1
|
Filimontseva A, Fu Y, Vila M, Halliday GM. Neuromelanin and selective neuronal vulnerability to Parkinson's disease. Trends Neurosci 2025:S0166-2236(25)00080-3. [PMID: 40335409 DOI: 10.1016/j.tins.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/16/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025]
Abstract
Neuromelanin is a unique pigment made by some human catecholamine neurons. These neurons survive with their neuromelanin content for a lifetime but can also be affected by age-related neurodegenerative conditions, as observed using new neuromelanin imaging techniques. The limited quantities of neuromelanin has made understanding its normal biology difficult, but recent rodent and primate models, as well as omics studies, have confirmed its importance for selective neuronal loss in Parkinson's disease (PD). We review the development of neuromelanin in dopamine versus noradrenaline neurons and focus on previously overlooked cellular organelles in neuromelanin formation and function. We discuss the role of neuromelanin in stimulating endogenous α-synuclein misfolding in PD which renders neuromelanin granules vulnerable, and can exacerbates other pathogenic processes.
Collapse
Affiliation(s)
- Anastasia Filimontseva
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - YuHong Fu
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Miquel Vila
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA; Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035 Barcelona, Spain; Department of Biochemistry and Molecular Biology, Institute of Neuroscience, Autonomous University of Barcelona, 08193 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Glenda M Halliday
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW 2050, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
2
|
Gao V, Chlebowicz J, Gaskin K, Briano JA, Komer LE, Pineda A, Jhalani S, Ahmad S, Uwaifo E, Black LS, Haller JE, Przedborski S, Lane DA, Zhang S, Sharma M, Burré J. Synaptic vesicle-omics in mice captures signatures of aging and synucleinopathy. Nat Commun 2025; 16:4079. [PMID: 40312501 PMCID: PMC12046008 DOI: 10.1038/s41467-025-59441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
Neurotransmitter release occurs through exocytosis of synaptic vesicles. α-Synuclein's function and dysfunction in Parkinson's disease and other synucleinopathies is thought to be tightly linked to synaptic vesicle binding. Age is the biggest risk factor for synucleinopathy, and ~15% of synaptic vesicle proteins have been linked to central nervous system diseases. Yet, age- and disease-induced changes in synaptic vesicles remain unexplored. Via systematic analysis of synaptic vesicles at the ultrastructural, protein, and lipid levels, we reveal specific changes in synaptic vesicle populations, proteins, and lipids over age in wild-type mice and in α-synuclein knockout mice with and without expression of human α-synuclein. Strikingly, we find several previously undescribed synaptic changes in mice lacking α-synuclein, suggesting that loss of α-synuclein function contributes to synaptic dysfunction. These findings not only provide insights into synaptic vesicle biology and disease mechanisms in synucleinopathy, but also serve as a baseline for further mechanistic exploration of age- and disease-related alterations in synaptic vesicles.
Collapse
Affiliation(s)
- Virginia Gao
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Julita Chlebowicz
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Karlton Gaskin
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Juan A Briano
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Lauren E Komer
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - André Pineda
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Shrey Jhalani
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Saad Ahmad
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Eseosa Uwaifo
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Luca S Black
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jillian E Haller
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology & Cell Biology and Neuroscience, Columbia University, New York, NY, 10032, USA
| | - Diane A Lane
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Manu Sharma
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jacqueline Burré
- Brain and Mind Research Institute, Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
3
|
Zhang H, Chen K, Gao T, Yan Y, Liu Y, Liu Y, Zhu K, Qi J, Zheng C, Wang T, Zeng P. Establishing a robust triangulation framework to explore the relationship between hearing loss and Parkinson's disease. NPJ Parkinsons Dis 2025; 11:5. [PMID: 39753591 PMCID: PMC11698951 DOI: 10.1038/s41531-024-00861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/16/2024] [Indexed: 01/06/2025] Open
Abstract
The relationship between hearing loss (HL) and Parkinson's disease (PD) remains unclear. Using individual-level and summary-level data from the UK Biobank and the largest genome-wide association studies, we examined this link through observational, Mendelian randomization and genetic pleiotropy analyses. Among 158,229 participants, PD risk rose with HL severity especially in elder and males, and hearing aids significantly reduced PD risk in males. Although our results did not support a causal association, genetic correlation analysis suggested a localized genetic overlap (17q21.31). We identified 1545 SNPs and 63 genes with pleiotropic effects on HL and PD, including 79 novel SNPs across 6 loci, with 3 showing strong co-localization. These loci were enriched in key tissues like brain, heart, liver and pancreas, linked to the dihydrolipoyl dehydrogenase complex pathway, and targeted by drugs such as Warfarin and Phenprocoumon. Overall, this study reveals the risk association, genetic basis, and pleiotropic loci connecting HL and PD.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Keying Chen
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Tongyu Gao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Yu Yan
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Ying Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Yuxin Liu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Kexuan Zhu
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Jike Qi
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Chu Zheng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China
| | - Ting Wang
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| | - Ping Zeng
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
- Jiangsu Engineering Research Center of Biological Data Mining and Healthcare Transformation, Xuzhou Medical University, 221004, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Yan YC, Su L, Zhao WB, Fan Y, Koprich JB, Xiao BG, Song B, Wang J, Yu WB. Bidirectional interaction between IL and 17A/IL-17RA pathway dysregulation and α-synuclein in the pathogenesis of Parkinson's disease. Brain Behav Immun 2025; 123:1114-1126. [PMID: 39461385 DOI: 10.1016/j.bbi.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024] Open
Abstract
Parkinson's disease (PD) pathogenesis is characterized by α-synuclein (α-syn) pathology, which is influenced by various factors such as neuroinflammation and senescence. Increasing evidence has suggested a pivotal role for Interleukin-17A(IL-17A) and Interleukin-17 Receptor A (IL-17RA) in PD, yet the trigger and impact of IL-17A/IL-17RA activation in PD remains elusive. This study observed an age-related increase in IL-17A and IL-17RA in the human central nervous system, accompanied by increased α-syn and senescence biomarkers. Interestingly, both levels of IL-17A and IL-17RA in PD patients were significantly elevated compared to age-matched controls, wherein the IL-17A was mainly present in neurons. This abnormal neuronal IL-17A activation in the PD brain was recapitulated in α-syn mouse models. Correspondingly, administration of recombinant IL-17A exacerbated pathological α-syn in both neuron and mouse models. Furthermore, IL-17A/IL-17RA pathway interventions via blocking antibody or shRNA-mediated knockdown can mitigate the effects of pathological α-syn. This study reveals an interplay between dysregulation of the IL-17A/IL-17RA pathway and α-syn, suggesting that regulating the IL-17A/IL-17RA pathway could modify PD progression by disrupting the detrimental cycle.
Collapse
Affiliation(s)
- Yu-Chen Yan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Lu Su
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wan-Bing Zhao
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yun Fan
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - James B Koprich
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200040, China
| | - Bin Song
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Shanghai 200032, China; Fudan University, Shanghai 200032, China; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Wen-Bo Yu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
5
|
Sagredo GT, Tanglay O, Shahdadpuri S, Fu Y, Halliday GM. ⍺-Synuclein levels in Parkinson's disease - Cell types and forms that contribute to pathogenesis. Exp Neurol 2024; 379:114887. [PMID: 39009177 DOI: 10.1016/j.expneurol.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Parkinson's disease (PD) has two main pathological hallmarks, the loss of nigral dopamine neurons and the proteinaceous aggregations of ⍺-synuclein (⍺Syn) in neuronal Lewy pathology. These two co-existing features suggest a causative association between ⍺Syn aggregation and the underpinning mechanism of neuronal degeneration in PD. Both increased levels and post-translational modifications of ⍺Syn can contribute to the formation of pathological aggregations of ⍺Syn in neurons. Recent studies have shown that the protein is also expressed by multiple types of non-neuronal cells in the brain and peripheral tissues, suggesting additional roles of the protein and potential diversity in non-neuronal pathogenic triggers. It is important to determine (1) the threshold levels triggering ⍺Syn to convert from a biological to a pathologic form in different brain cells in PD; (2) the dominant form of pathologic ⍺Syn and the associated post-translational modification of the protein in each cell type involved in PD; and (3) the cell type associated biological processes impacted by pathologic ⍺Syn in PD. This review integrates these aspects and speculates on potential pathological mechanisms and their impact on neuronal and non-neuronal ⍺Syn in the brains of patients with PD.
Collapse
Affiliation(s)
- Giselle Tatiana Sagredo
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Onur Tanglay
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - Shrey Shahdadpuri
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia
| | - YuHong Fu
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, Sydney, NSW, Australia; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
6
|
Masato A, Bubacco L. The αSynuclein half-life conundrum. Neurobiol Dis 2024; 196:106524. [PMID: 38705490 DOI: 10.1016/j.nbd.2024.106524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024] Open
Abstract
αSynuclein (αSyn) misfolding and aggregation frequently precedes neuronal loss associated with Parkinson's Disease (PD) and other Synucleinopathies. The progressive buildup of pathological αSyn species results from alterations on αSyn gene and protein sequence, increased local concentrations, variations in αSyn interactome and protein network. Therefore, under physiological conditions, it is mandatory to regulate αSyn proteostasis as an equilibrium among synthesis, trafficking, degradation and extracellular release. In this frame, a crucial parameter is protein half-life. It provides indications of the turnover of a specific protein and depends on mRNA synthesis and translation regulation, subcellular localization, function and clearance by the designated degradative pathways. For αSyn, the molecular mechanisms regulating its proteostasis in neurons have been extensively investigated in various cellular models, either using biochemical or imaging approaches. Nevertheless, a converging estimate of αSyn half-life has not emerged yet. Here, we discuss the challenges in studying αSyn proteostasis under physiological and pathological conditions, the advantages and disadvantages of the experimental strategies proposed so far, and the relevance of determining αSyn half-life from a translational perspective.
Collapse
Affiliation(s)
- Anna Masato
- UK Dementia Research Institute at University College London, London, United Kingdom.
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, Italy; Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
7
|
Karim MR, Gasparini E, Tiegs E, Schlichte R, Vermilyea SC, Lee MK. Internalized α-synuclein fibrils become truncated and resist degradation in neurons while glial cells rapidly degrade α-synuclein fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.597615. [PMID: 38895363 PMCID: PMC11185753 DOI: 10.1101/2024.06.05.597615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Parkinson's disease (PD) and other α-synucleinopathies are characterized by the accumulation of α-synuclein (αS) pathology that can spread via the cell-to-cell transmission of αS aggregates. To better understand how various brain cells contribute to the spreading of αS pathology, we examined the metabolism of αS aggreges or pre-formed fibrils (PFFs) in neuronal and glial cells (microglia, astrocytes, and oligodendrocytes). In neurons, while the full-length αS rapidly disappeared following αS PFF uptake, truncated αS accumulated with a half-life of days rather than hours. Epitope mapping and fractionation studies indicate that αS PFF was truncated at the C-terminal region following uptake and remained insoluble/aggregated. In contrast, microglia and astrocytes rapidly metabolized αS PFF as the half-lives of αS PFF in these glial cells were <6 hours. Differential processing of αS by neurons was recapitulated in cell lines as differentiated CLU neuronal cell lines stably accumulate truncated αS while undifferentiated cells rapidly metabolize αS. Immunolocalization and subcellular fractionation studies show that internalized αS PFF is initially localized to endosomes followed by lysosomes. The lysosome is largely responsible for the degradation of internalized αS PFF as the inhibition of lysosomal function leads to the stabilization of αS in all cell types. Significantly, αS PFF causes lysosomal dysfunction in neurons. In summary, we show that neurons are inefficient in metabolizing internalized αS aggregates, partially because αS aggregates cause lysosomal dysfunction, potentially generating aggregation-prone truncated αS. In contrast, glial cells may protect neurons from αS aggregates by rapidly clearing αS aggregates.
Collapse
Affiliation(s)
- Md. Razaul Karim
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Emilie Gasparini
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
| | - Elizabeth Tiegs
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Riley Schlichte
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Scott C. Vermilyea
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Michael K. Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55414, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
8
|
Mangalam M, Kelty-Stephen DG, Seleznov I, Popov A, Likens AD, Kiyono K, Stergiou N. Older adults and individuals with Parkinson's disease control posture along suborthogonal directions that deviate from the traditional anteroposterior and mediolateral directions. Sci Rep 2024; 14:4117. [PMID: 38374371 PMCID: PMC10876602 DOI: 10.1038/s41598-024-54583-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024] Open
Abstract
A rich and complex temporal structure of variability in postural sway characterizes healthy and adaptable postural control. However, neurodegenerative disorders such as Parkinson's disease, which often manifest as tremors, rigidity, and bradykinesia, disrupt this healthy variability. This study examined postural sway in young and older adults, including individuals with Parkinson's disease, under different upright standing conditions to investigate the potential connection between the temporal structure of variability in postural sway and Parkinsonism. A novel and innovative method called oriented fractal scaling component analysis was employed. This method involves decomposing the two-dimensional center of pressure (CoP) planar trajectories to pinpoint the directions associated with minimal and maximal temporal correlations in postural sway. As a result, it facilitates a comprehensive assessment of the directional characteristics within the temporal structure of sway variability. The results demonstrated that healthy young adults control posture along two orthogonal directions closely aligned with the traditional anatomical anteroposterior (AP) and mediolateral (ML) axes. In contrast, older adults and individuals with Parkinson's disease controlled posture along suborthogonal directions that significantly deviate from the AP and ML axes. These findings suggest that the altered temporal structure of sway variability is evident in individuals with Parkinson's disease and underlies postural deficits, surpassing what can be explained solely by the natural aging process.
