1
|
Lv X, Yang C, Li X, Liu Y, Yang Y, Jin T, Chen Z, Jia J, Wang M, Li L. Ferroptosis and hearing loss: from molecular mechanisms to therapeutic interventions. J Enzyme Inhib Med Chem 2025; 40:2468853. [PMID: 39992186 PMCID: PMC11852237 DOI: 10.1080/14756366.2025.2468853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025] Open
Abstract
Hearing loss profoundly affects social engagement, mental health, cognition, and brain development, with sensorineural hearing loss (SNHL) being a major concern. Linked to ototoxic medications, ageing, and noise exposure, SNHL presents significant treatment challenges, highlighting the need for effective prevention and regeneration strategies. Ferroptosis, a distinct form of cell death featuring iron-dependent lipid peroxidation, has garnered interest due to its potential role in cancer, ageing, and neuronal degeneration, especially hearing loss. The emerging role of ferroptosis as a crucial mediator in SNHL suggests that it may offer a novel therapeutic target for otoprotection. This review aims to summarise the intricate connection between ferroptosis and SNHL, offering a fresh perspective for exploring targeted therapeutic strategies that could potentially mitigate cochlear cells damage and enhance the quality of life for individuals with hearing impairments.
Collapse
Affiliation(s)
- Xingyi Lv
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Chenyi Yang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Xianying Li
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yun Liu
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yu Yang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Tongyan Jin
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Zhijian Chen
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Jinjing Jia
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Min Wang
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| | - Li Li
- Department of Physiology, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
2
|
Zhang S, Xiao H, Lin Y, Tang X, Tong W, Shao B, Li H, Xu L, Ding X, Chai R. Targeting Programmed Cell Death in Acquired Sensorineural Hearing Loss: Ferroptosis, Necroptosis, and Pyroptosis. Neurosci Bull 2025:10.1007/s12264-025-01370-y. [PMID: 40261527 DOI: 10.1007/s12264-025-01370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/06/2024] [Indexed: 04/24/2025] Open
Abstract
Sensorineural hearing loss (SNHL), the most commonly-occurring form of hearing loss, is caused mainly by injury to or the loss of hair cells and spiral ganglion neurons in the cochlea. Numerous environmental and physiological factors have been shown to cause acquired SNHL, such as ototoxic drugs, noise exposure, aging, infections, and diseases. Several programmed cell death (PCD) pathways have been reported to be involved in SNHL, especially some novel PCD pathways that have only recently been reported, such as ferroptosis, necroptosis, and pyroptosis. Here we summarize these PCD pathways and their roles and mechanisms in SNHL, aiming to provide new insights and potential therapeutic strategies for SNHL by targeting these PCD pathways.
Collapse
Affiliation(s)
- Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Buwei Shao
- School of Medicine, Faculty of Medical & Health Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - He Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China.
| | - Xiaoqiong Ding
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology-Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Institute for Stem Cells and Regeneration, Chinese Academy of Science, Beijing, 100081, China.
| |
Collapse
|
3
|
Cheng H, Wu Y, Yang J. Vernonia amygdalina displays otoprotective effects via antioxidant pathway on cisplatin-induced hair cell loss in zebrafish. Arch Toxicol 2025:10.1007/s00204-025-04038-8. [PMID: 40159305 DOI: 10.1007/s00204-025-04038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Iatrogenic hearing loss is defined as irreversible cochlear hair cell injury resulting from medical intervention, such as cisplatin, which leads to the overproduction of reactive oxygen species (ROS). Vernonia amygdalina (VA), a medicinal herb, has recently been found to exerted pharmacotherapeutic potential due to its antioxidant activity. In the present study, we used a transgenic zebrafish line (pvalb3b: TagGFP) as an in vivo screening platform for discovering compounds or agents with potential otoprotective ability and a combination of behavioral methods for assessing the physiological outcome. The 1 h of 250 μM cisplatin treatment induced severs injury to lateral-line hair cell that triggered a drastic cell death response. Five readouts were conducted as the parameters of VA ultrasonic water extract (VAUWE) protection against cisplatin ototoxicity: (1) radical-scavenging ability, (2) hair cell viability, (3) mechanotransduction (MET) channel functionality, (4) apoptosis, (5) antioxidant defense, and (6) locomotor behavior. Our results demonstrated that 1-h pretreatment of VAUWE with non-toxic concentrations (1.0 mg/ml and 2.0 mg/ml) increases hair cell viability by blocking cisplatin entry through the MET channel and subsequently ameliorates apoptotic cell death. Regarding molecular mechanisms, VAUWE also modulates the expression of antioxidant enzyme gene, which collectively contributes to restoring impaired swimming behavior induced by cisplatin ototoxicity. The findings of the present study might highlight the in vivo protective role of VAUWE on modulating cisplatin-induced hair cell damage in transgenic zebrafish, which further informs preclinical foundations for developing potential otoprotectants against iatrogenic hearing loss.
Collapse
Affiliation(s)
- Hsinlin Cheng
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Yuxuan Wu
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Jiannjou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung, 402, Taiwan.
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan.
| |
Collapse
|
4
|
Orasan A, Negru MC, Morgovan AI, Fleser RC, Sandu D, Sitaru AM, Motofelea AC, Balica NC. Strategies to Mitigate Cisplatin-Induced Ototoxicity: A Literature Review of Protective Agents, Mechanisms, and Clinical Gaps. Audiol Res 2025; 15:22. [PMID: 40126270 PMCID: PMC11932224 DOI: 10.3390/audiolres15020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Cisplatin, a widely used chemotherapeutic agent, is associated with significant ototoxicity, leading to progressive and irreversible sensorineural hearing loss in up to 93% of patients. Cisplatin generates reactive oxygen species (ROS) in the cochlea, activating apoptotic and necroptotic pathways that result in hair cell death. Inflammatory processes and nitrative stress also contribute to cochlear damage. METHODS This literature review was conducted to explore the mechanisms underlying cisplatin-induced ototoxicity and evaluate protective strategies, including both current and emerging approaches. A structured search was performed in multiple scientific databases, including PubMed and ScienceDirect, for articles published up to November 2024. RESULTS Current otoprotective strategies include systemic interventions such as antioxidants, anti-inflammatory agents, and apoptosis inhibitors, as well as localized delivery methods like intratympanic injection and nanoparticle-based systems. However, these approaches have limitations, including potential interference with cisplatin's antitumor efficacy and systemic side effects. Emerging strategies focus on genetic and biomarker-based risk stratification, novel otoprotective agents targeting alternative pathways, and combination therapies. Repurposed drugs like pravastatin also show promise in reducing cisplatin-induced ototoxicity. CONCLUSIONS Despite these advancements, significant research gaps remain in translating preclinical findings to clinical applications and developing selective otoprotective agents that do not compromise cisplatin's efficacy. This review examines the mechanisms of cisplatin-induced ototoxicity, current otoprotective strategies, and emerging approaches to mitigate this adverse effect.
Collapse
Affiliation(s)
- Alexandru Orasan
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| | - Mihaela-Cristina Negru
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| | - Anda Ioana Morgovan
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| | - Razvan Claudiu Fleser
- Otorhinolaryngology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania;
| | - Daniela Sandu
- OncoHelp Cancer Centre, Radiation Oncology Department, “Victor Babes” University of Medicine and Pharmacy, Str. Rusu Sireanu nr. 34 Timisoara, 300041 Timisoara, Romania;
| | - Adrian Mihail Sitaru
- Department of Pediatric Surgery, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania;
| | - Alexandru-Catalin Motofelea
- Center for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Nicolae Constantin Balica
- ENT Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (A.O.); (A.I.M.); (N.C.B.)
| |
Collapse
|
5
|
Zhang W, Teng H, Zhao T, Eglitis RI, Wang X, Yu Z, Qu S, Wang H, Zhao Y, Fan B, Liu S, Zhao Y. The chiisanoside derivatives present in the leaves of Acanthopanax sessiliflorus activate autophagy through the LRP6/GSK3β axis and thereafter inhibit oxidative stress, thereby counteracting cisplatin-induced ototoxicity. Front Pharmacol 2025; 15:1518810. [PMID: 39881873 PMCID: PMC11774919 DOI: 10.3389/fphar.2024.1518810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/27/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Cisplatin is extensively employed in the treatment of multiple solid malignant tumors. Nevertheless, side effects such as cisplatin-induced ototoxicity (CIO) pose obstacles to tumor therapy.The important natural product chiisanoside from Acanthopanax sessiliflorus has abundant activity against CIO. Methods In this study, 26 chiisanoside derivatives were screened, and compound 19 demonstrated significant protective activity against CIO damage. A cisplatin-induced HEI-OC1 cell injury model and a mouse ototoxicity model were established. The regulatory effects were revealed through transcriptome sequencing, and the protein expression levels were analyzed by molecular docking, ELISA, Western blotting, and immunofluorescence. Results It was found that compound 19 inhibited cell apoptosis, alleviated abnormal hearing and spiral ganglion damage. Transcriptome sequencing revealed its regulatory effects. Compound 19 treatment increased autophagy levels, thereby alleviating mitochondrial dysfunction and reducing the accumulation of reactive oxygen species (ROS).In-depth studies have found that the autophagy inhibitor 3-methyladenine (3-MA) weakens the regulatory effect of compound 19 on autophagy and inhibits the clearance of damaged cells, resulting in oxidative stress damage, apoptosis and necrosis. By knocking down LRP6, it was found that the protective effect of compound 19 was eliminated, the autophagy level was significantly reduced, oxidative stress and ROS production were induced, and apoptosis after cisplatin exposure was promoted. Finally, the inhibitor LiCl was used to suppress the expression of GSK3β. It was found that inhibiting GSK3β could protect cells from cisplatin-induced damage by activating autophagy. Discussion These findings suggest that compound 19 is capable of preventing ototoxicity by activating autophagy via the LRP6/GSK3β axis and consequently inhibiting oxidative stress, offering a new approach for treating CIO and sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenxin Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Tianyi Zhao
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
- Institute of Changbai Mountain Biology Germplasm Resources, Tonghua Normal University, Tonghua, Jilin, China
| | | | - Xv Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Zhengxuan Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Shurong Qu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Haijing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Yaru Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Bowen Fan
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Jilin Agricultural University, Changchun, Jilin, China
| |
Collapse
|
6
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
7
|
Wu P, Barros-Becker F, Ogelman R, Camci ED, Linbo TH, Simon JA, Rubel EW, Raible DW. Multiple mechanisms of aminoglycoside ototoxicity are distinguished by subcellular localization of action. Front Neurol 2024; 15:1480435. [PMID: 39610699 PMCID: PMC11602426 DOI: 10.3389/fneur.2024.1480435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
Mechanosensory hair cells of the inner ears and lateral line of vertebrates display heightened vulnerability to environmental insult, with damage resulting in hearing and balance disorders. An important example is hair cell loss due to exposure to toxic agents including therapeutic drugs such as the aminoglycoside antibiotics neomycin and gentamicin and antineoplastic agents. We describe two distinct cellular pathways for aminoglycoside-induced hair cell death in zebrafish lateral line hair cells. Neomycin exposure results in death from acute exposure with most cells dying within 1 h of exposure. By contrast, exposure to gentamicin results primarily in delayed hair cell death, taking up to 24 h for maximal effect. Washout experiments demonstrate that delayed death does not require continuous exposure, demonstrating two mechanisms where downstream responses differ in their timing. Acute damage is associated with mitochondrial calcium fluxes and can be alleviated by the mitochondrially-targeted antioxidant mitoTEMPO, while delayed death is independent of these factors. Conversely delayed death is associated with lysosomal accumulation and is reduced by altering endolysosomal function, while acute death is not sensitive to lysosomal manipulations. These experiments reveal the complexity of responses of hair cells to closely related compounds, suggesting that intervention focusing on early events rather than specific death pathways may be a successful therapeutic strategy.
