of nigrostriatal terminal loss. These data demonstrate that a brief mild hypoxic episode caused by 3-NP exposure has long-term detrimental effects on the functioning of the nigrostriatal DA system.
Collapse
Affiliation(s)
- Cynthia A Crawford
- Department of Psychology, California State University, San Bernardino, California 92407, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ishiguro H, Koga M, Horiuchi Y, Noguchi E, Morikawa M, Suzuki Y, Arai M, Niizato K, Iritani S, Itokawa M, Inada T, Iwata N, Ozaki N, Ujike H, Kunugi H, Sasaki T, Takahashi M, Watanabe Y, Someya T, Kakita A, Takahashi H, Nawa H, Arinami T. Supportive evidence for reduced expression of GNB1L in schizophrenia. Schizophr Bull 2010; 36:756-65. [PMID: 19011233 PMCID: PMC2894596 DOI: 10.1093/schbul/sbn160] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Chromosome 22q11 deletion syndrome (22q11DS) increases the risk of development of schizophrenia more than 10 times compared with that of the general population, indicating that haploinsufficiency of a subset of the more than 20 genes contained in the 22q11DS region could increase the risk of schizophrenia. In the present study, we screened for genes located in the 22q11DS region that are expressed at lower levels in postmortem prefrontal cortex of patients with schizophrenia than in those of controls. METHODS Gene expression was screened by Illumina Human-6 Expression BeadChip arrays and confirmed by real-time reverse transcription-polymerase chain reaction assays and Western blot analysis. RESULTS Expression of GNB1L was lower in patients with schizophrenia than in control subjects in both Australian (10 schizophrenia cases and 10 controls) and Japanese (43 schizophrenia cases and 11 controls) brain samples. TBX1 could not be evaluated due to its low expression levels. Expression levels of the other genes were not significantly lower in patients with schizophrenia than in control subjects. Association analysis of tag single-nucleotide polymorphisms in the GNB1L gene region did not confirm excess homozygosity in 1918 Japanese schizophrenia cases and 1909 Japanese controls. Haloperidol treatment for 50 weeks increased Gnb1l gene expression in prefrontal cortex of mice. CONCLUSIONS Taken together with the impaired prepulse inhibition observed in heterozygous Gnb1l knockout mice reported by the previous study, the present findings support assertions that GNB1L is one of the genes in the 22q11DS region responsible for increasing the risk of schizophrenia.
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Minori Koga
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Yasue Horiuchi
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Emiko Noguchi
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Miyuki Morikawa
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Yoshimi Suzuki
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Makoto Arai
- Department of Schizophrenia Research, Tokyo Institute of Psychiatry, Tokyo 156-8585, Japan
| | - Kazuhiro Niizato
- Tokyo Metropolitan Matsuzawa Hospital, Department of Psychiatry, Tokyo 156-0057, Japan
| | - Shyuji Iritani
- Tokyo Metropolitan Matsuzawa Hospital, Department of Psychiatry, Tokyo 156-0057, Japan
| | - Masanari Itokawa
- CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan,Tokyo Metropolitan Matsuzawa Hospital, Department of Psychiatry, Tokyo 156-0057, Japan
| | - Toshiya Inada
- Seiwa Hospital, Institute of Neuropsychiatry, Tokyo 162-0851, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University, School of Medicine, Nagoya 466-8550, Aichi, Japan
| | - Hiroshi Ujike
- Department of Neuropsychiatry, Okayama University, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | - Hiroshi Kunugi
- National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Tsukasa Sasaki
- Health Service Center, University of Tokyo, Tokyo 113-0033, Japan
| | - Makoto Takahashi
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Akiyoshi Kakita
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan, Department of Pathology
| | - Hitoshi Takahashi
- Department of Pathological Neuroscience, Brain Research Institute, Niigta University, Niigata 951-8585, Japan
| | - Hiroyuki Nawa
- Department of Pathology, Brain Research Institute, Niigta University, Niigata 951-8585, Japan
| | - Tadao Arinami
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan,CREST, Japan Science and Technology Agency, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
49
|
Goto Y, Yang CR, Otani S. Functional and dysfunctional synaptic plasticity in prefrontal cortex: roles in psychiatric disorders. Biol Psychiatry 2010; 67:199-207. [PMID: 19833323 DOI: 10.1016/j.biopsych.2009.08.026] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/19/2009] [Accepted: 08/20/2009] [Indexed: 12/12/2022]
Abstract
Prefrontal cortex (PFC) mediates an assortment of cognitive functions including working memory, behavioral flexibility, attention, and future planning. Unlike the hippocampus, where induction of synaptic plasticity in the network is well-documented in relation to long-term memory, cognitive functions mediated by the PFC have been thought to be independent of long-lasting neuronal adaptation of the network. Nonetheless, accumulating evidence suggests that prefrontal cortical neurons possess the cellular machinery of synaptic plasticity and exhibit lasting changes of neural activity associated with various cognitive processes. Moreover, deficits in the mechanisms of synaptic plasticity induction in the PFC might be involved in the pathophysiology of psychiatric and neurological disorders such as schizophrenia, drug addiction, mood disorders, and Alzheimer's disease.
Collapse
Affiliation(s)
- Yukiori Goto
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada.
| | | | | |
Collapse
|
50
|
Wiecki TV, Frank MJ. Neurocomputational models of motor and cognitive deficits in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2010; 183:275-97. [PMID: 20696325 DOI: 10.1016/s0079-6123(10)83014-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review the contributions of biologically constrained computational models to our understanding of motor and cognitive deficits in Parkinson's disease (PD). The loss of dopaminergic neurons innervating the striatum in PD, and the well-established role of dopamine (DA) in reinforcement learning (RL), enable neural network models of the basal ganglia (BG) to derive concrete and testable predictions. We focus in this review on one simple underlying principle - the notion that reduced DA increases activity and causes long-term potentiation in the indirect pathway of the BG. We show how this theory can provide a unified account of diverse and seemingly unrelated phenomena in PD including progressive motor degeneration as well as cognitive deficits in RL, decision making and working memory. DA replacement therapy and deep brain stimulation can alleviate some aspects of these impairments, but can actually introduce negative effects such as motor dyskinesias and cognitive impulsivity. We discuss these treatment effects in terms of modulation of specific mechanisms within the computational framework. In addition, we review neurocomputational interpretations of increased impulsivity in the face of response conflict in patients with deep-brain-stimulation.
Collapse
|