1
|
Haikonen J, Szrinivasan R, Ojanen S, Rhee JK, Ryazantseva M, Sulku J, Zumaraite G, Lauri SE. GluK1 kainate receptors are necessary for functional maturation of parvalbumin interneurons regulating amygdala circuit function. Mol Psychiatry 2024; 29:3752-3768. [PMID: 38942774 PMCID: PMC11609095 DOI: 10.1038/s41380-024-02641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Parvalbumin expressing interneurons (PV INs) are key players in the local inhibitory circuits and their developmental maturation coincides with the onset of adult-type network dynamics in the brain. Glutamatergic signaling regulates emergence of the unique PV IN phenotype, yet the receptor mechanisms involved are not fully understood. Here we show that GluK1 subunit containing kainate receptors (KARs) are necessary for development and maintenance of the neurochemical and functional properties of PV INs in the lateral and basal amygdala (BLA). Ablation of GluK1 expression specifically from PV INs resulted in low parvalbumin expression and loss of characteristic high firing rate throughout development. In addition, we observed reduced spontaneous excitatory synaptic activity at adult GluK1 lacking PV INs. Intriguingly, inactivation of GluK1 expression in adult PV INs was sufficient to abolish their high firing rate and to reduce PV expression levels, suggesting a role for GluK1 in dynamic regulation of PV IN maturation state. The PV IN dysfunction in the absence of GluK1 perturbed the balance between evoked excitatory vs. inhibitory synaptic inputs and long-term potentiation (LTP) in LA principal neurons, and resulted in aberrant development of the resting-state functional connectivity between mPFC and BLA. Behaviorally, the absence of GluK1 from PV INs associated with hyperactivity and increased fear of novelty. These results indicate a critical role for GluK1 KARs in regulation of PV IN function across development and suggest GluK1 as a potential therapeutic target for pathologies involving PV IN malfunction.
Collapse
Affiliation(s)
- Joni Haikonen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Rakenduvadhana Szrinivasan
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Simo Ojanen
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Jun Kyu Rhee
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Maria Ryazantseva
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Janne Sulku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Gabija Zumaraite
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland
| | - Sari E Lauri
- HiLife Neuroscience Center and Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Comai S, De Martin S, Mattarei A, Guidetti C, Pappagallo M, Folli F, Alimonti A, Manfredi PL. N-methyl-D-aspartate Receptors and Depression: Linking Psychopharmacology, Pathology and Physiology in a Unifying Hypothesis for the Epigenetic Code of Neural Plasticity. Pharmaceuticals (Basel) 2024; 17:1618. [PMID: 39770460 PMCID: PMC11728621 DOI: 10.3390/ph17121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Uncompetitive NMDAR (N-methyl-D-aspartate receptor) antagonists restore impaired neural plasticity, reverse depressive-like behavior in animal models, and relieve major depressive disorder (MDD) in humans. This review integrates recent findings from in silico, in vitro, in vivo, and human studies of uncompetitive NMDAR antagonists into the extensive body of knowledge on NMDARs and neural plasticity. Uncompetitive NMDAR antagonists are activity-dependent channel blockers that preferentially target hyperactive GluN2D subtypes because these subtypes are most sensitive to activation by low concentrations of extracellular glutamate and are more likely activated by certain pathological agonists and allosteric modulators. Hyperactivity of GluN2D subtypes in specific neural circuits may underlie the pathophysiology of MDD. We hypothesize that neural plasticity is epigenetically regulated by precise Ca2+ quanta entering cells via NMDARs. Stimuli reach receptor cells (specialized cells that detect specific types of stimuli and convert them into electrical signals) and change their membrane potential, regulating glutamate release in the synaptic cleft. Free glutamate binds ionotropic glutamatergic receptors regulating NMDAR-mediated Ca2+ influx. Quanta of Ca2+ via NMDARs activate enzymatic pathways, epigenetically regulating synaptic protein homeostasis and synaptic receptor expression; thereby, Ca2+ quanta via NMDARs control the balance between long-term potentiation and long-term depression. This NMDAR Ca2+ quantal hypothesis for the epigenetic code of neural plasticity integrates recent psychopharmacology findings into established physiological and pathological mechanisms of brain function.
Collapse
Affiliation(s)
- Stefano Comai
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35121 Padua, Italy; (S.C.); (S.D.M.); (A.M.)
- Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
- IRCSS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35121 Padua, Italy; (S.C.); (S.D.M.); (A.M.)
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35121 Padua, Italy; (S.C.); (S.D.M.); (A.M.)
| | - Clotilde Guidetti
- Child Neuropsychiatry Unit, Department of Neuroscience, IRCCS Bambino Gesù Pediatric Hospital, 00165 Rome, Italy;
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Marco Pappagallo
- Relmada Therapeutics, Inc., Coral Gables, FL 33134, USA;
- MGGM LLC, 85 Baker Road, Kerhonkson, NY 12446, USA
| | - Franco Folli
- Department of Health Sciences, University of Milan, 20141 Milan, Italy;
| | - Andrea Alimonti
- The Institute of Oncology Research, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland;
- Veneto Institute of Molecular Medicine, 35129 Padua, Italy
- Department of Medicine, Zurich University, 8006 Zurich, Switzerland
- Department of Medicine, University of Padua, 35122 Padua, Italy
| | - Paolo L. Manfredi
- Relmada Therapeutics, Inc., Coral Gables, FL 33134, USA;
- MGGM LLC, 85 Baker Road, Kerhonkson, NY 12446, USA
| |
Collapse
|
3
|
Ward C, Nasrallah K, Tran D, Sabri E, Vazquez A, Sjulson L, Castillo PE, Batista-Brito R. Developmental Disruption of Mef2c in Medial Ganglionic Eminence-Derived Cortical Inhibitory Interneurons Impairs Cellular and Circuit Function. Biol Psychiatry 2024; 96:804-814. [PMID: 38848814 PMCID: PMC11486581 DOI: 10.1016/j.biopsych.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND MEF2C is strongly linked to various neurodevelopmental disorders including autism, intellectual disability, schizophrenia, and attention-deficit/hyperactivity disorder. Mice that constitutively lack 1 copy of Mef2c or selectively lack both copies of Mef2c in cortical excitatory neurons display a variety of behavioral phenotypes associated with neurodevelopmental disorders. The MEF2C protein is a transcription factor necessary for cellular development and synaptic modulation of excitatory neurons. MEF2C is also expressed in a subset of cortical GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but its function in those cell types remains largely unknown. METHODS Using conditional deletions of the Mef2c gene in mice, we investigated the role of MEF2C in parvalbumin-expressing interneurons (PV-INs), the largest subpopulation of cortical GABAergic cells, at 2 developmental time points. We performed slice electrophysiology, in vivo recordings, and behavior assays to test how embryonic and late postnatal loss of MEF2C from GABAergic INs impacts their survival and maturation and alters brain function and behavior. RESULTS Loss of MEF2C from PV-INs during embryonic, but not late postnatal, development resulted in reduced PV-IN number and failure of PV-INs to molecularly and synaptically mature. In association with these deficits, early loss of MEF2C in GABAergic INs led to abnormal cortical network activity, hyperactive and stereotypic behavior, and impaired cognitive and social behavior. CONCLUSIONS MEF2C expression is critical for the development of cortical GABAergic INs, particularly PV-INs. Embryonic loss of function of MEF2C mediates dysfunction of GABAergic INs, leading to altered in vivo patterns of cortical activity and behavioral phenotypes associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Claire Ward
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Kaoutsar Nasrallah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Biological Sciences, Fordham University, Bronx, New York
| | - Duy Tran
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Ehsan Sabri
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Arenski Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
4
|
Camp CR, Banke TG, Xing H, Yu K, Perszyk RE, Epplin MP, Akins NS, Zhang J, Benke TA, Yuan H, Liotta DC, Traynelis SF. Selective Enhancement of the Interneuron Network and Gamma-Band Power via GluN2C/GluN2D NMDA Receptor Potentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622179. [PMID: 39574703 PMCID: PMC11580944 DOI: 10.1101/2024.11.05.622179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) comprise a family of ligand-gated ionotropic glutamate receptors that mediate a slow, calcium-permeable component to excitatory neurotransmission. The GluN2D subunit is enriched in GABAergic inhibitory interneurons in cortical tissue. Diminished levels of GABAergic inhibition contribute to multiple neuropsychiatric conditions, suggesting that enhancing inhibition may have therapeutic utility, thus making GluN2D modulation an attractive drug target. Here, we describe the actions of a GluN2C/GluN2D-selective positive allosteric modulator (PAM), (+)-EU1180-453, which has improved drug-like properties such as increased aqueous solubility compared to the first-in-class GluN2C/GluN2D-selective prototypical PAM (+)-CIQ. (+)-EU1180-453 doubles the NMDAR response at lower concentrations (< 10 μM) compared to (+)-CIQ, and produces a greater degree of maximal potentiation at 30 μM. Using in vitro electrophysiological recordings, we show that (+)-EU1180-453 potentiates triheteromeric NMDARs containing at least one GluN2C or GluN2D subunit, and is active at both exon5-lacking and exon5-containing GluN1 splice variants. (+)-EU1180-453 increases glutamate efficacy for GluN2C/GluN2D-containing NMDARs by both prolonging the deactivation time and potentiating the peak response amplitude. We show that (+)-EU1180-453 selectively increases synaptic NMDAR-mediated charge transfer onto P11-15 CA1 stratum radiatum hippocampal interneurons, but is without effect on CA1 pyramidal cells. This increased charge transfer enhances inhibitory output from GABAergic interneurons onto CA1 pyramidal cells in a GluN2D-dependent manner. (+)-EU1180-453 also shifts excitatory-to-inhibitory coupling towards increased inhibition and produces enhanced gamma band power from carbachol-induced field potential oscillations in hippocampal slices. Thus, (+)-EU1180-453 can enhance overall circuit inhibition, which could prove therapeutically useful for the treatment of anxiety, depression, schizophrenia, and other neuropsychiatric disorders. Significance Statement Interneuron dysfunction and diminished GABAergic inhibition in neocortical and hippocampal circuits remains a prominent molecular hypothesis for neuropsychiatric diseases including anxiety, depression, and schizophrenia. Pharmacological agents that boost GABA receptor function have shown utility in various forms of depression and treating symptoms of schizophrenia. Cortical GABAergic interneurons, unlike their excitatory pyramidal cell counterparts, are enriched for the GluN2D subunit of the NMDA receptor. Thus, GluN2D subunit-selective modulation could be a useful therapeutic tool to enhance local inhibition, improving the prognosis for neuropsychiatric diseases for which interneuron dysfunction is prominent and causal to circuit aberration.
Collapse
Affiliation(s)
- Chad R. Camp
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tue G. Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hao Xing
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Kuai Yu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Riley E. Perszyk
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Matthew P. Epplin
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas S. Akins
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jing Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tim A. Benke
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dennis C. Liotta
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stephen F. Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Guo F, Zhang B, Shen F, Li Q, Song Y, Li T, Zhang Y, Du W, Li Y, Liu W, Cao H, Zhou X, Zheng Y, Zhu S, Li Y, Liu Z. Sevoflurane acts as an antidepressant by suppression of GluN2D-containing NMDA receptors on interneurons. Br J Pharmacol 2024; 181:3483-3502. [PMID: 38779864 DOI: 10.1111/bph.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Sevoflurane, a commonly used inhaled anaesthetic known for its favourable safety profile and rapid onset and offset, has not been thoroughly investigated as a potential treatment for depression. In this study, we reveal the mechanism through which sevoflurane delivers enduring antidepressant effects. EXPERIMENTAL APPROACH To assess the antidepressant effects of sevoflurane, behavioural tests were conducted, along with in vitro and ex vivo whole-cell patch-clamp recordings, to examine the effects on GluN1-GluN2 incorporated N-methyl-d-aspartate (NMDA) receptors (NMDARs) and neuronal circuitry in the medial prefrontal cortex (mPFC). Multiple-channel electrophysiology in freely moving mice was performed to evaluate sevoflurane's effects on neuronal activity, and GluN2D knockout (grin2d-/-) mice were used to confirm the requirement of GluN2D for the antidepressant effects. KEY RESULTS Repeated exposure to subanaesthetic doses of sevoflurane produced sustained antidepressant effects lasting up to 2 weeks. Sevoflurane preferentially inhibited GluN2C- and GluN2D-containing NMDARs, causing a reduction in interneuron activity. In contrast, sevoflurane increased action potentials (AP) firing and decreased spontaneous inhibitory postsynaptic current (sIPSC) in mPFC pyramidal neurons, demonstrating a disinhibitory effect. These effects were absent in grin2d-/- mice, and both pharmacological blockade and genetic knockout of GluN2D abolished sevoflurane's antidepressant actions, suggesting that GluN2D is essential for its antidepressant effect. CONCLUSION AND IMPLICATIONS Sevoflurane directly targets GluN2D, leading to a specific decrease in interneuron activity and subsequent disinhibition of pyramidal neurons, which may underpin its antidepressant effects. Targeting the GluN2D subunit could hold promise as a potential therapeutic strategy for treating depression.