Collapse
Affiliation(s)
- Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Francisco Barros-Becker
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
| | - Roberto Ogelman
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Esra D. Camci
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
| | - Tor H. Linbo
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, United States
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
| | - Julian A. Simon
- Clinical Research, Human Biology, and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Edwin W. Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
| | - David W. Raible
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, United States
- Department of Neurobiology and Biophysics, University of Washington, Seattle, WA, United States
- Department of Otolaryngology-Head and Neck Surgery, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Yang H, Zong T, Liu J, Wang D, Gong K, Yin H, Zhang W, Xu T, Yang R. Rutin Attenuates Gentamycin-induced Hair Cell Injury in the Zebrafish Lateral Line via Suppressing STAT1. Mol Neurobiol 2024; 61:9548-9561. [PMID: 38653908 DOI: 10.1007/s12035-024-04179-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Aminoglycoside antibiotics, including gentamicin (GM), induce delayed ototoxic effects such as hearing loss after prolonged use, which results from the death of hair cells. However, the mechanisms underlying the ototoxicity of aminoglycosides warrant further investigation, and there are currently no effective drugs in the clinical setting. Herein, the therapeutic effect of the flavonoid compound rutin against the ototoxic effects of GM in zebrafish hair cells was investigated. Animals incubated with rutin (100-400 µmol/L) were protected against the pernicious effects of GM (200 µmol/L). We found that rutin improves hearing behavior in zebrafish, and rutin was effective in reducing the number of Tunel-positive cells in the neuromasts of the zebrafish lateral line and promoting cell proliferation after exposure to GM. Subsequently, rutin exerted a protective effect against GM-induced cell death in HEI-OC1 cells and could limit the production of cytosolic reactive oxygen species (ROS) and diminish the percentage of apoptotic cells. Additionally, the results of the proteomic analysis revealed that rutin could effectively inhibit the expression of necroptosis and apoptosis related genes. Meanwhile, molecular docking analysis revealed a high linking activity between the molecular docking of rutin and STAT1 proteins. The protection of zebrafish hair cells or HEI-OC1 cells from GM-induced ototoxicity by rutin was attenuated by the introduction of STAT1 activator. Finally, we demonstrated that rutin significantly improves the bacteriostatic effect of GM by in vitro experiments, emphasising its clinical application value. In summary, these results collectively unravel a novel therapeutic role for rutin as an otoprotective drug against the adverse effects of GM.
Collapse
Affiliation(s)
- Huiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
| | - Tao Zong
- Affiliated Qingdao Third People's Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, 266021, China
| | - Jing Liu
- Affiliated Qingdao Third People's Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, 266021, China
| | - Dengxu Wang
- Department of Physiology and Pathophysiology, Medical school of Qingdao University, Qingdao, China
| | - Ke Gong
- The First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haiyan Yin
- Jining Key Laboratory of Pharmacology, School of Basic Medical Science, Jining Medical University, No. 133, Hehua Road, Jining, 272067, Shandong, China
| | - Weiwei Zhang
- Department of Otolaryngology, Tengzhou Central People's Hospital, Tengzhou, Shandong, China
| | - Tong Xu
- Affiliated Qingdao Third People's Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, 266021, China.
| | - Rong Yang
- Affiliated Qingdao Third People's Hospital, Department of Otorhinolaryngology Head and Neck, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
9
|
Lin YC, Ho YJ, Lin YY, Liao AH, Kuo CY, Chen HK, Chen HC, Wang CH, Shih CP. Notoginsenoside R1 Attenuates Cisplatin-Induced Ototoxicity by Inducing Heme Oxygenase-1 Expression and Suppressing Oxidative Stress. Int J Mol Sci 2024; 25:11444. [PMID: 39518996 PMCID: PMC11546915 DOI: 10.3390/ijms252111444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cisplatin-induced ototoxicity occurs in approximately half of patients treated with cisplatin, and pediatric patients are more likely to be affected than adults. The oxidative stress elicited by cisplatin is a key contributor to the pathogenesis of ototoxicity. Notoginsenoside R1 (NGR1), the main bioactive compound of Panax notoginseng saponins, has antioxidant and antiapoptotic effects. This study investigated the ability of NGR1 to protect against cisplatin-induced damage in auditory HEI-OC1 cells and neonatal murine cochlear explants. The viability of HEI-OC1 cells treated with NGR1 and cisplatin was greater than that of cells treated with cisplatin alone. The results of Western blots and immunostaining for cleaved caspase-3 revealed that the level of cleaved caspase-3 in the cells treated with cisplatin was repressed by NGR1. NGR1 attenuated cisplatin-induced cytotoxicity in HEI-OC1 cells. Intracellular reactive oxygen species (ROS) were detected with a DCFDA assay and immunostaining for 4-HNE. The result revealed that its expression was induced by cisplatin and was significantly reduced by NGR1. Moreover, NGR1 can promote heme oxygenase-1 (HO-1) expression at both the mRNA and protein levels. ZNPPIX, an HO-1 inhibitor, was administered to cisplatin-treated cells to investigate the role of HO-1 in the protective effect of NGR1. The suppression of HO-1 activity by ZNPPIX markedly abolished the protective effect of NGR1 on cisplatin-treated cells. Therefore, NGR1 protects cells from cisplatin-induced damage by activating HO-1 and its antioxidative activity. In cochlear explants, NGR1 protects cochlear hair cells and attenuates cisplatin-induced ototoxicity by inhibiting ROS generation. In the group treated with cisplatin alone, prominent loss of outer hair cells and severe damage to the structure of the stereociliary bundles of inner and outer hair cells were observed. Compared with the group treated with cisplatin alone, less loss of outer hair cells (p = 0.009) and better preservation of the stereociliary bundles of hair cells were observed in the group treated with cisplatin and NGR1. In conclusion, these findings indicate that NGR1 can protect against cisplatin-induced ototoxicity by inducing HO-1 expression and suppressing oxidative stress.
Collapse
Affiliation(s)
- Yi-Chun Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Yi-Jung Ho
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan;
- Graduate Institute of Life Science, National Defense Medical Center, Taipei 11490, Taiwan
| | - Yuan-Yung Lin
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Ai-Ho Liao
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chao-Yin Kuo
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hang-Kang Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Hsin-Chien Chen
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| | - Chih-Hung Wang
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
- Department of Otolaryngology, Taipei City Hospital, Taipei 103212, Taiwan
| | - Cheng-Ping Shih
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (Y.-C.L.); (Y.-Y.L.); (C.-Y.K.); (H.-K.C.); (H.-C.C.); (C.-H.W.)
| |
Collapse
|
10
|
Lyu AR, Kim SJ, Park MJ, Park YH. CORM‑2 reduces cisplatin accumulation in the mouse inner ear and protects against cisplatin-induced ototoxicity. J Adv Res 2024; 64:183-194. [PMID: 38030129 PMCID: PMC11464639 DOI: 10.1016/j.jare.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Cisplatin is a life-saving anticancer compound used to treat multiple solid malignant tumors, while it causes permanent hearing loss. There is no known cure, and the FDA has not approved any preventative treatment for cisplatin-based ototoxicity. OBJECTIVES This study investigated whether the carbon monoxide (CO)-releasing tricarbonyldichlororuthenium (II) dimer, CORM-2, reverses cisplatin-induced hearing impairment and reduces cisplatin accumulation in the mouse inner ear. METHODS Male 6-week-old BALB/c mice were randomly assigned to one of the following groups: control (saline-treated, i.p.), CORM-2 only (30 mg/kg, i.p., four doses), cisplatin only (20 mg/kg, i.p., one dose), and CORM-2 + cisplatin, to determine whether cisplatin-based hearing impairment was alleviated by CORM-2 treatment. RESULTS Our results revealed CORM-2 significantly attenuated cisplatin-induced hearing loss in young adult mice. CORM-2 co-treatment significantly decreased platinum accumulation in the inner ear and activated the plasma membrane repair system of the stria vascularis. Moreover, CORM-2 co-treatment significantly decreased cisplatin-induced inflammation, apoptosis, and cochlear necroptosis. Because the stria vascularis is the likely cochlear entry point of cisplatin, we next focused on the microvasculature. Cisplatin induced increased extravasation of a chromatic tracer (fluorescein isothiocyanate [FITC]-dextran, MW 75 kDa) around the cochlear microvessels at 4 days post-treatment; this extravasation was completely inhibited by CORM-2 co-therapy. CORM-2 co-treatment effectively maintained the integrity of stria vascularis components including endothelial cells, pericytes, and perivascular-resident macrophage-type melanocytes. CONCLUSION CORM-2 co-therapy substantially protects against cisplatin-induced ototoxicity by reducing platinum accumulation and toxic cellular stress responses. These data indicate that CORM-2 co-treatment may be translated into clinical strategy to reduce cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Ah-Ra Lyu
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Soo Jeong Kim
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Min Jung Park
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| | - Yong-Ho Park
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| |
Collapse
|
11
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
12
|
Wu P, Becker FB, Ogelman R, Camci ED, Linbo TH, Simon JA, Rubel EW, Raible DW. Multiple mechanisms of aminoglycoside ototoxicity are distinguished by subcellular localization of action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596537. [PMID: 39005374 PMCID: PMC11244871 DOI: 10.1101/2024.05.30.596537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Mechanosensory hair cells of the inner ears and lateral line of vertebrates display heightened vulnerability to environmental insult, with damage resulting in hearing and balance disorders. An important example is hair cell loss due to exposure to toxic agents including therapeutic drugs such as the aminoglycoside antibiotics such as neomycin and gentamicin and antineoplastic agents. We describe two distinct cellular pathways for aminoglycoside-induced hair cell death in zebrafish lateral line hair cells. Neomycin exposure results in death from acute exposure with most cells dying within 1 hour of exposure. By contrast, exposure to gentamicin results primarily in delayed hair cell death, taking up to 24 hours for maximal effect. Washout experiments demonstrate that delayed death does not require continuous exposure, demonstrating two mechanisms where downstream responses differ in their timing. Acute damage is associated with mitochondrial calcium fluxes and can be alleviated by the mitochondrially-targeted antioxidant mitoTEMPO, while delayed death is independent of these factors. Conversely delayed death is associated with lysosomal accumulation and is reduced by altering endolysosomal function, while acute death is not sensitive to lysosomal manipulations. These experiments reveal the complexity of responses of hair cells to closely related compounds, suggesting that intervention focusing on early events rather than specific death pathways may be a successful therapeutic strategy.