Collapse
Affiliation(s)
- Madhur Mangalam
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Damian G Kelty-Stephen
- Department of Psychology, State University of New York at New Paltz, New Paltz, NY, 12561, USA
| | - Ivan Seleznov
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Anton Popov
- Department of Electronic Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, 03056, Ukraine
- Faculty of Applied Sciences, Ukrainian Catholic University, Lviv, 79011, Ukraine
| | - Aaron D Likens
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| | - Ken Kiyono
- Graduate School of Engineering Science, Osaka University, Osaka, 560-8531, Japan
| | - Nick Stergiou
- Division of Biomechanics and Research Development, Department of Biomechanics, and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Omaha, NE, 68182, USA
- Department of Department of Physical Education, and Sport Science, Aristotle University, 570 01, Thessaloniki, Greece
| |
Collapse
|
9
|
Perez-Villalba A, Sirerol-Piquer MS, Soriano-Cantón R, Folgado V, Pérez-Cañamás A, Kirstein M, Fariñas I, Pérez-Sánchez F. Dopaminergic neuron loss in mice due to increased levels of wild-type human α-Synuclein only takes place under conditions of accelerated aging. Sci Rep 2024; 14:2490. [PMID: 38291230 PMCID: PMC10828501 DOI: 10.1038/s41598-024-53093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/27/2024] [Indexed: 02/01/2024] Open
Abstract
Understanding the intricate pathogenic mechanisms behind Parkinson's disease (PD) and its multifactorial nature presents a significant challenge in disease modeling. To address this, we explore genetic models that better capture the disease's complexity. Given that aging is the primary risk factor for PD, this study investigates the impact of aging in conjunction with overexpression of wild-type human α-synuclein (α-Syn) in the dopaminergic system. This is achieved by introducing a novel transgenic mouse strain overexpressing α-Syn under the TH-promoter within the senescence-accelerated SAMP8 (P8) genetic background. Behavioral assessments, conducted at both 10 and 16 months of age, unveil motor impairments exclusive to P8 α-SynTg mice, a phenomenon conspicuously absent in α-SynTg mice. These findings suggest a synergistic interplay between heightened α-Syn levels and the aging process, resulting in motor deficits. These motor disturbances correlate with reduced dopamine (DA) levels, increased DA turnover, synaptic terminal loss, and notably, the depletion of dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus. Furthermore, P8 α-SynTg mice exhibit alterations in gut transit time, mirroring early PD symptoms. In summary, P8 α-SynTg mice effectively replicate parkinsonian phenotypes by combining α-Syn transgene expression with accelerated aging. This model offers valuable insights into the understanding of PD and serves as a valuable platform for further research.
Collapse
Affiliation(s)
- Ana Perez-Villalba
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Laboratory of Animal Behavior Phenotype (L.A.B.P.), Department of Neuropsychology, Faculty of Psychology, Catholic University of Valencia, Valencia, Spain
| | - María Salomé Sirerol-Piquer
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Raúl Soriano-Cantón
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Virginia Folgado
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Azucena Pérez-Cañamás
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Martina Kirstein
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Francisco Pérez-Sánchez
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Valencia, Spain.
- Instituto de Biotecnología y Biomedicina (BioTecMed), Universitat de València, Valencia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
10
|
Zhang L, Huang J, Dai L, Zhu G, Yang XL, He Z, Li YH, Yang H, Zhang CQ, Shen KF, Liang P. Expression profiles of α-synuclein in cortical lesions of patients with FCD IIb and TSC, and FCD rats. Front Neurol 2023; 14:1255097. [PMID: 38020594 PMCID: PMC10662349 DOI: 10.3389/fneur.2023.1255097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Focal cortical dysplasia (FCD) IIb and tuberous sclerosis complex (TSC) are common causes of drug-resistant epilepsy in children. However, the etiologies related to the development of FCD IIb and TSC are not fully understood. α-synuclein (α-syn) is a member of synucleins family that plays crucial roles in modulating synaptic transmission in central nervous system. Here, we explored the expression profiles and potential pathogenic functions of α-syn in cortical lesions of epileptic patients with FCD IIb and TSC. METHODS Surgical specimens from epileptic patients with FCD IIb and TSC, as well as FCD rats generated by in utero X-ray-radiation were adopted in this study and studied with immunohistochemistry, immunofluorescence, western blotting, and co-immunoprecipitation etc. molecular biological techniques. RESULT Our results showed that α-syn expression was reduced in FCD IIb and TSC lesions. Specifically, α-syn protein was intensely expressed in dysplastic neurons (DNs) and balloon cells (BCs) in FCD IIb lesions, whereas was barely detected in DNs and giant cells (GCs) of TSC lesions. Additionally, p-α-syn, the aggregated form of α-syn, was detected in DNs, BCs, GCs, and glia-like cells of FCD IIb and TSC lesions. We previous showed that the function of N-methyl-D-aspartate receptor (NMDAR) was enhanced in FCD rats generated by X-ray-radiation. Here, we found the interaction between α-syn and NMDAR subunits NMDAR2A, NMDAR2B were augmented in cortical lesions of FCD patients and FCD rats. CONCLUSION These results suggested a potential role of α-syn in the pathogenesis of FCD IIb and TSC by interfering with NMDAR.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jun Huang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Dai
- Chongqing Institute for Brain and Intelligence, Guang Yang Bay Laboratory, Chongqing, China
| | - Gang Zhu
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiao-Lin Yang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zeng He
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yu-Hong Li
- Department of Cell Biology, Basic Medical College, Army Medical University, Chongqing, China
| | - Hui Yang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
- Chongqing Institute for Brain and Intelligence, Guang Yang Bay Laboratory, Chongqing, China
| | - Chun-Qing Zhang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Kai-Feng Shen
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ping Liang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
11
|
Horvath JD, Casas M, Kutchukian C, Sánchez SC, Pergande MR, Cologna SM, Simó S, Dixon RE, Dickson EJ. α-Synuclein-dependent increases in PIP5K1γ drive inositol signaling to promote neurotoxicity. Cell Rep 2023; 42:113244. [PMID: 37838947 PMCID: PMC11010634 DOI: 10.1016/j.celrep.2023.113244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/09/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
Anomalous aggregation of α-synuclein (α-Syn) is a pathological hallmark of many degenerative synucleinopathies including Lewy body dementia (LBD) and Parkinson's disease (PD). Despite its strong link to disease, the precise molecular mechanisms that link α-Syn aggregation to neurodegeneration have yet to be elucidated. Here, we find that elevated α-Syn leads to an increase in the plasma membrane (PM) phosphoinositide PI(4,5)P2, which precipitates α-Syn aggregation and drives toxic increases in mitochondrial Ca2+ and reactive oxygen species leading to neuronal death. Upstream of this toxic signaling pathway is PIP5K1γ, whose abundance and localization is enhanced at the PM by α-Syn-dependent increases in ARF6. Selective inhibition of PIP5K1γ or knockout of ARF6 in neurons rescues α-Syn aggregation and cellular phenotypes of toxicity. Collectively, our data suggest that modulation of phosphoinositide metabolism may be a therapeutic target to slow neurodegeneration for PD and other related neurodegenerative disorders.
Collapse
Affiliation(s)
- Jonathan D Horvath
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Maria Casas
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Candice Kutchukian
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Sara Creus Sánchez
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | | | | | - Sergi Simó
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA 95616, USA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
12
|
De Marchi F, Munitic I, Vidatic L, Papić E, Rački V, Nimac J, Jurak I, Novotni G, Rogelj B, Vuletic V, Liscic RM, Cannon JR, Buratti E, Mazzini L, Hecimovic S. Overlapping Neuroimmune Mechanisms and Therapeutic Targets in Neurodegenerative Disorders. Biomedicines 2023; 11:2793. [PMID: 37893165 PMCID: PMC10604382 DOI: 10.3390/biomedicines11102793] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Many potential immune therapeutic targets are similarly affected in adult-onset neurodegenerative diseases, such as Alzheimer's (AD) disease, Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD), as well as in a seemingly distinct Niemann-Pick type C disease with primarily juvenile onset. This strongly argues for an overlap in pathogenic mechanisms. The commonly researched immune targets include various immune cell subsets, such as microglia, peripheral macrophages, and regulatory T cells (Tregs); the complement system; and other soluble factors. In this review, we compare these neurodegenerative diseases from a clinical point of view and highlight common pathways and mechanisms of protein aggregation, neurodegeneration, and/or neuroinflammation that could potentially lead to shared treatment strategies for overlapping immune dysfunctions in these diseases. These approaches include but are not limited to immunisation, complement cascade blockade, microbiome regulation, inhibition of signal transduction, Treg boosting, and stem cell transplantation.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| | - Eliša Papić
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Valentino Rački
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Igor Jurak
- Molecular Virology Laboratory, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| | - Gabriela Novotni
- Department of Cognitive Neurology and Neurodegenerative Diseases, University Clinic of Neurology, Medical Faculty, University Ss. Cyril and Methodius, 91701 Skoplje, North Macedonia;
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Vladimira Vuletic
- Department of Neurology, Clinical Hospital Center Rijeka, 51000 Rijeka, Croatia; (E.P.); (V.R.); (V.V.)
- Department of Neurology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Rajka M. Liscic
- Department of Neurology, Sachsenklinik GmbH, Muldentalweg 1, 04828 Bennewitz, Germany;
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy;
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia;
| |
Collapse
|
13
|
Masato A, Plotegher N, Terrin F, Sandre M, Faustini G, Thor A, Adams S, Berti G, Cogo S, De Lazzari F, Fontana CM, Martinez PA, Strong R, Bandopadhyay R, Bisaglia M, Bellucci A, Greggio E, Dalla Valle L, Boassa D, Bubacco L. DOPAL initiates αSynuclein-dependent impaired proteostasis and degeneration of neuronal projections in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:42. [PMID: 36966140 PMCID: PMC10039907 DOI: 10.1038/s41531-023-00485-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/06/2023] [Indexed: 03/27/2023] Open
Abstract
Dopamine dyshomeostasis has been acknowledged among the determinants of nigrostriatal neuron degeneration in Parkinson's disease (PD). Several studies in experimental models and postmortem PD patients underlined increasing levels of the dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is highly reactive towards proteins. DOPAL has been shown to covalently modify the presynaptic protein αSynuclein (αSyn), whose misfolding and aggregation represent a major trait of PD pathology, triggering αSyn oligomerization in dopaminergic neurons. Here, we demonstrated that DOPAL elicits αSyn accumulation and hampers αSyn clearance in primary neurons. DOPAL-induced αSyn buildup lessens neuronal resilience, compromises synaptic integrity, and overwhelms protein quality control pathways in neurites. The progressive decline of neuronal homeostasis further leads to dopaminergic neuron loss and motor impairment, as showed in in vivo models. Finally, we developed a specific antibody which detected increased DOPAL-modified αSyn in human striatal tissues from idiopathic PD patients, corroborating the translational relevance of αSyn-DOPAL interplay in PD neurodegeneration.
Collapse
Affiliation(s)
- Anna Masato
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Nicoletta Plotegher
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Francesca Terrin
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Michele Sandre
- Department of Neuroscience, University of Padova, Padova, 35131, Italy
| | - Gaia Faustini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Andrea Thor
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0608, USA
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, 92093-0608, USA
| | - Stephen Adams
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093-0608, USA
| | - Giulia Berti
- Department of Biology, University of Padova, Padova, 35131, Italy
| | - Susanna Cogo
- Department of Biology, University of Padova, Padova, 35131, Italy
| | | | | | - Paul Anthony Martinez
- Department of Pharmacology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care Network, San Antonio, TX, 78229, USA
| | - Randy Strong
- Department of Pharmacology and Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care Network, San Antonio, TX, 78229, USA
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London, WC1N 1PJ, UK
| | - Marco Bisaglia
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Arianna Bellucci
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25123, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, 35131, Italy
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | | | - Daniela Boassa
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093-0608, USA.
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, 92093-0608, USA.
| | - Luigi Bubacco
- Department of Biology, University of Padova, Padova, 35131, Italy.
- Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy.
| |
Collapse
|
14
|
Kang EJ, Jang SM, Lee YJ, Jeong YJ, Kim YJ, Kang SS, Ahn EH. The couple of netrin-1/α-Synuclein regulates the survival of dopaminergic neurons via α-Synuclein disaggregation. BMB Rep 2023; 56. [PMID: 36751943 PMCID: PMC9978362 DOI: 10.5483/bmbrep.2023-0004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The abnormal accumulation and aggregation of the misfolded α-synuclein protein is the neuropathological hallmark of all α-synucleinopathies, including Parkinson's disease. The secreted proteins known as netrins (netrin-1, netrin-3, and netrin-4) are related to laminin and have a role in the molecular pathway for axon guidance and cell survival. Interestingly, only netrin-1 is significantly expressed in the substantia nigra (SN) of healthy adult brains and its expression inversely correlates with that of α-synuclein, which prompted us to look into the role of α-synuclein and netrin-1 molecular interaction in the future of dopaminergic neurons. Here, we showed that netrin-1 and α-synuclein directly interacted in pre-formed fibrils (PFFs) generation test, real time binding assay, and co-immunoprecipitation with neurotoxin treated cell lysates. Netrin-1 deficiency appeared to activate the dopaminergic neuronal cell death signal pathway via α-synuclein aggregation and hyperphosphorylation of α-synuclein S129. Taken together, netrin-1 can be a promising therapeutic molecule in Parkinson's disease. [BMB Reports 2023; 56(2): 126-131].
Collapse
Affiliation(s)
- Eun Ji Kang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA
| | - Seung Min Jang
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA
| | - Ye Ji Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA
| | - Ye Ji Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA
| | - You Jin Kim
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eun Hee Ahn
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Korea, GA 30322, USA,Corresponding author. Tel: +82-33-248-2583; Fax: +82-33-248-3201; E-mail:
| |
Collapse
|
15
|
Dias SB, de Lemos L, Sousa L, Bitoque DB, Silva GA, Seabra MC, Tenreiro S. Age-Related Changes of the Synucleins Profile in the Mouse Retina. Biomolecules 2023; 13:biom13010180. [PMID: 36671565 PMCID: PMC9855780 DOI: 10.3390/biom13010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Alpha-synuclein (aSyn) plays a central role in Parkinson's disease (PD) and has been extensively studied in the brain. This protein is part of the synuclein family, which is also composed of beta-synuclein (bSyn) and gamma-synuclein (gSyn). In addition to its neurotoxic role, synucleins have important functions in the nervous system, modulating synaptic transmission. Synucleins are expressed in the retina, but they have been poorly characterized. However, there is evidence that they are important for visual function and that they can play a role in retinal degeneration. This study aimed to profile synucleins in the retina of naturally aged mice and to correlate their patterns with specific retinal cells. With aging, we observed a decrease in the thickness of specific retinal layers, accompanied by an increase in glial reactivity. Moreover, the aSyn levels decreased, whereas bSyn increased with aging. The colocalization of both proteins was decreased in the inner plexiform layer (IPL) of the aged retina. gSyn presented an age-related decrease at the inner nuclear layer but was not significantly changed in the ganglion cell layer. The synaptic marker synaptophysin was shown to be preferentially colocalized with aSyn in the IPL with aging. At the same time, aSyn was found to exist at the presynaptic endings of bipolar cells and was affected by aging. Overall, this study suggests that physiological aging can be responsible for changes in the retinal tissue, implicating functional alterations that could affect synuclein family function.
Collapse
Affiliation(s)
- Sarah Batista Dias
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Luísa de Lemos
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Luís Sousa
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Diogo B. Bitoque
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Gabriela Araújo Silva
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Miguel C. Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- UCL Institute of Ophthalmology, London EC1V 9EL, UK
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
16
|
Croft CL, Paterno G, Vause AR, Rowe LA, Ryu DH, Goodwin MS, Moran CA, Cruz PE, Giasson BI, Golde TE. Optical pulse labeling studies reveal exogenous seeding slows α-synuclein clearance. NPJ Parkinsons Dis 2022; 8:173. [PMID: 36535953 PMCID: PMC9763367 DOI: 10.1038/s41531-022-00434-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
The accumulation of α-synuclein (α-syn) in intracellular formations known as Lewy bodies (LBs) is associated with several neurodegenerative diseases including Parkinson's disease and Lewy Body Dementia. There is still limited understanding of how α-syn and LB formation is associated with cellular dysfunction and degeneration in these diseases. To examine the clearance and production dynamics of α-syn we transduced organotypic murine brain slice cultures (BSCs) with recombinant adeno-associated viruses (rAAVs) to express Dendra2-tagged human wild-type (WT) and mutant A53T α-syn, with and without the addition of exogenous α-syn fibrillar seeds and tracked them over several weeks in culture using optical pulse labeling. We found that neurons expressing WT or mutant A53T human α-syn show similar rates of α-syn turnover even when insoluble, phosphorylated Ser129 α-syn has accumulated. Taken together, this data reveals α-syn aggregation and overexpression, pSer129 α-syn, nor the A53T mutation affect α-syn dynamics in this system. Prion-type seeding with exogenous α-syn fibrils significantly slows α-syn turnover, in the absence of toxicity but is associated with the accumulation of anti-p62 immunoreactivity and Thiazin Red positivity. Prion-type induction of α-syn aggregation points towards a potential protein clearance deficit in the presence of fibrillar seeds and the ease of this system to explore precise mechanisms underlying these processes. This system facilitates the exploration of α-syn protein dynamics over long-term culture periods. This platform can further be exploited to provide mechanistic insight on what drives this slowing of α-syn turnover and how therapeutics, other genes or different α-syn mutations may affect α-syn protein dynamics.
Collapse
Affiliation(s)
- Cara L. Croft
- grid.83440.3b0000000121901201UK Dementia Research Institute, UCL Institute of Neurology, University College London, London, UK ,grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA ,grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK
| | - Giavanna Paterno
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Ava R. Vause
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Lyla A. Rowe
- grid.83440.3b0000000121901201UK Dementia Research Institute, UCL Institute of Neurology, University College London, London, UK ,grid.451388.30000 0004 1795 1830The Francis Crick Institute, London, UK
| | - Daniel H. Ryu
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Marshall S. Goodwin
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA
| | - Corey A. Moran
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA
| | - Pedro E. Cruz
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA
| | - Benoit I. Giasson
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA
| | - Todd E. Golde
- grid.15276.370000 0004 1936 8091Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL USA ,grid.15276.370000 0004 1936 8091McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL USA ,grid.189967.80000 0001 0941 6502Department of Pharmacology and Chemical Biology, Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA USA
| |
Collapse
|
17
|
Jin M, Matsumoto S, Ayaki T, Yamakado H, Taguchi T, Togawa N, Konno A, Hirai H, Nakajima H, Komai S, Ishida R, Chiba S, Takahashi R, Takao T, Hirotsune S. DOPAnization of tyrosine in α-synuclein by tyrosine hydroxylase leads to the formation of oligomers. Nat Commun 2022; 13:6880. [PMID: 36371400 PMCID: PMC9653393 DOI: 10.1038/s41467-022-34555-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the preferential loss of tyrosine hydroxylase (TH)-expressing dopaminergic neurons in the substantia nigra. Although the abnormal accumulation and aggregation of α-synuclein have been implicated in the pathogenesis of Parkinson's disease, the underlying mechanisms remain largely elusive. Here, we found that TH converts Tyr136 in α-synuclein into dihydroxyphenylalanine (DOPA; Y136DOPA) through mass spectrometric analysis. Y136DOPA modification was clearly detected by a specific antibody in the dopaminergic neurons of α-synuclein-overexpressing mice as well as human α-synucleinopathies. Furthermore, dopanized α-synuclein tended to form oligomers rather than large fibril aggregates and significantly enhanced neurotoxicity. Our findings suggest that the dopanization of α-synuclein by TH may contribute to oligomer and/or seed formation causing neurodegeneration with the potential to shed light on the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Mingyue Jin
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka 545-8585 Japan ,grid.443385.d0000 0004 1798 9548Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199 China
| | - Sakiko Matsumoto
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka 545-8585 Japan
| | - Takashi Ayaki
- grid.258799.80000 0004 0372 2033Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507 Japan
| | - Hodaka Yamakado
- grid.258799.80000 0004 0372 2033Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507 Japan
| | - Tomoyuki Taguchi
- grid.258799.80000 0004 0372 2033Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507 Japan
| | - Natsuko Togawa
- grid.258799.80000 0004 0372 2033Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507 Japan
| | - Ayumu Konno
- grid.256642.10000 0000 9269 4097Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511 Japan
| | - Hirokazu Hirai
- grid.256642.10000 0000 9269 4097Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511 Japan
| | - Hiroshi Nakajima
- Division of Molecular Materials Science, Osaka Metropolitan University Graduate School of Science, Sumiyoshi-ku, Osaka 558-8585 Japan
| | - Shoji Komai
- grid.260493.a0000 0000 9227 2257Department of Science and Technology, Nara Institute of Science Technology, Ikoma, Nara 630-0192 Japan
| | - Ryuichi Ishida
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka 545-8585 Japan
| | - Syuhei Chiba
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka 545-8585 Japan
| | - Ryosuke Takahashi
- grid.258799.80000 0004 0372 2033Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto 606-8507 Japan
| | - Toshifumi Takao
- grid.136593.b0000 0004 0373 3971Laboratory of Protein Profiling and Functional Proteomics, Osaka University Institute for Protein Research, Suita, Osaka 565-0871 Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka 545-8585 Japan
| |
Collapse
|
18
|
Jin M, Matsumoto S, Ayaki T, Yamakado H, Taguchi T, Togawa N, Konno A, Hirai H, Nakajima H, Komai S, Ishida R, Chiba S, Takahashi R, Takao T, Hirotsune S. DOPAnization of tyrosine in α-synuclein by tyrosine hydroxylase leads to the formation of oligomers. Nat Commun 2022. [PMID: 36371400 DOI: 10.1038/s41467-022-34555-4.pmid:36371400;pmcid:pmc9653393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the preferential loss of tyrosine hydroxylase (TH)-expressing dopaminergic neurons in the substantia nigra. Although the abnormal accumulation and aggregation of α-synuclein have been implicated in the pathogenesis of Parkinson's disease, the underlying mechanisms remain largely elusive. Here, we found that TH converts Tyr136 in α-synuclein into dihydroxyphenylalanine (DOPA; Y136DOPA) through mass spectrometric analysis. Y136DOPA modification was clearly detected by a specific antibody in the dopaminergic neurons of α-synuclein-overexpressing mice as well as human α-synucleinopathies. Furthermore, dopanized α-synuclein tended to form oligomers rather than large fibril aggregates and significantly enhanced neurotoxicity. Our findings suggest that the dopanization of α-synuclein by TH may contribute to oligomer and/or seed formation causing neurodegeneration with the potential to shed light on the pathogenesis of Parkinson's disease.
Collapse
Affiliation(s)
- Mingyue Jin
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, 545-8585, Japan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Sakiko Matsumoto
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, 545-8585, Japan
| | - Takashi Ayaki
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoyuki Taguchi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Natsuko Togawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ayumu Konno
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hirokazu Hirai
- Department of Neurophysiology & Neural Repair, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
| | - Hiroshi Nakajima
- Division of Molecular Materials Science, Osaka Metropolitan University Graduate School of Science, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Shoji Komai
- Department of Science and Technology, Nara Institute of Science Technology, Ikoma, Nara, 630-0192, Japan
| | - Ryuichi Ishida
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, 545-8585, Japan
| | - Syuhei Chiba
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, 545-8585, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Osaka University Institute for Protein Research, Suita, Osaka, 565-0871, Japan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka Metropolitan University Graduate School of Medicine, Abeno-ku, Osaka, 545-8585, Japan.
| |
Collapse
|
19
|
Casalino E, Stine LB, Corin AJ, Thai CT, Quiroz J, Wilson SC, Labow M, Mittal S. A novel high-throughput screening strategy for targeting alpha-synuclein and other long-lived proteins. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:349-357. [PMID: 35580766 DOI: 10.1016/j.slasd.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Small-molecule high-throughput screening (HTS) campaigns have frequently been used to identify lead molecules that can alter expression of disease-relevant proteins in cell-based assays. However, most cell-based HTS assays require short compound exposure periods to avoid toxicity and ensure that compounds are stable in media for the duration of the exposure. This limits the ability of HTS assays to detect inhibitors of the synthesis of target proteins with long half-lives, which can often exceed the exposure times utilized in most HTS campaigns. One such target is alpha-synuclein (α-syn)-a protein well-known for its pathological aggregation in Parkinson's Disease (PD) and other forms of neurodegeneration known collectively as synucleinopathies. Here, we report the development of an HTS assay using a CRISPR-engineered neuroblastoma cell line expressing a destabilized luciferase reporter inserted at the end of the coding region of the SNCA locus. The resultant destabilized fusion protein exhibited a significant reduction in half-life compared to the endogenous, unmodified α-syn protein, and accurately reported reductions in α-syn levels due to known protein translation inhibitors and specific α-syn siRNAs. The robustness and utility of this approach was shown by using the resulting cell line (dsLuc-Syn) to screen a focused library of 3,192 compounds for reduction of α-syn. These data demonstrate the general utility of converting endogenous loci into destabilized reporter genes capable of identifying inhibitors of gene expression of highly stable proteins even in short-term assays.