Collapse
Affiliation(s)
- Fei Guo
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuyi Shen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingcai Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyu Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yongmei Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Weijia Du
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanxi Li
- Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai, China
| | - Wei Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hang Cao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xianjin Zhou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yinli Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yang Li
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Department of Anesthesiology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- Anesthesia and Brain Function Research Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Kim H, Choi S, Lee E, Koh W, Lee CJ. Tonic NMDA Receptor Currents in the Brain: Regulation and Cognitive Functions. Biol Psychiatry 2024; 96:164-175. [PMID: 38490367 DOI: 10.1016/j.biopsych.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Synaptically localized NMDA receptors (NMDARs) play a crucial role in important cognitive functions by mediating synaptic transmission and plasticity. In contrast, a tonic NMDAR current, thought to be mediated by extrasynaptic NMDARs, has a less clear function. This review provides a comprehensive overview of tonic NMDAR currents, focusing on their roles in synaptic transmission/plasticity and their impact on cognitive functions and psychiatric disorders. We discuss the roles of 3 endogenous ligands (i.e., glutamate, glycine, and D-serine) and receptors in mediating tonic NMDAR currents and explore the diverse mechanisms that regulate tonic NMDAR currents. In light of recent controversies surrounding the source of D-serine, we highlight the recent findings suggesting that astrocytes release D-serine to modulate tonic NMDAR currents and control cognitive flexibility. Furthermore, we propose distinct roles of neuronal and astrocytic D-serine in different locations and their implications for synaptic regulation and cognitive functions. The potential roles of tonic NMDAR currents in various psychiatric disorders, such as schizophrenia and autism spectrum disorder, are discussed in the context of the NMDAR hypofunction hypothesis. By presenting the mechanisms by which various cells, particularly astrocytes, regulate tonic NMDAR currents, we aim to stimulate future research in NMDAR hypofunction- or hyperfunction-related psychiatric disorders. This review not only provides a better understanding of the complex interplay between tonic NMDAR currents and cognitive functions but also sheds light on its potential therapeutic target for the treatment of various psychiatric disorders.
Collapse
Affiliation(s)
- Hayoung Kim
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Sunyeong Choi
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Euisun Lee
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
7
|
Lazarov O, Disouky A, Sanborn M, Mostafa M, Sabitha K, Schantz A, Kim N, Pawlowski S, Honer W, Bennett D, Zhou Y, Keene C, Maienschein-Cline M, Rehman J. A roadmap to human hippocampal neurogenesis in adulthood, aging and AD. RESEARCH SQUARE 2024:rs.3.rs-4469965. [PMID: 38854131 PMCID: PMC11160907 DOI: 10.21203/rs.3.rs-4469965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
In the rodent, hippocampal neurogenesis plays critical roles in learning and memory1,2, is tightly regulated by inhibitory neurons3-7 and contributes to memory dysfunction in Alzheimer's disease (AD) mouse models8-10. In contrast, the mechanisms regulating neurogenesis in the adult human hippocampus, the dynamic shifts in the transcriptomic and epigenomic profiles in aging and AD and putative niche interactions within the cellular environment, remain largely unknown. Using single nuclei multi-omics of postmortem human hippocampi we map the molecular mechanisms of hippocampal neurogenesis across aging, cognitive decline, and AD neuropathology. Transcriptomic and epigenetic profiling of neural stem cells (NSCs), neuroblasts and immature neurons suggests that the earliest shift in the characteristics of neurogenesis takes place in NSCs in aging. Cognitive impairment was associated with changes in neuroblast profile. In AD, there was a widespread cessation of the transcription machinery in immature neurons, with robust downregulation of genes regulating ribosomal and mitochondrial function. Further, there was substantial loss of parvalbumin+ inhibitory neurons in the hippocampus in aging. The number of the rest of inhibitory neurons were reduced as a function of age and diagnosis. Notably, a similar system-level effect was observed between immature and inhibitory neurons in the transition from aging to AD, manifested by common molecular pathways that were ultimately lost in AD. The numbers of neuroblasts, immature and GABAergic neurons inversely correlated with extent of neuropathology. Using CellChat and NeuronChat, we inferred the ligands and receptors by which neurogenic cells communicate with their cellular environment. Loss of synaptic adhesion molecules and neurotransmitters, either sent or received by neurogenic cells, was observed in AD. Together, this study delineates the molecular mechanisms and dynamics of human neurogenesis, functional association with inhibitory neurons and a mechanism of hippocampal hyperexcitability in AD.
Collapse
Affiliation(s)
| | | | | | | | - K Sabitha
- The University of Illinois at Chicago
| | | | | | | | | | | | - Yi Zhou
- Institute of Neuroscience, Chinese Academy of Sciences
| | | | | | | |
Collapse
|
8
|
Ward C, Nasrallah K, Tran D, Sabri E, Vazquez A, Sjulson L, Castillo PE, Batista-Brito R. Developmental disruption of Mef2c in Medial Ganglionic Eminence-derived cortical inhibitory interneurons impairs cellular and circuit function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592084. [PMID: 38746148 PMCID: PMC11092645 DOI: 10.1101/2024.05.01.592084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
MEF2C is strongly linked to various neurodevelopmental disorders (NDDs) including autism, intellectual disability, schizophrenia, and attention-deficit/hyperactivity. Mice constitutively lacking one copy of Mef2c , or selectively lacking both copies of Mef2c in cortical excitatory neurons, display a variety of behavioral phenotypes associated with NDDs. The MEF2C protein is a transcription factor necessary for cellular development and synaptic modulation of excitatory neurons. MEF2C is also expressed in a subset of cortical GABAergic inhibitory neurons, but its function in those cell types remains largely unknown. Using conditional deletions of the Mef2c gene in mice, we investigated the role of MEF2C in Parvalbumin-expressing Interneurons (PV-INs), the largest subpopulation of cortical GABAergic cells, at two developmental timepoints. We performed slice electrophysiology, in vivo recordings, and behavior assays to test how embryonic and late postnatal loss of MEF2C from GABAergic interneurons impacts their survival and maturation, and alters brain function and behavior. We found that loss of MEF2C from PV-INs during embryonic, but not late postnatal, development resulted in reduced PV-IN number and failure of PV-INs to molecularly and synaptically mature. In association with these deficits, early loss of MEF2C in GABAergic interneurons lead to abnormal cortical network activity, hyperactive and stereotypic behavior, and impaired cognitive and social behavior. Our findings indicate that MEF2C expression is critical for the development of cortical GABAergic interneurons, particularly PV-INs. Embryonic loss of function of MEF2C mediates dysfunction of GABAergic interneurons, leading to altered in vivo patterns of cortical activity and behavioral phenotypes associated with neurodevelopmental disorders.
Collapse
|
9
|
Vinnakota C, Schroeder A, Du X, Ikeda K, Ide S, Mishina M, Hudson M, Jones NC, Sundram S, Hill RA. Understanding the role of the NMDA receptor subunit, GluN2D, in mediating NMDA receptor antagonist-induced behavioral disruptions in male and female mice. J Neurosci Res 2024; 102:e25257. [PMID: 37814998 PMCID: PMC10953441 DOI: 10.1002/jnr.25257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/24/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Noncompetitive NMDA receptor (NMDAR) antagonists like phencyclidine (PCP) and ketamine cause psychosis-like symptoms in healthy humans, exacerbate schizophrenia symptoms in people with the disorder, and disrupt a range of schizophrenia-relevant behaviors in rodents, including hyperlocomotion. This is negated in mice lacking the GluN2D subunit of the NMDAR, suggesting the GluN2D subunit mediates the hyperlocomotor effects of these drugs. However, the role of GluN2D in mediating other schizophrenia-relevant NMDAR antagonist-induced behavioral disturbances, and in both sexes, is unclear. This study aimed to investigate the role of the GluN2D subunit in mediating schizophrenia-relevant behaviors induced by a range of NMDA receptor antagonists. Using both male and female GluN2D knockout (KO) mice, we examined the effects of the NMDAR antagonist's PCP, the S-ketamine enantiomer (S-ket), and the ketamine metabolite R-norketamine (R-norket) on locomotor activity, anxiety-related behavior, and recognition and short-term spatial memory. GluN2D-KO mice showed a blunted locomotor response to R-norket, S-ket, and PCP, a phenotype present in both sexes. GluN2D-KO mice of both sexes showed an anxious phenotype and S-ket, R-norket, and PCP showed anxiolytic effects that were dependent on sex and genotype. S-ket disrupted spatial recognition memory in females and novel object recognition memory in both sexes, independent of genotype. This datum identifies a role for the GluN2D subunit in sex-specific effects of NMDAR antagonists and on the differential effects of the R- and S-ket enantiomers.
Collapse
Affiliation(s)
- Chitra Vinnakota
- Department of PsychiatryMonash UniversityClaytonVictoriaAustralia
| | - Anna Schroeder
- Department of PsychiatryMonash UniversityClaytonVictoriaAustralia
| | - Xin Du
- Department of PsychiatryMonash UniversityClaytonVictoriaAustralia
| | - Kazutaka Ikeda
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Soichiro Ide
- Addictive Substance ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and TechnologyRitsumeikan UniversityKusatsuJapan
| | - Matthew Hudson
- Department of NeuroscienceMonash UniversityClaytonVictoriaAustralia
| | | | - Suresh Sundram
- Department of PsychiatryMonash UniversityClaytonVictoriaAustralia
- Mental Health ProgramMonash HealthClaytonVictoriaAustralia
| | - Rachel Anne Hill
- Department of PsychiatryMonash UniversityClaytonVictoriaAustralia
| |
Collapse
|
10
|
Krystal JH, Kaye AP, Jefferson S, Girgenti MJ, Wilkinson ST, Sanacora G, Esterlis I. Ketamine and the neurobiology of depression: Toward next-generation rapid-acting antidepressant treatments. Proc Natl Acad Sci U S A 2023; 120:e2305772120. [PMID: 38011560 DOI: 10.1073/pnas.2305772120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ketamine has emerged as a transformative and mechanistically novel pharmacotherapy for depression. Its rapid onset of action, efficacy for treatment-resistant symptoms, and protection against relapse distinguish it from prior antidepressants. Its discovery emerged from a reconceptualization of the neurobiology of depression and, in turn, insights from the elaboration of its mechanisms of action inform studies of the pathophysiology of depression and related disorders. It has been 25 y since we first presented our ketamine findings in depression. Thus, it is timely for this review to consider what we have learned from studies of ketamine and to suggest future directions for the optimization of rapid-acting antidepressant treatment.
Collapse
Affiliation(s)
- John H Krystal
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Sarah Jefferson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Matthew J Girgenti
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| | - Samuel T Wilkinson
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Gerard Sanacora
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Psychiatry and Behavioral Health Services, Yale-New Haven Hospital, New Haven, CT 06510
| | - Irina Esterlis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
| |
Collapse
|
11
|
Mony L, Paoletti P. Mechanisms of NMDA receptor regulation. Curr Opin Neurobiol 2023; 83:102815. [PMID: 37988826 DOI: 10.1016/j.conb.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels widely expressed in the central nervous system that play key role in brain development and plasticity. On the downside, NMDAR dysfunction, be it hyperactivity or hypofunction, is harmful to neuronal function and has emerged as a common theme in various neuropsychiatric disorders including autism spectrum disorders, epilepsy, intellectual disability, and schizophrenia. Not surprisingly, NMDAR signaling is under a complex set of regulatory mechanisms that maintain NMDAR-mediated transmission in check. These include an unusual large number of endogenous agents that directly bind NMDARs and tune their activity in a subunit-dependent manner. Here, we review current knowledge on the regulation of NMDAR signaling. We focus on the regulation of the receptor by its microenvironment as well as by external (i.e. pharmacological) factors and their underlying molecular and cellular mechanisms. Recent developments showing how NMDAR dysregulation participate to disease mechanisms are also highlighted.