Collapse
Affiliation(s)
- Patricia Wu
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
- Department of Biological Structure, University of Washington, Seattle, WA 98195, United States
| | - Francisco Barros Becker
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA 98195, United States
| | - Roberto Ogelman
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
- Department of Biological Structure, University of Washington, Seattle, WA 98195, United States
| | - Esra D. Camci
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA 98195, United States
| | - Tor H. Linbo
- Department of Biological Structure, University of Washington, Seattle, WA 98195, United States
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA 98195, United States
| | - Julian A. Simon
- Clinical Research, Human Biology, and Public Health Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
| | - David W. Raible
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, United States
- Department of Biological Structure, University of Washington, Seattle, WA 98195, United States
- Department of Otolaryngology-HNS, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
13
|
Song W, Zhang L, Cui X, Wang R, Ma J, Xu Y, Jin Y, Wang D, Lu Z. Nobiletin alleviates cisplatin-induced ototoxicity via activating autophagy and inhibiting NRF2/GPX4-mediated ferroptosis. Sci Rep 2024; 14:7889. [PMID: 38570541 PMCID: PMC10991266 DOI: 10.1038/s41598-024-55614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Nobiletin, a citrus polymethoxy flavonoid with antiapoptotic and antioxidative properties, could safeguard against cisplatin-induced nephrotoxicity and neurotoxicity. Cisplatin, as the pioneer of anti-cancer drug, the severe ototoxicity limits its clinical applications, while the effect of nobiletin on cisplatin-induced ototoxicity has not been identified. The current study investigated the alleviating effect of nobiletin on cisplatin-induced ototoxicity and the underlying mechanisms. Apoptosis and ROS formation were evaluated using the CCK-8 assay, Western blotting, and immunofluorescence, indicating that nobiletin attenuated cisplatin-induced apoptosis and oxidative stress. LC3B and SQSTM1/p62 were determined by Western blotting, qPCR, and immunofluorescence, indicating that nobiletin significantly activated autophagy. Nobiletin promoted the nuclear translocation of NRF2 and the transcription of its target genes, including Hmox1, Nqo1, and ferroptosis markers (Gpx4, Slc7a11, Fth, and Ftl), thereby inhibiting ferroptosis. Furthermore, RNA sequencing analysis verified that autophagy, ferroptosis, and the NRF2 signaling pathway served as crucial points for the protection of nobiletin against ototoxicity caused by cisplatin. Collectively, these results indicated, for the first time, that nobiletin alleviated cisplatin-elicited ototoxicity through suppressing apoptosis and oxidative stress, which were attributed to the activation of autophagy and the inhibition of NRF2/GPX4-mediated ferroptosis. Our study suggested that nobiletin could be a prospective agent for preventing cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Wenao Song
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Li Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xiaolin Cui
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Rongrong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Jingyu Ma
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Dawei Wang
- Department of Orthopedic, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Shandong University, Jinan, 250021, China.
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|
14
|
Hayashi Y. Signaling pathways regulating the immune function of cochlear supporting cells and their involvement in cochlear pathophysiology. Glia 2024; 72:665-676. [PMID: 37933494 DOI: 10.1002/glia.24476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 11/08/2023]
Abstract
The inner ear, including the cochlea, used to be regarded as an immune-privileged site because of its immunologically isolated environment caused by the blood-labyrinthine barrier. Cochlear resident macrophages, which originate from the yolk sac or fetal liver during the embryonic stage and are maintained after birth, are distributed throughout various regions of the cochlear duct. Intriguingly, these cells are absent in the organ of Corti, where hair cells (HCs) and supporting cells (SCs) are located, except for a limited number of ionized calcium-binding adapter molecule 1 (Iba1)-positive cells. Instead, SCs exert glial functions varying from a quiescent to an emergency state. Notably, SCs acquire the nature of macrophages and begin to secrete inflammatory cytokines during viral infection in the organ of Corti, which is ostensibly unprotected owing to the lack of general resident macrophages. This review provides an overview of both positive and negative functions of SCs enabled to acquire macrophage phenotypes upon viral infection focusing on the signaling pathways that regulate these functions. The former function protects HCs from viral infection by inducting type I interferons, and the latter function induces HC death by necroptosis, leading to sensorineural hearing loss. Thus, SCs play contradictory roles as immune cells with acquired macrophage phenotypes; thereby, they are favorable and unfavorable to HCs, which play a pivotal role in hearing function.
Collapse
Affiliation(s)
- Yushi Hayashi
- Department of Molecular and Medical Genetics, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
15
|
Han L, Wang Z, Wang D, Gao Z, Hu S, Shi D, Shu Y. Mechanisms and otoprotective strategies of programmed cell death on aminoglycoside-induced ototoxicity. Front Cell Dev Biol 2024; 11:1305433. [PMID: 38259515 PMCID: PMC10800616 DOI: 10.3389/fcell.2023.1305433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Aminoglycosides are commonly used for the treatment of life-threatening bacterial infections, however, aminoglycosides may cause irreversible hearing loss with a long-term clinical therapy. The mechanism and prevention of the ototoxicity of aminoglycosides are still limited although amounts of studies explored widely. Specifically, advancements in programmed cell death (PCD) provide more new perspectives. This review summarizes the general signal pathways in programmed cell death, including apoptosis, autophagy, and ferroptosis, as well as the mechanisms of aminoglycoside-induced ototoxicity. Additionally, novel interventions, especially gene therapy strategies, are also investigated for the prevention or treatment of aminoglycoside-induced hearing loss with prospective clinical applications.
Collapse
Affiliation(s)
- Lei Han
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Zijing Wang
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Daqi Wang
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Ziwen Gao
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Shaowei Hu
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| | - Dazhi Shi
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yilai Shu
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- ENT Institute and Department of Otorhinolaryngology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Tian J, Mu Y, Ma L. Chemerin/CMKLR1 pathway exacerbates cisplatin-induced spiral ganglion neuron injury. Toxicol Res 2024; 40:73-81. [PMID: 38223664 PMCID: PMC10786799 DOI: 10.1007/s43188-023-00205-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 01/16/2024] Open
Abstract
This study investigated whether chemerin/chemokine-like receptor 1 (CMKLR1) pathway participate in cisplatin-induced spiral ganglion neuron (SGN) damage. Middle cochlear turn was collected from C57BL/6 mice and the SGNs were cultured. Cisplatin, 2-(anaphthoyl) ethyltrimethylammonium iodide (α-NETA), or recombinant mouse chemerin was added into the medium for the treatment. Relative mRNA and protein expression was determined by RT-PCR, ELISA and Western blot, respectively. In cultured mouse cochlear SGNs, the treatment of cisplatin enhanced the secretion of chemerin and CMKLR1. Recombinant chemerin promoted but α-NETA inhibited chemerin/CMKLR1 pathway in cisplatin stimulated SGNs. Cisplatin-induced apoptosis and inflammation response in SGNs were enhanced by recombinant chemerin while inhibited by α-NETA. Recombinant chemerin promoted but α-NETA inhibited NF-κB signal in cisplatin stimulated SGNs. In conclusion, chemerin/CMKLR1 pathway regulated apoptosis and inflammation response in cisplatin-induced SGN injury through NF-κB signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00205-0.
Collapse
Affiliation(s)
- Jie Tian
- Department of Otology, Zibo Central Hospital, No. 54, Gongqingtuan West Road, Zhangdian District, Zibo, 255036 Shandong China
| | - Ying Mu
- Department of Emergency Medicine, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036 Shandong China
| | - Lili Ma
- Department of Neurology, Zibo Central Hospital, No. 54 Gongqingtuan West Road, Zibo, 255036 Shandong China
| |
Collapse
|
17
|
Pressé MT, Malgrange B, Delacroix L. The cochlear matrisome: Importance in hearing and deafness. Matrix Biol 2024; 125:40-58. [PMID: 38070832 DOI: 10.1016/j.matbio.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 02/12/2024]
Abstract
The extracellular matrix (ECM) consists in a complex meshwork of collagens, glycoproteins, and proteoglycans, which serves a scaffolding function and provides viscoelastic properties to the tissues. ECM acts as a biomechanical support, and actively participates in cell signaling to induce tissular changes in response to environmental forces and soluble cues. Given the remarkable complexity of the inner ear architecture, its exquisite structure-function relationship, and the importance of vibration-induced stimulation of its sensory cells, ECM is instrumental to hearing. Many factors of the matrisome are involved in cochlea development, function and maintenance, as evidenced by the variety of ECM proteins associated with hereditary deafness. This review describes the structural and functional ECM components in the auditory organ and how they are modulated over time and following injury.
Collapse
Affiliation(s)
- Mary T Pressé
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, 15 avenue Hippocrate - CHU - B36 (1st floor), Liège B-4000, Belgium.
| |
Collapse
|
18
|
Li Y, Zhang T, Song Q, Gao D, Li Y, Jie H, Huang P, Zheng G, Yang J, He J. Cisplatin ototoxicity mechanism and antagonistic intervention strategy: a scope review. Front Cell Neurosci 2023; 17:1197051. [PMID: 37323582 PMCID: PMC10267334 DOI: 10.3389/fncel.2023.1197051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Cisplatin is a first-line chemotherapeutic agent in the treatment of malignant tumors with remarkable clinical effects and low cost. However, the ototoxicity and neurotoxicity of cisplatin greatly limit its clinical application. This article reviews the possible pathways and molecular mechanisms of cisplatin trafficking from peripheral blood into the inner ear, the toxic response of cisplatin to inner ear cells, as well as the cascade reactions leading to cell death. Moreover, this article highlights the latest research progress in cisplatin resistance mechanism and cisplatin ototoxicity. Two effective protective mechanisms, anti-apoptosis and mitophagy activation, and their interaction in the inner ear are discussed. Additionally, the current clinical preventive measures and novel therapeutic agents for cisplatin ototoxicity are described. Finally, this article also forecasts the prospect of possible drug targets for mitigating cisplatin-induced ototoxicity. These include the use of antioxidants, inhibitors of transporter proteins, inhibitors of cellular pathways, combination drug delivery methods, and other mechanisms that have shown promise in preclinical studies. Further research is needed to evaluate the efficacy and safety of these approaches.
Collapse
Affiliation(s)
- Yingru Li
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Tianyang Zhang
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Qiang Song
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Dekun Gao
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huiqun Jie
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Ping Huang
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Guiliang Zheng
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Yang
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jingchun He
- Department of Otorhinolaryngology–Head and Neck Surgery, School of Medicine, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Ear Institute, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| |
Collapse
|
19
|
Zhang D, Sun Y, Lei M, Wang Y, Cai C. Deciphering the potential ability of RG108 in cisplatin-induced HEI-OC1 ototoxicity: a research based on RNA-seq and molecular biology experiment. Hereditas 2023; 160:18. [PMID: 37088824 PMCID: PMC10124021 DOI: 10.1186/s41065-023-00283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Drug-induced hearing loss (DIHL) is very common, and seriously affects people's happiness in life. RG108 is a small molecule inhibitor. RG108 is protective against DIHL. Our purpose is to probe the incidence of RG108 on cisplatin-induced ototoxicity. MATERIALS AND METHODS In our research, the ototoxicity of RG108 was investigated in HEI-OC1. We observed under the microscope whether RG108 had an effect on cisplatin-induced cochlear hair cells. RNA-seq experiments were further performed to explore possible gene ontology (GO) and pathways. ROS assay was applied to supervisory the effect of RG108 on oxidative harm of auditory cells. In auditory cells, RG108 was tested for its effects on apoptosis-related proteins by Western blotting (WB). RESULTS GO analysis showed that RG108 associated with apoptosis. KEGG analysis shows RG108 may act on PI3K-AKT signaling pathway (PASP) in hearing loss. BIOCARTA analysis showed that RG108 may affect oxidative stress by activating NRF2 pathway. ROS ascerted that RG108 could rescue oxidative harm in HEI-OC1. RG108 rescued cisplatin-induced significant increase in Bax and significant decrease in BCL2. RG108 attenuates cisplatin-induced cochlear apoptosis through upregulated phosphorylated PI3K and phosphorylated AKT and down-regulated caspase3. MTT experiments showed that both PI3K and AKT inhibitors could significantly rescue the damage caused by cisplatin to HEI-OC1. RG108 significantly increases the level of NRF2/HO-1/NQO1 in cisplatin-induced cells. CONCLUSION Overall, these results provide evidence that NRF2/PI3K-AKT axis may mediate RG108 in the treatment of DIHL, which provide a broader outlook on drug-induced deafness treatment.