Collapse
Affiliation(s)
- Evan Casalino
- Neuroscience Thematic Research Center, Bristol Myers Squibb, Cambridge, MA, United States
| | - Laurel B Stine
- Inflammation, Cardiovascular and Fibrosis Thematic Research Center, Bristol Myers Squibb, Cambridge, MA, United States
| | - Aaron J Corin
- Inflammation, Cardiovascular and Fibrosis Thematic Research Center, Bristol Myers Squibb, Cambridge, MA, United States
| | - Chuong-Thu Thai
- Compound Management, Automation and Assay Technology, Bristol Myers Squibb, San Diego, CA, United States
| | - Jose Quiroz
- Compound Management, Automation and Assay Technology, Bristol Myers Squibb, San Diego, CA, United States
| | - Stephen C Wilson
- Inflammation, Cardiovascular and Fibrosis Thematic Research Center, Bristol Myers Squibb, Cambridge, MA, United States
| | - Mark Labow
- Neuroscience Thematic Research Center, Bristol Myers Squibb, Cambridge, MA, United States.
| | - Shuchi Mittal
- Neuroscience Thematic Research Center, Bristol Myers Squibb, Cambridge, MA, United States.
| |
Collapse
|
20
|
Vermilyea SC, Christensen A, Meints J, Singh B, Martell-Martínez H, Karim MR, Lee MK. Loss of tau expression attenuates neurodegeneration associated with α-synucleinopathy. Transl Neurodegener 2022; 11:34. [PMID: 35773715 PMCID: PMC9248195 DOI: 10.1186/s40035-022-00309-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuronal dysfunction and degeneration linked to α-synuclein (αS) pathology is thought to be responsible for the progressive nature of Parkinson's disease and related dementia with Lewy bodies. Studies have indicated bidirectional pathological relationships between αS pathology and tau abnormalities. We recently showed that A53T mutant human αS (HuαS) can cause post-synaptic and cognitive deficits that require microtubule-associated protein tau expression. However, the role of tau in the development of αS pathology and subsequent neuronal dysfunction has been controversial. Herein, we set out to determine the role of tau in the onset and progression of αS pathology (α-synucleinopathy) using a transgenic mouse model of α-synucleinopathy lacking mouse tau expression. METHODS Transgenic mice expressing A53T mutant HuαS (TgA53T) were crossed with mTau-/- mice to generate TgA53T/mTau-/-. To achieve more uniform induction of α-synucleinopathy in mice, we used intramuscular injections of αS preformed fibrils (PFF) in non-transgenic (nTg), TgA53T, TgA53T/mTau-/-, and mTau-/- mice. Motor behavior was analyzed at 70 days post inoculation (dpi) of PFF and tissues for biochemical and neuropathological analysis were collected at 40 dpi, 70 dpi, and end stage. RESULTS Loss of tau expression significantly delayed the onset of motor deficits in the TgA53T model and the progression of α-synucleinopathy disease, as evidenced by a significant reduction in histopathological and behavioral markers of neurodegeneration and disease, and a significant improvement in survival. In vitro application of PFF to primary mouse hippocampal neurons demonstrated no changes in PFF uptake and processing or pS129 αS aggregation as a function of tau expression. However, PFF-induced neurotoxicity, including morphological deficits in nTg neurons, was prevented with tau removal. CONCLUSIONS Collectively, our data suggest that tau is likely acting downstream of αS pathology to affect neuronal homeostasis and survival. This work further supports the investigation of tau in α-synucleinopathies to identify novel disease-modifying therapeutic strategies.
Collapse
Affiliation(s)
- Scott C Vermilyea
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anne Christensen
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall
| | - Joyce Meints
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Balvindar Singh
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall
| | - Héctor Martell-Martínez
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Md Razaul Karim
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall.,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota - Twin Cities, 321 Church Street S.E., Minneapolis, MN, USA, 6-145 Jackson Hall. .,Institute for Translational Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN, USA. .,Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA. .,University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
21
|
Hu Q, Hong M, Huang M, Gong Q, Zhang X, Uversky VN, Pan-Montojo F, Huang T, Zhou H, Zhu S. Age-dependent aggregation of α-synuclein in the nervous system of gut-brain axis is associated with caspase-1 activation. Metab Brain Dis 2022; 37:1669-1681. [PMID: 35089485 DOI: 10.1007/s11011-022-00917-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
α-Synuclein (α-Syn) plays a key role in the development of Parkinson' desease (PD). As aging is acknowledged to be the greatest risk factor for PD, here we investigated α-Syn expression in the ileum, thoracic spinal cord, and midbrain of young (1-month-old), middle-aged (6-, 12-month-old) to old (18-month-old) mice. We demonstrated that both the levels of α-Syn monomers, oligomers and ratios of oligomers to monomers were increased with aging in the ileum, thoracic spinal cord, and midbrain. Whereas, the expression of tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine synthesis, was decreased with aging in the midbrain. We failed to find corresponding α-Syn mRNA increase with aging. However, we found an increased expression of caspase-1 in the ileum, thoracic spinal cord, and midbrain. A specific caspase-1 inhibitor VX765 significantly reduced levels of both the α-Syn monomers and oligomers triggered by the rotenone in vitro. Taken together, the increase in α-Syn aggregation with aging might not occur first in the gut, but simultaneously in the nervous system of gut-brain axis. The mechanism of the age-dependent aggregation of α-Syn in nervous system is likely triggered by the aging-related caspase-1 activation.
Collapse
Affiliation(s)
- Qi Hu
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Mei Hong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, People's Republic of China
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, People's Republic of China
- Department of Respiratory Medicine, Changhang General Hospital, Wuhan, 430015, People's Republic of China
| | - Mengyang Huang
- Department of Cardiac Function, Wuhan Central Hospital, Wuhan, 430345, People's Republic of China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, People's Republic of China.
- Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, Hubei Province, 434023, People's Republic of China.
| | - Xiaofan Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region, 142290, Russia
| | - Francisco Pan-Montojo
- Department of Psychiatry, Klinikum Der Ludwig-Maximilian Universität, 80336, Munich, Germany
| | - Teng Huang
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Honglian Zhou
- Department of General Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Suiqiang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
22
|
Pandey MK. The Role of Alpha-Synuclein Autoantibodies in the Induction of Brain Inflammation and Neurodegeneration in Aged Humans. Front Aging Neurosci 2022; 14:902191. [PMID: 35721016 PMCID: PMC9204601 DOI: 10.3389/fnagi.2022.902191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Manoj Kumar Pandey,
| |
Collapse
|
23
|
Mohd Murshid N, Aminullah Lubis F, Makpol S. Epigenetic Changes and Its Intervention in Age-Related Neurodegenerative Diseases. Cell Mol Neurobiol 2022; 42:577-595. [PMID: 33074454 PMCID: PMC11441183 DOI: 10.1007/s10571-020-00979-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic mechanisms involving the modulation of gene activity without modifying the DNA bases are reported to have lifelong effects on mature neurons in addition to their impact on synaptic plasticity and cognition. Histone methylation and acetylation are involved in synchronizing gene expression and protein function in neuronal cells. Studies have demonstrated in experimental models of neurodegenerative disorders that manipulations of these two mechanisms influence the susceptibility of neurons to degeneration and apoptosis. In Alzheimer's disease (AD), the expression of presenilin 1 (PSEN1) is markedly increased due to decreased methylation at CpG sites, thus promoting the accumulation of toxic amyloid-β (Aβ) peptide. In Parkinson's disease (PD), dysregulation of α-synuclein (SNCA) expression is presumed to occur via aberrant methylation at CpG sites, which controls the activation or suppression of protein expression. Mutant Huntingtin (mtHTT) alters the activity of histone acetyltransferases (HATs), causing the dysregulation of transcription observed in most Huntington's disease (HD) cases. Folate, vitamin B6, vitamin B12, and S-adenosylmethionine (SAM) are vital cofactors involved in DNA methylation modification; 5-azacytidine (AZA) is the most widely studied DNA methyltransferase (DNMT) inhibitor, and dietary polyphenols are DNMT inhibitors in vitro. Drug intervention is believed to reverse the epigenetic mechanisms to serve as a regulator in neuronal diseases. Nevertheless, the biochemical effect of the drugs on brain function and the underlying mechanisms are not well understood. This review focuses on further discussion of therapeutic targets, emphasizing the potential role of epigenetic factors including histone and DNA modifications in the diseases.
Collapse
Affiliation(s)
- Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Faridah Aminullah Lubis
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Level 17 Preclinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Kuo SH, Tasset I, Cheng MM, Diaz A, Pan MK, Lieberman OJ, Hutten SJ, Alcalay RN, Kim S, Ximénez-Embún P, Fan L, Kim D, Ko HS, Yacoubian T, Kanter E, Liu L, Tang G, Muñoz J, Sardi SP, Li A, Gan L, Cuervo AM, Sulzer D. Mutant glucocerebrosidase impairs α-synuclein degradation by blockade of chaperone-mediated autophagy. SCIENCE ADVANCES 2022; 8:eabm6393. [PMID: 35138901 PMCID: PMC11809618 DOI: 10.1126/sciadv.abm6393] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The most common genetic risk factors for Parkinson's disease (PD) are a set of heterozygous mutant (MT) alleles of the GBA1 gene that encodes β-glucocerebrosidase (GCase), an enzyme normally trafficked through the ER/Golgi apparatus to the lysosomal lumen. We found that half of the GCase in lysosomes from postmortem human GBA-PD brains was present on the lysosomal surface and that this mislocalization depends on a pentapeptide motif in GCase used to target cytosolic protein for degradation by chaperone-mediated autophagy (CMA). MT GCase at the lysosomal surface inhibits CMA, causing accumulation of CMA substrates including α-synuclein. Single-cell transcriptional analysis and proteomics of brains from GBA-PD patients confirmed reduced CMA activity and proteome changes comparable to those in CMA-deficient mouse brain. Loss of the MT GCase CMA motif rescued primary substantia nigra dopaminergic neurons from MT GCase-induced neuronal death. We conclude that MT GBA1 alleles block CMA function and produce α-synuclein accumulation.
Collapse
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Inmaculada Tasset
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Biochemistry and Molecular Biology, Universidad de Cordoba, Cordoba, Spain
| | - Melody M. Cheng
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Antonio Diaz
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ming-Kai Pan
- Department of Neurology, Columbia University , New York, NY 10032, USA
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Ori J. Lieberman
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Samantha J. Hutten
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Roy N. Alcalay
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Sangjun Kim
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pilar Ximénez-Embún
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), ProteoRed-ISCIII, Madrid, Spain
| | - Li Fan
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Donghoon Kim
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Han Seok Ko
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Talene Yacoubian
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Ellen Kanter
- Departments of Psychiatry and Pharmacology, Columbia University , New York, NY 10032, USA
| | - Ling Liu
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University , New York, NY 10032, USA
| | - Javier Muñoz
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), ProteoRed-ISCIII, Madrid, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | | - Aiqun Li
- Department of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David Sulzer
- Department of Neurology, Columbia University , New York, NY 10032, USA
- Departments of Psychiatry and Pharmacology, Columbia University , New York, NY 10032, USA
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|
25
|
Brain regions susceptible to alpha-synuclein spreading. Mol Psychiatry 2022; 27:758-770. [PMID: 34561613 DOI: 10.1038/s41380-021-01296-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/08/2023]
Abstract
The spreading of misfolded alpha-synuclein (α-syn) protein has been observed in animal models of Parkinson's disease (PD) and other α-synucleinopathies that mimic human PD pathologies. In animal models, the spreading of α-syn has been associated with motor dysfunction and neuronal death. However, variability in both susceptible brain regions and cellular populations limits our understanding of the consequences of α-syn spreading and the development of associated therapies. Here, we have reviewed the physiological and pathological functions of α-syn and summarized the susceptible brain regions and cell types identified from human postmortem studies and exogenous α-syn injection-based animal models. We have reviewed the methods for inducing α-syn aggregation, the specific hosts, the inoculation sites, the routes of propagation, and other experimental settings that may affect the spreading pattern of α-syn, as reported in current studies. Understanding the spread of α-syn to produce a consistent PD animal model is vital for future drug discovery.
Collapse
|
26
|
Shan FY, Fung KM, Zieneldien T, Kim J, Cao C, Huang JH. Examining the Toxicity of α-Synuclein in Neurodegenerative Disorders. Life (Basel) 2021; 11:life11111126. [PMID: 34833002 PMCID: PMC8621244 DOI: 10.3390/life11111126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Neurodegenerative disorders are complex disorders that display a variety of clinical manifestations. The second-most common neurodegenerative disorder is Parkinson’s disease, and the leading pathological protein of the disorder is considered to be α-synuclein. Nonetheless, α-synuclein accumulation also seems to result in multiple system atrophy and dementia with Lewy bodies. In order to obtain a more proficient understanding in the pathological progression of these synucleinopathies, it is crucial to observe the post-translational modifications of α-synuclein and the conformations of α-synuclein, as well as its role in the dysfunction of cellular pathways. Abstract α-synuclein is considered the main pathological protein in a variety of neurodegenerative disorders, such as Parkinson’s disease, multiple system atrophy, and dementia with Lewy bodies. As of now, numerous studies have been aimed at examining the post-translational modifications of α-synuclein to determine their effects on α-synuclein aggregation, propagation, and oligomerization, as well as the potential cellular pathway dysfunctions caused by α-synuclein, to determine the role of the protein in disease progression. Furthermore, α-synuclein also appears to contribute to the fibrilization of tau and amyloid beta, which are crucial proteins in Alzheimer’s disease, advocating for α-synuclein’s preeminent role in neurodegeneration. Due to this, investigating the mechanisms of toxicity of α-synuclein in neurodegeneration may lead to a more proficient understanding of the timeline progression in neurodegenerative synucleinopathies and could thereby lead to the development of potent targeted therapies.