Collapse
Affiliation(s)
- Laetitia Mony
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| | - Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Université PSL, CNRS, INSERM, F-75005 Paris, France.
| |
Collapse
|
12
|
Wu E, Zhang J, Zhang J, Zhu S. Structural insights into gating mechanism and allosteric regulation of NMDA receptors. Curr Opin Neurobiol 2023; 83:102806. [PMID: 37950957 DOI: 10.1016/j.conb.2023.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/28/2023] [Accepted: 10/13/2023] [Indexed: 11/13/2023]
Abstract
N-methyl-d-aspartate receptors (NMDARs) belong to the ionotropic glutamate receptors (iGluRs) superfamily and act as coincidence detectors that are crucial to neuronal development and synaptic plasticity. They typically assemble as heterotetramers of two obligatory GluN1 subunits and two alternative GluN2 (from 2A to 2D) and/or GluN3 (3A and 3B) subunits. These alternative subunits mainly determine the diverse biophysical and pharmacological properties of different NMDAR subtypes. Over the past decade, the unprecedented advances in structure elucidation of these tetrameric NMDARs have provided atomic insights into channel gating, allosteric modulation and the action of therapeutic drugs. A wealth of structural and functional information would accelerate the artificial intelligence-based drug design to exploit more NMDAR subtype-specific molecules for the treatment of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Enjiang Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China. https://twitter.com/DuDaDa_Flower
| | - Jilin Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
13
|
Camp CR, Vlachos A, Klöckner C, Krey I, Banke TG, Shariatzadeh N, Ruggiero SM, Galer P, Park KL, Caccavano A, Kimmel S, Yuan X, Yuan H, Helbig I, Benke TA, Lemke JR, Pelkey KA, McBain CJ, Traynelis SF. Loss of Grin2a causes a transient delay in the electrophysiological maturation of hippocampal parvalbumin interneurons. Commun Biol 2023; 6:952. [PMID: 37723282 PMCID: PMC10507040 DOI: 10.1038/s42003-023-05298-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ligand-gated ionotropic glutamate receptors that mediate a calcium-permeable component to fast excitatory neurotransmission. NMDARs are heterotetrameric assemblies of two obligate GluN1 subunits (GRIN1) and two GluN2 subunits (GRIN2A-GRIN2D). Sequencing data shows that 43% (297/679) of all currently known NMDAR disease-associated genetic variants are within the GRIN2A gene, which encodes the GluN2A subunit. Here, we show that unlike missense GRIN2A variants, individuals affected with disease-associated null GRIN2A variants demonstrate a transient period of seizure susceptibility that begins during infancy and diminishes near adolescence. We show increased circuit excitability and CA1 pyramidal cell output in juvenile mice of both Grin2a+/- and Grin2a-/- mice. These alterations in somatic spiking are not due to global upregulation of most Grin genes (including Grin2b). Deeper evaluation of the developing CA1 circuit led us to uncover age- and Grin2a gene dosing-dependent transient delays in the electrophysiological maturation programs of parvalbumin (PV) interneurons. We report that Grin2a+/+ mice reach PV cell electrophysiological maturation between the neonatal and juvenile neurodevelopmental timepoints, with Grin2a+/- mice not reaching PV cell electrophysiological maturation until preadolescence, and Grin2a-/- mice not reaching PV cell electrophysiological maturation until adulthood. Overall, these data may represent a molecular mechanism describing the transient nature of seizure susceptibility in disease-associated null GRIN2A patients.
Collapse
Affiliation(s)
- Chad R Camp
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anna Vlachos
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Ilona Krey
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Tue G Banke
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Nima Shariatzadeh
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Sarah M Ruggiero
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Peter Galer
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
| | - Kristen L Park
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Adam Caccavano
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sarah Kimmel
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19146, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Tim A Benke
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
- Center for Rare Diseases, University of Leipzig Medical Center, Leipzig, Germany
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Gawande DY, S Narasimhan KK, Shelkar GP, Pavuluri R, Stessman HAF, Dravid SM. GluN2D Subunit in Parvalbumin Interneurons Regulates Prefrontal Cortex Feedforward Inhibitory Circuit and Molecular Networks Relevant to Schizophrenia. Biol Psychiatry 2023; 94:297-309. [PMID: 37004850 PMCID: PMC10524289 DOI: 10.1016/j.biopsych.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Parvalbumin interneuron (PVI) activity synchronizes the medial prefrontal cortex circuit for normal cognitive function, and its impairment may contribute to schizophrenia (SZ). NMDA receptors in PVIs participate in these activities and form the basis for the NMDA receptor hypofunction hypothesis of SZ. However, the role of the GluN2D subunit, which is enriched in PVIs, in regulating molecular networks relevant to SZ is unknown. METHODS Using electrophysiology and a mouse model with conditional deletion of GluN2D from PVIs (PV-GluN2D knockout [KO]), we examined the cell excitability and neurotransmission in the medial prefrontal cortex. Histochemical, RNA sequencing analysis and immunoblotting were conducted to understand molecular mechanisms. Behavioral analysis was conducted to test cognitive function. RESULTS PVIs in the medial prefrontal cortex were found to express putative GluN1/2B/2D receptors. In a PV-GluN2D KO model, PVIs were hypoexcitable, whereas pyramidal neurons were hyperexcitable. Excitatory neurotransmission was higher in both cell types in PV-GluN2D KO, whereas inhibitory neurotransmission showed contrasting changes, which could be explained by reduced somatostatin interneuron projections and increased PVI projections. Genes associated with GABA (gamma-aminobutyric acid) synthesis, vesicular release, and uptake as well as those involved in formation of inhibitory synapses, specifically GluD1-Cbln4 and Nlgn2, and regulation of dopamine terminals were downregulated in PV-GluN2D KO. SZ susceptibility genes including Disc1, Nrg1, and ErbB4 and their downstream targets were also downregulated. Behaviorally, PV-GluN2D KO mice showed hyperactivity and anxiety behavior and deficits in short-term memory and cognitive flexibility. CONCLUSIONS These findings demonstrate that GluN2D in PVIs serves as a point of convergence of pathways involved in the regulation of GABAergic synapses relevant to SZ.
Collapse
Affiliation(s)
- Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | | | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | - Holly A F Stessman
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska.
| |
Collapse
|
15
|
Vinnakota C, Hudson MR, Jones NC, Sundram S, Hill RA. Potential Roles for the GluN2D NMDA Receptor Subunit in Schizophrenia. Int J Mol Sci 2023; 24:11835. [PMID: 37511595 PMCID: PMC10380280 DOI: 10.3390/ijms241411835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Glutamate N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie schizophrenia symptoms. This theory arose from the observation that administration of NMDAR antagonists, which are compounds that inhibit NMDAR activity, reproduces behavioural and molecular schizophrenia-like phenotypes, including hallucinations, delusions and cognitive impairments in healthy humans and animal models. However, the role of specific NMDAR subunits in these schizophrenia-relevant phenotypes is largely unknown. Mounting evidence implicates the GluN2D subunit of NMDAR in some of these symptoms and pathology. Firstly, genetic and post-mortem studies show changes in the GluN2D subunit in people with schizophrenia. Secondly, the psychosis-inducing effects of NMDAR antagonists are blunted in GluN2D-knockout mice, suggesting that the GluN2D subunit mediates NMDAR-antagonist-induced psychotomimetic effects. Thirdly, in the mature brain, the GluN2D subunit is relatively enriched in parvalbumin (PV)-containing interneurons, a cell type hypothesized to underlie the cognitive symptoms of schizophrenia. Lastly, the GluN2D subunit is widely and abundantly expressed early in development, which could be of importance considering schizophrenia is a disorder that has its origins in early neurodevelopment. The limitations of currently available therapies warrant further research into novel therapeutic targets such as the GluN2D subunit, which may help us better understand underlying disease mechanisms and develop novel and more effective treatment options.
Collapse
Affiliation(s)
- Chitra Vinnakota
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Matthew R Hudson
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Nigel C Jones
- Department of Neuroscience, Faculty of Medical, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
- Mental Health Program, Monash Health, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medical, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
16
|
Batista-Brito R, Majumdar A, Nuño A, Ward C, Barnes C, Nikouei K, Vinck M, Cardin JA. Developmental loss of ErbB4 in PV interneurons disrupts state-dependent cortical circuit dynamics. Mol Psychiatry 2023; 28:3133-3143. [PMID: 37069344 PMCID: PMC10618960 DOI: 10.1038/s41380-023-02066-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
GABAergic inhibition plays an important role in the establishment and maintenance of cortical circuits during development. Neuregulin 1 (Nrg1) and its interneuron-specific receptor ErbB4 are key elements of a signaling pathway critical for the maturation and proper synaptic connectivity of interneurons. Using conditional deletions of the ERBB4 gene in mice, we tested the role of this signaling pathway at two developmental timepoints in parvalbumin-expressing (PV) interneurons, the largest subpopulation of cortical GABAergic cells. Loss of ErbB4 in PV interneurons during embryonic, but not late postnatal development leads to alterations in the activity of excitatory and inhibitory cortical neurons, along with severe disruption of cortical temporal organization. These impairments emerge by the end of the second postnatal week, prior to the complete maturation of the PV interneurons themselves. Early loss of ErbB4 in PV interneurons also results in profound dysregulation of excitatory pyramidal neuron dendritic architecture and a redistribution of spine density at the apical dendritic tuft. In association with these deficits, excitatory cortical neurons exhibit normal tuning for sensory inputs, but a loss of state-dependent modulation of the gain of sensory responses. Together these data support a key role for early developmental Nrg1/ErbB4 signaling in PV interneurons as a powerful mechanism underlying the maturation of both the inhibitory and excitatory components of cortical circuits.
Collapse
Affiliation(s)
- Renata Batista-Brito
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
- Department of Psychiatry and Behavioral Sciences, Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
- Department of Genetics, Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA.
| | - Antara Majumdar
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Road, Oxford, OX1 3PT, England
| | - Alejandro Nuño
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
| | - Claire Ward
- Department of Neuroscience, Albert Einstein College of Medicine, 1300 Morris Park Ave, The Bronx, NY, 10461, USA
| | - Clayton Barnes
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
| | - Kasra Nikouei
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Vinck
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528, Frankfurt, Germany
| | - Jessica A Cardin
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06520, USA.
- Kavli Institute of Neuroscience, Yale University, 333 Cedar St., New Haven, CT, 06520, USA.
- Wu Tsai Institute, Yale University, 100 College St., New Haven, CT, 06520, USA.
| |
Collapse
|
17
|
Kumar J, Popescu GK, Gantz SC. GluD receptors are functional ion channels. Biophys J 2023; 122:2383-2395. [PMID: 37177782 PMCID: PMC10323023 DOI: 10.1016/j.bpj.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
In this article, we review contemporary evidence that GluD receptors are functional ion channels whose depolarizing currents contribute to their biological functions, akin to all other members of the ionotropic glutamate receptor (iGluR) family.
Collapse
Affiliation(s)
- Janesh Kumar
- Laboratory of Membrane Protein Biology, Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, SUNY, Buffalo, New York
| | - Stephanie C Gantz
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
18
|
Folorunso OO, Brown SE, Baruah J, Harvey TL, Jami SA, Radzishevsky I, Wolosker H, McNally JM, Gray JA, Vasudevan A, Balu DT. D-serine availability modulates prefrontal cortex inhibitory interneuron development and circuit maturation. Sci Rep 2023; 13:9595. [PMID: 37311798 PMCID: PMC10264435 DOI: 10.1038/s41598-023-35615-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/21/2023] [Indexed: 06/15/2023] Open
Abstract
The proper development and function of telencephalic GABAergic interneurons is critical for maintaining the excitation and inhibition (E/I) balance in cortical circuits. Glutamate contributes to cortical interneuron (CIN) development via N-methyl-D-aspartate receptors (NMDARs). NMDAR activation requires the binding of a co-agonist, either glycine or D-serine. D-serine (co-agonist at many mature forebrain synapses) is racemized by the neuronal enzyme serine racemase (SR) from L-serine. We utilized constitutive SR knockout (SR-/-) mice to investigate the effect of D-serine availability on the development of CINs and inhibitory synapses in the prelimbic cortex (PrL). We found that most immature Lhx6 + CINs expressed SR and the obligatory NMDAR subunit NR1. At embryonic day 15, SR-/- mice had an accumulation of GABA and increased mitotic proliferation in the ganglionic eminence and fewer Gad1 + (glutamic acid decarboxylase 67 kDa; GAD67) cells in the E18 neocortex. Lhx6 + cells develop into parvalbumin (PV+) and somatostatin (Sst+) CINs. In the PrL of postnatal day (PND) 16 SR-/- mice, there was a significant decrease in GAD67+ and PV+, but not SST + CIN density, which was associated with reduced inhibitory postsynaptic potentials in layer 2/3 pyramidal neurons. These results demonstrate that D-serine availability is essential for prenatal CIN development and postnatal cortical circuit maturation.