Collapse
Affiliation(s)
- Dongdong Zhang
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, 361003, China
- School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yixin Sun
- School of Medicine, Xiamen University, Xiamen, 361003, China
- Department of Surgery, The Second People's Hospital of Neijiang Affiliated to Southwest Medical University, Neijiang, 641000, China
- Department of Surgery, The Second People's Hospital of Neijiang, Neijiang, 641000, China
| | - Min Lei
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, 361003, China
- School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Yue Wang
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, 361003, China
| | - Chengfu Cai
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Zhongshan Hospital, Xiamen University, Xiamen, 361003, China.
- School of Medicine, Xiamen University, Xiamen, 361003, China.
| |
Collapse
|
20
|
20(S)-Ginsenoside Rh1 inhibits cisplatin-induced hearing loss by inhibiting the MAPK signaling pathway and suppressing apoptosis in vitro. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119461. [PMID: 36931607 DOI: 10.1016/j.bbamcr.2023.119461] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
As an anticancer drug, cisplatin is widely used, but its clinical application is restricted due to its severe side effects of ototoxicity. Therefore, this study was dedicated to assessing the benefit of ginsenoside extract, 20(S)-Ginsenoside Rh1 (Rh1), on cisplatin-induced ototoxicity. HEI-OC1 cells and neonatal cochlear explants were cultured. Cleaved caspase-3, TUNEL, and MitoSOX Red were observed in vitro by immunofluorescence staining. CCK8 and LDH cytotoxicity assays were detected to measure cell viability and cytotoxicity. Our results showed that Rh1 significantly increased cell viability, reduced cytotoxicity, and alleviated cisplatin-induced apoptosis. In addition, Rh1 pretreatment decreased the excessive accumulation of intracellular reactive oxygen species. Mechanistic studies indicated that Rh1 pretreatment reversed the increase of apoptotic protein expression, accumulation of mitochondrial ROS, and activation of the MAPK signaling pathway. These results suggested that Rh1 can act as an antioxidant and anti-apoptotic agent against cisplatin-induced hearing loss by suppressing the excessive accumulation of mitochondrial ROS, activation of MAPK signaling pathway and apoptosis.
Collapse
|
21
|
Guthrie OW, Spankovich C. Emerging and established therapies for chemotherapy-induced ototoxicity. J Cancer Surviv 2023; 17:17-26. [PMID: 36637631 DOI: 10.1007/s11764-022-01317-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/07/2022] [Indexed: 01/14/2023]
Abstract
PURPOSE Ototoxicity is considered a dose-limiting side effect of some chemotherapies. Hearing loss, in particular, can have significant implications for the quality of life for cancer survivors. Here, we review therapeutic approaches to mitigating ototoxicity related to chemotherapy. METHODS Literature review. CONCLUSIONS Numerous otoprotection strategies are undergoing active investigation. However, numerous challenges exist to confer adequate protection while retaining the anti-cancer efficacy of the chemotherapy. IMPLICATIONS FOR CANCER SURVIVORS Ototoxicity can have significant implications for cancer survivors, notably those receiving cisplatin. Clinical translation of multiple otoprotection approaches will aid in limiting these consequences.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Communication Sciences and Disorders, Northern Arizona University, Flagstaff, AZ, USA
| | - Christopher Spankovich
- Department of Otolaryngology Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
22
|
Alassaf N, Attia H. Autophagy and necroptosis in cisplatin-induced acute kidney injury: Recent advances regarding their role and therapeutic potential. Front Pharmacol 2023; 14:1103062. [PMID: 36794281 PMCID: PMC9922871 DOI: 10.3389/fphar.2023.1103062] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Cisplatin (CP) is a broad-spectrum antineoplastic agent, used to treat many different types of malignancies due to its high efficacy and low cost. However, its use is largely limited by acute kidney injury (AKI), which, if left untreated, may progress to cause irreversible chronic renal dysfunction. Despite substantial research, the exact mechanisms of CP-induced AKI are still so far unclear and effective therapies are lacking and desperately needed. In recent years, necroptosis, a novel subtype of regulated necrosis, and autophagy, a form of homeostatic housekeeping mechanism have witnessed a burgeoning interest owing to their potential to regulate and alleviate CP-induced AKI. In this review, we elucidate in detail the molecular mechanisms and potential roles of both autophagy and necroptosis in CP-induced AKI. We also explore the potential of targeting these pathways to overcome CP-induced AKI according to recent advances.
Collapse
Affiliation(s)
- Noha Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,*Correspondence: Noha Alassaf,
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia,Department of Biochemistry, College of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
23
|
Wang X, Zhou Y, Wang D, Wang Y, Zhou Z, Ma X, Liu X, Dong Y. Cisplatin-induced ototoxicity: From signaling network to therapeutic targets. Biomed Pharmacother 2023; 157:114045. [PMID: 36455457 DOI: 10.1016/j.biopha.2022.114045] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Administration of cisplatin, a common chemotherapeutic drug, has an inevitable side effect of sensorineural hearing loss. The main etiologies are stria vascularis injury, spiral ganglion degeneration, and hair cell death. Over several decades, the research scope of cisplatin-induced ototoxicity has expanded with the discovery of the molecular mechanism mediating inner ear cell death, highlighting the roles of reactive oxygen species and transport channels for cisplatin uptake into inner ear cells. Upon entering hair cells, cisplatin disrupts organelle metabolism, induces oxidative stress, and targets DNA to cause intracellular damage. Recent studies have also reported the role of inflammation in cisplatin-induced ototoxicity. In this article, we preform a narrative review of the latest reported molecular mechanisms of cisplatin-induced ototoxicity, from extracellular to intracellular. We build up a signaling network starting with cisplatin entering into the inner ear through the blood labyrinth barrier, disrupting cochlear endolymph homeostasis, and activating inflammatory responses of the outer hair cells. After entering the hair cells, cisplatin causes hair cell death via DNA damage, redox system imbalance, and mitochondrial and endoplasmic reticulum dysfunction, culminating in programmed cell death including apoptosis, necroptosis, autophagic death, pyroptosis, and ferroptosis. Based on the mentioned mechanisms, prominent therapeutic targets, such as channel-blocking drugs of cisplatin transporter, construction of cisplatin structural analogues, anti-inflammatory drugs, antioxidants, cell death inhibitors, and others, were collated. Considering the recent research efforts, we have analyzed the feasibility of the aforementioned therapeutic strategies and proposed our otoprotective approaches to overcome cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Xilu Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingying Zhou
- Department of Obstetrics & gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dali Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi Wang
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhaoyu Zhou
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiulan Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofang Liu
- Department of Surgical Oncology, the First Affiliated Hospital of China Medical University, Shenyang, China.
| | - Yaodong Dong
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
24
|
Kinesin spindle protein inhibitor exacerbates cisplatin-induced hair cell damage. Arch Biochem Biophys 2022; 731:109432. [DOI: 10.1016/j.abb.2022.109432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/23/2022]
|
25
|
Gibaja A, Alvarado JC, Scheper V, Carles L, Juiz JM. Kanamycin and Cisplatin Ototoxicity: Differences in Patterns of Oxidative Stress, Antioxidant Enzyme Expression and Hair Cell Loss in the Cochlea. Antioxidants (Basel) 2022; 11:antiox11091759. [PMID: 36139833 PMCID: PMC9495324 DOI: 10.3390/antiox11091759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Kanamycin and cisplatin are ototoxic drugs. The mechanisms are incompletely known. With subcutaneous kanamycin (400 mg/kg, 15 days), auditory threshold shifts were detected at days 12–13 at 16 and 32 kHz, extending to 8 and 4 kHz at days 14–15. The outer hair cell (OHC) loss was concentrated past day 12. The maximum cochlear length showing apoptotic cells, tested with TUNEL, was at day 13. At day 15, 1/5 of the apical cochlea contained preserved OHCs. 3-nitrotyrosine (3-NT) immunolabeling, showing oxidative stress, was found in surviving OHCs and in basal and middle portions of the stria vascularis (SV). The antioxidant Gpx1 gene expression was decreased. The immunocytochemistry showed diminished Gpx1 in OHCs. With intraperitoneal cisplatin (16 mg/kg, single injection), no evoked auditory activity was recorded at the end of treatment, at 72 h. The basal third of the cochlea lacked OHCs. Apoptosis occupied the adjacent 1/3, and the apical third contained preserved OHCs. 3-NT immunolabeling was extensive in OHCs and the SV. Gpx1 and Sod1 gene expression was downregulated. Gpx1 immunostaining diminished in middle and basal SV. More OHCs survived cisplatin than kanamycin towards the apex, despite undetectable evoked activity. Differential regulation of antioxidant enzyme levels suggests differences in the antioxidant response for both drugs.
Collapse
Affiliation(s)
- Alejandro Gibaja
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain
| | - Juan C. Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, MHH, 30625 Hannover, Germany
| | - Liliana Carles
- Department of Otolaryngology, University Hospital “Doce de Octubre”, 28041 Madrid, Spain
| | - José M. Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, MHH, 30625 Hannover, Germany
- IDINE/Med School, UCLM-Campus in Albacete, C/Almansa 14, 02008 Albacete, Spain
- Correspondence:
| |
Collapse
|
26
|
Ren H, Hu B, Jiang G. Advancements in prevention and intervention of sensorineural hearing loss. Ther Adv Chronic Dis 2022; 13:20406223221104987. [PMID: 35782345 PMCID: PMC9243368 DOI: 10.1177/20406223221104987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/16/2022] [Indexed: 11/28/2022] Open
Abstract
The inner ear is a complex and difficult organ to study, and sensorineural hearing loss (SNHL) is a multifactorial sensorineural disorder with characteristics of impaired speech discrimination, recognition, sound detection, and localization. Till now, SNHL is recognized as an incurable disease because the potential mechanisms underlying SNHL have not been elucidated. The risk of developing SNHL is no longer viewed as primarily due to environmental factors. Instead, SNHL seems to result from a complicated interplay of genetic and environmental factors affecting numerous fundamental cellular processes. The complexity of SNHL is presented as an inability to make an early diagnosis at the earliest stages of the disease and difficulties in the management of symptoms during the process. To date, there are no treatments that slow the neurodegenerative process. In this article, we review the recent advances about SHNL and discuss the complexities and challenges of prevention and intervention of SNHL.