Collapse
Affiliation(s)
- Frank Y. Shan
- Department of Anatomic Pathology, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA
- Correspondence: (F.Y.S.); (T.Z.)
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Medical Center, University of Oklahoma, Norman, OK 73019, USA;
| | - Tarek Zieneldien
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
- Correspondence: (F.Y.S.); (T.Z.)
| | - Janice Kim
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33620, USA; (J.K.); (C.C.)
| | - Jason H. Huang
- Department of Neurosurgery, Baylor Scott & White Medical Center, College of Medicine, Texas A&M University, Temple, TX 76508, USA;
| |
Collapse
|
27
|
Palazzi L, Fongaro B, Leri M, Acquasaliente L, Stefani M, Bucciantini M, Polverino de Laureto P. Structural Features and Toxicity of α-Synuclein Oligomers Grown in the Presence of DOPAC. Int J Mol Sci 2021; 22:ijms22116008. [PMID: 34199427 PMCID: PMC8199589 DOI: 10.3390/ijms22116008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/30/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022] Open
Abstract
The interplay between α-synuclein and dopamine derivatives is associated with oxidative stress-dependent neurodegeneration in Parkinson’s disease (PD). The formation in the dopaminergic neurons of intraneuronal inclusions containing aggregates of α-synuclein is a typical hallmark of PD. Even though the biochemical events underlying the aberrant aggregation of α-synuclein are not completely understood, strong evidence correlates this process with the levels of dopamine metabolites. In vitro, 3,4-dihydroxyphenylacetaldehyde (DOPAL) and the other two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET), share the property to inhibit the growth of mature amyloid fibrils of α-synuclein. Although this effect occurs with the formation of differently toxic products, the molecular basis of this inhibition is still unclear. Here, we provide information on the effect of DOPAC on the aggregation properties of α-synuclein and its ability to interact with membranes. DOPAC inhibits α-synuclein aggregation, stabilizing monomer and inducing the formation of dimers and trimers. DOPAC-induced oligomers did not undergo conformational transition in the presence of membranes, and penetrated the cell, where they triggered autophagic processes. Cellular assays showed that DOPAC reduced cytotoxicity and ROS production induced by α-synuclein aggregates. Our findings show that the early radicals resulting from DOPAC autoxidation produced covalent modifications of the protein, which were not by themselves a primary cause of either fibrillation or membrane binding inhibition. These findings are discussed in the light of the potential mechanism of DOPAC protection against the toxicity of α-synuclein aggregates to better understand protein and catecholamine biology and to eventually suggest a scaffold that can help in the design of candidate molecules able to interfere in α-synuclein aggregation.
Collapse
Affiliation(s)
- Luana Palazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Benedetta Fongaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, 50134 Firenze, Italy; (M.L.); (M.S.); (M.B.)
| | - Patrizia Polverino de Laureto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy; (L.P.); (B.F.); (L.A.)
- Correspondence:
| |
Collapse
|
28
|
Shen L, Wang C, Chen L, Wong G. Dysregulation of MicroRNAs and PIWI-Interacting RNAs in a Caenorhabditis elegans Parkinson's Disease Model Overexpressing Human α-Synuclein and Influence of tdp-1. Front Neurosci 2021; 15:600462. [PMID: 33762903 PMCID: PMC7982545 DOI: 10.3389/fnins.2021.600462] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) regulate gene expression and biological processes through specific genetic and epigenetic mechanisms. Recent studies have described a dysregulation of small non-coding RNAs in Parkinson’s disease (PD) tissues but have been limited in scope. Here, we extend these studies by comparing the dysregulation of both miRNAs and piRNAs from transgenic Caenorhabditis elegans (C. elegans) nematodes overexpressing pan-neuronally human α-synuclein wild-type (WT) (HASNWT OX) or mutant (HASNA53T OX). We observed 32 miRNAs and 112 piRNAs dysregulated in HASNA53T OX compared with WT. Genetic crosses of HASNA53T OX PD animal models with tdp-1 null mutants, the C. elegans ortholog of TDP-43, an RNA-binding protein aggregated in frontal temporal lobar degeneration, improved their behavioral deficits and changed the number of dysregulated miRNAs to 11 and piRNAs to none. Neuronal function-related genes T28F4.5, C34F6.1, C05C10.3, camt-1, and F54D10.3 were predicted to be targeted by cel-miR-1018, cel-miR-355-5p (C34F6.1 and C05C10.3), cel-miR-800-3p, and 21ur-1581 accordingly. This study provides a molecular landscape of small non-coding RNA dysregulation in an animal model that provides insight into the epigenetic changes, molecular processes, and interactions that occur during PD-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Linjing Shen
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| | - Changliang Wang
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, China.,Key Laboratory of Intelligent Manufacturing Technology of Ministry of Education, Shantou University, Shantou, China
| | - Garry Wong
- Centre for Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
29
|
Jin JW, Fan X, Del Cid-Pellitero E, Liu XX, Zhou L, Dai C, Gibbs E, He W, Li H, Wu X, Hill A, Leavitt BR, Cashman N, Liu L, Lu J, Durcan TM, Dong Z, Fon EA, Wang YT. Development of an α-synuclein knockdown peptide and evaluation of its efficacy in Parkinson's disease models. Commun Biol 2021; 4:232. [PMID: 33608634 PMCID: PMC7895943 DOI: 10.1038/s42003-021-01746-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 12/16/2020] [Indexed: 11/14/2022] Open
Abstract
Convincing evidence supports the premise that reducing α-synuclein levels may be an effective therapy for Parkinson's disease (PD); however, there has been lack of a clinically applicable α-synuclein reducing therapeutic strategy. This study was undertaken to develop a blood-brain barrier and plasma membrane-permeable α-synuclein knockdown peptide, Tat-βsyn-degron, that may have therapeutic potential. The peptide effectively reduced the level of α-synuclein via proteasomal degradation both in cell cultures and in animals. Tat-βsyn-degron decreased α-synuclein aggregates and microglial activation in an α-synuclein pre-formed fibril model of spreading synucleinopathy in transgenic mice overexpressing human A53T α-synuclein. Moreover, Tat-βsyn-degron reduced α-synuclein levels and significantly decreased the parkinsonian toxin-induced neuronal damage and motor impairment in a mouse toxicity model of PD. These results show the promising efficacy of Tat-βsyn-degron in two different animal models of PD and suggest its potential use as an effective PD therapeutic that directly targets the disease-causing process.
Collapse
Affiliation(s)
- Jack Wuyang Jin
- The Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Xuelai Fan
- The Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Esther Del Cid-Pellitero
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Xing-Xing Liu
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Limin Zhou
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Chunfang Dai
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ebrima Gibbs
- The Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wenting He
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongjie Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobin Wu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Austin Hill
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Blair R Leavitt
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Neil Cashman
- The Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lidong Liu
- The Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jie Lu
- The Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Thomas M Durcan
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Yu Tian Wang
- The Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Ahlers-Dannen KE, Spicer MM, Fisher RA. RGS Proteins as Critical Regulators of Motor Function and Their Implications in Parkinson's Disease. Mol Pharmacol 2020; 98:730-738. [PMID: 32015009 PMCID: PMC7662528 DOI: 10.1124/mol.119.118836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/25/2020] [Indexed: 11/22/2022] Open
Abstract
Parkinson disease (PD) is a devastating, largely nonfamilial, age-related disorder caused by the progressive loss of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Release of DA from these neurons into the dorsal striatum is crucial for regulating movement and their loss causes PD. Unfortunately, the mechanisms underlying SNc neurodegeneration remain unclear, and currently there is no cure for PD, only symptomatic treatments. Recently, several regulator of G protein signaling (RGS) proteins have emerged as critical modulators of PD pathogenesis and/or motor dysfunction and dyskinesia: RGSs 4, 6, 9, and 10. Striatal RGS4 has been shown to exacerbate motor symptoms of DA loss by suppressing M4-autoreceptor-Gα i/o signaling in striatal cholinergic interneurons. RGS6 and RGS9 are key regulators of D2R-Gα i/o signaling in SNc DA neurons and striatal medium spiny neurons, respectively. RGS6, expressed in human and mouse SNc DA neurons, suppresses characteristic PD hallmarks in aged mice, including SNc DA neuron loss, motor deficits, and α-synuclein accumulation. After DA depletion, RGS9 (through its inhibition of medium spiny neuron D2R signaling) suppresses motor dysfunction induced by L-DOPA or D2R-selective agonists. RGS10 is highly expressed in microglia, the brain's resident immune cells. Within the SNc, RGS10 may promote DA neuron survival through the upregulation of prosurvival genes and inhibition of microglial inflammatory factor expression. Thus, RGSs 4, 6, 9, and 10 are critical modulators of cell signaling pathways that promote SNc DA neuron survival and/or proper motor control. Accordingly, these RGS proteins represent novel therapeutic targets for the treatment of PD pathology. SIGNIFICANCE STATEMENT: Parkinson disease (PD), the most common movement disorder, is a progressive neurodegenerative disease characterized by substantia nigra pars compacta (SNc) dopamine (DA) neuron loss and subsequent motor deficits. Current PD therapies only target disease motor symptomology and are fraught with side effects. Therefore, researchers have begun to explore alternative therapeutic options. Regulator of G protein signaling (RGS) proteins, whether primarily expressed in SNc DA neurons (RGS6), striatal neurons (RGSs 4 and 9), or microglia (RGS10), modulate key signaling pathways important for SNc DA neuron survival and/or proper motor control. As such, RGS proteins represent novel therapeutic targets in PD.
Collapse
Affiliation(s)
- Katelin E Ahlers-Dannen
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mackenzie M Spicer
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Rory A Fisher
- Department of Neuroscience and Pharmacology (K.E.A.-D., M.M.S., R.A.F.), Iowa Neuroscience Institute (R.A.F.), and Interdisciplinary Graduate Program in Molecular Medicine (M.M.S., R.A.F.), University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
31
|
Wildburger NC, Hartke AS, Schidlitzki A, Richter F. Current Evidence for a Bidirectional Loop Between the Lysosome and Alpha-Synuclein Proteoforms. Front Cell Dev Biol 2020; 8:598446. [PMID: 33282874 PMCID: PMC7705175 DOI: 10.3389/fcell.2020.598446] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Cumulative evidence collected in recent decades suggests that lysosomal dysfunction contributes to neurodegenerative diseases, especially if amyloid proteins are involved. Among these, alpha-synuclein (aSyn) that progressively accumulates and aggregates in Lewy bodies is undisputedly a main culprit in Parkinson disease (PD) pathogenesis. Lysosomal dysfunction is evident in brains of PD patients, and mutations in lysosomal enzymes are a major risk factor of PD. At first glance, the role of protein-degrading lysosomes in a disease with pathological protein accumulation seems obvious and should guide the development of straightforward and rational therapeutic targets. However, our review demonstrates that the story is more complicated for aSyn. The protein can possess diverse posttranslational modifications, aggregate formations, and truncations, all of which contribute to a growing known set of proteoforms. These interfere directly or indirectly with lysosome function, reducing their own degradation, and thereby accelerating the protein aggregation and disease process. Conversely, unbalanced lysosomal enzymatic processes can produce truncated aSyn proteoforms that may be more toxic and prone to aggregation. This highlights the possibility of enhancing lysosomal function as a treatment for PD, if it can be confirmed that this approach effectively reduces harmful aSyn proteoforms and does not produce novel, toxic proteoforms.
Collapse
Affiliation(s)
- Norelle C Wildburger
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Anna-Sophia Hartke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hanover, Germany
| | - Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hanover, Germany
| | - Franziska Richter
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| |
Collapse
|
32
|
Oxidative Stress in Parkinson's Disease: Potential Benefits of Antioxidant Supplementation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2360872. [PMID: 33101584 PMCID: PMC7576349 DOI: 10.1155/2020/2360872] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) occurs in approximately 1% of the population over 65 years of age and has become increasingly more common with advances in age. The number of individuals older than 60 years has been increasing in modern societies, as well as life expectancy in developing countries; therefore, PD may pose an impact on the economic, social, and health structures of these countries. Oxidative stress is highlighted as an important factor in the genesis of PD, involving several enzymes and signaling molecules in the underlying mechanisms of the disease. This review presents updated data on the involvement of oxidative stress in the disease, as well as the use of antioxidant supplements in its therapy.