Collapse
Affiliation(s)
- Oluwarotimi O Folorunso
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA.
| | - Stephanie E Brown
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Jugajyoti Baruah
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
- Angiogenesis and Brain Development Laboratory, Department of Neurosciences, Huntington Medical Research Institutes (HMRI), Pasadena, CA, 91105, USA
| | - Theresa L Harvey
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
| | - Shekib A Jami
- Center for Neuroscience, University of California Davis, Davis, CA, 95616, USA
| | - Inna Radzishevsky
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Herman Wolosker
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - James M McNally
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
- VA Boston Healthcare System, West Roxbury, MA, 02132, USA
| | - John A Gray
- Center for Neuroscience, University of California Davis, Davis, CA, 95616, USA
| | - Anju Vasudevan
- Angiogenesis and Brain Development Laboratory, Department of Neurosciences, Huntington Medical Research Institutes (HMRI), Pasadena, CA, 91105, USA
| | - Darrick T Balu
- Division of Basic Neuroscience, McLean Hospital, Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02215, USA
| |
Collapse
|
19
|
Copeland DS, Gugel A, Gantz SC. Potentiation of neuronal activity by tonic GluD1 current in brain slices. EMBO Rep 2023:e56801. [PMID: 37154294 DOI: 10.15252/embr.202356801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Ion channel function of native delta glutamate receptors (GluDR ) is incompletely understood. Previously, we and others have shown that activation of Gαq protein-coupled receptors (GqPCR) produces a slow inward current carried by GluD1R . GluD1R also carries a tonic cation current of unknown cause. Here, using voltage-clamp electrophysiological recordings from adult mouse brain slices containing the dorsal raphe nucleus, we find no role of ongoing G-protein-coupled receptor activity in generating or sustaining tonic GluD1R currents. Neither augmentation nor disruption of G protein activity affects tonic GluD1R currents, suggesting that ongoing G-protein-coupled receptor activity does not give rise to tonic GluD1R currents. Further, the tonic GluD1R current is unaffected by the addition of external glycine or D-serine, which influences GluD2R current at millimolar concentrations. Instead, GqPCR-stimulated and tonic GluD1R currents are regulated by physiological levels of external calcium. In current-clamp recordings, block of GluD1R channels hyperpolarizes the membrane by ~7 mV at subthreshold potentials, reducing excitability. Thus, GluD1R carries a G-protein-independent tonic current that contributes to subthreshold neuronal excitation in the dorsal raphe nucleus.
Collapse
Affiliation(s)
- Daniel S Copeland
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Aleigha Gugel
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Stephanie C Gantz
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
20
|
Suárez Santiago JE, Roldán GR, Picazo O. Ketamine as a pharmacological tool for the preclinical study of memory deficit in schizophrenia. Behav Pharmacol 2023; 34:80-91. [PMID: 36094064 DOI: 10.1097/fbp.0000000000000689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a serious neuropsychiatric disorder characterized by the presence of positive symptoms (hallucinations, delusions, and disorganization of thought and language), negative symptoms (abulia, alogia, and affective flattening), and cognitive impairment (attention deficit, impaired declarative memory, and deficits in social cognition). Dopaminergic hyperactivity seems to explain the positive symptoms, but it does not completely clarify the appearance of negative and cognitive clinical manifestations. Preclinical data have demonstrated that acute and subchronic treatment with NMDA receptor antagonists such as ketamine (KET) represents a useful model that resembles the schizophrenia symptomatology, including cognitive impairment. This latter has been explained as a hypofunction of NMDA receptors located on the GABA parvalbumin-positive interneurons (near to the cortical pyramidal cells), thus generating an imbalance between the inhibitory and excitatory activity in the corticomesolimbic circuits. The use of behavioral models to explore alterations in different domains of memory is vital to learn more about the neurobiological changes that underlie schizophrenia. Thus, to better understand the neurophysiological mechanisms involved in cognitive impairment related to schizophrenia, the purpose of this review is to analyze the most recent findings regarding the effect of KET administration on these processes.
Collapse
Affiliation(s)
- José Eduardo Suárez Santiago
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel Roldán Roldán
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ofir Picazo
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
| |
Collapse
|
21
|
Singh M, Sapkota K, Sakimura K, Kano M, Cowell RM, Overstreet-Wadiche L, Hablitz JJ, Nakazawa K. Maturation of GABAergic Synaptic Transmission From Neocortical Parvalbumin Interneurons Involves N-methyl-D-aspartate Receptor Recruitment of Cav2.1 Channels. Neuroscience 2023; 513:38-53. [PMID: 36682446 DOI: 10.1016/j.neuroscience.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
N-methyl-D-aspartate receptor (NMDAR) hypofunction during brain development is likely to contribute to the manifestation of schizophrenia (SCZ) in young adulthood. The cellular targets of NMDAR hypofunction appear to be at least in part corticolimbic fast-spiking (FS) interneurons. However, functional alterations in parvalbumin (PV)-positive FS interneurons following NMDAR hypofunction are poorly understood. Paired patch-clamp recordings from murine cortical PV interneurons and pyramidal neurons revealed that genetic deletion of NMDAR subunit Grin1 in prospective PV interneurons before the second postnatal week impaired evoked- and synchronized-GABA release. Whereas intrinsic excitability and spiking characteristics were also disturbed by Grin1 deletion, neither restoring their excitability by K+ channel blockade nor increasing extracellular Ca2+ rescued the GABA release. GABA release was also insensitive to the Cav2.1 channel antagonist ω-agatoxin IVA. Heterozygous deletion of Cacna1a gene (encoding Cav2.1) in PV interneurons produced a similar GABA release phenotype as the Grin1 mutants. Treatment with the Cav2.1/2.2 channel agonist GV-58 augmented somatic Ca2+ currents and GABA release in Cacna1a-haploinsufficient PV interneurons, but failed to enhance GABA release in the Grin1-deleted PV interneurons. Taken together, our results suggest that Grin1 deletion in prospective PV interneurons impairs proper maturation of membrane excitability and Cav2.1-recruited evoked GABA release. This may increase synaptic excitatory/inhibitory ratio in principal neurons, contributing to the emergence of SCZ-like phenotypes.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Kiran Sapkota
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| | - Rita M Cowell
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kazu Nakazawa
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Ryner RF, Derera ID, Armbruster M, Kansara A, Sommer ME, Pirone A, Noubary F, Jacob M, Dulla CG. Cortical Parvalbumin-Positive Interneuron Development and Function Are Altered in the APC Conditional Knockout Mouse Model of Infantile and Epileptic Spasms Syndrome. J Neurosci 2023; 43:1422-1440. [PMID: 36717229 PMCID: PMC9987578 DOI: 10.1523/jneurosci.0572-22.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/14/2022] [Accepted: 12/22/2022] [Indexed: 02/01/2023] Open
Abstract
Infantile and epileptic spasms syndrome (IESS) is a childhood epilepsy syndrome characterized by infantile or late-onset spasms, abnormal neonatal EEG, and epilepsy. Few treatments exist for IESS, clinical outcomes are poor, and the molecular and circuit-level etiologies of IESS are not well understood. Multiple human IESS risk genes are linked to Wnt/β-catenin signaling, a pathway that controls developmental transcriptional programs and promotes glutamatergic excitation via β-catenin's role as a synaptic scaffold. We previously showed that deleting adenomatous polyposis coli (APC), a component of the β-catenin destruction complex, in excitatory neurons (APC cKO mice, APCfl/fl x CaMKIIαCre) increased β-catenin levels in developing glutamatergic neurons and led to infantile behavioral spasms, abnormal neonatal EEG, and adult epilepsy. Here, we tested the hypothesis that the development of GABAergic interneurons (INs) is disrupted in APC cKO male and female mice. IN dysfunction is implicated in human IESS, is a feature of other rodent models of IESS, and may contribute to the manifestation of spasms and seizures. We found that parvalbumin-positive INs (PV+ INs), an important source of cortical inhibition, were decreased in number, underwent disproportionate developmental apoptosis, and had altered dendrite morphology at P9, the peak of behavioral spasms. PV+ INs received excessive excitatory input, and their intrinsic ability to fire action potentials was reduced at all time points examined (P9, P14, P60). Subsequently, GABAergic transmission onto pyramidal neurons was uniquely altered in the somatosensory cortex of APC cKO mice at all ages, with both decreased IPSC input at P14 and enhanced IPSC input at P9 and P60. These results indicate that inhibitory circuit dysfunction occurs in APC cKOs and, along with known changes in excitation, may contribute to IESS-related phenotypes.SIGNIFICANCE STATEMENT Infantile and epileptic spasms syndrome (IESS) is a devastating epilepsy with limited treatment options and poor clinical outcomes. The molecular, cellular, and circuit disruptions that cause infantile spasms and seizures are largely unknown, but inhibitory GABAergic interneuron dysfunction has been implicated in rodent models of IESS and may contribute to human IESS. Here, we use a rodent model of IESS, the APC cKO mouse, in which β-catenin signaling is increased in excitatory neurons. This results in altered parvalbumin-positive GABAergic interneuron development and GABAergic synaptic dysfunction throughout life, showing that pathology arising in excitatory neurons can initiate long-term interneuron dysfunction. Our findings further implicate GABAergic dysfunction in IESS, even when pathology is initiated in other neuronal types.
Collapse
Affiliation(s)
- Rachael F Ryner
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
- Cell, Molecular, and Developmental Biology Graduate Program, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts 02111
| | - Isabel D Derera
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Anar Kansara
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Mary E Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Antonella Pirone
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Farzad Noubary
- Department of Health Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115
| | - Michele Jacob
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
23
|
Negwer M, Bosch B, Bormann M, Hesen R, Lütje L, Aarts L, Rossing C, Nadif Kasri N, Schubert D. FriendlyClearMap: an optimized toolkit for mouse brain mapping and analysis. Gigascience 2022; 12:giad035. [PMID: 37222748 PMCID: PMC10205001 DOI: 10.1093/gigascience/giad035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Tissue clearing is currently revolutionizing neuroanatomy by enabling organ-level imaging with cellular resolution. However, currently available tools for data analysis require a significant time investment for training and adaptation to each laboratory's use case, which limits productivity. Here, we present FriendlyClearMap, an integrated toolset that makes ClearMap1 and ClearMap2's CellMap pipeline easier to use, extends its functions, and provides Docker Images from which it can be run with minimal time investment. We also provide detailed tutorials for each step of the pipeline. FINDINGS For more precise alignment, we add a landmark-based atlas registration to ClearMap's functions as well as include young mouse reference atlases for developmental studies. We provide an alternative cell segmentation method besides ClearMap's threshold-based approach: Ilastik's Pixel Classification, importing segmentations from commercial image analysis packages and even manual annotations. Finally, we integrate BrainRender, a recently released visualization tool for advanced 3-dimensional visualization of the annotated cells. CONCLUSIONS As a proof of principle, we use FriendlyClearMap to quantify the distribution of the 3 main GABAergic interneuron subclasses (parvalbumin+ [PV+], somatostatin+, and vasoactive intestinal peptide+) in the mouse forebrain and midbrain. For PV+ neurons, we provide an additional dataset with adolescent vs. adult PV+ neuron density, showcasing the use for developmental studies. When combined with the analysis pipeline outlined above, our toolkit improves on the state-of-the-art packages by extending their function and making them easier to deploy at scale.
Collapse
Affiliation(s)
- Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Bram Bosch
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Maren Bormann
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Rick Hesen
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Lukas Lütje
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Lynn Aarts
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Carleen Rossing
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
24
|
Khozhai LI, Otellin VA. Distribution of GABAergic Neurons and Expression Levels of GABA Transporter 1 in the Rat Neocortex during the Neonatal Period after Perinatal Hypoxic Exposure. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022060023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Álvarez-Ferradas C, Wellmann M, Morales K, Fuenzalida M, Cerpa W, Inestrosa NC, Bonansco C. Wnt-5a induces the conversion of silent to functional synapses in the hippocampus. Front Mol Neurosci 2022; 15:1024034. [DOI: 10.3389/fnmol.2022.1024034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Synapse unsilencing is an essential mechanism for experience-dependent plasticity. Here, we showed that the application of the ligand Wnt-5a converts glutamatergic silent synapses into functional ones by increasing both α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate (NMDA) currents (IAMPA and INMDA, respectively). These effects were mimicked by the hexapeptide Foxy-5 and inhibited by secreted frizzled-related protein sFRP-2. INMDA potentiation was produced by increased synaptic potency, followed by an increase in the probability of release (Pr), even in the presence of 7-nitro-2,3-dioxo-1,4-dihydroquinoxaline-6-carbonitrile (CNQX). At a longer time of Wnt-5a exposure, the Pr increments were higher in INMDA than in IAMPA. In the presence of NMDAR inhibitors, Wnt-5a-induced conversion was fully inhibited in 69.0% of silent synapses, whereas in the remaining synapses were converted into functional one. Our study findings showed that the Wnt-5a-activated pathway triggers AMPAR insertion into mammalian glutamatergic synapses, unsilencing non-functional synapses and promoting the formation of nascent synapses during the early postnatal development of the brain circuits.