Collapse
Affiliation(s)
- Hongmiao Ren
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Bing Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Guangli Jiang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
27
|
Cichoric Acid May Play a Role in Protecting Hair Cells from Ototoxic Drugs. Int J Mol Sci 2022; 23:ijms23126701. [PMID: 35743144 PMCID: PMC9224198 DOI: 10.3390/ijms23126701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Ototoxic hearing loss due to antibiotic medication including aminoglycosides and excess free radical production causes irreversible hair cell injury. Cichoric acid, a naturally occurring phenolic acid, has recently been found to exert anti-oxidative and anti-inflammatory properties through its free radical scavenging capacity. The present study aimed to investigate the protective effects of cichoric acid against neomycin-induced ototoxicity using transgenic zebrafish (pvalb3b: TagGFP). Our results indicated that cichoric acid in concentrations up to 5 μM did not affect zebrafish viability during the 2 h treatment period. Therefore, the otoprotective concentration of cichoric acid was identified as 5 μM under 2 h treatment by counting viable hair cells within the neuromasts of the anterior- and posterior-lateral lines in the study. Pretreatment of transgenic zebrafish with 5 μM of cichoric acid for 2 h significantly protected against neomycin-induced hair cell death. Protection mediated by cichoric acid was, however, lost over time. A terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay and FM4-64 staining, respectively, provided in situ evidence that cichoric acid ameliorated apoptotic signals and mechanotransduction machinery impairment caused by neomycin. A fish locomotor test (distance move, velocity, and rotation frequency) assessing behavioral alteration after ototoxic damage revealed rescue due to cichoric acid pretreatment before neomycin exposure. These findings suggest that cichoric acid in 5 μM under 2 h treatment has antioxidant effects and can attenuate neomycin-induced hair cell death in neuromasts. Although cichoric acid offered otoprotection, there is only a small difference between pharmacological and toxic concentrations, and hence cichoric acid can be considered a rather prototypical compound for the development of safer otoprotective compounds.
Collapse
|
28
|
Lu W, Ni K, Li Z, Xiao L, Li Y, Jiang Y, Zhang J, Shi H. Salubrinal Protects Against Cisplatin-Induced Cochlear Hair Cell Endoplasmic Reticulum Stress by Regulating Eukaryotic Translation Initiation Factor 2α Signalling. Front Mol Neurosci 2022; 15:916458. [PMID: 35706425 PMCID: PMC9189388 DOI: 10.3389/fnmol.2022.916458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Objective Cisplatin is a broad-spectrum anti-tumour drug commonly used in clinical practice. However, its ototoxicity greatly limits its clinical application, and no effective method is available to prevent this effect. Endoplasmic reticulum stress (ERS) is reportedly involved in cisplatin ototoxicity, but the exact mechanism remains unclear. Therefore, this study aimed to investigate the role of eukaryotic translation initiation factor 2α (eIF2α) signalling and its dephosphorylation inhibitor salubrinal in cisplatin ototoxicity. Methods We evaluated whether salubrinal could protect against cisplatin-induced damage in House Ear Institute-Organ of Corti 1 (HEI-OC1) cells and mouse cochlear explants. By knocking down eIF2α, we elucidated the vital role of eIF2α in cisplatin-induced damage in HEI-OC1 cells. Whole-mount immunofluorescent staining and confocal microscopy of mouse cochlear explants and HEI-OC1 cells were performed to analyse cisplatin-induced damage in cochlear hair cells and the auditory cell line. Results Data suggested salubrinal attenuated cisplatin-induced hair cell injury by inhibiting apoptosis. In addition, salubrinal significantly reduced ERS levels in hair cells via eIF2α signalling, while eIF2α knockdown inhibited the protective effect of salubrinal. Significance Salubrinal and eIF2α signalling play a role in protecting against cisplatin-induced ototoxicity, and pharmacological inhibition of eIF2α-mediated ERS is a potential treatment for cisplatin-induced damage in the cochlea and HEI-OC1 cells.
Collapse
Affiliation(s)
- Wen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Kun Ni
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuangzhuang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Lili Xiao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yini Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yumeng Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jincheng Zhang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jincheng Zhang,
| | - Haibo Shi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Haibo Shi,
| |
Collapse
|
29
|
Li Y, Zeng S, Zhou F, Jie H, Yu D, Hou S, Chen P, Gao D, Liu Y, Yang J, He J. Overexpression of XIAP inhibits cisplatin-induced hair cell loss. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119204. [PMID: 35026350 DOI: 10.1016/j.bbamcr.2021.119204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/09/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Cisplatin is a platinum-containing drug with ototoxicity commonly used clinically and has significant efficacy against a variety of solid tumors. One of the most important mechanisms of ototoxicity is that cisplatin induces apoptosis of hair cells. According to relevant literature, X-linked inhibitor of apoptosis protein (XIAP, anti-apoptotic protein) could inhibit the apoptotic pathway. We hypothesized that this protein might protect cochlear hair cells from cisplatin-induced injury. To figure it out, we treated cochlea of normal mice with various concentrations of cisplatin to observe the response and morphology of hair cells and determine a reasonable concentration. Next, Western Blot and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) experiments were conducted to make an investigation about the expression of XIAP protein and mRNA. In addition, we constructed and identified XIAP overexpressing mice. Finally, we treated cochlear tissues of normal and overexpressing mice with cisplatin to investigate the cyto-protection of XIAP on hair cells, respectively. It was found that 50 μmol/L cisplatin resulted in significant loss and disorganization of hair cells, while simultaneously downregulating the protein and mRNA of XIAP. In XIAP overexpressing mice, the loss and disorganization of hair cells were significantly lessened. These results showed that XIAP can lessen cisplatin-induced hair cell loss and play a role in otoprotection.
Collapse
Affiliation(s)
- Yue Li
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Shan Zeng
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200031, China
| | - Fengjie Zhou
- General Hospital of the Central Theater Command of the PLA, China
| | - Huiqun Jie
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Dongzhen Yu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Penghui Chen
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Dekun Gao
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China
| | - Yupeng Liu
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China.
| | - Jun Yang
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China.
| | - Jingchun He
- Department of Otorhinolaryngology-Head & Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China; Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai 200092, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai 200092, China.
| |
Collapse
|
30
|
Li Z, Yao Q, Tian Y, Jiang Y, Xu M, Wang H, Xiong Y, Fang J, Lu W, Yu D, Shi H. Trehalose protects against cisplatin-induced cochlear hair cell damage by activating TFEB-mediated autophagy. Biochem Pharmacol 2022; 197:114904. [PMID: 34971589 DOI: 10.1016/j.bcp.2021.114904] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/05/2023]
Abstract
Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors, but its side effects limit its application. Ototoxicity, a major adverse effect of cisplatin, causes irreversible sensorineural hearing loss. Unfortunately, there are no effective approaches to protect against this damage. Autophagy has been shown to exert beneficial effects in various diseases models. However, the role of autophagy in cisplatin-induced ototoxicity has been not well elucidated. In this study, we aimed to investigate whether the novel autophagy activator trehalose could prevent cisplatin-induced damage in the auditory cell line HEI-OC1 and mouse cochlear explants and to further explore its mechanisms. Our data demonstrated that trehalose alleviated cisplatin-induced hair cell (HC) damage by inhibiting apoptosis, attenuating oxidative stress and rescuing mitochondrial dysfunction. Additionally, trehalose significantly enhanced autophagy levels in HCs, and inhibiting autophagy with 3-methyladenine (3-MA) abolished these protective effects. Mechanistically, we showed that the effect of trehalose was attributed to increased nuclear translocation of transcription factor EB (TFEB), and this effect could be mimicked by TFEB overexpression and inhibited by TFEB gene silencing or treatment with cyclosporin A (CsA), a calcineurin inhibitor. Taken together, our findings suggest that trehalose and autophagy play a role in protecting against cisplatin-induced ototoxicity and that pharmacological enhancement of TFEB-mediated autophagy is a potential treatment for cisplatin-induced damage in cochlear HCs and HEI-OC1 cells.
Collapse
Affiliation(s)
- Zhuangzhuang Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Qingxiu Yao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Yuxin Tian
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China; Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yumeng Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Maoxiang Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China; Department of Otorhinolaryngology-Head and Neck Surgery, ENT Institute and Otorhinolaryngology, Department of Affiliated Eye and ENT Hospital, Fudan University, China
| | - Yuanping Xiong
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jia Fang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China.
| | - Wen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China.
| | - Dongzhen Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China.
| | - Haibo Shi
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| |
Collapse
|
31
|
Huang L, Zhou Y, Gou ZX, Zhang F, Lu LQ. Docosahexaenoic acid reduces hypoglycemia-induced neuronal necroptosis via the peroxisome proliferator-activated receptor γ/nuclear factor-κB pathway. Brain Res 2022; 1774:147708. [PMID: 34785255 DOI: 10.1016/j.brainres.2021.147708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/02/2022]
Abstract
DHA has been shown to be neuroprotective and important to neurogenesis, but its role in HG-induced brain injury and the underlying mechanisms remain unknown. To elucidate the therapeutic effect of DHA, we established a mouse model with insulin-induced hypoglycemic brain injury and an in vitro model of HT-22 cells using a sugar-free medium. DHA treatment significantly reduced neuronal death and improved HG-induced learning and memory deficits. Moreover, DHA inhibited neuronal necroptosis and decreased the concentrations of TNF-α, IL-1β and TNFR1. DHA also activated PPAR-γ and suppressed the NF-κB pathway in mouse brain tissues. In vitro, DHA treatment restored the viability and decreased necroptosis of HT-22 cells treated with glucose deprivation. However, the inhibition of PPAR-γ with T0070907 reversed neuroprotective and anti-necroptosis effects of DHA in HG-induced brain injury, which is associated with the activation of the downstream NF-κB pathway. We conclude that DHA displays a protective effect against HG-induced brain injury through the PPAR-γ/NF-κB pathway and represents a promising method to prevent HG-induced brain injury.
Collapse
Affiliation(s)
- Lin Huang
- Department of Neonatology, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, 610031, Sichuan, China; Clinical Medical College and The First Affiliated Hospital of ChengDu Medical College Chengdu 610000, Sichuan, China
| | - Yue Zhou
- Clinical Medical College and The First Affiliated Hospital of ChengDu Medical College Chengdu 610000, Sichuan, China
| | - Zhi-Xian Gou
- Clinical Medical College and The First Affiliated Hospital of ChengDu Medical College Chengdu 610000, Sichuan, China
| | - Feng Zhang
- Clinical Medical College and The First Affiliated Hospital of ChengDu Medical College Chengdu 610000, Sichuan, China
| | - Li-Qun Lu
- Clinical Medical College and The First Affiliated Hospital of ChengDu Medical College Chengdu 610000, Sichuan, China.
| |
Collapse
|
32
|
Manyisa N, Adadey SM, Wonkam-Tingang E, Yalcouye A, Wonkam A. Hearing Impairment in South Africa and the Lessons Learned for Planetary Health Genomics: A Systematic Review. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:2-18. [PMID: 35041532 PMCID: PMC8792495 DOI: 10.1089/omi.2021.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hearing impairment (HI) is a silent planetary health crisis that requires attention worldwide. The prevalence of HI in South Africa is estimated as 5.5 in 100 live births, which is about 5 times higher than the prevalence in high-income countries. This also offers opportunity to drive progressive science, technology and innovation policy, and health systems. We present here a systematic analysis and review on the prevalence, etiologies, clinical patterns, and genetics/genomics of HI in South Africa. We searched PubMed, Scopus, African Journals Online, AFROLIB, and African Index Medicus to identify the pertinent studies on HI in South Africa, published from inception to April 30, 2021, and the data were summarized narratively. We screened 944 records, of which 27 studies were included in the review. The age at diagnosis is ∼3 years of age and the most common factor associated with acquired HI was middle ear infections. There were numerous reports on medication toxicity, with kanamycin-induced ototoxicity requiring specific attention when considering the high burden of tuberculosis in South Africa. The Waardenburg Syndrome is the most common reported syndromic HI. The Usher Syndrome is the only syndrome with genetic investigations, whereby a founder mutation was identified among black South Africans (MYO7A-c.6377delC). GJB2 and GJB6 genes are not major contributors to nonsyndromic HI among Black South Africans. Furthermore, emerging data using targeted panel sequencing have shown a low resolution rate in Black South Africans in known HI genes. Importantly, mutations in known nonsyndromic HI genes are infrequent in South Africa. Therefore, whole-exome sequencing appears as the most effective way forward to identify variants associated with HI in South Africa. Taken together, this article contributes to the emerging field of planetary health genomics with a focus on HI and offers new insights and lessons learned for future roadmaps on genomics/multiomics and clinical studies of HI around the world.