Collapse
|
33
|
Barbuti P, Antony P, Santos B, Massart F, Cruciani G, Dording C, Arias J, Schwamborn J, Krüger R. Using High-Content Screening to Generate Single-Cell Gene-Corrected Patient-Derived iPS Clones Reveals Excess Alpha-Synuclein with Familial Parkinson's Disease Point Mutation A30P. Cells 2020; 9:cells9092065. [PMID: 32927687 PMCID: PMC7564375 DOI: 10.3390/cells9092065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
The generation of isogenic induced pluripotent stem cell (iPSC) lines using CRISPR-Cas9 technology is a technically challenging, time-consuming process with variable efficiency. Here we use fluorescence-activated cell sorting (FACS) to sort biallelic CRISPR-Cas9 edited single-cell iPSC clones into high-throughput 96-well microtiter plates. We used high-content screening (HCS) technology and generated an in-house developed algorithm to select the correctly edited isogenic clones for continued expansion and validation. In our model we have gene-corrected the iPSCs of a Parkinson’s disease (PD) patient carrying the autosomal dominantly inherited heterozygous c.88G>C mutation in the SNCA gene, which leads to the pathogenic p.A30P form of the alpha-synuclein protein. Undertaking a PCR restriction-digest mediated clonal selection strategy prior to sequencing, we were able to post-sort validate each isogenic clone using a quadruple screening strategy prior to generating footprint-free isogenic iPSC lines, retaining a normal molecular karyotype, pluripotency and three germ-layer differentiation potential. Directed differentiation into midbrain dopaminergic neurons revealed that SNCA expression is reduced in the gene-corrected clones, which was validated by a reduction at the alpha-synuclein protein level. The generation of single-cell isogenic clones facilitates new insights in the role of alpha-synuclein in PD and furthermore is applicable across patient-derived disease models.
Collapse
Affiliation(s)
- Peter Barbuti
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Luxembourg, Luxembourg; (P.A.); (B.S.); (F.M.); (G.C.); (C.D.)
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445 Luxembourg, Luxembourg
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (P.B.); (R.K.); Tel.: +352-26970-967 (R.K.)
| | - Paul Antony
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Luxembourg, Luxembourg; (P.A.); (B.S.); (F.M.); (G.C.); (C.D.)
| | - Bruno Santos
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Luxembourg, Luxembourg; (P.A.); (B.S.); (F.M.); (G.C.); (C.D.)
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445 Luxembourg, Luxembourg
| | - François Massart
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Luxembourg, Luxembourg; (P.A.); (B.S.); (F.M.); (G.C.); (C.D.)
| | - Gérald Cruciani
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Luxembourg, Luxembourg; (P.A.); (B.S.); (F.M.); (G.C.); (C.D.)
| | - Claire Dording
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Luxembourg, Luxembourg; (P.A.); (B.S.); (F.M.); (G.C.); (C.D.)
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445 Luxembourg, Luxembourg
| | - Jonathan Arias
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Luxembourg, Luxembourg; (J.A.); (J.S.)
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, SE-141 83 Huddinge, Sweden
| | - Jens Schwamborn
- Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Luxembourg, Luxembourg; (J.A.); (J.S.)
| | - Rejko Krüger
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Luxembourg, Luxembourg; (P.A.); (B.S.); (F.M.); (G.C.); (C.D.)
- Transversal Translational Medicine, Luxembourg Institute of Health, L-1445 Luxembourg, Luxembourg
- Department of Neurodegenerative diseases, Hertie Institute for Clinical Brain Research, University Clinics Tübingen, 72076 Tübingen, Germany
- Parkinson Research Clinic, Centre Hospitalier de Luxembourg (CHL), L-1210 Luxembourg, Luxembourg
- Correspondence: (P.B.); (R.K.); Tel.: +352-26970-967 (R.K.)
| |
Collapse
|
34
|
Guan Y, Zhao X, Liu F, Yan S, Wang Y, Du C, Cui X, Li R, Zhang CX. Pathogenic Mutations Differentially Regulate Cell-to-Cell Transmission of α-Synuclein. Front Cell Neurosci 2020; 14:159. [PMID: 32595456 PMCID: PMC7303300 DOI: 10.3389/fncel.2020.00159] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022] Open
Abstract
Recent studies suggest that the cell-to-cell spread of pathological α-synuclein (α-syn) plays important roles in the development of Parkinson's disease (PD). PD patients who carry α-syn gene mutations often have an earlier onset and more severe clinical symptoms and pathology than sporadic PD cases who carry the wild-type (WT) α-syn gene. However, the molecular mechanism by which α-syn gene mutations promote PD remains unclear. Here, we hypothesized that pathogenic mutations facilitate the intercellular transfer and cytotoxicity of α-syn, favoring an early disease onset and faster progression. We investigated the effects of eight known pathogenic mutations in human α-syn (A18T, A29S, A30P, E46K, H50Q, G51D, A53E, and A53T) on its pathological transmission in terms of secretion, aggregation, intracellular level, cytotoxicity, seeding, and induction of neuroinflammation in SH-SY5Y neuroblastoma cells, cultured rat neurons, and microglia, and the rat substantia nigra pars compacta. We found that 2 of the 8 mutations (H50Q and A53T) significantly increased α-syn secretion while 6 mutations (A18T, A29S, A30P, G51D, A53E, and E46K) tended to enhance it. In vitroα-syn aggregation experiments showed that H50Q promoted while G51D delayed aggregation most strongly. Interestingly, 3 mutations (E46K, H50Q, and G51D) greatly increased the intracellular α-syn level when cultured cells were treated with preformed α-syn fibrils (PFFs) compared with the WT, while the other 5 had no effect. We also demonstrated that H50Q, G51D, and A53T PFFs, but not E46K PFFs, efficiently seeded in vivo and acutely induced neuroinflammation in rat substantia nigra pars compacta. Our data indicate that pathogenic mutations augment the prion-like spread of α-syn at different steps and blockade of this pathogenic propagation may serve as a promising therapeutic intervention for PD.
Collapse
Affiliation(s)
- Yuan Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Department of Anesthesiology, Beijing Huaxin Hospital, First Hospital of Tsinghua University, Beijing, China
| | - Xiaofang Zhao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Fengwei Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Shuxin Yan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yalong Wang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Cuilian Du
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Xiuyu Cui
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Rena Li
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Claire Xi Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
35
|
Kakoty V, K C S, Tang RD, Yang CH, Dubey SK, Taliyan R. Fibroblast growth factor 21 and autophagy: A complex interplay in Parkinson disease. Biomed Pharmacother 2020; 127:110145. [PMID: 32361164 DOI: 10.1016/j.biopha.2020.110145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Parkinson disease (PD) is the second common neurodegenerative disorder after Alzheimer's disease (AD). The predominant pathological hallmark is progressive loss of dopaminergic (DA) neurones in the substantia nigra (SN) complicated by aggregation of misfolded forms of alpha-synuclein (α-syn). α-syn is a cytosolic synaptic protein localized in the presynaptic neuron under normal circumstances. What drives misfolding of this protein is largely unknown. However, recent studies suggest that autophagy might be an important risk factor for contributing towards PD. Autophagy is an evolutionarily conserved mechanism that causes the clearance or degradation of misfolded, mutated and damaged proteins, organelles etc. However, in an aging individual this process might deteriorate which could possibly lead to the accumulation of damaged proteins. Hence, autophagy modulation might provide some interesting cues for the treatment of PD. Additionally, Fibroblast growth factor 21 (FGF21) which is known for its role as a potent regulator of glucose and energy metabolism has also proved to be neuroprotective in various neurodegenerative conditions possibly via mediation of autophagy.
Collapse
Affiliation(s)
- Violina Kakoty
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| | - Sarathlal K C
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| | - Ruei-Dun Tang
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.
| | - Chih Hao Yang
- Department of Pharmacology, Taipei Medical University, Taipei, Taiwan.
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
36
|
Karim MR, Liao EE, Kim J, Meints J, Martinez HM, Pletnikova O, Troncoso JC, Lee MK. α-Synucleinopathy associated c-Abl activation causes p53-dependent autophagy impairment. Mol Neurodegener 2020; 15:27. [PMID: 32299471 PMCID: PMC7164361 DOI: 10.1186/s13024-020-00364-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Studies link c-Abl activation with the accumulation of pathogenic α-synuclein (αS) and neurodegeneration in Parkinson's disease (PD). Currently, c-Abl, a tyrosine kinase activated by cellular stress, is thought to promote αS pathology by either directly phosphorylating αS or by causing autophagy deficits. METHODS αS overexpressing transgenic (Tg) mice were used in this study. A53T Tg mice that express high levels of human mutant A53TαS under the control of prion protein promoter. Two different approaches were used in this study. Natural aging and seeding model of synucleinopathy. In seeding model, intracortical/intrastriatal (IC/IS) stereotaxic injection of toxic lysates was done using tissue lysates from end-stage symptomatic mice. In this study, nilotinib and pifithrin-α was used as a c-Abl and p53 inhibitor, respectively. Both Tg and non-transgenic (nTg) mice from each group were subjected to nilotinib (10 mg/kg) or vehicle (DMSO) treatment. Frozen brain tissues from PD and control human cases were analyzed. In vitro cells study was implied for c-Abl/p53 genetic manipulation to uncover signal transduction. RESULTS Herein, we show that the pathologic effects of c-Abl in PD also involve activation of p53, as c-Abl activation in a transgenic mouse model of α-synucleinopathy (TgA53T) and human PD cases are associated with the increased p53 activation. Significantly, active p53 in TgA53T neurons accumulates in the cytosol, which may lead to inhibition of autophagy. Thus, we hypothesized that c-Abl-dependent p53 activation contributes to autophagy impairment in α-synucleinopathy. In support of the hypothesis, we show that c-Abl activation is sufficient to inhibit autophagy in p53-dependent manner. Moreover, inhibition of either c-Abl, using nilotinib, or p53, using pifithrin-α, was sufficient to increase autophagic flux in neuronal cells by inducing phosphorylation of AMP-activated kinase (AMPK), ULK1 activation, and down-regulation of mTORC1 signaling. Finally, we show that pharmacological attenuation of c-Abl activity by nilotinib treatment in the TgA53T mouse model reduces activation of p53, stimulates autophagy, decreases accumulation αS pathology, and delays disease onset. CONCLUSION Collectively, our data show that c-Abl activation by α-synucleinopathy causes p53 dependent autophagy deficits and both c-Abl and p53 represent therapeutic target for PD.
Collapse
Affiliation(s)
- Md. Razaul Karim
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414 USA
| | - Elly E. Liao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414 USA
| | - Jaekwang Kim
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414 USA
- Present Address: Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, 41068 South Korea
| | - Joyce Meints
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414 USA
| | | | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Juan C. Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Michael K. Lee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55414 USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55414 USA
| |
Collapse
|
37
|
Na H, Gan Q, Mcparland L, Yang JB, Yao H, Tian H, Zhang Z, Qiu WQ. Characterization of the effects of calcitonin gene-related peptide receptor antagonist for Alzheimer's disease. Neuropharmacology 2020; 168:108017. [PMID: 32113968 DOI: 10.1016/j.neuropharm.2020.108017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 10/25/2022]
Abstract
Calcitonin gene-related peptide (cGRP) receptor antagonists effectively treat migraine through reducing neuroinflammation, vasoconstriction and possibly neruogenesis. Since neuroinflammation is also involved in the pathogenesis of Alzheimer's diseases (AD), we hypothesized and tested if a cGRP receptor antagonist, BIBN 4096 BS (BIBN), has effects on AD pathology. Using an AD mouse model, 5XFAD, with different ages, here we report that the BIBN treatment significantly increased the brain expression of PSD95, a postsynaptic protein, in both young and old AD mice. In parallel, BIBN improved learning and memory in the behavior test in the young, but not old, AD mice. The BIBN treatment reduced α-synuclein aggregation in both young and old AD mice. BIBN significantly decreased neuroinflammatory markers of ionized calcium binding adapter molecules-1 (Iba-1) and the p38 MAPK and NFκB signaling pathways in young, but not old, AD mice. The treatment also reduced the accumulation of amyloid-β (Aβ), and decreased tau phosphorylation through the pathway of CDK5/p25 in young mice only. Our study provides the evidence and suggests that the cGRP antagonists might be a therapeutic target to attenuate the pathological cascade and delay cognitive decline of AD in humans.