Collapse
|
26
|
Esmethadone (REL-1017) and Other Uncompetitive NMDAR Channel Blockers May Improve Mood Disorders via Modulation of Synaptic Kinase-Mediated Signaling. Int J Mol Sci 2022; 23:ijms232012196. [PMID: 36293063 PMCID: PMC9602945 DOI: 10.3390/ijms232012196] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
This article presents a mechanism of action hypothesis to explain the rapid antidepressant effects of esmethadone (REL-1017) and other uncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonists and presents a corresponding mechanism of disease hypothesis for major depressive disorder (MDD). Esmethadone and other uncompetitive NMDAR antagonists may restore physiological neural plasticity in animal models of depressive-like behavior and in patients with MDD via preferential tonic block of pathologically hyperactive GluN2D subtypes. Tonic Ca2+ currents via GluN2D subtypes regulate the homeostatic availability of synaptic proteins. MDD and depressive behaviors may be determined by reduced homeostatic availability of synaptic proteins, due to upregulated tonic Ca2+ currents through GluN2D subtypes. The preferential activity of low-potency NMDAR antagonists for GluN2D subtypes may explain their rapid antidepressant effects in the absence of dissociative side effects.
Collapse
|
27
|
Fish KN, Joffe ME. Targeting prefrontal cortex GABAergic microcircuits for the treatment of alcohol use disorder. Front Synaptic Neurosci 2022; 14:936911. [PMID: 36105666 PMCID: PMC9465392 DOI: 10.3389/fnsyn.2022.936911] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Developing novel treatments for alcohol use disorders (AUDs) is of paramount importance for improving patient outcomes and alleviating the suffering related to the disease. A better understanding of the molecular and neurocircuit mechanisms through which alcohol alters brain function will be instrumental in the rational development of new efficacious treatments. Clinical studies have consistently associated the prefrontal cortex (PFC) function with symptoms of AUDs. Population-level analyses have linked the PFC structure and function with heavy drinking and/or AUD diagnosis. Thus, targeting specific PFC cell types and neural circuits holds promise for the development of new treatments. Here, we overview the tremendous diversity in the form and function of inhibitory neuron subtypes within PFC and describe their therapeutic potential. We then summarize AUD population genetics studies, clinical neurophysiology findings, and translational neuroscience discoveries. This study collectively suggests that changes in fast transmission through PFC inhibitory microcircuits are a central component of the neurobiological effects of ethanol and the core symptoms of AUDs. Finally, we submit that there is a significant and timely need to examine sex as a biological variable and human postmortem brain tissue to maximize the efforts in translating findings to new clinical treatments.
Collapse
Affiliation(s)
| | - Max E. Joffe
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
28
|
Bettini E, Stahl SM, De Martin S, Mattarei A, Sgrignani J, Carignani C, Nola S, Locatelli P, Pappagallo M, Inturrisi CE, Bifari F, Cavalli A, Alimonti A, Pani L, Fava M, Traversa S, Folli F, Manfredi PL. Pharmacological Comparative Characterization of REL-1017 (Esmethadone-HCl) and Other NMDAR Channel Blockers in Human Heterodimeric N-Methyl-D-Aspartate Receptors. Pharmaceuticals (Basel) 2022; 15:ph15080997. [PMID: 36015145 PMCID: PMC9414551 DOI: 10.3390/ph15080997] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 12/19/2022] Open
Abstract
Excessive Ca2+ currents via N-methyl-D-aspartate receptors (NMDARs) have been implicated in many disorders. Uncompetitive NMDAR channel blockers are an emerging class of drugs in clinical use for major depressive disorder (MDD) and other neuropsychiatric diseases. The pharmacological characterization of uncompetitive NMDAR blockers in clinical use may improve our understanding of NMDAR function in physiology and pathology. REL-1017 (esmethadone-HCl), a novel uncompetitive NMDAR channel blocker in Phase 3 trials for the treatment of MDD, was characterized together with dextromethorphan, memantine, (±)-ketamine, and MK-801 in cell lines over-expressing NMDAR subtypes using fluorometric imaging plate reader (FLIPR), automated patch-clamp, and manual patch-clamp electrophysiology. In the absence of Mg2+, NMDAR subtypes NR1-2D were most sensitive to low, sub-μM glutamate concentrations in FLIPR experiments. FLIPR Ca2+ determination demonstrated low μM affinity of REL-1017 at NMDARs with minimal subtype preference. In automated and manual patch-clamp electrophysiological experiments, REL-1017 exhibited preference for the NR1-2D NMDAR subtype in the presence of 1 mM Mg2+ and 1 μM L-glutamate. Tau off and trapping characteristics were similar for (±)-ketamine and REL-1017. Results of radioligand binding assays in rat cortical neurons correlated with the estimated affinities obtained in FLIPR assays and in automated and manual patch-clamp assays. In silico studies of NMDARs in closed and open conformation indicate that REL-1017 has a higher preference for docking and undocking the open-channel conformation compared to ketamine. In conclusion, the pharmacological characteristics of REL-1017 at NMDARs, including relatively low affinity at the NMDAR, NR1-2D subtype preference in the presence of 1 mM Mg2+, tau off and degree of trapping similar to (±)-ketamine, and preferential docking and undocking of the open NMDAR, could all be important variables for understanding the rapid-onset antidepressant effects of REL-1017 without psychotomimetic side effects.
Collapse
Affiliation(s)
- Ezio Bettini
- In Vitro Pharmacology Department, Aptuit, An Evotec Company, 37135 Verona, Italy
| | - Stephen M. Stahl
- Department of Psychiatry, VAMC (SD), University of California, San Diego, CA 92093, USA
- Neuroscience Education Institute, Carlsbad, CA 92008, USA
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35122 Padua, Italy
| | - Andrea Mattarei
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35122 Padua, Italy
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500 Bellinzona, Switzerland
| | - Corrado Carignani
- In Vitro Pharmacology Department, Aptuit, An Evotec Company, 37135 Verona, Italy
| | - Selena Nola
- In Vitro Pharmacology Department, Aptuit, An Evotec Company, 37135 Verona, Italy
| | - Patrizia Locatelli
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500 Bellinzona, Switzerland
| | - Marco Pappagallo
- Department of Anesthesiology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Relmada Therapeutics, Coral Gables, FL 33134, USA
| | | | - Francesco Bifari
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milan, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine (IRB), Università della Svizzera Italiana (USI), 6500 Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Andrea Alimonti
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Institute of Oncology Research, Southern Switzerland, 6500 Bellinzona, Switzerland
- The Institute of Oncology Research, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland
- Veneto Institute of Molecular Medicine, 35129 Padua, Italy
- Department of Medicine, Zurich University, 8006 Zurich, Switzerland
- Department of Medicine—DIMED, University of Padua, 35122 Padua, Italy
| | - Luca Pani
- Relmada Therapeutics, Coral Gables, FL 33134, USA
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Franco Folli
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Paolo L. Manfredi
- Relmada Therapeutics, Coral Gables, FL 33134, USA
- Correspondence: ; Tel.: +1-786-629-1376
| |
Collapse
|
29
|
The N-Methyl-D-Aspartate Receptor Blocker REL-1017 (Esmethadone) Reduces Calcium Influx Induced by Glutamate, Quinolinic Acid, and Gentamicin. Pharmaceuticals (Basel) 2022; 15:ph15070882. [PMID: 35890179 PMCID: PMC9319291 DOI: 10.3390/ph15070882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
REL-1017 (esmethadone) is a novel N-methyl-D-aspartate receptor (NMDAR) antagonist and promising rapid antidepressant candidate. Using fluorometric imaging plate reader (FLIPR) assays, we studied the effects of quinolinic acid (QA) and gentamicin, with or without L-glutamate and REL-1017, on intracellular calcium ([Ca2+]in) in recombinant cell lines expressing human GluN1-GluN2A, GluN1-GluN2B, GluN1-GluN2C, and GluN1-GluN2D NMDAR subtypes. There were no effects of QA on [Ca2+]in in cells expressing GluN1-GluN2C subtypes. QA acted as a low-potency, subtype-selective, NMDAR partial agonist in GluN1-GluN2A, GluN1-GluN2B, and GluN1-GluN2D subtypes. REL-1017 reduced [Ca2+]in induced by QA. In cells expressing the GluN1-GluN2D subtype, QA acted as an agonist in the presence of 0.04 μM L-glutamate and as an antagonist in the presence of 0.2 μM L-glutamate. REL-1017 reduced [Ca2+]in induced by L-glutamate alone and with QA in all cell lines. In the absence of L-glutamate, gentamicin had no effect. Gentamicin was a positive modulator for GluN1-GluN2B subtypes at 10 μM L-glutamate, for GluN1-GluN2A at 0.2 μM L-glutamate, and for GluN1-GluN2A, GluN1-GluN2B, and GluN1-GluN2D at 0.04 μM L-glutamate. No significant changes were observed with GluN1-GluN2C NMDARs. REL-1017 reduced [Ca2+]in induced by the addition of L-glutamate in all NMDAR cell lines in the presence or absence of gentamicin. In conclusion, REL-1017 reduced [Ca2+]in induced by L-glutamate alone and when increased by QA and gentamicin. REL-1017 may protect cells from excessive calcium entry via NMDARs hyperactivated by endogenous and exogenous molecules.
Collapse
|
30
|
Llorca A, Deogracias R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front Neurosci 2022; 16:929469. [PMID: 35833090 PMCID: PMC9272671 DOI: 10.3389/fnins.2022.929469] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex represents one of the most recent and astonishing inventions of nature, responsible of a large diversity of functions that range from sensory processing to high-order cognitive abilities, such as logical reasoning or language. Decades of dedicated study have contributed to our current understanding of this structure, both at structural and functional levels. A key feature of the neocortex is its outstanding richness in cell diversity, composed by multiple types of long-range projecting neurons and locally connecting interneurons. In this review, we will describe the great diversity of interneurons that constitute local neocortical circuits and summarize the mechanisms underlying their development and their assembly into functional networks.
Collapse
Affiliation(s)
- Alfredo Llorca
- Visual Neuroscience Laboratory, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburg, United Kingdom
- *Correspondence: Alfredo Llorca
| | - Ruben Deogracias
- Neuronal Circuits Formation and Brain Disorders Laboratory, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
- Ruben Deogracias
| |
Collapse
|
31
|
Lisek M, Mackiewicz J, Sobolczyk M, Ferenc B, Guo F, Zylinska L, Boczek T. Early Developmental PMCA2b Expression Protects From Ketamine-Induced Apoptosis and GABA Impairments in Differentiating Hippocampal Progenitor Cells. Front Cell Neurosci 2022; 16:890827. [PMID: 35677757 PMCID: PMC9167922 DOI: 10.3389/fncel.2022.890827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
PMCA2 is not expressed until the late embryonic state when the control of subtle Ca2+ fluxes becomes important for neuronal specialization. During this period, immature neurons are especially vulnerable to degenerative insults induced by the N-methyl-D-aspartate (NMDA) receptor blocker, ketamine. As H19-7 hippocampal progenitor cells isolated from E17 do not express the PMCA2 isoform, they constitute a valuable model for studying its role in neuronal development. In this study, we demonstrated that heterologous expression of PMCA2b enhanced the differentiation of H19-7 cells and protected from ketamine-induced death. PMCA2b did not affect resting [Ca2+]c in the presence or absence of ketamine and had no effect on the rate of Ca2+ clearance following membrane depolarization in the presence of the drug. The upregulation of endogenous PMCA1 demonstrated in response to PMCA2b expression as well as ketamine-induced PMCA4 depletion were indifferent to the rate of Ca2+ clearance in the presence of ketamine. Yet, co-expression of PMCA4b and PMCA2b was able to partially restore Ca2+ extrusion diminished by ketamine. The profiling of NMDA receptor expression showed upregulation of the NMDAR1 subunit in PMCA2b-expressing cells and increased co-immunoprecipitation of both proteins following ketamine treatment. Further microarray screening demonstrated a significant influence of PMCA2b on GABA signaling in differentiating progenitor cells, manifested by the unique regulation of several genes key to the GABAergic transmission. The overall activity of glutamate decarboxylase remained unchanged, but Ca2+-induced GABA release was inhibited in the presence of ketamine. Interestingly, PMCA2b expression was able to reverse this effect. The mechanism of GABA secretion normalization in the presence of ketamine may involve PMCA2b-mediated inhibition of GABA transaminase, thus shifting GABA utilization from energetic purposes to neurosecretion. In this study, we show for the first time that developmentally controlled PMCA expression may dictate the pattern of differentiation of hippocampal progenitor cells. Moreover, the appearance of PMCA2 early in development has long-standing consequences for GABA metabolism with yet an unpredictable influence on GABAergic neurotransmission during later stages of brain maturation. In contrast, the presence of PMCA2b seems to be protective for differentiating progenitor cells from ketamine-induced apoptotic death.