Collapse
Affiliation(s)
- Noluthando Manyisa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Samuel Mawuli Adadey
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Abdoulaye Yalcouye
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Neurology, Point G Teaching Hospital, University of Sciences, Techniques and Technology, Bamako, Mali
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
33
|
Jia G, Mao H, Zhang Y, Ni Y, Chen Y. Apigenin alleviates neomycin-induced oxidative damage via the Nrf2 signaling pathway in cochlear hair cells. Front Med 2021; 16:637-650. [PMID: 34921675 DOI: 10.1007/s11684-021-0864-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of aminoglycoside-induced hearing loss and represents a promising target for treatment. We tested the potential effect of apigenin, a natural flavonoid with anticancer, anti-inflammatory, and antioxidant activities, on neomycin-induced ototoxicity in cochlear hair cells in vitro. Results showed that apigenin significantly ameliorated the loss of hair cells and the accumulation of reactive oxygen species upon neomycin injury. Further evidence suggested that the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway was activated by apigenin treatment. Disruption of the Nrf2 axis abolished the effects of apigenin on the alleviation of oxidative stress and subsequent apoptosis of hair cells. This study provided evidence of the protective effect of apigenin on cochlear hair cells and its underlying mechanism.
Collapse
Affiliation(s)
- Gaogan Jia
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Huanyu Mao
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yanping Zhang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China
| | - Yusu Ni
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| | - Yan Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China. .,NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
34
|
Ramkumar V, Mukherjea D, Dhukhwa A, Rybak LP. Oxidative Stress and Inflammation Caused by Cisplatin Ototoxicity. Antioxidants (Basel) 2021; 10:antiox10121919. [PMID: 34943021 PMCID: PMC8750101 DOI: 10.3390/antiox10121919] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hearing loss is a significant health problem that can result from a variety of exogenous insults that generate oxidative stress and inflammation. This can produce cellular damage and impairment of hearing. Radiation damage, ageing, damage produced by cochlear implantation, acoustic trauma and ototoxic drug exposure can all generate reactive oxygen species in the inner ear with loss of sensory cells and hearing loss. Cisplatin ototoxicity is one of the major causes of hearing loss in children and adults. This review will address cisplatin ototoxicity. It includes discussion of the mechanisms associated with cisplatin-induced hearing loss including uptake pathways for cisplatin entry, oxidative stress due to overpowering antioxidant defense mechanisms, and the recently described toxic pathways that are activated by cisplatin, including necroptosis and ferroptosis. The cochlea contains G-protein coupled receptors that can be activated to provide protection. These include adenosine A1 receptors, cannabinoid 2 receptors (CB2) and the Sphingosine 1-Phosphate Receptor 2 (S1PR2). A variety of heat shock proteins (HSPs) can be up-regulated in the cochlea. The use of exosomes offers a novel method of delivery of HSPs to provide protection. A reversible MET channel blocker that can be administered orally may block cisplatin uptake into the cochlear cells. Several protective agents in preclinical studies have been shown to not interfere with cisplatin efficacy. Statins have shown efficacy in reducing cisplatin ototoxicity without compromising patient response to treatment. Additional clinical trials could provide exciting findings in the prevention of cisplatin ototoxicity.
Collapse
Affiliation(s)
- Vickram Ramkumar
- Department of Pharmacology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA; (V.R.); (A.D.)
| | - Debashree Mukherjea
- Department of Otolaryngology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA;
| | - Asmita Dhukhwa
- Department of Pharmacology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA; (V.R.); (A.D.)
| | - Leonard P. Rybak
- Department of Otolaryngology, School of Medicine, Southern Illinois University, 801 N. Rutledge Street, Springfield, IL 62702, USA;
- Correspondence: ; Fax: +1-217-545-6544
| |
Collapse
|
35
|
Draf C, Wyrick T, Chavez E, Pak K, Kurabi A, Leichtle A, Dazert S, Ryan AF. A Screen of Autophagy Compounds Implicates the Proteasome in Mammalian Aminoglycoside-Induced Hair Cell Damage. Front Cell Dev Biol 2021; 9:762751. [PMID: 34765606 PMCID: PMC8576371 DOI: 10.3389/fcell.2021.762751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/05/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction: Autophagy is a degradative pathway to safely break down and recycle dysfunctional cellular components. There is prior evidence of autophagy participation during hair cell (HC) damage. Our goal was to screen compounds targeting different aspects of autophagy for their effects on HC loss due to an ototoxic aminoglycoside, gentamicin (GM). Methods: The SELLECKChem autophagy compound library, consisting of 154 compounds with defined autophagy inducing or inhibitory activity, was used for targeted screening in vitro model of ototoxicity. Organ of Corti from postnatal days 3–5 pou4f3/GFP transgenic mice (HCs express green fluorescent protein) were utilized. The organs were micro-dissected, and basal and middle turns divided into micro-explants individually placed into the single wells of a 96-well plate. Samples were treated with 200 μM of GM plus three dosages of tested compound and cultured for 72 h. Negative controls were treated with media only; positive ototoxicity controls were treated with GM only. Results: The majority of the library compounds had no effect on GM-induced HC loss. However, 18 compounds exhibited a significant, protective effect, two compounds were protective at low dosage but showed enhanced GM toxicity at higher doses and one compound was toxic to HCs in the absence of GM. Conclusions: This study evaluated many autophagy compounds that have not been tested previously on HCs. The disparate results obtained underscore the complexity of autophagy events that can influence HC responses to aminoglycosides, but also implicate the proteosome as an important damage mechanism. The screening results can serve as basis for further studies with protective compounds as potential drug targets.
Collapse
Affiliation(s)
- Clara Draf
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States.,Department of Otolaryngology, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Taylor Wyrick
- Department of Biology, University of California, San Diego, San Diego, CA, United States
| | - Eduardo Chavez
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Kwang Pak
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States
| | - Anke Leichtle
- Department of Otolaryngology, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Stefan Dazert
- Department of Otolaryngology, St. Elisabeth-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Allen F Ryan
- Department of Surgery/Otolaryngology, University of California, San Diego, San Diego, CA, United States.,Department of Neurosciences, University of California, San Diego, San Diego, CA, United States.,VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|
36
|
Chronic Ethanol Consumption Induces Osteopenia via Activation of Osteoblast Necroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3027954. [PMID: 34745415 PMCID: PMC8566044 DOI: 10.1155/2021/3027954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
Chronic high-dose alcohol consumption impairs bone remodeling, reduces bone mass, and increases the risk of osteoporosis and bone fracture. However, the mechanisms underlying alcohol-induced osteoporosis are yet to be elucidated. In this study, we showed that excess intake of ethyl alcohol (EtOH) resulted in osteopenia and osteoblast necroptosis in mice that led to necrotic lesions and reduced osteogenic differentiation in bone marrow mesenchymal stem cells (BMMSCs). We found that EtOH treatment led to the activation of the RIPK1/RIPK3/MLKL signaling, resulting in increased osteoblast necroptosis and decreased osteogenic differentiation and bone formation both in vivo and in vitro. We further discovered that excessive EtOH treatment-induced osteoblast necroptosis might partly depend on reactive oxygen species (ROS) generation; concomitantly, ROS contributed to necroptosis of osteoblasts through a positive feedback loop involving RIPK1/RIPK3. In addition, blocking of the RIPK1/RIPK3/MLKL signaling by necrostatin-1 (Nec-1), a key inhibitor of RIPK1 kinase in the necroptosis pathway, or antioxidant N-acetylcysteine (NAC), an inhibitor of ROS, could decrease the activation of osteoblast necroptosis and ameliorate alcohol-induced osteopenia both in vivo and in vitro. Collectively, we demonstrated that chronic high-dose alcohol consumption induced osteopenia via osteoblast necroptosis and revealed that RIPK1 kinase may be a therapeutic target for alcohol-induced osteopenia.
Collapse
|
37
|
(-)-Epigallocatechin-3-gallate (EGCG) prevents aminoglycosides-induced ototoxicity via anti-oxidative and anti-apoptotic pathways. Int J Pediatr Otorhinolaryngol 2021; 150:110920. [PMID: 34500358 DOI: 10.1016/j.ijporl.2021.110920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/17/2021] [Accepted: 09/03/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Aminoglycoside-induced cochlear ototoxicity causes inner ear hair cells (HCs) loss and leads to hearing impairment in patients, but no treatment completely eliminates the ototoxic effect. This study aims to determine the effectiveness of (-)-Epigallocatechin-3-gallate (EGCG) as a protective agent against aminoglycoside-induced ototoxicity. METHODS Zebrafish were exposed to EGCG for 24 h and then co-treated with EGCG and ototoxic agent (amikacin and gentamicin) for 5 h to explore the protective effect of EGCG on zebrafish HCs. Network pharmacology analysis and molecular docking simulation were conducted to explore its potential mechanism, and in vitro cell experiments were used to validate the outcome of the result. RESULT EGCG against ototoxicity of aminoglycosides in zebrafish HCs. Network pharmacology analysis and molecular docking showing that molecules related to cellular response regulation to oxidative stress, including AKT1, DHFR, and MET, may be the target proteins of EGCG, which were verified in vitro experiments. Further experiments demonstrated thatEGCG can antagonize the death of HCs caused by amikacin and gentamicin by reducing intracellular reactive oxygen species (ROS) accumulation and anti-apoptosis. CONCLUSION EGCG can be an otoprotective drug against aminoglycosides-induced ototoxicity, prevent cellular apoptosis and significantly reduce oxidative stress.
Collapse
|
38
|
Yuan X, Qin Y, Wang J, Fan C. Anisomycin induces hair cell death and blocks supporting cell proliferation in zebrafish lateral line neuromast. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109053. [PMID: 33887477 DOI: 10.1016/j.cbpc.2021.109053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Ototoxicity of drugs is an important inducement for hearing loss. Anisomycin is a candidate drug for parasite, cancer, immunosuppression, and mental disease. However, the ototoxicity of anisomycin has not been examined. In this study, the ototoxicity of anisomycin was evaluated using zebrafish lateral line. We found the zebrafish treated with anisomycin during lateral line development could inhibit hair cell formation in a time- and dose-dependent manner. After neuromasts are mature with differentiated hair cells by 5 day post-fertilization, anisomycin could induce hair cell loss effectively through chronic exposure rather than acute exposure. TUNEL assay and qPCR of apoptosis related genes tp53, casp8, casp3a, and casp3b indicated that cell apoptotic was induced by chronic anisomycin exposure. Furthermore, knocking down tp53 with antisense morpholino could attenuate the hair cell loss induced by anisomycin. In addition, we found that anisomycin chronic exposure also inhibited the proliferation of supporting cell. Together, these results indicate that chronic anisomycin exposure could induce hair cell death and block supporting cell proliferation, which causes hair cell loss in zebrafish neuromast. This study provides primary ototoxicity evaluation for anisomycin.