Collapse
Affiliation(s)
- Hana Na
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Qini Gan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Liam Mcparland
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Jack B Yang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Hongbo Yao
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Histology and Embriology, Qiqihaer Medical University, China
| | - Hua Tian
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Department of Histology and Embriology, Qiqihaer Medical University, China
| | - Zhengrong Zhang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Wei Qiao Qiu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA; Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
38
|
Kofoed RH, Betzer C, Ferreira N, Jensen PH. Glycogen synthase kinase 3 β activity is essential for Polo-like kinase 2- and Leucine-rich repeat kinase 2-mediated regulation of α-synuclein. Neurobiol Dis 2019; 136:104720. [PMID: 31881263 DOI: 10.1016/j.nbd.2019.104720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/19/2019] [Accepted: 12/22/2019] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is a currently incurable disease and the number of patients is expected to increase due to the extended human lifespan. α-Synuclein is a pathological hallmark of PD and variations and triplications of the gene encoding α-synuclein are strongly correlated with the risk of developing PD. Decreasing α-synuclein is therefore a promising therapeutic strategy for the treatment of PD. We have previously demonstrated that Polo-like kinase 2 (PLK-2) regulates α-synuclein protein levels by modulating the expression of α-synuclein mRNA. In this study, we further expand the knowledge on this pathway and show that it depends on down-stream modulation of Glycogen-synthase kinase 3 β (GSK-3β). We show that PLK-2 inhibition only increases α-synuclein levels in the presence of active GSK-3β in both cell lines and primary neuronal cultures. Furthermore, direct inhibition of GSK-3β decreases α-synuclein protein and mRNA levels in our cell model and overexpression of Leucine-rich repeat kinase 2, known to activate GSK-3β, increases α-synuclein levels. Finally, we show an increase in endogenous α-synuclein in primary neurons when increasing GSK-3β activity. Our findings demonstrate a not previously described role of endogenous GSK-3β activity in the PLK-2 mediated regulation of α-synuclein levels. This finding opens up the possibility of GSK-3β as a novel target for decreasing α-synuclein levels by the use of small molecule compounds, hereby serving as a disease modulating strategy.
Collapse
Affiliation(s)
- Rikke H Kofoed
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Cristine Betzer
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Nelson Ferreira
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| | - Poul Henning Jensen
- Aarhus University, DANDRITE - Danish Research Institute of Translational Neuroscience, Dept. of Biomedicine, Ole Worms Allé 8, DK-8000 Aarhus, Denmark.
| |
Collapse
|
39
|
Cuddy LK, Wani WY, Morella ML, Pitcairn C, Tsutsumi K, Fredriksen K, Justman CJ, Grammatopoulos TN, Belur NR, Zunke F, Subramanian A, Affaneh A, Lansbury PT, Mazzulli JR. Stress-Induced Cellular Clearance Is Mediated by the SNARE Protein ykt6 and Disrupted by α-Synuclein. Neuron 2019; 104:869-884.e11. [PMID: 31648898 PMCID: PMC6895429 DOI: 10.1016/j.neuron.2019.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 06/05/2019] [Accepted: 08/30/2019] [Indexed: 12/23/2022]
Abstract
Age-related neurodegenerative disorders are characterized by a slow, persistent accumulation of aggregated proteins. Although cells can elicit physiological responses to enhance cellular clearance and counteract accumulation, it is unclear how pathogenic proteins evade this process in disease. We find that Parkinson's disease α-synuclein perturbs the physiological response to lysosomal stress by impeding the SNARE protein ykt6. Cytosolic ykt6 is normally autoinhibited by a unique farnesyl-mediated regulatory mechanism; however, during lysosomal stress, it activates and redistributes into membranes to preferentially promote hydrolase trafficking and enhance cellular clearance. α-Synuclein aberrantly binds and deactivates ykt6 in patient-derived neurons, thereby disabling the lysosomal stress response and facilitating protein accumulation. Activating ykt6 by small-molecule farnesyltransferase inhibitors restores lysosomal activity and reduces α-synuclein in patient-derived neurons and mice. Our findings indicate that α-synuclein creates a permissive environment for aggregate persistence by inhibiting regulated cellular clearance and provide a therapeutic strategy to restore protein homeostasis by harnessing SNARE activity.
Collapse
Affiliation(s)
- Leah K Cuddy
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Willayat Y Wani
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Martino L Morella
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kotaro Tsutsumi
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristina Fredriksen
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Nandkishore R Belur
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Friederike Zunke
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | - Aarthi Subramanian
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Amira Affaneh
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Peter T Lansbury
- Lysosomal Therapeutics, Inc., Cambridge, MA 02139, USA; Department of Neurology, Harvard Medical School, Cambridge, MA 02139, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
40
|
Adu TS, Mabandla MV. Effects of bromelain on motor responses following intra-medial forebrain bundle 6-OHDA injection in rat model of parkinsonism. Metab Brain Dis 2019; 34:1557-1564. [PMID: 31332728 DOI: 10.1007/s11011-019-00462-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. The conventional therapeutic measures which include the widely used L-DOPA therapy, are inefficient especially when dopamine loss is severe, and the physical symptoms are full blown. Since neuroinflammation is a core feature of PD, this raised the question of whether early treatment with an anti-inflammatory agent may provide a more efficient intervention for PD. In this study, we investigated the effect of bromelain (an anti-inflammatory drug) on motor responses and dopamine levels in a parkinsonian rat model. Male Sprague-Dawley rats were lesioned stereotaxically with the neurotoxin 6-OHDA. The anti-inflammatory agent, bromelain (40 mg/kg i.p) was used to treat a subset of the rats prior to or 24 h post 6-OHDA lesion. Locomotor activity was assessed after 6-OHDA injection, using the cylinder and step tests. The cortical and striatal concentrations of dopamine were also measured. 6-OHDA injection resulted in marked motor impairment which was prevented by pretreatment with bromelain prior to the lesion. Also, the injection of 6-OHDA into the medial forebrain bundle resulted in a significant reduction in dopamine concentration in the striatum and PFC. Bromelain treatment did not alter the suppression of cortical and striatal dopamine levels. Pre-treatment with bromelain reduced the motor dysfunction in the parkinsonian rat model of PD. The efficacy of treatment with bromelain does not appear to be via preservation of the dopaminergic system. The efficacy of bromelain in 6-OHDA injected rats still remains unclear.
Collapse
Affiliation(s)
- Temitope Samson Adu
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| |
Collapse
|
41
|
Garg A, Pal D. Exploring the use of molecular dynamics in assessing protein variants for phenotypic alterations. Hum Mutat 2019; 40:1424-1435. [PMID: 31106920 PMCID: PMC7318789 DOI: 10.1002/humu.23800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/09/2019] [Accepted: 05/12/2019] [Indexed: 12/19/2022]
Abstract
With the advent of rapid sequencing technologies, making sense of all the genomic variations that we see among us has been a major challenge. A plethora of algorithms and methods exist that try to address genome interpretation through genotype-phenotype linkage analysis or evaluating the loss of function/stability mutations in protein. Critical Assessment of Genome Interpretation (CAGI) offers an exceptional platform to blind-test all such algorithms and methods to assess their true ability. We take advantage of this opportunity to explore the use of molecular dynamics simulation as a tool to assess alteration of phenotype, loss of protein function, interaction, and stability. The results show that coarse-grained dynamics based protein flexibility analysis on 34 CHEK2 and 1719 CALM1 single mutants perform reasonably well for class-based predictions for phenotype alteration and two-thirds of the predicted scores return a correlation coefficient of 0.6 or more. When all-atom dynamics is used to predict altered stability due to mutations for Frataxin protein (8 cases), the predictions are comparable to the state-of-the-art methods. The competitive performance of our straightforward approach to phenotype interpretation contrasts with heavily trained machine learning approaches, and open new avenues to rationally improve genome interpretation.
Collapse
Affiliation(s)
- Aditi Garg
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, India
| | - Debnath Pal
- Department of Computational and Data Sciences, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
42
|
Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, Jost W, Krüger R, Müller T, Reichmann H, Rieß O, Storch A, Strobel S, van Eimeren T, Völker HU, Winkler J, Winklhofer KF, Wüllner U, Zunke F, Monoranu CM. α-Synuclein in Parkinson's disease: causal or bystander? J Neural Transm (Vienna) 2019; 126:815-840. [PMID: 31240402 DOI: 10.1007/s00702-019-02025-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) comprises a spectrum of disorders with differing subtypes, the vast majority of which share Lewy bodies (LB) as a characteristic pathological hallmark. The process(es) underlying LB generation and its causal trigger molecules are not yet fully understood. α-Synuclein (α-syn) is a major component of LB and SNCA gene missense mutations or duplications/triplications are causal for rare hereditary forms of PD. As typical sporadic PD is associated with LB pathology, a factor of major importance is the study of the α-syn protein and its pathology. α-Syn pathology is, however, also evident in multiple system atrophy (MSA) and Lewy body disease (LBD), making it non-specific for PD. In addition, there is an overlap of these α-synucleinopathies with other protein-misfolding diseases. It has been proven that α-syn, phosphorylated tau protein (pτ), amyloid beta (Aβ) and other proteins show synergistic effects in the underlying pathogenic mechanisms. Multiple cell death mechanisms can induce pathological protein-cascades, but this can also be a reverse process. This holds true for the early phases of the disease process and especially for the progression of PD. In conclusion, while rare SNCA gene mutations are causal for a minority of familial PD patients, in sporadic PD (where common SNCA polymorphisms are the most consistent genetic risk factor across populations worldwide, accounting for 95% of PD patients) α-syn pathology is an important feature. Conversely, with regard to the etiopathogenesis of α-synucleinopathies PD, MSA and LBD, α-syn is rather a bystander contributing to multiple neurodegenerative processes, which overlap in their composition and individual strength. Therapeutic developments aiming to impact on α-syn pathology should take this fact into consideration.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany. .,Department of Psychiatry, University of South Denmark, Odense, Denmark.
| | - Daniela Berg
- Department of Neurology, UKHS, Christian-Albrechts-Universität, Campus Kiel, Kiel, Germany
| | - Nicolas Casadei
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Fubo Cheng
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Christian Dresel
- Department of Neurology, Center for Movement Disorders, Neuroimaging Center Mainz, Clinical Neurophysiology, Forschungszentrum Translationale Neurowissenschaften (FTN), Rhein-Main-Neuronetz, Mainz, Germany
| | | | - Rejko Krüger
- Clinical and Experimental Neuroscience, LCSB (Luxembourg Centre for Systems, Biomedicine), University of Luxembourg, Esch-sur-Alzette and Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.,National Center for Excellence in Research, Parkinson's disease (NCER-PD), Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Thomas Müller
- Department of Neurology, Alexianer St. Joseph Berlin-Weißensee, Berlin, Germany
| | - Heinz Reichmann
- Department of Neurology, University of Dresden, Dresden, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, Tübingen, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Sabrina Strobel
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Thilo van Eimeren
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | | | - Jürgen Winkler
- Department Kopfkliniken, Molekulare Neurologie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Konstanze F Winklhofer
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Ullrich Wüllner
- Department of Neurology, University of Bonn, German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Friederike Zunke
- Department of Biochemistry, Medical Faculty, University of Kiel, Kiel, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
43
|
Luo Z, Ahlers-Dannen KE, Spicer MM, Yang J, Alberico S, Stevens HE, Narayanan NS, Fisher RA. Age-dependent nigral dopaminergic neurodegeneration and α-synuclein accumulation in RGS6-deficient mice. JCI Insight 2019; 5:126769. [PMID: 31120439 DOI: 10.1172/jci.insight.126769] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Parkinson's is primarily a non-familial, age-related disorder caused by α-synuclein accumulation and the progressive loss of dopamine neurons in the substantia nigra pars compacta (SNc). G protein-coupled receptor (GPCR)-cAMP signaling has been linked to a reduction in human Parkinson's incidence and α-synuclein expression. Neuronal cAMP levels are controlled by GPCRs coupled to Gs or Gi/o, which increase or decrease cAMP, respectively. Regulator of G protein signaling 6 (RGS6) powerfully inhibits Gi/o signaling. Therefore, we hypothesized that RGS6 suppresses D2 autoreceptor- Gi/o signaling in SNc dopamine neurons promoting neuronal survival and reducing α-synuclein expression. Here we provide novel evidence that RGS6 critically suppresses late-age-onset SNc dopamine neuron loss and α-synuclein accumulation. RGS6 is restrictively expressed in human SNc dopamine neurons and, despite their loss in Parkinson's, all surviving neurons express RGS6. RGS6-/- mice exhibit hyperactive D2 autoreceptors with reduced cAMP signaling in SNc dopamine neurons. Importantly, RGS6-/- mice recapitulate key sporadic Parkinson's hallmarks, including: SNc dopamine neuron loss, reduced nigrostriatal dopamine, motor deficits, and α-synuclein accumulation. To our knowledge, Rgs6 is the only gene whose loss phenocopies these features of human Parkinson's. Therefore, RGS6 is a key regulator of D2R-Gi/o signaling in SNc dopamine neurons, protecting against Parkinson's neurodegeneration and α-synuclein accumulation.