Collapse
Affiliation(s)
- Malwina Lisek
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Feng Guo
- Department of Pharmaceutical Toxicology, China Medical University, Shenyang, China
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Łódz, Poland
- *Correspondence: Tomasz Boczek
| |
Collapse
|
32
|
Armbruster M, Naskar S, Garcia JP, Sommer M, Kim E, Adam Y, Haydon PG, Boyden ES, Cohen AE, Dulla CG. Neuronal activity drives pathway-specific depolarization of peripheral astrocyte processes. Nat Neurosci 2022; 25:607-616. [PMID: 35484406 PMCID: PMC9988390 DOI: 10.1038/s41593-022-01049-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 03/14/2022] [Indexed: 12/16/2022]
Abstract
Astrocytes are glial cells that interact with neuronal synapses via their distal processes, where they remove glutamate and potassium (K+) from the extracellular space following neuronal activity. Astrocyte clearance of both glutamate and K+ is voltage dependent, but astrocyte membrane potential (Vm) is thought to be largely invariant. As a result, these voltage dependencies have not been considered relevant to astrocyte function. Using genetically encoded voltage indicators to enable the measurement of Vm at peripheral astrocyte processes (PAPs) in mice, we report large, rapid, focal and pathway-specific depolarizations in PAPs during neuronal activity. These activity-dependent astrocyte depolarizations are driven by action potential-mediated presynaptic K+ efflux and electrogenic glutamate transporters. We find that PAP depolarization inhibits astrocyte glutamate clearance during neuronal activity, enhancing neuronal activation by glutamate. This represents a novel class of subcellular astrocyte membrane dynamics and a new form of astrocyte-neuron interaction.
Collapse
Affiliation(s)
- Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| | - Saptarnab Naskar
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Jacqueline P Garcia
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.,Cell, Molecular, and Developmental Biology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Mary Sommer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Elliot Kim
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Yoav Adam
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Edmond and Lily Safra Center for Brain Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philip G Haydon
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.,Department of Physics, Harvard University, Cambridge, MA, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
33
|
Brandner S, Aicher S, Schroeter S, Swierzy I, Kinfe TM, Buchfelder M, Maslarova A, Stadlbauer A. Real-time imaging of glutamate transients in the extracellular space of acute human brain slices using a single-wavelength glutamate fluorescence nanosensor. Sci Rep 2022; 12:3926. [PMID: 35273260 PMCID: PMC8913701 DOI: 10.1038/s41598-022-07940-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Glutamate is the most important excitatory neurotransmitter in the brain. The ability to assess glutamate release and re-uptake with high spatial and temporal resolution is crucial to understand the involvement of this primary excitatory neurotransmitter in both normal brain function and different neurological disorders. Real-time imaging of glutamate transients by fluorescent nanosensors has been accomplished in rat brain slices. We performed for the first time single-wavelength glutamate nanosensor imaging in human cortical brain slices obtained from patients who underwent epilepsy surgery. The glutamate fluorescence nanosensor signals of the electrically stimulated human cortical brain slices showed steep intensity increase followed by an exponential decrease. The spatial distribution and the time course of the signal were in good agreement with the position of the stimulation electrode and the dynamics of the electrical stimulation, respectively. Pharmacological manipulation of glutamate release and reuptake was associated with corresponding changes in the glutamate fluorescence nanosensor signals. We demonstrated that the recently developed fluorescent nanosensors for glutamate allow to detect neuronal activity in acute human cortical brain slices with high spatiotemporal precision. Future application to tissue samples from different pathologies may provide new insights into pathophysiology without the limitations of an animal model.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.
| | - Simon Aicher
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Sarah Schroeter
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.,Center for Musculoskeletal Surgery Osnabrück (OZMC), Klinikum Osnabrück, Osnabrück, Germany
| | - Izabela Swierzy
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Thomas M Kinfe
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.,Division of Functional Neurosurgery and Stereotaxy, University Hospital Erlangen, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Anna Maslarova
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Andreas Stadlbauer
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054, Erlangen, Germany.,Institute of Medical Radiology, University Clinic St. Pölten, Karl Landsteiner University of Health Sciences, St. Pölten, Austria
| |
Collapse
|
34
|
Rimmele TS, Li S, Andersen JV, Westi EW, Rotenberg A, Wang J, Aldana BI, Selkoe DJ, Aoki CJ, Dulla CG, Rosenberg PA. Neuronal Loss of the Glutamate Transporter GLT-1 Promotes Excitotoxic Injury in the Hippocampus. Front Cell Neurosci 2022; 15:788262. [PMID: 35035352 PMCID: PMC8752461 DOI: 10.3389/fncel.2021.788262] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022] Open
Abstract
GLT-1, the major glutamate transporter in the mammalian central nervous system, is expressed in presynaptic terminals that use glutamate as a neurotransmitter, in addition to astrocytes. It is widely assumed that glutamate homeostasis is regulated primarily by glutamate transporters expressed in astrocytes, leaving the function of GLT-1 in neurons relatively unexplored. We generated conditional GLT-1 knockout (KO) mouse lines to understand the cell-specific functions of GLT-1. We found that stimulus-evoked field extracellular postsynaptic potentials (fEPSPs) recorded in the CA1 region of the hippocampus were normal in the astrocytic GLT-1 KO but were reduced and often absent in the neuronal GLT-1 KO at 40 weeks. The failure of fEPSP generation in the neuronal GLT-1 KO was also observed in slices from 20 weeks old mice but not consistently from 10 weeks old mice. Using an extracellular FRET-based glutamate sensor, we found no difference in stimulus-evoked glutamate accumulation in the neuronal GLT-1 KO, suggesting a postsynaptic cause of the transmission failure. We hypothesized that excitotoxicity underlies the failure of functional recovery of slices from the neuronal GLT-1 KO. Consistent with this hypothesis, the non-competitive NMDA receptor antagonist MK801, when present in the ACSF during the recovery period following cutting of slices, promoted full restoration of fEPSP generation. The inclusion of an enzymatic glutamate scavenging system in the ACSF conferred partial protection. Excitotoxicity might be due to excess release or accumulation of excitatory amino acids, or to metabolic perturbation resulting in increased vulnerability to NMDA receptor activation. Previous studies have demonstrated a defect in the utilization of glutamate by synaptic mitochondria and aspartate production in the synGLT-1 KO in vivo, and we found evidence for similar metabolic perturbations in the slice preparation. In addition, mitochondrial cristae density was higher in synaptic mitochondria in the CA1 region in 20–25 weeks old synGLT-1 KO mice in the CA1 region, suggesting compensation for loss of axon terminal GLT-1 by increased mitochondrial efficiency. These data suggest that GLT-1 expressed in presynaptic terminals serves an important role in the regulation of vulnerability to excitotoxicity, and this regulation may be related to the metabolic role of GLT-1 expressed in glutamatergic axon terminals.
Collapse
Affiliation(s)
- Theresa S Rimmele
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
| | - Shaomin Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jens Velde Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Emil W Westi
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Alexander Rotenberg
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| | - Jianlin Wang
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
| | - Blanca Irene Aldana
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Chiye J Aoki
- Center for Neural Science, New York University, NY, United States.,Neuroscience Institute NYU Langone Medical Center, NY, United States
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Paul Allen Rosenberg
- Department of Neurology and the F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States.,Program in Neuroscience, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
35
|
Warm D, Schroer J, Sinning A. Gabaergic Interneurons in Early Brain Development: Conducting and Orchestrated by Cortical Network Activity. Front Mol Neurosci 2022; 14:807969. [PMID: 35046773 PMCID: PMC8763242 DOI: 10.3389/fnmol.2021.807969] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/22/2023] Open
Abstract
Throughout early phases of brain development, the two main neural signaling mechanisms—excitation and inhibition—are dynamically sculpted in the neocortex to establish primary functions. Despite its relatively late formation and persistent developmental changes, the GABAergic system promotes the ordered shaping of neuronal circuits at the structural and functional levels. Within this frame, interneurons participate first in spontaneous and later in sensory-evoked activity patterns that precede cortical functions of the mature brain. Upon their subcortical generation, interneurons in the embryonic brain must first orderly migrate to and settle in respective target layers before they can actively engage in cortical network activity. During this process, changes at the molecular and synaptic level of interneurons allow not only their coordinated formation but also the pruning of connections as well as excitatory and inhibitory synapses. At the postsynaptic site, the shift of GABAergic signaling from an excitatory towards an inhibitory response is required to enable synchronization within cortical networks. Concomitantly, the progressive specification of different interneuron subtypes endows the neocortex with distinct local cortical circuits and region-specific modulation of neuronal firing. Finally, the apoptotic process further refines neuronal populations by constantly maintaining a controlled ratio of inhibitory and excitatory neurons. Interestingly, many of these fundamental and complex processes are influenced—if not directly controlled—by electrical activity. Interneurons on the subcellular, cellular, and network level are affected by high frequency patterns, such as spindle burst and gamma oscillations in rodents and delta brushes in humans. Conversely, the maturation of interneuron structure and function on each of these scales feeds back and contributes to the generation of cortical activity patterns that are essential for the proper peri- and postnatal development. Overall, a more precise description of the conducting role of interneurons in terms of how they contribute to specific activity patterns—as well as how specific activity patterns impinge on their maturation as orchestra members—will lead to a better understanding of the physiological and pathophysiological development and function of the nervous system.
Collapse
|
36
|
Pathway-specific contribution of parvalbumin interneuron NMDARs to synaptic currents and thalamocortical feedforward inhibition. Mol Psychiatry 2022; 27:5124-5134. [PMID: 36075962 PMCID: PMC9763122 DOI: 10.1038/s41380-022-01747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023]
Abstract
Prefrontal cortex (PFC) is a site of information convergence important for behaviors relevant to psychiatric disorders. Despite the importance of inhibitory GABAergic parvalbumin-expressing (PV+) interneurons to PFC circuit function and decades of interest in N-methyl-D-aspartate receptors (NMDARs) in these neurons, examples of defined circuit functions that depend on PV+ interneuron NMDARs have been elusive. Indeed, it remains controversial whether all PV+ interneurons contain functional NMDARs in adult PFC, which has major consequences for hypotheses of the pathogenesis of psychiatric disorders. Using a combination of fluorescent in situ hybridization, pathway-specific optogenetics, cell-type-specific gene ablation, and electrophysiological recordings from PV+ interneurons, here we resolve this controversy. We found that nearly 100% of PV+ interneurons in adult medial PFC (mPFC) express transcripts encoding GluN1 and GluN2B, and they have functional NMDARs. By optogenetically stimulating corticocortical and thalamocortical inputs to mPFC, we show that synaptic NMDAR contribution to PV+ interneuron EPSCs is pathway-specific, which likely explains earlier reports of PV+ interneurons without synaptic NMDAR currents. Lastly, we report a major contribution of NMDARs in PV+ interneurons to thalamus-mediated feedforward inhibition in adult mPFC circuits, suggesting molecular and circuit-based mechanisms for cognitive impairment under conditions of reduced NMDAR function. These findings represent an important conceptual advance that has major implications for hypotheses of the pathogenesis of psychiatric disorders.
Collapse
|
37
|
Hotz AL, Jamali A, Rieser NN, Niklaus S, Aydin E, Myren‐Svelstad S, Lalla L, Jurisch‐Yaksi N, Yaksi E, Neuhauss SCF. Loss of glutamate transporter eaat2a leads to aberrant neuronal excitability, recurrent epileptic seizures, and basal hypoactivity. Glia 2021; 70:196-214. [PMID: 34716961 PMCID: PMC9297858 DOI: 10.1002/glia.24106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022]
Abstract
Astroglial excitatory amino acid transporter 2 (EAAT2, GLT‐1, and SLC1A2) regulates the duration and extent of neuronal excitation by removing glutamate from the synaptic cleft. Hence, an impairment in EAAT2 function could lead to an imbalanced brain network excitability. Here, we investigated the functional alterations of neuronal and astroglial networks associated with the loss of function in the astroglia predominant eaat2a gene in zebrafish. We observed that eaat2a−/− mutant zebrafish larvae display recurrent spontaneous and light‐induced seizures in neurons and astroglia, which coincide with an abrupt increase in extracellular glutamate levels. In stark contrast to this hyperexcitability, basal neuronal and astroglial activity was surprisingly reduced in eaat2a−/− mutant animals, which manifested in decreased overall locomotion. Our results reveal an essential and mechanistic contribution of EAAT2a in balancing brain excitability, and its direct link to epileptic seizures.