Collapse
Affiliation(s)
- Xiaoyi Yuan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Yanjun Qin
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China
| | - Chunxin Fan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, China; Institute for Marine Biosystem and Neuroscience, International Center for Marine Studies, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
39
|
Prayuenyong P, Baguley DM, Kros CJ, Steyger PS. Preferential Cochleotoxicity of Cisplatin. Front Neurosci 2021; 15:695268. [PMID: 34381329 PMCID: PMC8350121 DOI: 10.3389/fnins.2021.695268] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022] Open
Abstract
Cisplatin-induced ototoxicity in humans is more predominant in the cochlea than in the vestibule. Neither definite nor substantial vestibular dysfunction after cisplatin treatment has been consistently reported in the current literature. Inner ear hair cells seem to have intrinsic characteristics that make them susceptible to direct exposure to cisplatin. The existing literature suggests, however, that cisplatin might have different patterns of drug trafficking across the blood-labyrinth-barrier, or different degrees of cisplatin uptake to the hair cells in the cochlear and vestibular compartments. This review proposes an explanation for the preferential cochleotoxicity of cisplatin based on current evidence as well as the anatomy and physiology of the inner ear. The endocochlear potential, generated by the stria vascularis, acting as the driving force for hair cell mechanoelectrical transduction might also augment cisplatin entry into cochlear hair cells. Better understanding of the stria vascularis might shed new light on cochleotoxic mechanisms and inform the development of otoprotective interventions to moderate cisplatin associated ototoxicity.
Collapse
Affiliation(s)
- Pattarawadee Prayuenyong
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.,Hearing Sciences, Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - David M Baguley
- Hearing Sciences, Division of Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, United Kingdom.,Nottingham Audiology Services, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Corné J Kros
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Peter S Steyger
- Translational Hearing Center, Biomedical Sciences, Creighton University, Omaha, NE, United States
| |
Collapse
|
40
|
Autophagy-dependent ferroptosis contributes to cisplatin-induced hearing loss. Toxicol Lett 2021; 350:249-260. [PMID: 34302894 DOI: 10.1016/j.toxlet.2021.07.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022]
Abstract
Cisplatin-induced hearing loss is a common side effect of cisplatin chemotherapy, for which clinical therapy remains unavailable. Apoptosis of hair cells is considered the primary cause of cisplatin-induced ototoxicity; however, inhibiting apoptosis can only partially restore cisplatin-induced hearing loss. Therefore, auditory cell death caused by cisplatin damage requires further study. Ferroptosis, a novel form of regulated cell death, has been shown to play a role in the mechanism of cisplatin toxicity. In this study, we observed proferroptotic alterations (lipid peroxidation and impaired antioxidant capacity) in the cochleae of C57BL/6 mice after cisplatin damage, verifying the induction of ferroptosis. Using the HEI-OC1 cell line, we observed that cisplatin induced proferroptotic alterations and activated ferritinophagy (specific autophagy pathway). Employing chloroquine, we confirmed that the blockage of autophagy remarkably alleviated cisplatin-induced ferroptosis in HEI-OC1 cells; therefore, the induction of ferroptosis in cisplatin-treated auditory cells was dependent on the activation of autophagy. In addition, the ferroptosis inhibitor ferrostatin-1 and iron chelator deferoxamine significantly attenuated cisplatin-induced cytotoxicity in HEI-OC1 cells and cochlear explants. Moreover, pharmacologically inhibiting ferroptosis using ferrostatin-1 significantly decreased the auditory cell loss and, notably, attenuated hearing loss in C57BL/6 mice after cisplatin damage. Collectively, these findings indicate that autophagy-dependent ferroptosis plays an integrated role in the mechanism of cisplatin-induced hearing loss.
Collapse
|
41
|
Wengert ER, Wenker IC, Wagner EL, Wagley PK, Gaykema RP, Shin JB, Patel MK. Adrenergic Mechanisms of Audiogenic Seizure-Induced Death in a Mouse Model of SCN8A Encephalopathy. Front Neurosci 2021; 15:581048. [PMID: 33762902 PMCID: PMC7982890 DOI: 10.3389/fnins.2021.581048] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death amongst patients whose seizures are not adequately controlled by current therapies. Patients with SCN8A encephalopathy have an elevated risk for SUDEP. While transgenic mouse models have provided insight into the molecular mechanisms of SCN8A encephalopathy etiology, our understanding of seizure-induced death has been hampered by the inability to reliably trigger both seizures and seizure-induced death in these mice. Here, we demonstrate that mice harboring an Scn8a allele with the patient-derived mutation N1768D (D/+) are susceptible to audiogenic seizures and seizure-induced death. In adult D/+ mice, audiogenic seizures are non-fatal and have nearly identical behavioral, electrographical, and cardiorespiratory characteristics as spontaneous seizures. In contrast, at postnatal days 20–21, D/+ mice exhibit the same seizure behavior, but have a significantly higher incidence of seizure-induced death following an audiogenic seizure. Seizure-induced death was prevented by either stimulating breathing via mechanical ventilation or by acute activation of adrenergic receptors. Conversely, in adult D/+ mice inhibition of adrenergic receptors converted normally non-fatal audiogenic seizures into fatal seizures. Taken together, our studies show that in our novel audiogenic seizure-induced death model adrenergic receptor activation is necessary and sufficient for recovery of breathing and prevention of seizure-induced death.
Collapse
Affiliation(s)
- Eric R Wengert
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| | - Ian C Wenker
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Elizabeth L Wagner
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pravin K Wagley
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Ronald P Gaykema
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States
| | - Jung-Bum Shin
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Manoj K Patel
- Department of Anesthesiology, University of Virginia Health System, Charlottesville, VA, United States.,Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
42
|
Rosati R, Shahab M, Ramkumar V, Jamesdaniel S. Lmo4 Deficiency Enhances Susceptibility to Cisplatin-Induced Cochlear Apoptosis and Hearing Loss. Mol Neurobiol 2021; 58:2019-2029. [PMID: 33411315 DOI: 10.1007/s12035-020-02226-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/24/2020] [Indexed: 12/31/2022]
Abstract
Cisplatin, a potent chemotherapeutic drug, induces ototoxicity, which limits its clinical utility. Cisplatin-induced oxidative stress plays a causal role in cochlear apoptosis while the consequent nitrative stress leads to the nitration of LIM domain only 4 (LMO4), a transcriptional regulator, and decreases its cochlear expression levels. Here, we show a direct link between cochlear LMO4 and cisplatin-induced hearing loss by employing a Lmo4 conditional knockout mouse model (Lmo4lox/lox; Gfi1Cre/+). Hair cell-specific deletion of Lmo4 did not alter cochlear morphology or affect hearing thresholds and otoacoustic emissions, in the absence of apoptotic stimuli. Cisplatin treatment significantly elevated the auditory brainstem response thresholds of conditional knockouts, across all frequencies. Moreover, deletion of Lmo4 compromised the activation of STAT3, a downstream target that regulates anti-apoptotic machinery. Immunostaining indicated that the expression of phosphorylated STAT3 was significantly decreased while the expression of activated caspase 3 was significantly increased in Lmo4 deficient hair cells, post-cisplatin treatment. These findings suggest an otoprotective role of LMO4 as cisplatin-induced decrease in cochlear LMO4 could compromise the LMO4/STAT3 cellular defense mechanism to induce ototoxicity.
Collapse
Affiliation(s)
- Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Detroit, MI, 48202, USA
| | - Monazza Shahab
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Detroit, MI, 48202, USA
- Department of Pharmacology, Wayne State University, Detroit, MI, 48201, USA
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| | - Samson Jamesdaniel
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Detroit, MI, 48202, USA.
- Department of Pharmacology, Wayne State University, Detroit, MI, 48201, USA.
- Department of Family Medicine and Public Health Sciences, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
43
|
Liproxstatin-1 Protects Hair Cell-Like HEI-OC1 Cells and Cochlear Hair Cells against Neomycin Ototoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1782659. [PMID: 33343803 PMCID: PMC7725559 DOI: 10.1155/2020/1782659] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 11/17/2022]
Abstract
Ferroptosis is a recently discovered iron-dependent form of oxidative programmed cell death distinct from caspase-dependent apoptosis. In this study, we investigated the effect of ferroptosis in neomycin-induced hair cell loss by using selective ferroptosis inhibitor liproxstatin-1 (Lip-1). Cell viability was identified by CCK8 assay. The levels of reactive oxygen species (ROS) were determined by DCFH-DA and cellROX green staining. The mitochondrial membrane potential (ΔΨm) was evaluated by TMRM staining. Intracellular iron and lipid peroxides were detected with Mito-FerroGreen and Liperfluo probes. We found that ferroptosis can be induced in both HEI-OC1 cells and neonatal mouse cochlear explants, as evidenced by Mito-FerroGreen and Liperfluo staining. Further experiments showed that pretreatment with Lip-1 significantly alleviated neomycin-induced increased ROS generation and disruption in ΔΨm in the HEI-OC1 cells. In parallel, Lip-1 significantly attenuated neomycin-induced hair cell damage in neonatal mouse cochlear explants. Collectively, these results suggest a novel mechanism for neomycin-induced ototoxicity and suggest that ferroptosis inhibition may be a new clinical intervention to prevent hearing loss.
Collapse
|
44
|
Lisbona-Alquézar MP, Lanuza-Giménez J, Navarro-Pemán MC, Esteban-Jiménez Ó, Fernández-Alquézar Ó, Fernández-Liesa R. [Analysis of reports of otoxicity, with symptoms of tinnitus, in the database of the Spanish Pharmacovigilance System for medicinal products for human use.]. Rev Esp Salud Publica 2020; 94:e202012154. [PMID: 33226015 PMCID: PMC11583092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023] Open
Abstract
OBJECTIVE One of the adverse drug reactions (ADR) can be the Ototoxicity, either in a cochlear level or in a vestibular one. This may cause an incapacitating symptomatology due to a hearing impairment or deafness, tinnitus, or a vertiginous syndrome. The objective of this work was to analyze the notifications of ototoxic ADRs registered in the FEDRA database of the Spanish Pharmacovigilance System for Medicinal products for Human Use (SEFV-H), manifested as tinnitus, describing epidemiological and prognostic factors, as well as active principles and associated therapeutic groups. METHODS An observational retrospective study based on the incoming registers in the FEDRA database of the SEFV-H, with tinnitus symptomatology due to ototoxicity between 1984 and 2017 has been carried out. SPSS v.20.0 program has been used for the descriptive and inferential statistics searching elements related to the emergence, seriousness or recuperation of the tinnitus. RESULTS A total of 662 patients notifications were obtained with 899 suspected drugs. 64% of the patients were women. The average age was 55.8 years old. An 8.5% of the tinnitus were classified as serious, meaning a significant and persistent disability. Evaluating the causality through the modified Karch-Lasagna algorithm (SEFV-H algorithm), a causal group credible or well defined, was discovered in 48.6%. In the ATC ranking, the most frequent group of cause drugs was the N, nervous system. It was concluded, among others, that the seriousness is more significant in men and that the elder group have a great influence in the tinnitus recovery. CONCLUSIONS The appearance of tinnitus brought on by medical ototoxicity may determine an important limitation on the patient. A vestibular and cochlear function monitoring must be carried out on patients under treatment with high ototoxicity drugs. The task of the pharmacovigilance seems to be essential, by spreading its results and stimulating the ADR notifications in order to identify pharmacological threats.