Collapse
Affiliation(s)
- Zili Luo
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Katelin E Ahlers-Dannen
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mackenzie M Spicer
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program of Molecular Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jianqi Yang
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nandakumar S Narayanan
- Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Rory A Fisher
- Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
44
|
Sharma N, Rao SP, Kalivendi SV. The deglycase activity of DJ-1 mitigates α-synuclein glycation and aggregation in dopaminergic cells: Role of oxidative stress mediated downregulation of DJ-1 in Parkinson's disease. Free Radic Biol Med 2019; 135:28-37. [PMID: 30796974 DOI: 10.1016/j.freeradbiomed.2019.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with the degeneration of dopamine neurons of the substantia nigra pars compacta (SNpc) and the presence of intra-neuronal aggregates of α-synuclein and its post-translational products. Based on emerging reports on the association between glycated α-synuclein and PD; and the newly identified deglycase activity of DJ-1, we sought to find the relevance of deglycase activity of DJ-1 on glycation of α-synuclein and its plausible role in PD. Our results demonstrate that DJ-1 has a higher affinity towards the substrate methylglyoxal (MGO) (Km = 900 mM) as compared to its familial mutant, L166P (Km = 1900 mM). Also, CML α-synuclein (CML-syn) served as a substrate for the deglycase activity of DJ-1. Treatment of cells with Parkinsonian mimetic, 1-methyl-4-phenylpyridinium ion (MPP+); oxidants, such as H2O2 and methylglyoxal (MGO) lead to a dose-dependent decrease in the levels of DJ-1 with a concomitant increase in CML-syn. Also, MGO induced cytosolic α-synuclein aggregates in cells which stained positive with the anti-CML antibody. Further, unilateral stereotaxic administration of MGO into the SNpc of mice induced α-synuclein aggregates and CML-syn with a concomitant reduction in the number of TH positive neurons, protein levels of TH and DJ-1 at the site of injection. Interestingly, overexpression of DJ-1 enhanced the clearance of preformed CML-syn in cells, mitigated MGO induced CML-syn and intracellular α-synuclein aggregates. Overall, the findings of our present study demonstrate that DJ-1 plays a pivotal role in the glycation and aggregation of α-synuclein. Reduced DJ-1 activity due to mutations or oxidative stress may lead to the accumulation of glycated α-synuclein and its aggregates.
Collapse
Affiliation(s)
- Neelam Sharma
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Swetha Pavani Rao
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Shasi V Kalivendi
- Biochemistry Laboratory, Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad, 500007, T.S., India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh, 201 002, India.
| |
Collapse
|
45
|
Vargas JY, Grudina C, Zurzolo C. The prion-like spreading of α-synuclein: From in vitro to in vivo models of Parkinson's disease. Ageing Res Rev 2019; 50:89-101. [PMID: 30690184 DOI: 10.1016/j.arr.2019.01.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/06/2019] [Accepted: 01/24/2019] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. PD is characterized by the loss of dopaminergic neurons, primarily in brain regions that control motor functions, thereby leading to motor impairments in the patients. Pathological aggregated forms of the synaptic protein, α-synuclein (α-syn), are involved in the generation and progression of PD. In PD brains, α-syn accumulates inside neurons and propagates from cell-to-cell in a prion-like manner. In this review, we discuss the in vitro and in vivo models used to study the prion-like properties of α-syn and related findings. In particular, we focus on the different mechanisms of α-syn spreading, which could be relevant for the development of alternative therapeutic approaches for PD treatment.
Collapse
|
46
|
Pitcairn C, Wani WY, Mazzulli JR. Dysregulation of the autophagic-lysosomal pathway in Gaucher and Parkinson's disease. Neurobiol Dis 2019; 122:72-82. [PMID: 29550539 PMCID: PMC6138580 DOI: 10.1016/j.nbd.2018.03.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 01/06/2023] Open
Abstract
The finding that mutations in the Gaucher's Disease (GD) gene GBA1 are a strong risk factor for Parkinson's Disease (PD) has allowed for unique insights into pathophysiology centered on disruption of the autophagic-lysosomal pathway. Protein aggregations in the form of Lewy bodies and the effects of canonical PD mutations that converge on the lysosomal degradation system suggest that neurodegeneration in PD is mediated by dysregulation of protein homeostasis. The well-characterized clinical and pathological relationship between PD and the lysosomal storage disorder GD emphasizes the importance of dysregulated protein metabolism in neurodegeneration, and one intriguing piece of this relationship is a shared phenotype of autophagic-lysosomal dysfunction in both diseases. Translational application of these findings may be accelerated by the use of midbrain dopamine neuronal models derived from induced pluripotent stem cells (iPSCs) that recapitulate several pathological features of GD and PD. In this review, we discuss evidence linking autophagic dysfunction to the pathophysiology of GD and GBA1-linked parkinsonism and focus more specifically on studies performed recently in iPSC-derived neurons.
Collapse
Affiliation(s)
- Caleb Pitcairn
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Willayat Yousuf Wani
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph R Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
47
|
Angelova DM, Jones HBL, Brown DR. Levels of α- and β-synuclein regulate cellular susceptibility to toxicity from α-synuclein oligomers. FASEB J 2018; 32:995-1006. [PMID: 29054856 DOI: 10.1096/fj.201700675r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
α-Synuclein (α-syn) is associated with a range of diseases, including Parkinson disease. In disease, α-syn is known to aggregate and has the potential to be neurotoxic. The association between copper and α-syn results in the formation of stellate toxic oligomers that are highly toxic to cultured neurons. We further investigated the mechanism of toxicity of α-syn oligomers. Cells that overexpress α-syn showed increased susceptibility to the toxicity of the oligomers, while those that overexpressed β-syn showed increased resistance to the toxic oligomers. Elevated α-syn expression caused an increase in expression of the transcription factor Forkhead box O3a (FoxO3a). Inhibition of FoxO3a activity by the overexpression of DNA binding domain of FoxO3a resulted in significant protection from α-syn oligomer toxicity. Increased FoxO3a expression in cells was shown to be caused by increased ferrireductase activity and Fe(II) levels. These results suggest that α-syn increases FoxO3a expression as a result of its intrinsic ferrireductase activity. The results also suggest that FoxO3a plays a pivotal role in the toxicity of both Fe(II) and toxic α-syn species to neuronal cells.-Angelova, D. M., Jones, H. B. L., Brown, D. R. Levels of α- and β-synuclein regulate cellular susceptibility to toxicity from α-synuclein oligomers.
Collapse
Affiliation(s)
- Dafina M Angelova
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Hannah B L Jones
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - David R Brown
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
48
|
Kim S, Lim J, Bang Y, Moon J, Kwon MS, Hong JT, Jeon J, Seo H, Choi HJ. Alpha-Synuclein Suppresses Retinoic Acid-Induced Neuronal Differentiation by Targeting the Glycogen Synthase Kinase-3β/β-Catenin Signaling Pathway. Mol Neurobiol 2018; 55:1607-1619. [PMID: 28190238 DOI: 10.1007/s12035-016-0370-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/28/2016] [Indexed: 11/27/2022]
Abstract
Alpha-synuclein (α-SYN) is expressed during neuronal development and is mainly involved in the modulation of synaptic transmission. Missense mutations and amplifications of this gene have been associated with the pathogenesis of Parkinson's disease. Here, we evaluate whether α-SYN plays a detrimental role in the phenotypic and morphological regulation of neurons. We also identify the underlying mechanisms of this process in all-trans-retinoic acid (RA)-induced differentiated SH-SY5Y cells, which represents dopaminergic (DAergic) phenotype. Our results indicate that overexpression of wild-type or mutant A53T α-SYN attenuated the RA-induced upregulation of tyrosine hydroxylase and dopamine transporter as well as neurite outgrowth in SH-SY5Y cells. In addition, GSK-3β inactivation and downstream β-catenin stabilization were associated with RA-induced differentiation, which was attenuated by α-SYN. Moreover, protein phosphatase 2A was positively regulated by α-SYN and was implicated in the α-SYN-mediated interference with RA signaling. The results obtained from SH-SY5Y cells were verified in primary cultures of mesencephalic DAergic neurons from A53T α-SYN transgenic mice, which represent high levels of α-SYN and protein phosphatase 2A in the midbrain. The number and length of neurites in tyrosine hydroxylase-positive as well as Tau-positive cells from A53T α-SYN transgenic mice were significantly lower than those in littermate controls. The current results provide novel insight into the role of α-SYN in the regulation of neuronal differentiation, including DAergic neurons. Identifying the signaling pathway involved in the α-SYN-mediated dysregulation of neuronal differentiation could lead to a better understanding of the developmental processes underlying α-SYN-related pathologies and facilitate the discovery of specifically targeted therapeutics.
Collapse
Affiliation(s)
- Sasuk Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - Juhee Lim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - Yeojin Bang
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea
| | - Jisook Moon
- Department of Bioengineering, College of Life Science, CHA University, Seongnam, 13488, Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, School of Medicine, CHA University, Seongnam, 13488, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jeha Jeon
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyemyung Seo
- Department of Molecular and Life Sciences, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
49
|
Colla E, Panattoni G, Ricci A, Rizzi C, Rota L, Carucci N, Valvano V, Gobbo F, Capsoni S, Lee MK, Cattaneo A. Toxic properties of microsome-associated alpha-synuclein species in mouse primary neurons. Neurobiol Dis 2017; 111:36-47. [PMID: 29246724 DOI: 10.1016/j.nbd.2017.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 12/15/2022] Open
Abstract
α-synuclein (αS) is a small protein that self-aggregates into α-helical oligomer species and subsequently into larger insoluble amyloid fibrils that accumulate in intraneuronal inclusions during the development of Parkinson's disease. Toxicity of αS oligomers and fibrils has been long debated and more recent data are suggesting that both species can induce neurodegeneration. However while most of these data are based on differences in structure between oligomer and aggregates, often preassembled in vitro, the in vivo situation might be more complex and subcellular locations where αS species accumulate, rather than their conformation, might contribute to enhanced toxicity. In line with this observation, we have shown that αS oligomers and aggregates are associated with the endoplasmic reticulum/microsomes (ER/M) membrane in vivo and how accumulation of soluble αS oligomers at the ER/M level precedes neuronal degeneration in a mouse model of α-synucleinopathies. In this paper we took a further step, investigating the biochemical and functional features of αS species associated with the ER/M membrane. We found that by comparison with non-microsomal associated αS (P10), the ER/M-associated αS pool is a unique population of oligomers and aggregates with specific biochemical traits such as increased aggregation, N- and C-terminal truncations and phosphorylation at serine 129. Moreover, when administered to murine primary neurons, ER/M-associated αS species isolated from diseased A53T human αS transgenic mice induced neuronal changes in a time- and dose-dependent manner. In fact the addition of small amounts of ER/M-associated αS species from diseased mice to primary cultures induced the formation of beads-like structures or strings of fibrous αS aggregates along the neurites, occasionally covering the entire process or localizing at the soma level. By comparison treatment with P10 fractions from the same diseased mice resulted in the formation of scarce and small puncta only when administered at high amount. Moreover, increasing the amount of P100/M fractions obtained from diseased and, more surprisingly, from presymptomatic mice induced a significant level of neuronal death that was prevented when neurons were treated with ER/M fractions immunodepleted of αS high molecular weight (HMW) species. These data provide the first evidence of the existence of two different populations of αS HMW species in vivo, putting the spotlight on the association to ER/M membrane as a necessary step for the acquisition of αS toxic features.
Collapse
Affiliation(s)
- Emanuela Colla
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy.
| | | | - Alessio Ricci
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | - Caterina Rizzi
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | - Lucia Rota
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | - Nicola Carucci
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | | | | | - Simona Capsoni
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | - Michael K Lee
- Department of Neuroscience, University of Minnesota, United States; Institute for Translational Neuroscience, University of Minnesota, United States
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy; Neurotrophins and Neurodegenerative Diseases Laboratory, Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| |
Collapse
|
50
|
Schapansky J, Khasnavis S, DeAndrade MP, Nardozzi JD, Falkson SR, Boyd JD, Sanderson JB, Bartels T, Melrose HL, LaVoie MJ. Familial knockin mutation of LRRK2 causes lysosomal dysfunction and accumulation of endogenous insoluble α-synuclein in neurons. Neurobiol Dis 2017; 111:26-35. [PMID: 29246723 DOI: 10.1016/j.nbd.2017.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/05/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023] Open
Abstract
Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation. Data from LRRK2 null model organisms and LRRK2-inhibitor treated animals support a physiological role for LRRK2 in regulating lysosome function. Since idiopathic and LRRK2-linked PD are associated with the intraneuronal accumulation of protein aggregates, a series of critical questions emerge. First, how do pathogenic mutations that increase LRRK2 kinase activity affect lysosome biology in neurons? Second, are mutation-induced changes in lysosome function sufficient to alter the metabolism of α-synuclein? Lastly, are changes caused by pathogenic mutation sensitive to reversal with LRRK2 kinase inhibitors? Here, we report that mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons. These changes were associated with an accumulation of detergent-insoluble α-synuclein and increased neuronal release of α-synuclein and were reversed by pharmacologic inhibition of LRRK2 kinase activity. These data demonstrate a critical and disease-relevant influence of native neuronal LRRK2 kinase activity on lysosome function and α-synuclein homeostasis. Furthermore, they also suggest that lysosome dysfunction, altered neuronal α-synuclein metabolism, and the insidious accumulation of aggregated protein over decades may contribute to pathogenesis in this late-onset form of familial PD.
Collapse
Affiliation(s)
- Jason Schapansky
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Saurabh Khasnavis
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Mark P DeAndrade
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Jonathan D Nardozzi
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Samuel R Falkson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Justin D Boyd
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - John B Sanderson
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Tim Bartels
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Heather L Melrose
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL 32224, United States
| | - Matthew J LaVoie
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|