Collapse
Affiliation(s)
- Adriana L. Hotz
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nicolas N. Rieser
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Stephanie Niklaus
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Present address:
EraCal TherapeuticsSchlierenSwitzerland
| | - Ecem Aydin
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Sverre Myren‐Svelstad
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Laetitia Lalla
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nathalie Jurisch‐Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | | |
Collapse
|
38
|
Mahadevan V, Mitra A, Zhang Y, Yuan X, Peltekian A, Chittajallu R, Esnault C, Maric D, Rhodes C, Pelkey KA, Dale R, Petros TJ, McBain CJ. NMDARs Drive the Expression of Neuropsychiatric Disorder Risk Genes Within GABAergic Interneuron Subtypes in the Juvenile Brain. Front Mol Neurosci 2021; 14:712609. [PMID: 34630033 PMCID: PMC8500094 DOI: 10.3389/fnmol.2021.712609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Medial ganglionic eminence (MGE)-derived parvalbumin (PV)+, somatostatin (SST)+and Neurogliaform (NGFC)-type cortical and hippocampal interneurons, have distinct molecular, anatomical, and physiological properties. However, the molecular mechanisms regulating their maturation remain poorly understood. Here, via single-cell transcriptomics, we show that the obligate NMDA-type glutamate receptor (NMDAR) subunit gene Grin1 mediates transcriptional regulation of gene expression in specific subtypes of MGE-derived interneurons, leading to altered subtype abundances. Notably, MGE-specific early developmental Grin1 loss results in a broad downregulation of diverse transcriptional, synaptogenic and membrane excitability regulatory programs in the juvenile brain. These widespread gene expression abnormalities mirror aberrations that are typically associated with neurodevelopmental disorders. Our study hence provides a road map for the systematic examination of NMDAR signaling in interneuron subtypes, revealing potential MGE-specific genetic targets that could instruct future therapies of psychiatric disorders.
Collapse
Affiliation(s)
- Vivek Mahadevan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Yajun Zhang
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Xiaoqing Yuan
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Areg Peltekian
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ramesh Chittajallu
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Christopher Rhodes
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, NICHD, Bethesda, MD, United States
| | - Timothy J Petros
- Unit on Cellular and Molecular Neurodevelopment, NICHD, Bethesda, MD, United States
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, MD, United States
| |
Collapse
|
39
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 361] [Impact Index Per Article: 90.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
40
|
Stolz JR, Foote KM, Veenstra-Knol HE, Pfundt R, Ten Broeke SW, de Leeuw N, Roht L, Pajusalu S, Part R, Rebane I, Õunap K, Stark Z, Kirk EP, Lawson JA, Lunke S, Christodoulou J, Louie RJ, Rogers RC, Davis JM, Innes AM, Wei XC, Keren B, Mignot C, Lebel RR, Sperber SM, Sakonju A, Dosa N, Barge-Schaapveld DQCM, Peeters-Scholte CMPCD, Ruivenkamp CAL, van Bon BW, Kennedy J, Low KJ, Ellard S, Pang L, Junewick JJ, Mark PR, Carvill GL, Swanson GT. Clustered mutations in the GRIK2 kainate receptor subunit gene underlie diverse neurodevelopmental disorders. Am J Hum Genet 2021; 108:1692-1709. [PMID: 34375587 PMCID: PMC8456161 DOI: 10.1016/j.ajhg.2021.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
Kainate receptors (KARs) are glutamate-gated cation channels with diverse roles in the central nervous system. Bi-allelic loss of function of the KAR-encoding gene GRIK2 causes a nonsyndromic neurodevelopmental disorder (NDD) with intellectual disability and developmental delay as core features. The extent to which mono-allelic variants in GRIK2 also underlie NDDs is less understood because only a single individual has been reported previously. Here, we describe an additional eleven individuals with heterozygous de novo variants in GRIK2 causative for neurodevelopmental deficits that include intellectual disability. Five children harbored recurrent de novo variants (three encoding p.Thr660Lys and two p.Thr660Arg), and four children and one adult were homozygous for a previously reported variant (c.1969G>A [p.Ala657Thr]). Individuals with shared variants had some overlapping behavioral and neurological dysfunction, suggesting that the GRIK2 variants are likely pathogenic. Analogous mutations introduced into recombinant GluK2 KAR subunits at sites within the M3 transmembrane domain (encoding p.Ala657Thr, p.Thr660Lys, and p.Thr660Arg) and the M3-S2 linker domain (encoding p.Ile668Thr) had complex effects on functional properties and membrane localization of homomeric and heteromeric KARs. Both p.Thr660Lys and p.Thr660Arg mutant KARs exhibited markedly slowed gating kinetics, similar to p.Ala657Thr-containing receptors. Moreover, we observed emerging genotype-phenotype correlations, including the presence of severe epilepsy in individuals with the p.Thr660Lys variant and hypomyelination in individuals with either the p.Thr660Lys or p.Thr660Arg variant. Collectively, these results demonstrate that human GRIK2 variants predicted to alter channel function are causative for early childhood development disorders and further emphasize the importance of clarifying the role of KARs in early nervous system development.
Collapse
Affiliation(s)
- Jacob R Stolz
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kendall M Foote
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hermine E Veenstra-Knol
- Department of Genetics, University Medical Center Groningen, Groningen 9700, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6525, the Netherlands
| | - Sanne W Ten Broeke
- Department of Genetics, University Medical Center Groningen, Groningen 9700, the Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6525, the Netherlands
| | - Laura Roht
- Department of Clinical Genetics, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu 51003, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu 51003, Estonia
| | - Reelika Part
- Department of Neonatal and Infant Medicine, Tallinn Children's Hospital, Tallinn 13419, Estonia
| | - Ionella Rebane
- Department of Neonatal and Infant Medicine, Tallinn Children's Hospital, Tallinn 13419, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, Tartu University Hospital, Tartu 50406, Estonia; Department of Clinical Genetics, Institute of Clinical Medicine, Tartu University, Tartu 51003, Estonia
| | - Zornitza Stark
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Edwin P Kirk
- School of Women's and Children's Health, UNSW Medicine, University of New South Wales, Randwick, NSW 2031, Australia; Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW 2031, Australia
| | - John A Lawson
- Department of Neurology, Sydney Children's Hospital, Randwick, NSW 2031, Australia
| | - Sebastian Lunke
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Australian Genomics Health Alliance, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | | | | | | | - A Micheil Innes
- Departments of Medical Genetics and Pediatrics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada
| | - Xing-Chang Wei
- Department of Diagnostic Imaging, Cumming School of Medicine, University of Calgary, AB T2N 4N1, Canada
| | - Boris Keren
- Département de Génétique, Hôpital Pitié-Salpêtrière, Paris 75013, France
| | - Cyril Mignot
- Département de Génétique, Hôpital Pitié-Salpêtrière, Paris 75013, France
| | - Robert Roger Lebel
- Division of Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven M Sperber
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ai Sakonju
- Department of Neurology, Upstate Health Care Center, Syracuse, NY 13210, USA
| | - Nienke Dosa
- Division of Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | - Claudia A L Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center, 2333 Leiden, the Netherlands
| | - Bregje W van Bon
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6525, the Netherlands
| | - Joanna Kennedy
- University Hospital Bristol, NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Karen J Low
- University Hospital Bristol, NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Lewis Pang
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Joseph J Junewick
- Department of Radiology, Helen DeVos Children's Hospital, Grand Rapids, MI 49503, USA
| | - Paul R Mark
- Spectrum Health Medical Genetics, Grand Rapids, MI 49503, USA
| | - Gemma L Carvill
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Geoffrey T Swanson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
41
|
Booker SA, Sumera A, Kind PC, Wyllie DJA. Contribution of NMDA Receptors to Synaptic Function in Rat Hippocampal Interneurons. eNeuro 2021; 8:ENEURO.0552-20.2021. [PMID: 34326063 PMCID: PMC8362681 DOI: 10.1523/eneuro.0552-20.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/15/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022] Open
Abstract
The ability of neurons to produce behaviorally relevant activity in the absence of pathology relies on the fine balance of synaptic inhibition to excitation. In the hippocampal CA1 microcircuit, this balance is maintained by a diverse population of inhibitory interneurons that receive largely similar glutamatergic afferents as their target pyramidal cells, with EPSCs generated by both AMPA receptors (AMPARs) and NMDA receptors (NMDARs). In this study, we take advantage of a recently generated GluN2A-null rat model to assess the contribution of GluN2A subunits to glutamatergic synaptic currents in three subclasses of interneuron found in the CA1 region of the hippocampus. For both parvalbumin-positive and somatostatin-positive interneurons, the GluN2A subunit is expressed at glutamatergic synapses and contributes to the EPSC. In contrast, in cholecystokinin (CCK)-positive interneurons, the contribution of GluN2A to the EPSC is negligible. Furthermore, synaptic potentiation at glutamatergic synapses on CCK-positive interneurons does not require the activation of GluN2A-containing NMDARs but does rely on the activation of NMDARs containing GluN2B and GluN2D subunits.
Collapse
Affiliation(s)
- Sam A. Booker
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Anna Sumera
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Peter C. Kind
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - David J. A. Wyllie
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Patrick Wild Centre, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| |
Collapse
|
42
|
Booker SA, Wyllie DJA. NMDA receptor function in inhibitory neurons. Neuropharmacology 2021; 196:108609. [PMID: 34000273 DOI: 10.1016/j.neuropharm.2021.108609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/26/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are present in the majority of brain circuits and play a key role in synaptic information transfer and synaptic plasticity. A key element of many brain circuits are inhibitory GABAergic interneurons that in themselves show diverse and cell-type-specific NMDAR expression and function. Indeed, NMDARs located on interneurons control cellular excitation in a synapse-type specific manner which leads to divergent dendritic integration properties amongst the plethora of interneuron subtypes known to exist. In this review, we explore the documented diversity of NMDAR subunit expression in identified subpopulations of interneurons and assess the NMDAR subtype-specific control of their function. We also highlight where knowledge still needs to be obtained, if a full appreciation is to be gained of roles played by NMDARs in controlling GABAergic modulation of synaptic and circuit function. This article is part of the 'Special Issue on Glutamate Receptors - NMDA receptors'.
Collapse
Affiliation(s)
- Sam A Booker
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK; Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK.
| | - David J A Wyllie
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XD, UK; Patrick Wild Centre for Research into Autism, Fragile X Syndrome & Intellectual Disabilities, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK; Centre for Brain Development and Repair, InStem, Bangalore, 560065, India.
| |
Collapse
|
43
|
The role of GABAergic signalling in neurodevelopmental disorders. Nat Rev Neurosci 2021; 22:290-307. [PMID: 33772226 PMCID: PMC9001156 DOI: 10.1038/s41583-021-00443-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
GABAergic inhibition shapes the connectivity, activity and plasticity of the brain. A series of exciting new discoveries provides compelling evidence that disruptions in a number of key facets of GABAergic inhibition have critical roles in the aetiology of neurodevelopmental disorders (NDDs). These facets include the generation, migration and survival of GABAergic neurons, the formation of GABAergic synapses and circuit connectivity, and the dynamic regulation of the efficacy of GABAergic signalling through neuronal chloride transporters. In this Review, we discuss recent work that elucidates the functions and dysfunctions of GABAergic signalling in health and disease, that uncovers the contribution of GABAergic neural circuit dysfunction to NDD aetiology and that leverages such mechanistic insights to advance precision medicine for the treatment of NDDs.
Collapse
|
44
|
Kainate receptors in the developing neuronal networks. Neuropharmacology 2021; 195:108585. [PMID: 33910033 DOI: 10.1016/j.neuropharm.2021.108585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Kainate receptors (KARs) are highly expressed in the immature brain and have unique developmentally regulated functions that may be important in linking neuronal activity to morphogenesis during activity-dependent fine-tuning of the synaptic connectivity. Altered expression of KARs in the developing neural network leads to changes in glutamatergic connectivity and network excitability, which may lead to long-lasting changes in behaviorally relevant circuitries in the brain. Here, we summarize the current knowledge on physiological and morphogenic functions described for different types of KARs at immature neural circuitries, focusing on their roles in modulating synaptic transmission and plasticity as well as circuit maturation in the rodent hippocampus and amygdala. Finally, we discuss the emerging evidence suggesting that malfunction of KARs in the immature brain may contribute to the pathophysiology underlying developmentally originating neurological disorders.