Collapse
Affiliation(s)
| | - Javier Lanuza-Giménez
- Departamento de Farmacología y Fisiología. Facultad de Medicina. Universidad de Zaragoza. Zaragoza. España
| | | | | | - Óscar Fernández-Alquézar
- Gerencia de Urgencias y Emergencias Sanitarias 061 Aragón. Servicio Aragonés de Salud. Zaragoza. España
| | - Rafael Fernández-Liesa
- Servicio de Otorrinolaringología. Hospital Universitario Miguel Servet. Zaragoza. España
| |
Collapse
|
45
|
Hu B, Liu Y, Chen X, Zhao J, Han J, Dong H, Zheng Q, Nie G. Ferrostatin-1 protects auditory hair cells from cisplatin-induced ototoxicity in vitro and in vivo. Biochem Biophys Res Commun 2020; 533:1442-1448. [PMID: 33109343 DOI: 10.1016/j.bbrc.2020.10.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Cisplatin is used in a wide variety of malignancies, but cisplatin-induced ototoxicity remains a major issue in clinical practice. Experimental evidence indicates that ferroptosis plays a key role in mediating the unwanted cytotoxicity effect caused by cisplatin. However, the role of ferroptosis in cisplatin-induced ototoxicity requires elucidation. Ferrostatin-1 (Fer-1) was identified as a potent inhibitor of ferroptosis and radical-trapping antioxidant with its ability to reduce the accumulation of lipid peroxides and chain-carrying peroxyl radicals. In the current study, we investigated the effects of Fer-1 in cisplatin-induced ototoxicity in in vitro, ex vivo, and in vivo models. We found, for the first time that Fer-1 efficiently alleviated cisplatin-induced cytotoxicity in HEI-OC1 cells via a concentration-dependent manner. Furthermore, Fer-1 mitigated cisplatin cytotoxicity in transgenic zebrafish sensory hair cells. In HEI-OC1 cells, Fer-1 pretreatment not only drastically reduced the generation of intracellular reactive oxygen species but also remarkably decreased lipid peroxidation levels induced by cisplatin. This was not only ascribed to the inhibition of 4-hydroxynonenal, the final product of lipid peroxides, but also to the promotion of glutathione peroxidase 4, the protein marker of ferroptosis. MitoTracker staining and transmission electron microscopy of mitochondrial morphology suggested that in HEI-OC1 cells, Fer-1 can effectively abrogate mitochondrial damage resulting from the interaction with cisplatin. In addition, Fer-1 pretreatment of cochlear explants substantially protected hair cells from cisplatin-induced damage. Therefore, our results demonstrated that ferroptosis might be involved in cisplatin ototoxicity. Fer-1 administration mitigated cisplatin-induced hair cell damage, further investigations are required to elucidate the molecular mechanisms of its otoprotective effect.
Collapse
Affiliation(s)
- Bing Hu
- Department of Otolaryngology and Institute of Translational Medicine, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Yunsheng Liu
- Department of Neurosurgery and Institute of Translational Medicine, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Xiaozhu Chen
- Department of Otolaryngology and Institute of Translational Medicine, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Jinghong Han
- Department of Otolaryngology and Institute of Translational Medicine, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Hongsong Dong
- Department of Otolaryngology and Institute of Translational Medicine, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China
| | - Qingyin Zheng
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Guohui Nie
- Department of Otolaryngology and Institute of Translational Medicine, Shenzhen Second People's Hospital/ the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| |
Collapse
|
46
|
Wu J, Ye J, Kong W, Zhang S, Zheng Y. Programmed cell death pathways in hearing loss: A review of apoptosis, autophagy and programmed necrosis. Cell Prolif 2020; 53:e12915. [PMID: 33047870 PMCID: PMC7653260 DOI: 10.1111/cpr.12915] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/23/2020] [Accepted: 09/09/2020] [Indexed: 02/05/2023] Open
Abstract
Programmed cell death (PCD)—apoptosis, autophagy and programmed necrosis—is any pathological form of cell death mediated by intracellular processes. Ototoxic drugs, ageing and noise exposure are some common pathogenic factors of sensorineural hearing loss (SNHL) that can induce the programmed death of auditory hair cells through different pathways, and eventually lead to the loss of hair cells. Furthermore, several mutations in apoptotic genes including DFNA5, DFNA51 and DFNB74 have been suggested to be responsible for the new functional classes of monogenic hearing loss (HL). Therefore, in this review, we elucidate the role of these three forms of PCD in different types of HL and discuss their guiding significance for HL treatment. We believe that further studies of PCD pathways are necessary to understand the pathogenesis of HL and guide scientists and clinicians to identify new drug targets for HL treatment.
Collapse
Affiliation(s)
- Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Weili Kong
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shouyue Zhang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yun Zheng
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Su Z, Xiong H, Liu Y, Pang J, Lin H, Zhang W, Zheng Y. Transcriptomic analysis highlights cochlear inflammation associated with age-related hearing loss in C57BL/6 mice using next generation sequencing. PeerJ 2020; 8:e9737. [PMID: 32879802 PMCID: PMC7443093 DOI: 10.7717/peerj.9737] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/26/2020] [Indexed: 12/27/2022] Open
Abstract
Background In our aging society, age-related hearing loss (AHL) is the most common sensory disorder in old people. Much progress has been made in understanding the pathological process of AHL over the past few decades. However, the mechanism of cochlear degeneration during aging is still not fully understood. Methods Next generation sequencing technique was used to sequence the whole transcriptome of the cochlea of C57BL/6 mice, a mouse model of AHL. Differentially expressed genes (DEGs) were identified using the Cuffdiff software. GO and KEGG pathway enrichment analyses of the DEGs were implemented by using the GOseq R package and KOBAS software, respectively. Results A total of 731 genes (379 up- and 352 down-regulated) were revealed to be differentially expressed in the cochlea of aged mice compared to the young. Many genes associated with aging, apoptosis, necroptosis and particularly, inflammation were identified as being significantly modulated in the aged cochlea. GO and KEGG analyses of the upregulated DEGs revealed that the most enriched terms were associated with immune responses and inflammatory pathways, whereas many of the downregulated genes are involved in ion channel function and neuronal signaling. Real-time qPCR showed that H2O2 treatment significantly induced the expression of multiple inflammation and necroptosis-related genes in HEI-OC1 cells. Conclusion Using next generation sequencing, our transcriptomic analysis revealed the differences of gene expression pattern with age in the cochlea of C57BL/6 mice. Our study also revealed multiple immune and inflammatory transcriptomic changes during cochlear aging and provides new insights into the molecular mechanisms underlying cochlear inflammation in AHL.
Collapse
Affiliation(s)
- Zhongwu Su
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Hao Xiong
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yi Liu
- Department of Otolaryngology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jiaqi Pang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Hanqing Lin
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Weijian Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
48
|
Yu D, Gu J, Chen Y, Kang W, Wang X, Wu H. Current Strategies to Combat Cisplatin-Induced Ototoxicity. Front Pharmacol 2020; 11:999. [PMID: 32719605 PMCID: PMC7350523 DOI: 10.3389/fphar.2020.00999] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cisplatin is widely used for the treatment of a number of solid malignant tumors. However, ototoxicity induced by cisplatin is an obstacle to effective treatment of tumors. The basis for this toxicity has not been fully elucidated. It is generally accepted that hearing loss is due to excessive production of reactive oxygen species by cells of the cochlea. In addition, recent data suggest that inflammation may trigger inner ear cell death through endoplasmic reticulum stress, autophagy, and necroptosis, which induce apoptosis. Strategies have been extensively explored by which to prevent, alleviate, and treat cisplatin-induced ototoxicity, which minimize interference with antitumor activity. Of these strategies, none have been approved by the Federal Drug Administration, although several preclinical studies have been promising. This review highlights recent strategies that reduce cisplatin-induced ototoxicity. The focus of this review is to identify candidate agents as novel molecular targets, drug administration routes, delivery systems, and dosage schedules. Animal models of cisplatin ototoxicity are described that have been used to evaluate drug efficacy and side effect prevention. Finally, clinical reports of otoprotection in patients treated with cisplatin are highlighted. For the future, high-quality studies are required to provide reliable data regarding the safety and effectiveness of pharmacological interventions that reduce cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Wen Kang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Ear Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases (14DZ2260300), Shanghai, China
| |
Collapse
|
49
|
Lee HS, Kim YR, Lee IK, Kim UK, Baek JI, Lee KY. KL1333, a derivative of β-lapachone, protects against cisplatin-induced ototoxicity in mouse cochlear cultures. Biomed Pharmacother 2020; 126:110068. [DOI: 10.1016/j.biopha.2020.110068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022] Open
|
50
|
Tan HY, Wang N, Chan YT, Zhang C, Guo W, Chen F, Zhong Z, Li S, Feng Y. ID1 overexpression increases gefitinib sensitivity in non-small cell lung cancer by activating RIP3/MLKL-dependent necroptosis. Cancer Lett 2020; 475:109-118. [PMID: 32004572 DOI: 10.1016/j.canlet.2020.01.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/31/2019] [Accepted: 01/23/2020] [Indexed: 01/14/2023]
Abstract
ID1 is an oncogenic factor in cancer, but its role in relation to drug sensitivity is unclear. This study aimed to investigate the role of ID1 in drug sensitivity in non-small cell lung cancer (NSCLC). ID1 overexpression in NSCLC cells harboring either EGFR or KRAS mutation was performed and the sensitivity of NSCLC to gefitinib (ZD1839) was measured. A murine orthotopic lung carcinoma model with or without stable ID1 overexpression was developed and treated with gefitinib. Transcriptomic and bioinformatics analyses showed that ID1 overexpression promoted inflammation-related cell death but not apoptosis in gefitinib-treated NSCLC cells. ID1 induced necroptosis by triggering activation of RIP1/RIP3/MLKL pathways. Protein kinase array further suggested that ID1 overexpression maintains Akt activity in gefitinib-treated NSCLC cells, which in turn upregulated FLICE-like inhibitory protein to dissociate the caspase-8-RIP1 complex. The association of RIP1 and RIP3 further activated necroptotic cell death in gefitinib-treated NSCLC. In conclusion, ID1 overexpression in NSCLC induced cellular sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors, regardless of the mutational status of NSCLC. The results may provide scientific evidence for optimizing the treatment outcomes of gefitinib for NSCLC patients.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- Drug Resistance, Neoplasm
- Gefitinib/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Inhibitor of Differentiation Protein 1/genetics
- Inhibitor of Differentiation Protein 1/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Nude
- Protein Kinase Inhibitors/pharmacology
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Receptor-Interacting Protein Serine-Threonine Kinases/genetics
- Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yau-Tuen Chan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wei Guo
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Feiyu Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhangfeng Zhong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|