Collapse
|
45
|
Huang XX, Zhang S, Yan LL, Tang Y, Wu J. Influential factors and predictors of anti-N-methyl-D-aspartate receptor encephalitis associated with severity at admission. Neurol Sci 2021; 42:3835-3841. [PMID: 33483886 DOI: 10.1007/s10072-021-05060-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/12/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE We aimed to study the clinical characteristics and biological indicators of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis with different severity levels to explore factors predicting disease severity at admission. METHODS Using the modified Rankin scale (mRS), patients were divided into mild-to-moderate group (mRS ≤ 3) and severe group (mRS > 3) on admission based on severity of illness. General information, previous history, premonitory symptoms, clinical manifestations before admission, imaging findings and biochemical tests were compared to explore the clinical manifestations and biological indicators related to the severity of illness at admission. RESULTS In the severe group, the incidences of fever, anti-infective therapy, generalized seizures, consciousness disorder, blood white blood cell, neutrophils, and neutrophil-lymphocyte ratio (NLR) were higher than those in mild-to-moderate group (P < 0.001, P = 0.001, P = 0.020, P < 0.001, P = 0.002, P < 0.001, P < 0.001, respectively); blood lymphocyte counts was lower than those in mild-to-moderate group (P < 0.001). There was the strongest significant positive correlation between the NLR and disease severity at admission (rs = 0.684, P < 0.001). In multivariate logistic regression, fever, generalized seizures, consciousness disorder, and elevated NLR were independent risk factors for disease severity; the area under the receiver operating characteristic curve was 0.896 (95%CI: 0.840-0.952, P < 0.001). CONCLUSION Fever, generalized seizures, consciousness disorder, and elevated NLR were independent risk factors for disease severity. NLR is a good predictor of the severity of illness at admission.
Collapse
Affiliation(s)
- Xiao-Xue Huang
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Shuang Zhang
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Lu-Lu Yan
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Yao Tang
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Jun Wu
- Department of Neurology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
46
|
High Salt Intake Recruits Tonic Activation of NR2D Subunit-Containing Extrasynaptic NMDARs in Vasopressin Neurons. J Neurosci 2020; 41:1145-1156. [PMID: 33303677 DOI: 10.1523/jneurosci.1742-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 11/21/2022] Open
Abstract
In addition to producing a classical excitatory postsynaptic current via activation of synaptic NMDA receptors (NMDARs), glutamate in the brain also induces a tonic NMDAR current (I NMDA) via activation of extrasynaptic NMDARs (eNMDARs). However, since Mg2+ blocks NMDARs in nondepolarized neurons, the potential contribution of eNMDARs to the overall neuronal excitatory/inhibitory (E/I) balance remains unknown. Here, we demonstrate that chronic (7 d) salt loading (SL) recruited NR2D subunit-containing NMDARs to generate an Mg2+-resistant tonic I NMDA in nondepolarized [V h (holding potential) -70 mV] vasopressin (VP; but not oxytocin) supraoptic nucleus (SON) neurons in male rodents. Conversely, in euhydrated (EU) and 3 d SL mice, Mg2+-resistant tonic I NMDA was not observed. Pharmacological and genetic intervention of NR2D subunits blocked the Mg2+-resistant tonic I NMDA in VP neurons under SL conditions, while an NR2B antagonist unveiled Mg2+-sensitive tonic I NMDA but not Mg2+-resistant tonic I NMDA In the EU group VP neurons, an Mg2+-resistant tonic I NMDA was not generated by increased ambient glutamate or treatment with coagonists (e.g., d-serine and glycine). Chronic SL significantly increased NR2D expression but not NR2B expression in the SON relative to the EU group or after 3 d under SL conditions. Finally, Mg2+-resistant tonic I NMDA selectively upregulated neuronal excitability in VP neurons under SL conditions, independent of ionotropic GABAergic input. Our results indicate that the activation of NR2D-containing NMDARs constitutes a novel mechanism that generates an Mg2+-resistant tonic I NMDA in nondepolarized VP neurons, thus causing an E/I balance shift in VP neurons to compensate for the hormonal demands imposed by a chronic osmotic challenge.SIGNIFICANCE STATEMENT The hypothalamic supraoptic nucleus (SON) consists of two different types of magnocellular neurosecretory cells (MNCs) that synthesize and release the following two peptide hormones: vasopressin (VP), which is necessary for regulation of fluid homeostasis; and oxytocin (OT), which plays a major role in lactation and parturition. NMDA receptors (NMDARs) play important roles in shaping neuronal firing patterns and hormone release from the SON MNCs in response to various physiological challenges. Our results show that prolonged (7 d) salt loading generated a Mg2+-resistant tonic NMDA current mediated by NR2D subunit-containing receptors, which efficiently activated nondepolarized VP (but not OT) neurons. Our findings support the hypothesis that NR2D subunit-containing NMDARs play an important adaptive role in adult brain in response to a sustained osmotic challenge.
Collapse
|
47
|
Kalev-Zylinska ML, Morel-Kopp MC, Ward CM, Hearn JI, Hamilton JR, Bogdanova AY. Ionotropic glutamate receptors in platelets: opposing effects and a unifying hypothesis. Platelets 2020; 32:998-1008. [PMID: 33284715 DOI: 10.1080/09537104.2020.1852542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ionotropic glutamate receptors include α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR), kainate receptors (KAR), and N-methyl-D-aspartate receptors (NMDAR). All function as cation channels; AMPAR and KAR are more permeable to sodium and NMDAR to calcium ions. Compared to the brain, receptor assemblies in platelets are unusual, suggesting distinctive functionalities.There is convincing evidence that AMPAR and KAR amplify platelet function and thrombus formation in vitro and in vivo. Transgenic mice lacking GluA1 and GluK2 (AMPAR and KAR subunits, respectively) have longer bleeding times and prolonged time to thrombosis in an arterial model. In humans, rs465566 KAR gene polymorphism associates with altered in vitro platelet responses suggesting enhanced aspirin effect. The NMDAR contribution to platelet function is less well defined. NMDA at low concentrations (≤10 μM) inhibits platelet aggregation and high concentrations (≥100 μM) have no effect. However, open NMDAR channel blockers interfere with platelet activation and aggregation induced by other agonists in vitro; anti-GluN1 antibodies interfere with thrombus formation under high shear rates ex vivo; and rats vaccinated with GluN1 develop iron deficiency anemia suggestive of mild chronic bleeding. In this review, we summarize data on glutamate receptors in platelets and propose a unifying model that reconciles some of the opposing effects observed.
Collapse
Affiliation(s)
- Maggie L Kalev-Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Department of Pathology and Laboratory Medicine, LabPlus Haematology, Auckland City Hospital, Auckland, New Zealand
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia.,Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - Christopher M Ward
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital, Sydney, Australia.,Northern Blood Research Centre, Kolling Institute, University of Sydney, Sydney, Australia
| | - James I Hearn
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand
| | - Justin R Hamilton
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Anna Y Bogdanova
- Red Blood Cell Research Group, Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zürich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland
| |
Collapse
|
48
|
Gonda S, Giesen J, Sieberath A, West F, Buchholz R, Klatt O, Ziebarth T, Räk A, Kleinhubbert S, Riedel C, Hollmann M, Hamad MIK, Reiner A, Wahle P. GluN2B but Not GluN2A for Basal Dendritic Growth of Cortical Pyramidal Neurons. Front Neuroanat 2020; 14:571351. [PMID: 33281565 PMCID: PMC7691608 DOI: 10.3389/fnana.2020.571351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023] Open
Abstract
NMDA receptors are important players for neuronal differentiation. We previously reported that antagonizing NMDA receptors with APV blocked the growth-promoting effects evoked by the overexpression of specific calcium-permeable or flip-spliced AMPA receptor subunits and of type I transmembrane AMPA receptor regulatory proteins which both exclusively modify apical dendritic length and branching of cortical pyramidal neurons. These findings led us to characterize the role of GluN2B and GluN2A for dendritogenesis using organotypic cultures of rat visual cortex. Antagonizing GluN2B with ifenprodil and Ro25-6981 strongly impaired basal dendritic growth of supra- and infragranular pyramidal cells at DIV 5–10, but no longer at DIV 15–20. Growth recovered after washout, and protein blots revealed an increase of synaptic GluN2B-containing receptors as indicated by a enhanced phosphorylation of the tyrosine 1472 residue. Antagonizing GluN2A with TCN201 and NVP-AAM077 was ineffective at both ages. Dendrite growth of non-pyramidal interneurons was not altered. We attempted to overexpress GluN2A and GluN2B. However, although the constructs delivered currents in HEK cells, there were neither effects on dendrite morphology nor an enhanced sensitivity to NMDA. Further, co-expressing GluN1-1a and GluN2B did not alter dendritic growth. Visualization of overexpressed, tagged GluN2 proteins was successful after immunofluorescence for the tag which delivered rather weak staining in HEK cells as well as in neurons. This suggested that the level of overexpression is too weak to modify dendrite growth. In summary, endogenous GluN2B, but not GluN2A is important for pyramidal cell basal dendritic growth during an early postnatal time window.
Collapse
Affiliation(s)
- Steffen Gonda
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jan Giesen
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Alexander Sieberath
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Fabian West
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Raoul Buchholz
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Oliver Klatt
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Tim Ziebarth
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Andrea Räk
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sabine Kleinhubbert
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christian Riedel
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Michael Hollmann
- Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Bochum, Germany
| | - Mohammad I K Hamad
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Reiner
- Cellular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
49
|
Hunter D, Jamet Z, Groc L. Autoimmunity and NMDA receptor in brain disorders: Where do we stand? Neurobiol Dis 2020; 147:105161. [PMID: 33166697 DOI: 10.1016/j.nbd.2020.105161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Over the past decades, the identification of autoimmune encephalitis in which patients express autoantibodies directed against neurotransmitter receptors has generated great hope to shed new light on the molecular mechanisms underpinning neurological and psychiatric conditions. Among these autoimmune encephalitides, the discovery of autoantibodies directed against the glutamatergic NMDA receptor (NMDAR-Ab), in the anti-NMDAR encephalitis, has provided some key information on how complex neuropsychiatric symptoms can be caused by a deficit in NMDAR signalling. Yet, NMDAR-Abs have also been detected in several neurological and psychiatric conditions, as well as in healthy individuals. In addition, these various NMDAR-Abs appear to have different molecular properties and pathogenicities onto receptors and synaptic functions. Here, we discuss the current view on the variety of NMDAR-Abs and, in particular, how these autoantibodies can lead to receptor dysfunction in neuronal networks. Since our mechanistic understanding on patients' NMDAR-Abs is still in its infancy, several complementary processes can be proposed and further in-depth molecular and cellular investigations will surely reveal key insights. Autoantibodies represent a great opportunity to gain knowledge on the etiology of neuropsychiatric disorders and pave the way for innovative therapeutic strategies. ONE SENTENCE SUMMARY: Current view on patients' autoantibody against NMDAR.
Collapse
Affiliation(s)
- Daniel Hunter
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Zoe Jamet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Laurent Groc
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France.
| |
Collapse
|
50
|
Medvedeva VP, Pierani A. How Do Electric Fields Coordinate Neuronal Migration and Maturation in the Developing Cortex? Front Cell Dev Biol 2020; 8:580657. [PMID: 33102486 PMCID: PMC7546860 DOI: 10.3389/fcell.2020.580657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
During development the vast majority of cells that will later compose the mature cerebral cortex undergo extensive migration to reach their final position. In addition to intrinsically distinct migratory behaviors, cells encounter and respond to vastly different microenvironments. These range from axonal tracts to cell-dense matrices, electrically active regions and extracellular matrix components, which may all change overtime. Furthermore, migrating neurons themselves not only adapt to their microenvironment but also modify the local niche through cell-cell contacts, secreted factors and ions. In the radial dimension, the developing cortex is roughly divided into dense progenitor and cortical plate territories, and a less crowded intermediate zone. The cortical plate is bordered by the subplate and the marginal zone, which are populated by neurons with high electrical activity and characterized by sophisticated neuritic ramifications. Neuronal migration is influenced by these boundaries resulting in dramatic changes in migratory behaviors as well as morphology and electrical activity. Modifications in the levels of any of these parameters can lead to alterations and even arrest of migration. Recent work indicates that morphology and electrical activity of migrating neuron are interconnected and the aim of this review is to explore the extent of this connection. We will discuss on one hand how the response of migrating neurons is altered upon modification of their intrinsic electrical properties and whether, on the other hand, the electrical properties of the cellular environment can modify the morphology and electrical activity of migrating cortical neurons.
Collapse
Affiliation(s)
- Vera P Medvedeva
- Imagine Institute of Genetic Diseases, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| | - Alessandra Pierani
- Imagine Institute of Genetic Diseases, Université de Paris, Paris, France.,Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Université de Paris, Paris, France
| |
Collapse
|